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1 Introduction

In cosmology we often encounter situations in which we have to describe several species
simultaneously. A prototypical example is the ΛCDM model, according to which (and the
latest data) the present universe contains a cosmological constant (∼ 68%), cold dark matter
(∼ 27%), baryonic matter (∼ 5%) and smaller amounts of radiation (and neutrinos) [1]. In
the standard picture, during the progressive cooling of the universe after reheating, some
of these components ceased to interact among themselves and each of them contributes
today to the Einstein equations with the energy-momentum tensor of a perfect fluid that is
separately conserved. In more complicated models, some cosmological species are still allowed
to interact at late times. For instance, there is considerable interest in constraining [2–8]
possible interactions between the dark matter and a dark energy component that would be
responsible for the accelerated expansion of the universe (e.g. [9–13]). These interactions are
typically characterized in an ad hoc manner, and it would be convenient to have a guiding
principle that allowed us to study them within a general framework.

In additon, given the large number of models of the various epochs of the universe [14–
18], confronting all the interesting proposals with the data is a daunting task. The funda-
mental tool to interpret the great majority of the observations is the theory of cosmological
perturbations. The reciprocal effects of the fluctuations pertaining to different species are
very often modelled with (usually linearized) hydrodynamical equations, which depend on
phenomenological coefficients that are then constrained fitting the data.1 In many models
(for example of the late time universe) the equations of scalar (or even vector) fields can also

1These equations (see e.g. [19]) are indeed a core part of the Boltzmann codes that are used to interpret
the CMB data.
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be written using fluid variables such as density, pressure and anisotropic stress. This adds up
to the need for a general framework to classify and describe fluid interactions in cosmological
perturbation theory.

To simplify the process of model testing, a useful strategy is to search in the data for
specific features shared by classes of models. In this work we develop a framework, exclusively
based on symmetry arguments, that describes the dynamics of cosmological perturbations
at large scales in multi-component fluids. We use the Effective Field Theory (EFT) of
Fluids [20–22] to describe the propagation of gapless sound waves, i.e phonons, in continuous
media at low energies (or equivalently large distances). The power of the effective field theory
is that given the low-energy degrees of freedom and the symmetries that characterize them,
the form of the action is completely determined, with strong relations between its various
terms. This framework is then able to capture at once several microscopic models that share
the same degrees of freedom and symmetry at large distances.

The EFT framework was used in [22] to study of cosmological perturbations in sin-
gle component perfect fluids. Our aim now is the description of fluids in cosmology that
contain several components. Specifically, we are interested in determining in the most gen-
eral way the form of the allowed interactions between different cosmological species at the
level of perturbations. The only assumptions that we make are: 1) that the source of the
energy-momentum tensor of the universe can be described in the continuum limit of a coarse
graining at sufficiently large scales; 2) that the resulting system is symmetric under specific
transformations with a clear geometric meaning; and 3) that the only propagating degrees
of freedom at low energies are associated to the spontaneous breaking of these symmetries.

Since we are interested in the long distance dynamics of sound waves, we can write an
effective Lagrangian as a perturbative expansion in terms of derivatives. The relevant degrees
of freedom in this series are the Goldstone bosons of the broken spacetime symmetries.2 More
concretely, the fluid backgrounds break space and internal translations spontaneously, giving
rise to three Goldstone bosons per each component. These Goldstone bosons restore non-
linearly general covariance and all the broken internal symmetries. The phonons are then
represented by the displacement field π with respect to the comoving coordinates of the
fluid. Since the symmetries are non-linearly realized on π, there are stringent constraints on
the couplings. This is specially useful to characterize the dynamics of sound waves in the
extension of the EFT to multi-component fluids.

The set of symmetries that is imposed to build the action of the continuum medium
determines completely its physical behaviour. We will assume that each component of the
multi-component fluid must be internally homogeneous and isotropic. Actually, we will
impose an even stronger condition: invariance under volume preserving diffeorphisms, that
leads to a perfect (and adiabatic) fluid in the single-component case. When there are several
components, this symmetry does not produce a perfect fluid, due to the interaction between
the components. Other symmetry choices are possible as well but, as we will see, the one we
take already leads to a rich phenomenology. In particular, in addition to the known invariant
operators built with two different four-velocities, we show that a new operator that can lead
to w = −1 appears when there are at least four components in the fluid.

Then, guided by the currently prevailing Cosmological Principle, we will obtain the
phonon action by requiring that the background states of all the components coincide with
each other, in agreement with homogeneity and isotropy.

2This is the same basic principle that is used in the EFT of inflation [23] and dark energy [24].
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There are several questions that we try to address in this work. As we have explained,
our main goal is describing in broad generality the dynamics of perturbations when there are
several cosmological species involved, possibly interacting non-gravitationally among them.
In such a system, the mere definition of an individual species is a subtle matter. In a general
interacting system, a multi-component fluid, we can only define a single gravitational energy-
momentum tensor for the whole ensemble of components, but we want to understand if and
how it is possible to distinguish between different species. This will lead us to define flavours
in a multi-component fluid through the action for the sound waves. We shall see that in
dynamical backgrounds such us the ones that are typically considered in cosmology, the
mixing of the perturbations prevents a proper definition of flavour. We can define conserved
flavours only for time scales much shorter than the age of the universe. Nevertheless, at linear
order in cosmological perturbations, it is always possible to interpret a multi-component fluid
as a mixture of different interacting species. In general, there is no unique way of mapping
the Goldstone bosons π into fluid variables. We will see that this translates into a relation
between couplings and anisotropic stresses.

The layout of the paper is the following. In section 2 we review the EFT of a perfect
fluid. In section 3 we generalize the theory to include multiple interacting components.
We identify the operators that contribute at leading order in derivatives and obtain the
gravitational energy-momentum tensor of the system. We also mention some properties of
the new operator, Ψ, that appears when there are four or more components. In section 4
we use those results to discuss cosmological phonons in a FLRW background. First, in
section 4.1, we present the quadratic action for the phonons, introduce the concept of flavour
for a multi-component fluid and discuss the impossibility of diagonalizing the phonon action
due to the time dependence of the background. Then, in section 4.2, we obtain the equations
that describe the propagation of phonons and explain how to define fluid variables which
allow to interpret the equations in terms of the perturbations of a system of interacting
species. Finally, we conclude in section 5. In the the appendix A we discuss the conservation
of vorticity and its relation to the equations of motion of transverse phonons.

Although this work focuses in cosmology and covariant theories of gravity (specifically
on General Relativity), the formalism can be applied in other physical contexts.3 Related
work on multi-component fluids can be found in [27–29].

2 The EFT of a perfect fluid

In this section we briefly review the EFT of a perfect fluid, which describes the dynamics
of (gapless) sound waves (phonons) in a continuous medium. For further details on this
formalism and its application to cosmological perturbation theory, we refer the reader to [21,
22, 30]. The EFT of perfect fluids, as presented here and in [20, 22, 30], blends together
the variational principle for fluids [31, 32], the pull-back formalism (see e.g. [27, 33]) and the
effective theory of phonons [34, 35]. The application of the pull-back formalism in cosmology
is now being developed. In [36] it was used to consider the possibility of Lorentz violation
in dark matter. In [30] a model of inflation based on a ‘solid’ was proposed. In [13] the
formalism was applied to couple a quintessence scalar field to dark matter.

The kinematics of a continuous medium is fully described by the position, at each time,
of all its elements, i.e. their trajectories. Since the medium is continuous, the elements can
be labelled by a set of three continuous real functions Φi(t, xj) of space and time. The

3For example, it has been applied to study the oscillations of superfluid neutron stars [25, 26].
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trajectory of an element identified by Φi is then given by xi(t,Φj) and it is clear that the
spacetime fields Φi correspond to the coordinates of the elements in a system of reference
that is comoving with the medium. In consequence, their variation along the flow is zero,
which allows to express the four-velocity of the system in terms of Φi via

uµ∂µΦ
i = 0 , u2 = −1 . (2.1)

The solution of these constraints is

uµ = − 1

6 b
√−g ǫ

µαβγǫabc∂αΦ
a∂βΦ

b∂γΦ
c , (2.2)

where

b =
√
detB , Bij = ∂µΦ

i∂µΦj . (2.3)

An advantage of expressing the fluid velocity in terms of three scalar degrees of freedom is
that we do not need to vary the action with a Lagrange multiplier to enforce the constraints
as in [27, 33].

A volume preserving internal spatial diffeomorphism VDiff is a transformation of the
comoving coordinates whose Jacobian determinant is equal to 1:

VDiff : Φi → f i(Φ) , det

(

∂f i

∂Φj

)

= 1 . (2.4)

The word ‘internal’ simply means that these spatial diffeomorphisms act on the comoving
coordinates. Notice that these transformations include translations and SO(3) rotations
and, therefore, any continuum medium that is symmetric under (2.4) is homogeneous and
isotropic. We will soon see that imposing the symmetry (2.4) implies that we deal with a
perfect fluid. If instead we choose to impose only the less stringent conditions of homogeneity
and isotropy, we will obtain an imperfect fluid (because it has anisotropic stress) that has
been referred as ‘solid’ in the literature [20].

We are interested in describing the dynamics of perturbations of the fluid with respect
to a reference frame where the unperturbed fluid is at rest. Therefore, we write

Φi(t, xj) = xi + πi
(

t, xj
)

, (2.5)

where the fields πi represent the phonons around the solution Φi = xi. This background is
invariant under a combination of an internal translation Φi → Φi+ci and a space translation
xi → xi − ci. This symmetry ensures the homogeneity of the environment in which the
phonons propagate. Analogously, the unbroken diagonal combination of internal and space
rotations ensures its isotropy. The phonons πi are the Goldstone bosons associated to this
spontaneous symmetry breaking pattern and, therefore, their low-energy (i.e. long-distance)
dynamics is given by a derivatively coupled EFT.

The symmetries of the Φ fields are non-linearly realized on the effective action for the
phonons π, constraining the form of their interactions. In a static spacetime (e.g. Minkowski)
these interactions are then given at the lowest derivative orders by a Lagrangian which
contains just a few parameters at each order in π. In a non-static homogeneous spacetime,
such as FLRW, those parameters become functions of time.

– 4 –
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Specifically, given the symmetry (2.4), the action for the phonons at lowest order in
derivatives is obtained inserting (2.5) into

Sm =

∫

d4x
√−g F (b) , (2.6)

where b is defined in (2.3). The fluid Lagrangian is an arbitrary function of b because
that is the only possible invariant under (2.4) that gives one (and just one) derivative per
phonon. This function, which is sometimes named master function [28], determines the
thermodynamical properties of the system.

In cosmology we are interested in the interactions between the matter and the metric
perturbations. To describe these interactions we consider, in addition to (2.6), the standard
Einstein-Hilbert action of General Relativity.

The gravitational energy-momentum tensor of (2.6) is then

Tµν = − 2√−g
δSm
δgµν

= −bFb uµuν + (F − bFb) gµν , (2.7)

where Fb = dF/db and the four-velocity is given by (2.2). This is the energy-momentum
tensor of a perfect fluid with rest frame four-velocity uµ, pressure p = F − bFb, and density
ρ = −F .

All the dynamics of the phonons is encoded in the function F (b) and its derivatives,
evaluated on the background. For example, in the case of an unperturbed Minkowski metric,
the quadratic phonon Lagrangian derived from (2.6) is

Lπ(2) = − b̄F̄b
2

(

π̇2⊥ + π̇2‖ −
b̄F̄bb
F̄b

(

∇ · π‖
)2
)

, (2.8)

where the overbars indicate quantities that are evaluated on the background and we have
split the phonons in transverse and longitudinal modes

π = π‖ + π⊥ ∇ · π⊥ = 0 ∇× π‖ = 0 . (2.9)

As discussed in [22], the equations of motion for π can be recast into the usual Euler and
continuity equations for a perfect fluid with adiabatic sound speed.

The four-vector

Jµ = −b uµ (2.10)

satisfies Jµ;µ = 0 identically and it can be identified with the entropy current, provided that
the temperature of the fluid is defined as T = −Fb . Then, the comoving entropy density is
simply Jµuµ = b .

3 The EFT of multi-component fluids

In cosmology, we often deal with several species at the same time. For instance, we may
want to characterize the late time evolution of dark matter perturbations in the presence of
some form of dark energy or we may be interested in describing a small interaction between
baryons and dark matter. If the different species only interact with each other gravitationally,
the extension of the formalism outlined in the previous section is straightforward [22]. The
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total effective Lagrangian is just the sum of the Lagrangians of the separate fluids. However,
in absence of a compelling physical reason or a symmetry argument that prevents direct
interactions, the assumption that each fluid has a separately conserved energy-momentum
tensor becomes just a prejudice. This is particularly important for systems such as dark
matter – dark energy, for which our knowledge of the underlying theory is still very limited.
An agnostic approach to this type of problems is particularly valuable, and this is what the
EFT framework allows us to do.

In what follows we generalize the EFT of perfect fluids to the case where there are
several components. Our aim is to describe a system of N cosmological species using N
copies of three scalar fields:

ΦiA , A = 1, . . . , N , i = 1, . . . , 3. (3.1)

We will call each of these triads a component, and avoid to refer to them as ‘fluids’ or
‘species’ for reasons that will soon become clear. In analogy with the previous section, we
could naively expect that each triad of Φ fields (labelled with a Latin capital letter) would
serve us to represent the comoving coordinates of a particular species. Although this starting
point allows us to construct the theory, we will find that the actual definition of a species in
the EFT framework is more subtle. First of all, we will see in this section that there is no
neat way in which the energy-momentum tensor of the system (3.11) can be chopped into
pieces that we can associate to different species.

Given this difficulty, we will try in section 4.1 to define separate species using the
quadratic action for the perturbations, introducing the concept of flavour as an independently
propagating excitation. We will find that the time dependence of the mixing terms that occurs
in dynamical spacetimes makes impossible the identification of conserved flavours at all times.
Flavours that are identified in the quadratic phonon action at a certain time get eventually
mixed through the time evolution of the system. In spite of this flavour non-conservation,
we will see in section 4.2 that we can actually identify individual species that are maintained
along the time evolution at the level of the equations of motion.

Let us now proceed with the construction of the EFT for a multi-component system.
The first question that we must answer is which are the symmetries that characterize the
theory. A natural generalization of (2.4) consists in imposing the invariance of the action
under

VDiffA : ΦiA → f iA(ΦA) , det

(

∂f iA
∂ΦjA

)

= 1 , (3.2)

allowing for different diffeomorphisms fA to act on each component. The overall symmetry
of the action would then be the direct product of N copies of (3.2), VDiffN = VDiffA1 × . . .×
VDiffAN

. For each of ΦA , we can construct the analogous of the determinant (2.3) as

bA =
√

detBA , Bij
A = ∂µΦ

i
A∂

µΦjA , (3.3)

which clearly is invariant under VDiffN . Another possibility consists in imposing a much
weaker symmetry, ΦiA → f i(ΦA) ∀A , where f i is the same for all the components. This
symmetry gives raise to a less symmetric situation, with more invariants contributing to the
lowest order action for the phonons than in the case of VDiffN . For instance, given any pair
of fields, say ΦA and ΦB, the determinant of the matrix ∂µΦ

i
A∂

µΦjB is invariant under a single
element of VDiff acting on both ΦA and ΦB, but not under a generic element of VDiffN . In

– 6 –
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this work we choose to focus exclusively in the larger symmetry VDiffN , which is also the
implicit assumption in [27]. The physical meaning of our choice is that each component ΦA
can be relabelled independently (with a volume preserving transformation) without altering
the physical properties of the whole system. In this sense, each ΦA remains a separate entity
from the others.

The four-velocity (2.2) and the current (2.10) can be defined for each component in the
obvious way: adding a subscript A to the comoving coordinates Φ in those expressions. For
instance, the four-velocity of the component A would just be:

uµA∂µΦ
i
A = 0 , u2A = −1 . (3.4)

With the corresponding currents

JµA = −bAuµA , (3.5)

we introduce the following contractions:

JAB = −gµν JµAJνB , (3.6)

which allow to express (3.3) as bA =
√
JAA . Since each current JµA is invariant under VDiffA ,

the new scalars JAB are invariant under the symmetry VDiffN .

In order to write the most general action for the phonons at the lowest order in deriva-
tives that is symmetric under VDiffN , we need to identify all the possible invariants that
carry only one derivative per π. This is the case for JAB, but this type of invariants do no
exhaust all the possibilities. With four or more components, the following invariants should
be included as well:

ΨIABC =
√−g ǫµαβγ JµI JαA J

β
B J

γ
C . (3.7)

To the best of our knowledge, these invariants had not been considered until now. Since they
are completely antisymmetric under the permutation of the components, it is impossible to
obtain a non-zero ΨIABC if N < 4. If two currents, say JµI and JµA, are parallel, ΨIABC

is zero. In general, there exist
(

N
4

)

different ΨABCD invariants that should in principle be
considered. However, it is actually enough to consider just one, say Ψ1234, because any other
ΨABCD can be expressed in terms of the JAB invariants and Ψ1234. In four dimensions, we
can choose a basis of four linearly independent currents JµI , I = 1 . . . 4 and express any
current JµA as a linear combination

JµA = h1(JKL) J
µ
1 + h2(JKL) J

µ
2 + h3(JKL) J

µ
3 + h4(JKL) J

µ
4 , (3.8)

where the functions h1,2,3,4 depend on all possible scalar products of two currents (which
is nothing but JKL). If the currents of the chosen basis are orthogonal to each other, the
functions h1,2,3,4 depend only on a single JKL, i.e. h1 = JA1/b1 etc. It is then clear that
even if the four-velocities of the different components are not orthogonal, it is always true
that ΨABCD = h(JKL)Ψ1234 for some function h. From now on, we will therefore denote
Ψ ≡ Ψ1234.

Expanding Ψ at leading order, we get

Ψ = −ǫijk
a12

(

π̇i1π̇
j
2π̇

k
3 − π̇i1π̇

j
2π̇

k
4 + π̇i1π̇

j
3π̇

k
4 − π̇i2π̇

j
3π̇

k
4

)

+O(4) , (3.9)

– 7 –



J
C
A
P
0
5
(
2
0
1
4
)
0
0
7

where we have taken a common background xi for all ΦA. This shows that Ψ starts only at
cubic order (while JAB contains quadratic terms).

Having identified the invariants, we can write the most general action that gives the
dynamics of the phonons (at lowest order in derivatives) in a multi-component fluid in General
Relativity:

S =
1

16πG

∫

d4x
√−g R+

∫

d4x
√−g F (JAB ,Ψ) , A ≤ B = 1, . . . , N , (3.10)

where the inequality A ≤ B avoids redundant operators, since JAB = JBA. Therefore, for N
components, the action (3.10) is a functional of Ψ and N(N + 1)/2 different JAB. If the N
components only interact through gravity, we recover the results of [22] and, in the case of a
single component, this action reduces to (2.6).

Following [28] we call entrainment the dependence of the master function F on JAB
with A 6= B. This name suggests that the contraction of two non-parallel JµA couples the
modes of the different components. As we will later see, what actually happens is that
unavoidable phonon coupling appears (even at quadratic order in the perturbations) also
due to the JAA contributions, provided that the propagation takes place in a non-static
spacetime. This makes the phonon coupling of different components a general feature in
most relevant backgrounds for cosmology.

Since F is an arbitrary function of its arguments, there is no way in which we can
decompose the action (3.10) into a sum of actions for separate species plus an interaction
term. The gravitational energy-momentum tensor of the system is covariantly conserved as a
whole, and we cannot define it for each of the components separately. From (3.10) we obtain

Tµν =



F − 3ΨFΨ − 2

N
∑

{AB}

FJAB
JAB



 gµν − 2

N
∑

{AB}

FJAB
JA(µJ

B
ν) (3.11)

where, as in (2.7), the subscripts carried by the master function F represent differentiation
with respect to that operator, i.e. FΨ = ∂F/∂Ψ, FJAB

= ∂F/∂JAB. The sums extend over
values of the indices that select inequivalent operators, so we use the following notation:
∑N

{AB} =
∑N

A=1

∑N
B=A . Besides, the indices inside a small parenthesis are symmetrized

over. For example, taking the energy-momentum tensor: 2T(µν) ≡ Tµν + Tνµ.

As we have discussed, it would be wrong to say that the action (3.10) is an ensemble
of fluids. What it really describes is a non-elementary fluid (formed by several components)
whose energy-momentum tensor is given by (3.11). This is the reason why we have avoided
using the word fluid to refer to the fields ΦA and instead we have called them components.

In order to understand what type of fluid we have got with the symmetry VDiffN , we
can project (3.11) in a frame to obtain the corresponding energy density, pressure, etc. Let
us recall that in cosmology a frame is a four-velocity that can be thought of as characterizing
the state of movement of a certain observer. Given a frame υµ, any energy-momentum tensor
can be decomposed into

Tµν = ρ[υ] υ
µυν + p[υ] (g

µν + υµυν) + 2q
(µ
[υ]υ

ν) + πµν[υ] . (3.12)

The bracket subscripts indicate that the quantities carrying them are obtained as projections
of the tensor in the frame within the brackets and represent the properties of the fluid as

– 8 –
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seen by that observer. We would like to project (3.11) on its own energy (Landau-Lifshitz)
frame uµE , given by the eigenvalue equation:

Tµνu
ν
E + ρ[E] u

E
µ = 0 , (3.13)

which is the condition for vanishing energy flux qµ (that is sometimes called heat flux). In the
single component case (2.7), the equation (3.13) gives precisely the rest frame velocity (2.2),
with eigenvalue ρ[E] = −F . In the multi-component case (3.11) that we are now dealing
with, it is far from obvious how to solve (fully non-linearly) the equation (3.13). However,
it is possible to find the solution order by order in perturbation theory, after a background
solution of the equations of motion is chosen, as we will see in equations (4.2)–(4.4).

In a FLRW universe, the energy density and pressure are given by

ρ̄ = −F̄ , p̄ = F̄ − 2 b̄ 2
N
∑

{AB}

F̄JAB
, (3.14)

where b̄ = 1/a3 and a is the scale factor. These expressions can be read from the energy
momentum tensor (3.11) taking into account that any four-velocity in an exact FLRW has
components u0 = 1/a and ui = 0 (using conformal time). We see that the invariants JAB
contribute to the background pressure but not to the background density. Notice also that
the equation of state w, which is defined as the ratio between the background energy density
and pressure is then

1 + w =
2 b̄ 2

F̄

N
∑

{AB}

F̄JAB
= 2

N
∑

{AB}

∂ logF

∂ log JAB
. (3.15)

Remarkably, the invariant Ψ is zero in a FLRW background. In a general situation,
when both Ψ and JAB are important, the operator Ψ is invisible at the background level,
but it has density and pressure perturbations (phonons) at cubic and higher orders in π.

However, in a model in which the operators JAB were negligible in comparison with Ψ,
the equation of state would be exactly equal to −1. This occurs regardless of the number
of components, provided that there are at least four distinct ones. Actually, the energy-
momentum tensor (3.11) tells us that ρ + p would be zero for any metric, whenever the
operator Ψ dominates the dynamics. Let us suppose for a moment that the only important
operator in the multi-component fluid is indeed Ψ. Then, the energy-momentum tensor is
exactly

Tµν = (F − 3ΨFΨ) gµν (3.16)

Obviously, Tµν;ν = 0 implies that ∂µ (F − 3ΨFΨ) = 0 and therefore (3.16) represents a
cosmological constant, which takes the value

Λ = −8πG (F − 3ΨFΨ) (3.17)

in any frame. Given that F is a function of Ψ, there are two possibilities to make this
energy density, ρ = Λ/8πG, constant (in time and space). One of them is to impose that
∂µΨ = 0. The other possibility consists in choosing the functional form of F (Ψ) adequately.
In particular, if we take

F = F0 + 3Ψ0FΨ|Ψ=Ψ0

(

(

Ψ

Ψ0

)1/3

− 1

)

, (3.18)
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where FΨ|Ψ=Ψ0 is the derivative of F with respect to Ψ at Ψ = Ψ0, the energy density satisfies
∂µρ = 0 for any spacetime function Ψ.

4 Cosmological phonons in a multi-component fluid

We want to study fluctuations around ΦiA = xi in a perturbed FLRW universe in Poisson
gauge:

ds2 = a2
(

−(1 + 2ψ)dτ2 + 2νidτdx
i + [(1− 2φ)δij + χij ] dx

idxj
)

, (4.1)

The background ΦiA = xi is universal for all the components, which is consistent with the
kind of spacetime that we want to describe. At linear order in π, the operators (3.7) do not
contribute and we just need to focus on (3.6). To find out the type of fluid that (3.11) is at
this order, we study its properties on its own energy frame. As we mentioned in the previous
section, we can easily compute the energy frame at first order, solving the equation (3.13).
The result is

u0E =
1

a
+O(2) , uiE = −

∑

{AB} F̄JAB

(

π̇iA + π̇iB
)

2a
∑

{AB} F̄JAB

+O(2) , (4.2)

which is nothing but a weighted sum4 of the rest frames of the different components. The
corresponding eigenvalue gives the density perturbation (defined as δX = X − X̄) at linear
order:

δρ[E] = − b̄ 2
N
∑

{AB}

F̄JAB
(6φ+∇ · πA +∇ · πB) . (4.3)

We then compute the pressure contracting the energy-momentum tensor with the projector
on hypersurfaces orthogonal to the four-velocity (4.2):

δp[E] = δρ[E] − 2 b̄ 4
N
∑

{AB}

N
∑

{IJ}

F̄JABJIJ (6φ+∇ · πI +∇ · πJ) . (4.4)

These expressions reduce to the ones obtained in [22] for a single component fluid.

The standard continuity and Euler (actually Navier-Stokes) equations at linear order
for an arbitrary Tµν in its energy frame are well-known:

∂

∂τ
(δρ) = −3H (δρ+ δp) + (ρ̄+ p̄)

(

3φ̇− θ
)

(4.5)

ρ̄
∂

∂τ

(

(1 + w) θ
)

= (3w − 1) ( ρ̄+ p̄ )Hθ −∇2δp+ ( ρ̄+ p̄ )∇2(σ − ψ) . (4.6)

In these equations, H is the conformal Hubble parameter, the scalar anisotropic stress is

(ρ̄+ p̄)∇2σ =
∑

i,j

∂i∂jT
i
j −

1

3

∑

k

∇2T kk , (4.7)

4See the equation (3.15) for the equation of state of the fluid.
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and the velocity divergence θ = ∇ · v comes from the spatial part of the four velocity
ui = a−1(1− ψ + . . .)vi. Therefore, the expression for θ in the energy frame (4.2) is just

(1 + w)ρ̄ θ[E] = b̄2
N
∑

{AB}

F̄JAB
(∇ · π̇A +∇ · π̇B) . (4.8)

Using the expressions above, one can easily check that the continuity equation (4.5) is identi-
cally satisfied. As explained in [22] (for the case of a single component), once the rest frame
four-velocity has been identified, the continuity equation is devoid of dynamical content. We
see that the same occurs for a fluid that contains several interacting components. Further-
more, the Euler equation (4.6) holds provided that σ is zero at linear order. This can be
checked using the equations of motion of the longitudinal phonons (4.13), that we give in
subsection 4.2. A combination of these equations gives the Euler equation (4.6). This means
that the system described by the action (3.10) behaves as a perfect fluid at this level. Indeed,
taking the difference between (3.11) and (3.12) (with υµ = uµE and the above expressions for
the pressure and density perturbations), it is straightforward to check that the anisotropic
stress πµν[E] is zero (in the energy frame of the fluid) and therefore the fluid is perfect (at linear

order).

Let us notice that from the expressions (B.1) and (B.2), we can easily get the linear
energy density and pressure perturbations in any component frame uµA. These perturbations
turn out to be the same as (4.3) and (4.4) and are therefore independent of the specific
component on which we project. On the other hand, the energy flux in the frame uµA is
different from zero already at linear order, measuring the mismatch with respect to the
energy frame of the fluid:

q
[A]
0 ∼ O(2) , q

[A]
i = − b̄

2

a

N
∑

{BC}

F̄JBC

(

π̇iB + π̇iC − 2π̇iA
)

+ . . . (4.9)

One can check that the fluid also exhibits anisotropic stress when viewed in a frame comoving
with one of the components.

4.1 Quadratic action and flavour

In this section we work with the quadratic action for the Goldstone bosons πA. This action
describes the propagation of sound waves in the multi-component fluid at lowest order in
cosmological perturbations. In section 4.2, we will use it to obtain the linear equations of
motion for the phonons and interpret these equations in terms of standard fluid variables:
density and pressure perturbations, etc. As we are going to see now, the πA fields of different
components interact derivatively in the quadratic action and, in general, this cannot be
avoided using field redefinitions. This property is a signature of the intrinsic interacting
nature of the multi-component fluid and, even though it hinders the possibility of defining
different flavours at the level of the action, we will see in the next section that it does not
impede us from interpreting the multi-component fluid in terms of different (interacting)
species.
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Let us now discuss the second order action for the phonons, including their interactions
with the metric perturbations:

S(2)=
∑

{AB}

∑

{CD}

∫

d4x
F̄JABJCD

2a8
(

6φ (∇·πA+∇·πB+∇·πC+∇·πD)+ΠAC+ΠAD+ΠBC+ΠBD
)

+
∑

{AB}

∫

d4x
F̄JAB

a2
(

− π̇A · π̇B +ΠAB + ν · (π̇A⊥ + π̇B⊥) + (3φ+ ψ) (∇ · πA +∇ · πB)
)

+. . . , (4.10)

where we use the following notation: ΠAB ≡ (∇ · πA) (∇ · πB). The ellipsis in (4.10) indicates
terms that involve only metric perturbations, which are not needed to obtain the equations
of motion for the πA. The operators ΨABCD, defined in (3.7), play no role at this order in
perturbations. They only start to become important in the cubic action, i.e. for the second
order equations of motion.

The most remarkable property of the phonon action (4.10) is the mixing between deriva-
tives of different components. The mixing occurs on spatial and temporal derivatives sep-
arately. The two types of derivatives cannot mix with each other at quadratic order5 due
to the index structure of the phonons, which comes from the pattern of symmetry breaking
(2.5). In order to understand if the mixing is a real feature or just an effect of our choice
of variables, we have to determine if the action (4.10) can be diagonalized (in such a way
that only (π̇A)

2 and (∇ · πA)2 would appear on it after a linear field redefinition). If the
diagonalization is possible, we would be able to write the phonon Lagrangian of the fluid as
a sum of actions like (2.8), identifying clearly the individual propagating degrees of freedom,
that we want to call flavours. Instead, if the action cannot be diagonalized, any πA will have
a certain probability of oscillating spontaneously into a different πB after a given propagation
time, very much in the same way that we know it occurs for neutrinos.

There are several difficulties that complicate the diagonalization and hence the definition
of flavours. First of all, the π fields do not only mix among themselves but also with the
scalar and vector metric perturbations. This mixing between metric and matter variables
is gauge dependent. We have chosen to write the metric in Poisson gauge (4.1), but in
any other gauge the mixing will look different. In fact, the phonons π are gauge dependent
quantities themselves, since they are defined with respect to a specific choice of coordinates τ
and xi. Flavours should be gauge independent; and we can expect to overcome this problem
by writing the action (4.10) in terms of gauge invariant variables (that will contain both
matter and metric perturbations).

There is however a bigger hurdle in the way towards a full diagonalization of the ac-
tion: the mixing matrices of both (spatial and temporal) parts of the kinetic term are time
dependent. We define the flavours as the variables in which both mixing matrices are si-
multaneously diagonal. The problem is that the time dependence of these matrices makes
this simultaneous diagonalization impossible by local (in time) field redefinitions. In a static
spacetime, the mixing coefficients (and all the coefficients of the effective action) are con-
stant numbers and it is easy to check that the action can be diagonalized. This works in the
Minkowski limit of FLRW, neglecting the curvature of spacetime or, equivalently, assuming
that the time variation of the scale factor is negligible. If the time dependence cannot be ne-
glected, the action can only be diagonalized at fixed time slices and flavour oscillation during

5However, space and time derivatives do mix at higher orders.
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the propagation of the phonons is unavoidable. In a weakly time dependent background, we
can then diagonalize the action at a certain instant and the mixing that will happen after a
short time will be proportional to H, which is the source of breaking of time translations.

To see in some more detail the problem with the time dependence, let us neglect the
metric perturbations and decompose the fields into longitudinal and transverse modes: πA =
πA‖ + πA⊥, exactly as we did in (2.9) for the single component case. Using these variables,
each part can be treated separately because they do not mix at quadratic order. The matter
Lagrangians for longitudinal and transverse modes can be written as the sums of quadratic
forms in flavour space:

L(2)
‖ =

(

π̇‖
)t ·X‖(τ) π̇‖ +

(

∇ · π‖
)t
Y‖(τ)∇ · π‖ and L(2)

⊥ = (π̇⊥)
t ·X⊥(τ) π̇⊥ (4.11)

In this notation π is a column vector in flavour space with N components, πt is its transpose
and X‖ etc. are real, symmetric and time dependent matrices of dimension N × N . Each
π is also a (three-component) spatial vector and the dot product · is the scalar Euclidean
product in three dimensions. If the flavour mixing matrices were constant, both Lagrangians
could be diagonalized. In particular, to diagonalize the longitudinal part we would have to
perform a SO(3) rotation in flavour space, a rescaling of the fields and then another rotation.
Since the mixing matrices are time dependent, when we diagonalize them and rotate π̇, we
get new terms of the form π̃tM π̃ and π̃tU ˙̃π where π̃ is the rotated vector in flavour space
and M and U are in general non-symmetric. For small time intervals, the rate of flavour
violation is controlled by the Hubble parameter H since the mixing matrices depend on time
in this form: X‖,⊥ = X(Hτ) and Y‖ = Y‖,⊥(Hτ). Therefore, the mixing effects that appear
after diagonalizing at a fixed time will go as H as a first approximation.

It is important to remark the distinction between components and flavours. While the
components are the different triads of Φ fields that constitute the fluid, the really important
variables in the EFT of fluids are the phonons π, for which we have introduced the concept
of flavour. In order to have well-defined flavours, we required diagonal kinetic terms in the
phonon action, but we have just seen that it is impossible to get flavour conservation at all
times in dynamic spacetimes. In the next section we are going to show that regardless of this
feature of the quadratic action (4.10), we can still interpret the linear equations of motion
for the phonons in terms of separable species.

4.2 Equations of motion and taxonomy of cosmological species

As we explained in section 3, having a single energy-momentum tensor poses a problem for
the definition of different species in the EFT of an N -component fluid. It is not apparent
if and how it is possible to identify parts of the energy-momentum tensor with different
species. We also saw that the action (3.10) for the Φ components cannot be separated into
the sum of the actions of N free fluids plus interaction terms. Moreover, the impossibility
of diagonalizing the quadratic action for the phonons in a time dependent background adds
up to the issue. Given all this, it would seem hopeless attempting to apply the EFT of a
multi-component fluid to study common situations in cosmology where there is more than
one species, such as the late time evolution of dark matter and dark energy. On the contrary,
using the equations of motion, we are going to show that the EFT of a multi-component
fluid is the natural framework to describe this kind of situation, and we can actually use this
theory to constrain broad classes of models from the data.
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To simplify the discussion, let us think of a universe with just two species. This can be
directly applied to the aforementioned dark matter – dark energy system.6 Concerning the
background evolution, we just need to model the history of H. This can be easily done by
choosing adequately F̄ (which determines the background density) and F̄JAB

, according to
the equation of state of the universe (3.15). In the context of dark matter and dark energy,
as far as the data remains of purely gravitational nature, we can only constrain a single dark
fluid. This point is emphasized e.g. in [37] with a background evolution study. Unless extra
theoretical assumptions are added, there exists an ambiguity (that has been termed ‘dark
degeneracy’) in the identification of separate dark matter and dark energy species.

We will now see how the same degeneracy appears for linear perturbations, using the
EFT framework. Let us label the two components Φ1 and Φ2. Since we will work at linear
order and therefore (3.7) has no effect, the results that we obtain below can be generalized
to any number of components very easily. The longitudinal and transverse linear equations
of motion for π1‖ and π1⊥, the phonons coming from the component Φ1, are:

∂

∂τ

(

1

a2
( (

2F̄J11 + F̄J12
)

νi − 2F̄J11 π̇
i
1⊥ − F̄J12 π̇

i
2⊥

)

)

= 0

(4.12)

∂

∂τ

(

1

a2
(

2F̄J11∇ · π̇1 + F̄J12∇ · π̇2
)

)

− 1

a2
∇2 (E1φ φ+ E1ψ ψ + E11∇ · π1 + E12∇ · π2) = 0

(4.13)

where

E1ψ = 2F̄J11 + F̄J12 (4.14)

E11 =
(

4F̄J11J11 + 4F̄J11J12 + F̄J12J12
)

b̄2 + 2F̄J11 (4.15)

E12 =
(

2F̄J11J12 + 4F̄J11J22 + F̄J12J12 + 2F̄J12J22
)

b̄2 + F̄J12 (4.16)

E1φ =
(

12F̄J11J11 + 18F̄J11J12 + 12F̄J11J22 + 6F̄J12J12 + 6F̄J12J22
)

b̄2 + 6F̄J11 + 3F̄J12 (4.17)

Clearly, analogous equations hold for π2 with the appropriate replacement of indices. The
equations of motion for the phonons reflect the mixing inside the action (4.10). There are
multiple ways in which we can arrange the variables, defining fluid-like quantities for two
species that will satisfy an Euler and a continuity equation (for the longitudinal modes)
and another equation that describes the conservation of vorticity (for transverse modes).
All these ways of assigning fluid variables are related through linear field redefinitions (e.g.
SO(3) rotations in (4.10)). In the EFT of a multi-component fluid, the dark degeneracy
that we mentioned earlier naturally arises as a consequence of this multiplicity of possible
assignments for the density, pressure and velocity perturbations of the two species.

Among these possible choices, there is a very convenient one that becomes nearly obvious
when the entrainment is neglected, so we will first focus on that simpler case before studying
the more general situation described by (4.12) and (4.13). As we have explained, what we
aim to is interpreting the equations for propagation of phonons in terms of fluid equations
(Euler, continuity and momentum conservation) for the perturbations of coupled species. We
are going to show that even if we have just one fluid and the action for its perturbations

6The generalization to a higher number of components is immediate if we keep the analysis up to linear
level in fluctuations. To describe second and higher order cosmological perturbations with four or more species
we have to include the effect of Ψ.
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cannot be diagonalized, we can still think of the fluid as being composed by different species
that interact with each other. One can easily understand why this works recalling that we
remain at linear order in fluctuations. By simply Taylor expanding the energy momentum
tensor we obtain that δTµν is a sum of δTµνA terms, which in turn allow us to define separate
fluid perturbation variables.

4.2.1 Zero entrainment

Let us first see in this case how to find a suitable mapping of phonon variables πA to fluid
variables (density, pressure, etc.) corresponding to different cosmological species. Neglecting
the entrainment, the phonon equations (4.12) and (4.13) simplify to:

∂

∂τ

(

aF̄b1
(

νi − π̇i1⊥
) )

= 0

(4.18)

1

a

∂

∂τ

(

aF̄b1∇ · π̇1
)

−3b̄
(

F̄b1b1+F̄b1b2
)

∇2φ−F̄b1∇2ψ−b̄F̄b1b1∇2 (∇ · π1)−b̄F̄b1b2∇2 (∇ · π2) = 0,

(4.19)

where we have used the following relations:

2 bAFJAA
= FbA , (4.20)

4 b3A FJAAJAA
= bA FbAbA − FbA (4.21)

4 bAbBFJAAJBB
= FbAbB , A 6= B (4.22)

to replace current contractions JAA by determinants bA, which are the only important opera-
tors at this order when there is no entrainment. What we now want to do is to define variables
that make these equations resemble the standard perturbation equations for two fluids. First,
we simply split the total density and pressure perturbations of the fluid, expressions (4.3)
and (4.4), defining:

δρA ≡ −b̄ F̄bA (∇ · πA + 3φ) (4.23)

δpA ≡ −b̄ 2
(

F̄bAbA + F̄bAbB
)

(∇ · πA + 3φ) , (4.24)

in such a way that their sums give the total energy density and pressure perturbations. Then,
taking into account that the velocity divergence of each component is by construction7

θA = −∇ · π̇A , (4.25)

it is easily checked that a continuity equation analogous to (4.5) is automatically satisfied
for the perturbations of each component, provided that we introduce individual equations of
state via:

(1 + wA) ΩA ≡ b̄F̄bA
F̄

, (4.26)

where, as usual, ΩA = ρ̄A/ρ̄. It is important to remark that so far we have not used the
equations of motion for the phonons and therefore (4.5) holds identically. It is also worth

7Recall that this expression is automatically enforced by the requirement that the rest frame four-velocity
of the fluid should be constant along the flow of the fluid.
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stressing that the definition (4.26) does not specify how much of ρ̄ = −F̄ belongs to the
energy density of each component. It only determines the sums of background density and
pressure ρ̄A + p̄A.

If we now use (4.23)–(4.25) into (4.19) and compare the result with (4.6), we obtain
that the scalar anisotropic stress is given by:

σA =
b̄2F̄bAbB

(ρ̄A + p̄A) F̄
(∇ · πA −∇ · πB) . (4.27)

Each species exhibits an effective anisotropic stress that depends on the difference of the
divergences of the phonons. This reflects the intrinsic interacting nature of the components,
which originates in the symmetry VDiffN that we have used to construct the effective action.
Let us point out that permuting the labels of the components on (4.27) we flip the sign of the
equality and therefore, taking the sum of the two equations we get zero. This is consistent
with the fact that the total anisotropic stress of the multi-component fluid is zero.

To complete the picture, we just need the interpretation of the equations of motion
of the transverse modes (4.18). This equation appears in exactly the same form in the
case of a single component fluid (or for a system of fluids that do not interact other than
gravitationally) [22] and it is a consequence of vorticity conservation. Besides, it is also
the equation for the conservation of the three-momentum of each component [22]. In the
appendix A we discuss the vorticity of the multi-component fluid in further detail.

We have shown that in the zero entrainment case it is possible to define fluid-like
variables (4.23)–(4.27) that allow us to write for each component a dynamical identity which
is equivalent to the continuity equation and, also, to interpret the equations of motion of
the longitudinal (4.19) and transverse (4.18) phonons as Euler and momentum conservation
equations, respectively. Therefore, in spite of the problems to diagonalize the action (4.10)
and to split the energy-momentum tensor (3.11), effectively, the multi-component fluid (with
no entrainment) can be seen as a system of two separate (interacting) fluids with anisotropic
stress, at linear order in perturbations.

Before moving into the analysis of the form of the equations of motion in the general
case (i.e. for J12 6= 0), let us make a comment on the time evolution of the ratios between
the pressure and the density at the background and linear levels. For each component, we
can define the so-called adiabatic sound speed : ˙̄pA = c2A ˙̄ρA using (4.26). It is simply

c2A = b̄
F̄bAbA + F̄bAbB

F̄bA
. (4.28)

By looking at the definitions (4.23) and (4.24), we see that the adiabatic sound speed coincides
with the ratio between the pressure and the density perturbations, which for any fluid is
commonly referred to as the sound speed of a fluid: δpA = c2sAδρA. For any cosmological
fluid, the adiabatic sound speed is a function of time that measures how fast the background
pressure changes with respect to the background density. The sound speed c2s measures
instead the change in the pressure induced by a density perturbation and in general it can be
space and time dependent. In the particular case we are studying here, our definitions (4.23)–
(4.27) naturally lead to both speeds being equal and therefore each component behaves as
an adiabatic fluid. However, it is important to point out that (4.28) does not correspond to
the speed of sound of propagation of πA waves, as it can be checked from the action (4.10).
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4.2.2 General case

If the entrainment cannot be neglected, it is still possible to interpret the equations of motion
of the phonons in terms of distinct cosmological species. However, there is a difference with
respect to the previous case because now we need to define the fluid-like variables combining
the phonons of different components. The relevant equations now are (4.12) and (4.13). The
first of them, which is the equation for the transverse modes is again a consequence of the
dynamics of vorticity, which we discuss in appendix A.

The Euler equation must come from (4.13), whose left hand side suggests that we can
combine the two phonons to define two independent velocity divergences as follows:

(1 + w1) ρ̄1θ1 ≡ b̄2
(

2F̄J11∇· π̇1+F̄J12∇· π̇2
)

,

(1 + w1) ρ̄2θ2 ≡ b̄2
(

2F̄J22∇· π̇2+F̄J12∇· π̇1
)

.
(4.29)

Although we are using the subscripts 1, 2 on both sides of these expressions, it must be clear
that θ1 and θ2 are both mixtures of the two phonon components π1 and π2. As we are going
to see immediately, these definitions work as an effective diagonalization of the system at the
level of the equations of motion. It can be easily checked that the expressions (4.29) reduce
to (4.25) by setting the entrainment to zero.

If we also define the density and pressure perturbation of one of the species8 to be

δρ1 ≡ −b̄2
(

2F̄J11 (∇ · π1 + 3φ) + F̄J12 (∇ · π2 + 3φ)
)

(4.30)

δp1 ≡ δρ1 − 2 b̄4
∑

{AB}

(

2F̄J11JAB
(∇ · π1 + 3φ) + F̄J12JAB

(∇ · π2 + 3φ)
)

(4.31)

and the equation of state as

(1 + w1) Ω1 ≡
2F̄J11 + F̄J12

F̄
b̄2 , (4.32)

the continuity equation (4.5) is identically satisfied, in the same way it happened in the zero
entrainment case. Proceeding as before for the Euler equation, the anisotropic stress (4.41)
now takes the form

σ1 = b̄4
4F̄J11J22 − F̄J12J12

( ρ̄1 + p̄1 ) F̄
∇ · (π1 − π2) , (4.33)

which reduces to (4.27) for zero entrainment.
The adiabatic sound speed can be defined for each component using (4.32), exactly as we

did in the case with no entrainment. However, it is now more difficult to define a sound speed
for the perturbations, due to the different π dependencies of the density and the pressure
perturbations, (4.30) and (4.31) respectively. If we insist in using the ratio between the two,
we get a fraction of O(1) quantities in π. So, when the entrainment is non-negligible, the fluid
variables we have defined with (4.29)–(4.32) are non-adiabatic, because ˙̄pAδρA 6= ˙̄ρAδpA .

4.2.3 From anisotropic stress to interacting species

The results obtained in sections 4.2.1 and 4.2.2 provide the simplest maps that allow to
interpret the propagation of the phonons in terms of the fluid variables of a system of different

8And analogously for the other species.
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species. As we have seen, these species naturally turn out to have anisotropic stresses: (4.27)
and (4.33) in the cases without and with entrainment, respectively. The dependence of
the anisotropic stresses on phonons coming from different components explicitly shows the
interacting nature of the system and the impossibility of diagonalizing the quadratic action
at all times.

Although those maps of variables are very convenient, they are not unique. We are going
to see now that the phonon equations can actually be reinterpreted in terms of couplings
Qµ
A between species, while still keeping the definitions for the energy density, pressure and

velocity fluctuations. The results that we present in this section show that in the EFT of a
multi-component fluid a coupling between species at linear order in perturbations can always
be recast into anisotropic stresses through a simple redefinition of variables.

In general, in a system whose energy momentum tensor can be written as a sum of
tensors for different species

Tµν =
∑

A

TµνA (4.34)

each TµνA is not individually conserved and we write:

TµνA ;µ = Qν
A ,

N
∑

A=1

Qν
A = 0. (4.35)

Each source term can be decomposed as follows:9

QA
µ = QAu

A
µ +H(ρA + pA)UAµ , gµνuAµ UAν = 0 , (4.36)

where

QA = Q̄A + δQA , ŪA0 = 0 , UAi = (ρ̄A + p̄A)HUAi (4.37)

and UAi is a first order quantity in cosmological perturbation theory. The continuity and
Euler equations, (4.5) and (4.6), of each species are modified by the source Qµ

A:

∂

∂τ
(δρA) = − 3H (δρA + δpA) + (ρ̄A + p̄A)

(

3φ̇− θA

)

+ a δQa − a Q̄Aψ (4.38)

ρ̄A
∂

∂τ

(

(1 + wA) θA
)

= (3wA − 1) ( ρ̄A + p̄A )HθA −∇2δpA + ( ρ̄A + p̄A )∇2(σA − ψ)

+ a Q̄AθA + aH ( ρ̄A + p̄A )∇ · UA . (4.39)

As we discussed earlier, it is not apparent how to decompose the energy-momentum
tensor of the effective multi-component fluid (3.11) into a sum of tensors, but in practice
we can formally do it at linear order and this allows us to interpret the longitudinal phonon
equations of motion with the formalism we just described, using (4.38) and (4.39). In the
zero entrainment case, comparing (4.5) and (4.38) we find that the assignment of variables
(4.23)–(4.26) implies the following constrain on Qµ

A:

δQA = Q̄Aψ , (4.40)

9Kodama and Sasaki [38] decompose the source Q
A
µ into a component parallel to the rest frame of the

total fluid (which is given by (4.2) in our case) and a vector orthogonal to it. We prefer to project onto the
velocities of the components themselves and their orthogonal directions.
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because (4.5) is identically satisfied. Besides, using (4.39) we find that (4.27) must be re-
placed by

b̄2F̄bAbB
F̄

∇2 (∇ · πA − ∇ · πB) = ( ρ̄A + p̄A )∇2σA + aH ( ρ̄A + p̄A ) ∇ · UA + a Q̄AθA .

(4.41)

The system of equations (4.40) and (4.41) have various solutions, each of which leads to
different interpretations of our multi-component fluid. One possibility is to setQµ

1 = −Qµ
2 = 0

as we did before, leading to (4.27). Conversely, we can also have Qµ
1 6= 0 and set the

anisotropic stresses to zero. This trade-off between the source terms Qµ
A and the anisotropic

stresses is an interesting property. At the root of it lies the fact that the effective anisotropic
stress of each component arises due to its interaction with the other component. Analogously,
if we allow the entrainment to be different from zero, the condition (4.40) still holds and the
analogous of the expression (4.33) is

b̄4
4F̄J11J22 − F̄J12J12

F̄
∇2 (∇ · π1 −∇ · π2) = (ρ̄1 + p̄1)∇2σ1 + aH (ρ̄1 + p̄1)∇ · U1 + aQ̄1θ1.

(4.42)

If we think in terms of the dark matter – dark energy example, these results tell us that
an anisotropic stress can be mimicked by (what in cosmology is usually called) a fluid inter-
action and both have the same physical origin. As we already mentioned before, the ‘dark
degeneracy’ is just a consequence of the interacting nature of the theory.

Let us recall that the source Qµ
A also affects the relation between the sound speeds of

each species. In particular, we saw at the end of the section 4.2.1 that the adiabatic and
non-adiabatic sound speeds of each component are equal if the entrainment is zero. However,
that result was obtained assuming that QµA is zero. In the more general case that we are now
considering, the time variation of the background density of each component is

˙̄ρA = −3H (ρ̄A + p̄A) + Q̄A , (4.43)

introducing a difference between the two speeds:

1 + c2sA =
(

1 + c2A
)

(

1 +
Q̄A

3H(ρ̄A + p̄A)

)

, (4.44)

where c2A is still given by (4.28).

5 Summary and outlook

In this paper we presented the EFT of multi-component fluids. Our motivation has been the
development of a formalism for describing common situations in which different cosmological
species may interact not only through gravity.

We have identified the operators that contribute to the effective action for the phonons
at the lowest order in derivatives. These operators are determined by symmetry requirements
on the comoving coordinates of the components ΦA. Specifically, we impose invariance under
VDiffN , which is the most natural extension of the single-component perfect fluid case. The
invariants are of three kinds and they can all be written in terms of the covariantly conserved
currents JµA. First, there are the determinants bA = JAA, that are analogous variables to the
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entropy density in a single-component case. Then, we have the entrainments JAB with A 6= B
for different components. And finally, we have also found a new type of operator, Ψ, which
has the interesting property of behaving as a cosmological constant if the Lagrangian depends
exclusively on it. On the contrary, if the operators JAB are also taken into account, Ψ is
irrelevant at the background level and its effect can only be seen on the perturbations. The
expression of Ψ in terms of phonons is given in (3.9). This structure could give an interesting
non-Gaussian shape in the three-point function of velocity correlators of different species. It
could also be important in a model of multi-field inflation that would generalize [30]. We
leave a study of the cosmological implications of Ψ for future work.

Since the fully non-linear Lagrangian (3.10) is a general function of all the operators, we
can only define a single gravitational energy-momentum tensor for the entire system. This
is the reason why we refer to it as a multi-component fluid instead of as an ensemble of
several fluids. We have also discussed the notion of flavour, which we have identified as the
excitations of the multi-component fluid that can propagate independently. In other words,
the flavours are defined by the degrees of freedom that diagonalize the quadratic action for
the phonons.

We have shown that in time dependent backgrounds (which typically appear in cosmo-
logical applications) the quadratic phonon action cannot be diagonalized at all times with
conserved flavours. The diagonalization is only possible at slices of constant time and then,
as time flows, unavoidable flavour mixing takes place. We argued that the amount of flavour
violation for short time intervals is proportional to the Hubble parameter H and therefore
it can be neglected for propagation times much shorter than the age of the universe, or in
situations in which a Minkowski approximation for the metric is adequate.

In spite of the non-diagonalizability of the quadratic phonon action, a multi-component
effective fluid can be interpreted in terms of separate cosmological species at the level of the
linear equations of motion for the perturbations. We have shown this explicitly by choosing
the adequate definitions for the density, pressure and anisotropic stress of the species. There
are different mappings that are possible. In the simplest one of them, we effectively decompose
the total energy momentum tensor of the multi-component fluids into the tensors of species
that are separately conserved. In this case, the interaction of the phonons manifests itself
into anisotropic stress terms that depend on phonons coming from different components.

We also considered a more general possibility in which only the total energy-momentum
tensor of the multi-component fluid is covariantly conserved. We have shown that in this
case the anisotropic stresses can be recast into sources for the energy momentum-tensors of
the individual species through a redefinition of variables.

Our results can be applied to a wide variety of systems in cosmology. As an example
we have mentioned that the ambiguity in defining dark matter and dark energy, called dark
degeneracy, can be thought to originate (in the context of this effective field theory) in the
phonon mixing; and it implies the possibility of interpreting the equations of motion in
different ways.

An attractive direction to extend this work would be to change the symmetry VDiffN .
For example, we could have simply imposed invariance under translations and SO(3) rotations
of each component. This would produce a more complex fluid, having perhaps extra features
that it may be interesting to explore, and it would correspond to the direct generalization of
the single-component ‘solid’ discussed in detail in [30]. Finally, the thermodynamics of the
multi-component fluid remains to be solved. Specifically, it would be necessary to find the
appropriate definitions of entropy, temperature and chemical potentials.
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A Vorticity

We can define vorticity currents and charges in the same way as for a single component
fluid [20, 22]. The symmetry (3.2) of each component gives rise to a conserved vorticity
current via Noether theorem. If there is no entrainment and there is no Ψ, the results for
the vorticity are very similar to the ones valid for a single fluid. Under those conditions, any
current of the form

J µ
A = −bAFbAǫi (ΦA)

(

B−1
A

)ij
∂µΦjA (A.1)

is conserved provided that ∂ǫi/∂ΦiA = 0, which is the condition for volume conservation of
the infinitesimal internal diffeomorphisms of the A-th component: ΦiA → ΦiA + ǫi(ΦA). This
leads to an infinite set of conserved charges:10

QAf =

∫

d3ΦA fa(ΦA)Q
A
a , (A.2)

where

ǫi(ΦA) = ǫijk∂jfk (ΦA) (A.3)

and

QAa = ǫabc∂bV
A
c , V A

a = −FbA
∂xj

∂ΦaA
uAj . (A.4)

The quantities QAa are the vorticity charges and V A
a is related to the vorticity circulation

over a surface with boundary ∂Σ:

V ≡
∫

Σ
⋆(QAa dΦ

a
A) =

∮

∂Σ
V A
a dΦ

a
A = −

∮

x(τ,∂Σ)
FbAu

A
j dx

j , (A.5)

which is also conserved on-shell. For more details on the construction of the vorticity charges
and the circulation, we refer the reader to [22], where this is done using the ADM formalism.

The conservation of the vorticity charges QAa determines the time evolution of the trans-
verse modes. In particular, at linear order without entrainment we obtain:

∂

∂τ

(

aFbA

(

νk − π̇kA⊥

))

= 0 , (A.6)

which is precisely the equation (4.18). As it is explained in [22], this equation describes the
time evolution of the three-momentum of each component, which is δqiA ≡ (ρ̄A + p̄A)(ν

i −
π̇iA⊥) , consistently with the definition (4.26) of the sum of density and background pressure.

A.1 Including entrainment

We now want to compute the vorticity charges including the effect of entrainment (but still
neglecting the Ψ operators). In order to do it we start from the general expression [22]:

Q(ǫ) =

∫

d3x
√−g J 0

A(ε) =

∫

d3ΦA
J 0
A(ǫ)

J0
A

(A.7)

10In spite of the notation, these charges Q have nothing to do with the sources of the energy momentum
tensors in section 4.2.3.

– 21 –



J
C
A
P
0
5
(
2
0
1
4
)
0
0
7

for the conserved charge associated to an infinitesimal VDiffA (3.2) parametrized by ǫi(ΦA)
as above. In this expression, the quantity in the numerator of the integrand is the time
component of the generalization of the current (A.1) to the case of non-zero entrainment.
This current has the expression

J µ
A(ǫ) = ǫi(φA)

∑

{BC}

FJBC

∂JBC
∂ ∂µΦiA

= ǫa(ΦA)
N
∑

B=A

FJAB
SBαM

µα
Aa + ǫa(ΦA)

A
∑

B=1

FJBA
SBαM

µα
Aa

(A.8)

where

Mµα
Aa = − ǫabc

2
√−g ǫ

µαβγ∂βΦ
b
A∂γΦ

c
A . (A.9)

If we express ǫ(ΦA) as in (A.3), we obtain an expression analogous to (A.2) where

QAa = ǫabc∂bV
A
c , V A

c =
1

a2

A
∑

B=1

F̄JBA
(νc + vcB) +

1

a2

N
∑

B=A

F̄JAB
(νc + vcB) +O(2) (A.10)

Again, the conservation of the vorticity charges gives the dynamics of the transverse modes
at linear order. In particular, if there are just two components, the (linearized) equation
Q̇Aa = 0 is the same as (4.13). Notice that at linear order in perturbations, the entrainment
does not contribute to the vorticity charges, and therefore (A.10) is completely general at
this order.

B Eckart frames

Instead of projecting the energy momentum-tensor on the total energy frame, as we have
done in most of this work, another possibility is selecting the rest frame (3.4) of one of the
components of the fluid, e.g. uµC , defined from (3.4). The advantage of this choice is that
we know exactly the frame at all orders and therefore we can get the corresponding energy
density and pressure fully non-linearly:

ρ[C] = −F + 3ΨFΨ + 2
N
∑

{AB}

FJAB

(

JAB − JAC JBC
bC 2

)

(B.1)

p[C] = F − 3ΨFΨ − 2

3

N
∑

{AB}

FJAB

(

2 JAB +
JAC JBC
bC 2

)

. (B.2)

This can be useful to formulate the dynamics using the covariant approach to cosmological
perturbation theory [39]. The energy flux in such a frame can also be computed easily and
is different from zero because the four-velocity uµC is not parallel to the energy frame of the
fluid:

q[C]
µ = 2

N
∑

{AB}

FJAB

bC

(

JC(A JB)
µ − JAC JBC

bC 2
JCµ

)

. (B.3)

The anisotropic stress πµν[C] is also non-zero in any component frame and can be obtained

inserting the previous results into (3.12).
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