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The Effective Index Method and Its Application 
to Semiconductor Lasers 

Abstract-By the effective index method a Wedimensional field 
problem is transformed to a problem for a onedimensional effective 
waveguide. This method is applied to semiconductor lasers having a 
gradual lateral variation in the complex permittivity. For the special 
case of a parabolic variation, analytical formulas for the required gain 
in the center and the half width of the intensity distribution are de- 
rived. The results are compared with a numerical method and very 
good agreement is  found  except  in some cases where convergence prob- 
lems occur for the numerical method. This agreement is taken as 
evidence for  the validity of results obtained using the effective index 
method for analysis of semiconductor laser structures. 

T 
I .  INTRODUCTION 

HE effective index  method was  originally proposed  for 
analysis of rectangular dielectric waveguides [ l]  . By this 

method  a  two-dimensional  problem is transformed to a  prob- 
lem  for a one-dimensional effective waveguide; this latter 
problem  can then be  solved analytically or by  simpler methods 

Manuscript received December 14,1981; revised  March 15, 1982. 
The  author is with the Electromagnetics Institute, Technical Uni- 

versity of Denmark, Lyngby, Denmark. 

than  required  for  the  two-dimensional case. The  method  has 
been  shown to be  better  than  other  simple  methods  for 
rectangular dielectric waveguides. 

The analysis of waveguiding in semiconductor lasers is a  two- 
dimensional  problem  and  the effective index  method  has  been 
used in different  forms  to  simplify  the  solution  of this prob- 
lem, e.g., [2] - [ 6 ] .  

In this paper some general  formulas related to the analysis 
of waveguiding in laser structures are presented. For the 
special  case of parabolic permittivity variation the  general 
formulas are used to derive analytical expressions for  the gain 
in  the center  of  the active  region required to  overcome  the 
loss, and for  the full width  at half  intensity  of  the field dis- 
tribution in the  junction plane. 

For  the parabolic profile a numerical  method was presented 
in [7], this method is summarized  in  Section I11 and it is 
shown  how  the  method can  be somewhat simplified, reducing 
the  required  computing  time  considerably. 

Finally, in Section IV the results from  the  two  methods are 
presented  and discussed. 

0018-9197/82/0700-1083$00.75 0 1982 IEEE 
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11. FIELD CALCULATION BY THE 
“EFFECTIVE INDEX METHOD” 

A. Slab Structure 
We first consider a simple slab structure  with  permittivity 

variation in the  x-direction  only, as shown in Fig. 1. Using the 
scalar wave equation we find  the propagation constant for the 
TE modes ( y  polarization) (e.g., [8]) 

k)’ = Eeff = bel + (1 - b)  ez 

where the normalized propagation constant b is the  solution 
to the characteristic equation, which for  the  fundamental 
mode reads 

I 

u = arctan j& 
u = kt&=. (3) 

The imaginary parts of E, and eZ are much smaller than  the 
real parts  and hence we consider the imaginary parts as per- 
turbations of the corresponding slab structure  with real 
indexes. This gives for  the effective refractive index 

neff = Re { 6) = Re { p z }  = db,n: t (1 - bo) n; 
1 

(4) 

where bo is the  solution to the characteristic equation (2) 
with  the normalized frequency u replaced by  the real number 
UO 

u, = kt d m ,  (5) 

We now include the imaginary parts  of el and ez and get a 
complex value for b with bi = Im (b} << bo, i.e., 

b = b , t j b i = b , t A v -  
db i du u=uo 

where Av is the change in u due to the imaginary parts of E ,  

and eZ 

This gives a complex value for eeff when (6)  is used in (l), 
and we introduce an effective gain geff defined by (neglecting 
( g e f f m  

Use of (6) and (7) in  (1) gives 

where the weighing factor !? is  given by 

=bo -E (1 - bo) uodG . (10) 
l + U O d G  

I’ is also defined as the  fraction of the  intensity propagating 

-t 

E Z  = n2 - j  7 z n 2 a  k =T 2Tl 

Fig, 1. Definition of slab stmcture with E denoting permittivity, n 
refractive indexes, a loss, g gain, and k wavenumber.  The  terms 
(a/k)’ and (g/k)’ are neglected. 

in the guiding layer;  direct calculation gives the same expres- 
sion as (1 0). 

Equation (9) can alternatively be derived in the following 
way [9] : the scalar field equation is multiplied by  the com- 
plex conjugate of the field; the resulting expression is inte- 
grated from -m to rn. This gives a variational expression for 
02, and taking the imaginary parts of el and e2 as perturba- 
tions,  the field (to first order) remains real whereas pz becomes 
complex, taking the imaginary part of  the expression for 0,“ 
gives: E(x) being the field distribution 

m 

f Im (4~)) I.&) 1’ dx 

defining I’ as the  fraction  of  the  intensity between -t and t 
(9) is obtained. Since n2 < neff < n1 and (nl - n z )  << nz 5 
n, (9) gives 

geff = rg- (1 - r) a. (12) 

B. Slab with Lateral e Variation 
We now consider the case where el and ez are functions of 

y given by 

El(Y) = el(o> - f l ( Y )  

f Z ( 0 )  = 0. I 
We define an effective permittivity  for each plane given by  a 
value of y ,  according to (1) 

eeff(Y) = b(y )  ~1 ( Y )  t (1 - b(y)) ~ z ( Y ) .  (14) 
For  the laser structures considered we  have 

I f l ( Y ) I ,  Ifz(Y)l<< Ie1(0)- ez(0)l; (1 5) 

hence, we only use one term in the expressions of b 
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Using the expression for  the derivative of b with respect to 
u [also used in (1  O)]  (1 7)  and (1 8) give 

A(Y) = Ffl(Y) + (1 - r ) f 2 ( Y ) .  (19) 

In (19) I' is the filling factor  for  the simple real slab guide, 
i.e., (10) with u, given by ( 5 )  and hence independent of y .  
This formula,  of course, is  valid only when the expansion 
(16) is valid, i.e., (1 5 )  must be satisfied. If this is not  the case 
the  definition  of e,&) given in (14) must be used directly. 

The result (19) is also derived in [lo] , [l 11 and was first 
used in [3] . In [ 121 the y dependence and imaginary part  of 
b is neglected, thus giving an  equation similar to  (19) but 
with r replaced by bo.  When the imaginary part of b is 
included (but  the y dependence ignored) one again gets an 
equation similar to (19), but with bo as  weighing factor  for 
the real part  and I' for  the imaginary part [5] , [13] . If  the 
guiding parallel to the active layer is dominated  by variations 
in  the thickness of the active layer we  get [ 2 ]  

A(Y) = (b(O) - b(YN (€1 (0) - €2 (0)). (20) 

In this case, the imaginary part of b and the y dependence of 
el  and e2 are unimportant  for  the guiding. 

The effective index  method was originally proposed for 
rectangular structures [ l ]  . The method is shown [ 141 to be 
better  than  another simple method [15] for rectangular 
dielectric waveguides. 

The y variation of the effective index gives a y variation of 
the field which can be described by  a lateral propagation 
constant fly( l0,,l<< Ip,I if (15) is satisfied). Compared with 
the slab without variations in the y direction we now get 
modified values of the propagation constant,  the effective 
index,  and  the effective gain (mode gain), which we define as 

0: = 43; - 0; 

G = 2 Im (0;) (23) 

where 0, is the result for  the slab guide without y variations 
(fi ( y )  = f 2  ( y )  = 0). Expansion of the square root of 0; in 
(22) and (23) and use of (4) and (9) gives 

We now apply the results to the case of a parabolic variation 
of index and gain in the active layer [7] 

fl(y) f 2 ( Y )  = = a2y2 0 } (26) 

hence from (19) 

A(y) = ra2y2 = a z f f y 2 .  (27) 

In order to introduce convenient parameters we assume that 
the gain in the active layer equals 0 at y = ?yo (half gain width), 
i.e., 

e l ( y o )  = nf - 2n16n  (28) 

where 6n << (nl - n 2 )  is the change of  the real part  of  the 
refractive index going from y = 0 to y = ?yo. Thus 

with  the  ratio R between the variation in the real and imaginary 
parts of el  (note  that R is defined differently in [7]) 

2k 
go 

R = 6 n - .  

The effective guiding is described by aeff  

As is well known, the  solution to the field equation  with  an 
effective permittivity variation given by (27) is Hermite- 
Gauss functions  and  the field variation in  the  y-direction  for 
the  fundamental  mode becomes 

with  the  intensity variation 

0 )  = /E(Y)I2 = e -k Re beff)Y2 

and eigenvalue (square of lateral propagation constant) 

0; = kaeff.  

Thus (24) and (25) give 

(33) 

(34) 

(3 5) 

In  the lasing state  the required mode gain G,, must balance 
mirror and  internal  scattering losses  (i.e.,  losses not included 
in the  net  material gain); using (9), (36), and (31) this  condi- 
tion can be written as 
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which can be rearranged as 

111. FIELD CALCULATION BY PLANEWAVE EXPANSION 
Following [7] , the field in the active layer of a laser structure 

with the permittivity given by (26) and (29)  is written (re- 
(39b) taining a  finite  number  of expansion terms) 

We define a new parameter C as 1max 2 

f l y = 2  Im { m j .  
1 

E(x, y )  = 1 A I  cos (qlx) y )  exp (-ak 5) leven. 

C =  Re {m} = I=0 

(5 2) 
(40) HI is the Hermite polynomial of order 1. Insertion of (52) in 

It should be noted  that C is related to the astigmatism factor the field equation gives relations between 41 and the propaga- 
K ,  defined in [ 151 tion  constant 0; 

K =  +G. (41) 
k2el(0) - /3L2 = 4 ;  + ak(21+ 1) E =  0 ,2 ,  . . , E,,,. (53) 

Matching (52) to a planewave expansion at x = +t (see Fig. 1) 
The product of the  width of the near and far fields can be results in a set of linear equations  for  the expansion coefficients 
shown to be proportional to K ,  for R >> 1  (index guiding) A I  appearing in (52) 
K =  1. 

Solving (38) for go and the use of (40) gives 

(1 + dl + G, rBC2)2 
go = rBC2 

A ;  = C A ~ ~ ~ , ~ ~  I = 0 ,2 , .  - , zmax. 
I 

(5 4) 

(42) The  matrix elements are calculated in [7] and can be written as 
~~ ~ 

B = 16nlky:. (43) (- 1)("+ 1 ' ) D  cos q1 - 

Note  that  this formula is somewhat different  from  the cor- al,l' = ( " ~ - ~ 1 ~ , 1  (55a) 

responding formula (35) in [7] . 41' sin (4t :) The full width  of half intensity w, is found  from 

1 1 
(44)  HI'(^) e-'' d n  dz (55b) 

which gives 

(45) In order to have solutions for (54) we must have 
- -  

Det (E - E )  = 0. (56)  

(46) This condition determines the propagation constant 0; and the 
required center gain go is determined by varying go [and 

The expression (35 )  can now be written as hence the value of a given by (29)] until  the  condition 
2 Im @L} = Greq is satisfied, with Greq being the mode gain 

Since a  double  iteration is needed in  order to calculate 0; 
Evaluation of (42) in the  two limiting cases for small and large and go, the  computing time becomes excessive  if (55b) is 
values of  the thickness d = 2t  gives evaluated by numerical integration.  The Hermite-Gauss part 

2 In 2 
nkff = neff - 

Heff (kwo)2 . 
(47) required to overcome the loss. 



BUUS: THE EFFECTIVE INDEX METHOD 1087 

of the integrand in (55b) obtains  its maximum value for 90 

z = z,,, = and decreases very rapidly for z > z,,, . 
[ T i ? ]  

If we have IA 1zf2 < 1  with zf = & + 1  a power series 
expansion of the square root in (55b) will be valid in the 
interval of z values where the integrand is nonvanishing, for 

500.0 

400.0 

Zmax = 10 the  condition is satisfied for all parameter values 
considered, this will not be the case for  extremely small  values 
of  the thickness. Thus, retaining m terms 

m 

i=1 

300.0 

200.0 

d m =  1 t biAizZi. (57)  
100.0 

Expansion of the powers in Hermite polynomials ( c ~ , ~  given 
in [17]) 

gives 

i=1 I n = o  J 

Equation (55b) now gives 

where [18] 

I 

d R  

0.1 0 

0,15 0 

0.4 0 
2.0 0 

_. - 
0.0 2.0 4.0 6.0 8.0 10.0 [$%I 

(58) values  of the active  layer  thickness d and the guiding parameter R. 
Fig. 2. Center gain go as function of the gain width yo for various 

Other parameter values: A = 0.9 pm, Greq = 50 crn-l, a = 20 cm-' , 
n l  = 3.6, and n2 = 3.4. 

,- 
I i .  

15.0 

12.5 

(60) 

10.0 

- vl;;2"(2n) ! E ' !  l !  2n t I' + z - 
(s- 2 n ) ! ( s -  Z f ) ! ( S -  E ) !  ' 

s =  
2 -  

(6 1) 

Ill , I  differ from 0 only if IZ' - Z I  < 2n < (I' t I ) .  Insertion of 
(61) in (60) gives 

m .  

i= 1 
I I ~ , I = ~ z ~ , I +  A ' d i , ~ ~ , ~ .  (62) 

The coefficients di, need only be calculated once 

This very fast method  for calculation of the  matrix elements 
has been compared with results obtained  by numerical integra- 
tion, and fine agreement was found.  The  computing  time is 
now  determined  by  the  time required to solve (56) rather 
than 55b). 

IV. RESULTS 
The  center gain go and full width at half intensity wo are 

first calculated by  the effective index  method according to 
(42) and (46). Some results are shown in Figs. 2 and 3. 

The planewave expansion method is applied to the following 
cases: n2 = 3.4, 3.5; R = -3, - 2 ,  -1, 0, 1; d = 0.1, 0.15, 0.2, 
0.4 pm; yo = 2,  4, 6, X, 10 pm, using m = 4, 5 in (57) and 
lmax < 10 in (52). 

In  contrast to [7] , very good agreement with the effective 

7.5 

1 

0.0 y 
0.0 2.0 4.0 6.0 8.0 I[ 

d R  

0.2 -3  

0.2 - 2  

0.2 - 1 

0.2 1 

Fig. 3. Full  width at half intensity wo calculated under the same  condi- 
tions  as go in Fig. 1. 

index  method is found;  a few examples are  given in Table I. 
Use of the simple (39b) instead of (39a) in the effective 

index calculation changes the values for go in Table I by 4- 
5 cm-' and w, by  0.05-0,06 pm,  thus degrading the agree- 
ment  with  the planewave method significantly. 

The normalized intensity  distributions corresponding to 
three of the cases considered in Table I are shown in Fig. 4. 

For R = - 1 the result converges rapidly with an increasing 
number of expansion functions [Zmm in ( 5 2 ) ] ,  in  the case of 
R = -2  a shoulder develops for I , ,  2 4 and for R = -3 a large 
peak appears for Zmax > 6. This behavior is attributed to the 
complex parameter a in (52), for increasing negative values of 
R the real part of a decreases and the imaginary part increases. 
It is to be noted, however, that a correct value of the  width  of 
half intensity  is  found also for large negative R ,  but a larger 
value for Zmax is required to give a reliable result. Even for R = 
-3 a reasonable value for  the  center gain go is found  for low 
values (4 or  6)  of Zmax. 
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TABLE I 

p l a n e   c a v e  
Enax = 10 206.55 

?, 

6 

206.55 

212.13 0 

236.69 2 

206 .55  4 

236.55 

+ 1 8 2 . 2 1  156.49 

! 
182 .22   l i 56 .53  

1 8 2 . 2 2   ' i 5 6 . 5 0  

182.22  156.50 

182.22  156.51 

182.33 156.58 

186.38 j159.25 
I 

- 2  1 - 1  

e:: index  i10.309 j 3 .6861  6.7423 
I 

p l a n e  wave 

*7ax = 10 110.381 9.7288 

S.4135, 7.6034 8.946 0 

12.6050j 5.4895 17.711 2 

1.51111 5.6664 10.2G1 4 

4.70961 6 . 7 6 7 7  :0.2i7 6 

3.7620  5.'505 10.48C 8 

8.7606 

0 

1 3 1 . 9 9  

i 3 2 .  Oi 

132 .01  

132 .01  

i32 .32  

132.  G5 

133.52 

0 

7.31&4 

7.3220 

7.3217 

7.3250 

7. ??44 

7.3:35 

5 .3744 

li8.14 ~ 

C e n t e r   g a l n  9 and f u l l  w i d t h  st h a l f   I n t e n s i t y   c a l c u l a t e d  far 

i. = 0.3 urn, G = 50 cm-', CL = 20 crn-', nl = 3.6,   n2 = 3.4,  

d = 0 .2  urn, yo = 6 sa. 
req 

Inspection of the expansion coefficients shows a behavior 
similar to the results in Table I of [7], i.e., an increase of 
E,,, only gives  very  small changes of the coefficients A I .  
As seen in Fig. 4(c) the consequences of higher  values of 
lmax are a  better convergence for low y-values and a  shift of 
the peak to larger y-values. 

From  the calculations it is found that the  boundary between 
convergence [as in Fig.  4(a)] and development of  a peak 
[as in Fig. 4(c)] can be described by  the following empirical 
relation: 

rc = 0.2. (64) 

Below the curve  given by (64) the planewave method may 
still be used to calculate center gain and  intensity  width, but 
it  cannot give correct intensity  distributions far from  the 
center. In extreme cases of large  negative R values and small 
values for  the thickness d ,  reliable results cannot be obtained 
even for Emax = 10. The validity of the expansion in (57) has 
been checked and it was found that the influence of a  finite 
number of terms (i.e., m = 5) was  negligible except in a few 
extreme cases where the results were wrong anyway. 

The bad agreement between  the  two  methods  reported in 
[7] is probably mainly due to the use of a formula for  the 
gain go somewhat different  from (42). 

As noted in [19]  the far field in the x = 0 plane is  easily 
computed. We have considered the  three examples from [ 191 
which can be described by An = 0.1, d = 0.1 pm, R = -0.35, 
-0.70,  and -1.05. As these values  lie  below the r C =  0.2 
curve shown in Fig. 5 ,  it is not surprising that the same con- 
vergence problems as  seen for  the near field occurs. The shape 

1.c 

.8 

.6 

. 4  

.2. 

0. c 
0. 

1.0 

.8 

.6 

. 4  

.2. 

0.0 

R =  -1 

T 

- 
0. 

5. 10. 15. 20. 25. 

(a) 
R= -2  

5. 10. 15. 20. 2 

(b) 
R. -3 

1.On I 

(C) 

Fig. 4. Intensity distributions for three of the cases  considered  in 
Table I: (a) R = -1, (b) R = -2, and (c) R = -3.  In all three  cases 
the intensities are  calculated for Zmax = 0, 2 , 4 , 6 ,  8, and 10. 

of  the far fields depends on  the number of expansion terms in 
(52), and  the shoulders reported in [I91 are numerical. For 
an  infinite parabolic profile in the active layer the effective 
index  method always gives Gaussian far fields. For other 
profiles such as (cosh2)-' [20], [21], Lorentzian [21], and 
truncated parabolic [21], more peculiar far fields appear. 
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Fig. 5 .  The relation r C  = 0.2, where is defined in (10) and C in 
(40), plotted as function of the parameter R for n l  = 3.6 and two 
values  of An = n l  - 112. 

V. CONCLUSION 
Application of the effective index  method to  the special 

case  of a laser structure  with  a  parabolic  profie in the active 
layer results in simple formulas for  center gain and  half  in- 
tensity  width.  These are compared  with results obtained  by  a 
numerical planewave expansion method, and very  good  agree- 
ment is found  for all  cases  where the numerical  method gives 
reliable results. This  agreement  does not mean that  the para- 
bolic profile is a  good  description of the guiding in the laser, 
only that for this particular case the effective index  method is 
both efficient and precise. The planewave expansion is only of 
practical interest for profiles where the field in the active layer 
and its Fourier  transform can be  expressed analytically. The 
good  agreement for the parabolic case, however, gives  good 
evidence for the validity of the effective index  method also 
for  other profiles. 

The small difference in  the expression used for the required 
gain in case of a  broad active  region (39a)  and the usual ex- 
pression (39b) is only of theoretical interest and will not 
affect practical laser  design. 
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