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Abstract 

We present an analysis of how the generalization performance (expected 
test set error) relates to the expected training set error for nonlinear learn­
ing systems, such as multilayer perceptrons and radial basis functions. The 
principal result is the following relationship (computed to second order) 
between the expected test set and tlaining set errors: 

(1) 

Here, n is the size of the training sample e, u;f f is the effective noise 

variance in the response variable( s), ,x is a regularization or weight decay 
parameter, and Peff(,x) is the effective number of parameters in the non­

linear model. The expectations ( ) of training set and test set errors are 
taken over possible training sets e and training and test sets e' respec­
tively. The effective number of parameters Peff(,x) usually differs from the 

true number of model parameters P for nonlinear or regularized models; 
this theoretical conclusion is supported by Monte Carlo experiments. In 
addition to the surprising result that Peff(,x) ;/; p, we propose an estimate 
of (1) called the generalized prediction error (GPE) which generalizes well 
established estimates of prediction risk such as Akaike's F P E and AI C, 
Mallows Cp, and Barron's PSE to the nonlinear setting.! 

lCPE and Peff(>") were previously introduced in Moody (1991). 
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1 Background and Motivation 

Many of the nonlinear learning systems of current interest for adaptive control, 

adaptive signal processing, and time series prediction, are supervised learning sys­
tems of the regression type. Understanding the relationship between generalization 

performance and training error and being able to estimate the generalization per­
formance of such systems is of crucial importance. We will take the prediction risk 

(expected test set error) as our measure of generalization performance. 

2 Learning from Examples 

Consider a set of n real-valued input/output data pairs ~(n) = {~i = (xi, yi); i = 
1, ... , n} drawn from a stationary density 3(~). The observations can be viewed as 
being generated according to the signal plus noise model2 

(2) 

where yi is the observed response (dependent variable), Xl are the independent 
variables sampled with input probability density O( x), Ei is independent, identicaIIy­
distributed (iid) noise sampled with density ~(E) having mean 0 and variance (72,3 
and J.t(x) is the conditional mean, an unknown function. From the signal plus noise 
perspective, the density 3(~) = 3(x, y) can be represented as the product of two 
components, the conditional density w(ylx) and the input density O(x): 

3(x, y) w(ylx) O(x) 

~(y - J.t(x» O(x) (3) 

The learning problem is then to find an estimate jJ,(x) of the conditional mean J.t(x) 
on the basis of the training set ~(n). 

In many real world problems, few a priori assumptions can be made about the 
functional form of J.t(x). Since a parame~ric function class is usually not known, 
one must resort to a nonparametric regression approach, whereby one constructs an 
estimate jJ,(x) = f(x) for J.t(x) from a large class of functions F known to have good 
approximation properties (for example, F could be all possible radial basis func­

tion networks and multilayer perceptrons). The class of approximation functions is 
usually the union of a countable set of subclasses (specific network architectures)4 

A C F for which the elements of each subclass f(w, x) E A are continuously 
parametrized by a set of p = p( A) weights w = {WCX; 0: = 1, ... , p}. The task of 
finding the estimate f( x) thus consists of two problems: choosing the best architec-

ture A and choosing the best set of weights w given the architecture. Note that in 

2The assumption of additive noise ( which is independent of x is a standard assumption 
and is not overly restrictive. Many other conceivable signal/noise models can be trans­
formed into this form. For example, the multiplicative model y = /L(x)(l + () becomes 
y' = /L'(x) + (' for the transformed variable y' = log(y). 

3Note that we have made only a minimal assumption about the noise (, that it is has 
finite variance (T2 independent of x. Specifically, we do not need to make the assumption 

that the noise density <I>(() is of known form (e.g. gaussian) for the following development. 

4For example, a "fully connected two layer perceptron with five internal units". 
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the nonparametric setting, there does not typically exist a function f( w'" , x) E F 
with a finite number of parameters such that f(w"', x) = I1(X) for arbitrary l1(x). 
For this reason, the estimators ji( x) = f( w, x) will be biased estimators of 11( x). 5 

The first problem (finding the architecture A) requires a search over possible ar­
chitectures (e.g. network sizes and topologies), usually starting with small archi­
tectures and then considering larger ones. By necessity, the search is not usually 
exhaustive and must use heuristics to reduce search complexity. (A heuristic search 
procedure for two layer networks is presented in Moody and Utans (1992).) 

The second problem (finding a good set of weights for f(w,x)) is accomplished by 
minimizing an objective function: 

WA = argminw U(A, w, e(n)) . (4) 

The objective function U consists of an error function plus a regularizer: 

U(A, w,e(n)) = nEtrain(W,e(n)) + A S(w) (5) 

Here, the error Etrain(W,e(n)) measures the "distance" between the target response 
values yi and the fitted values f(w,xi): 

n 

1 "'. . Etrain(W,e(n)) = ~ 6 E[y"f(w,x' )] , (6) 
i=l 

and S( w) is a regularization or weight-decay function which biases the solution 
toward functions with a priori "desirable" characteristics, such as smoothness. The 
parameter A ~ 0 is the regularization or weight decay parameter and must itself be 
optimized.6 

The most familiar example of an objective function uses the squared error7 

E[yi,f(w, xi)] = [yi - f(w,x i )]2 and a weight decay term: 

n p 

U(A,w,~(n)) = L(yi - f(w,x i))2 + A Lg(wCY ) (7) 

i=l cy=l 

The first term is the sum of squared errors (SSE) of the model f ( w, x) with resp ect 
to the training data, while the second term penalizes either small, medium, or 
large weights, depending on the form of g(wCY). Two common examples of weight 
decay functions are the ridge regression form g( wCY) = (w CY )2 (which penalizes large 
weights) and the Rumelhart form g(wCY ) = (w CY )2/[(wO)2 + (w CY )2] (which penalizes 
weights of intermediate values near wO). 

5By biased, we mean that the mean squared bias is nonzero: MSB = J p(x)((/:t(x))e­

lL(x))2dx > o. Here, p(x) is some positive weighting function on the input space and 

()e denotes an expected valued taken over possible training sets €(n). For unbiasedness 

(MSB = 0) to occur, there must exist a set of weights w* such that f(w"', x) = IL(X), 
and the learned weights ill must be "close to" w*. For "near unbiasedness", we must have 

w* = argminwMSB(w) such that (MSB(w·)::::: 0) and ill "close to" w*. 
6The optimization of..x will be discussed in Moody (1992). 

7 Other error functions, such as those used in generalized linear models (see for example 

McCullagh and NeIder 1983) or robust statistics (see for example Huber 1981) are more 

appropriate than the squared error if the noise is known to be non-gaussian or the data 
contains many outliers. 
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An example of a regularizer which is not explicitly a weight decay term is: 

S(w) = 1 dxO(x)IIOxxf(w, x)112 . (8) 

This is a smoothing term which penalizes functional fits with high curvature. 

3 Prediction Risk 

With l1(x) = f( w[c;( n)], x) denoting an estimate of the true regression function J.t(x) 
trained on a data set c;( n), we wish to estimate the prediction risk P, which is the 
exp ected error of 11( x) in predicting future data. In principle, we can either define 
P for models l1(x) trained on arbitrary training sets of size n sampled from the 
unknown density w(ylx )O( x) or for training sets of size n with input density equal 
to the empirical density defined by the single training set available: 

1 n 

O'(x) = - L 8(x - xi) . (9) 
n 

i=1 

For such training sets, the n inputs xi are held fixed, but the response variables yi 
are sampled with the conditional densities w(ylx i ). Since O'(x) is known, but O(x) 
is generally not known a priori, we adopt the latter approach. 

For a large ensemble of such training sets, the expected training set error is8 

(f ... ;n( A)), / ~ t f[Y;, I( w[~( n)], X;)]) 
\ 1=1 E 

J ~ t. f[lI ,J( w[~( n)], x;)] {g wMx; )dll } (10) 

For a future exemplar (x,z) sampled with density w(zlx)O(x), the prediction risk 
P is defined as: 

P = J f[z,J(w[~(n)]'x)lw(zlx)n(x) {g W(Y;IX;)dY;} dzdx (11) 

Again, however, we don't assume that O(x) is known, so computing (11) is not 
possible. 

Following Akaike (1970), Barron (1984), and numerous other authors (see Eubank 
1988), we can define the prediction risk P as the expected test set error for test sets 
of size n e'(n) = {c;i, = (xi,zi); i = 1, ... ,n} having the empirical input density 
0' (x). This expected test set error has form: 

(f.".(A)),<, / ~ tf[i,J(w[~(n)l,x;)l) (12) 
\ 1=1 EE' 

J ! t. f[z; ,J( w[~( n)], x;) I {g w (y; Ix; )w( z; Ix;)dy; dz; } 

8Following the physics convention, we use angled brackets ( ) to denote expected values. 
The subscripts denote the random variables being integrated over. 
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We take (12) as a proxy for the true prediction risk P. 

In order to compute (12), it will not be necessary to know the precise functional 
form of the noise density ~(f). Knowing just the noise variance (T2 will enable an 
exact calculation for linear models trained with the SSE error and an approximate 
calculation correct to second order for general nonlinear models. The results of 
these calculations are presented in the next two sections. 

4 The Expected Test Set Error for Linear Models 

The relationship between expected training set and expected test set errors for linear 

models trained using the SSE error function with no regularizer is well known in 
statistics (Akaike 1970, Barron 1984, Eubank 1988). The exact relation for test and 
training sets with density (9): 

(13) 

As pointed out by Barron (1984), (13) can also apply approximately to the case of 
a nonlinear model f( w, x) trained by minimizing the sum of squared errors SSE. 

This approximation can be arrived at in two ways. First, the model few, x) can be 
treated as locally linear in a neighborhood of w. This approximation ignores the 
hessian and higher order shape of f( w, x) in parameter space. Alternatively, the 
model f( w, x) can be assumed to be locally quadratic in parameter space wand 
unbiased. 

However, the extension of (13) as an approximate relation for nonlinear models 
breaks down if any of the following situations hold: 

The SSE error function is not used. (For example, one may use a robust error 
measure (Huber 1981) or log likelihood error measure instead.) 

A regularization term is included in the objective function. (This introduces bias.) 

The locally linear approximation for few, x) is not good. 

The unbiasedness assumption for few, x) is incorrect. 

5 The Expected Test Set Error for Nonlinear Models 

For neural network models, which are typically nonparametric (thus biased) and 

highly nonlinear, a new relationship is needed to replace (13). We have derived 
such a result correct to second order for nonlinear models: 

(14) 

This result differs from the classical result (13) by the appearance of Pelf ()..) (the 

effective number of parameters), (T;1f (the effective noise variance in the response 

variable( s», and a dependence on ).. (the regularization or weight decay parameter). 

A full derivation of (14) will be presented in a longer paper (Moody 1992). The 
result is obtained by considering the noise terms fi for both the training and test 
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sets as perturbations to an idealized model fit to noise free data. The perturbative 
expansion is computed out to second order in the fi s subject to the constraint that 
the estimated weights w minimize the perturbed objective function. Computing 
expectation values and comparing the expansions for expected test and training 
errors yields (14). It is important to re-emphasize that deriving (14) does not 
require knowing the precise form of the noise density ~(f). Only a knowledge of u 2 

is assumed. 

The effective number of parameters Peff(>') usually differs from the true number 
of model parameters P and depends upon the amount of model bias, model non­
linearity, and on our prior model preferences (eg. smoothness) as determined by 
the regularization parameter A and the form of our regularizer. The precise form of 

Peff(A) is 
1", _ 

Peff(A) = trC = - L..J1iaUaJTf3i , 
2. 

laf3 

(15) 

where C is the generalized influence matrix which generalizes the standard influence 

or hat matrix of linear regression, 1ia is the n x p matrix of derivatives of the training 
error function 

8 8 
1ia = -8 . -8 nE(w,e(n)) , 

yl wa 

and U;;J is the inverse of the hessian of the total objective function 

8 8 
Uaf3 = 8wa 8wf3 U(A, w, e(n)) 

(16) 

(17) 

In the general case that u2 (x) varies with location in the input space x, the effective 
noise variance u;ff is a weighted average of the noise variances u2{xi). For the 

uniform signal plus noise model model we have described above, u;f f = u 2 • 

6 The Effects of Regularization 

In the neural network community, the most commonly used regularizers are weight 
decay functions. The use of weight decay is motivated by the intuitive notion that 
it removes unnecessary weights from the model. An analysis of Peff{A) with weight 

decay (A > 0) confirms this intuitive notion. Furthermore, whenever u 2 > 0 and 
n < 00, there exists some Aoptimal > 0 such that the expected test set error (12) is 
minimized. This is because weight decay methods yield models with lower model 
variance, even though they are biased. These effects will be discussed further in 
Moody (1992). 

For models trained with squared error ~SSE) and quadratic weight decay g(wa ) = 
(wa )2, the assumptions of unbiasedness or local linearizability lead to the following 

expression for Peff{A) which we call the linearized effective number of parameters 

Plin{A): 

(18) 

9Strictly speaking, a model with quadratic weight decay is unbiased only if the "true" 
weights are o. 
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Figure 1: The full Peff(~) (15) agrees with the implied Pimp(~) (19) to within 
exp erimental error, whereas the linearized Plin (~) (18) does not (except for very 
large ~). These results verify the significance of (14) and (15) for nonlinear models. 

Here, ",01 is the a th eigenvalue of the P x P matrix J{ = TtT, with T as defined in 
(16). 

The form of Pelf(~) can be computed easily for other weight decay functions, such 

as the Rumelhart form g(wOl ) = (w Ol )2/[(wO)2 + (w Ol )2]. The basic result for all 

weight decay or regularization functions , however, is that Peff (~) is a decreasing 
function of ~ with Pelf(O) = P and Pelf(oo) = 0, as is evident in the special case 
(18). If the model is nonlinear and biased, then Pelf (0) generally differs from p. 

7 Testing the Theory 

To test the result (14) in a nonlinear context, we computed the full Pej j(A) (15), 
the linearized Plin(~) (18), and the implied number of parameters Pimp (A) (19) for a 
nonlinear test problem. The value of Pimp (~) is obtained by computing the expected 
training and test errors for an ensemble of training sets of size n with known noise 

variance u 2 and solving for Pelf (~) in equation (14): 

(19) 

The """s indicate Monte Carlo estimates based on computations using a finite ensem­
ble (10 in our experiments) of training sets. The test problem was to fit training 

sets of size 50 generated as a sum of three sigmoids plus noise, with the noise sam­
pled from the uniform density. The model architecture f(w , x) was also a sum of 
three sigmoids and the weights w were estimated by minimizing (7) with quadratic 
weight decay. See figure 1. 
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8 G PE: An Estimate of Prediction Risk for Nonlinear 

Systems 

A number of well established, closely related criteria for estimating the prediction 
risk for linear or linearizable models are available. These include Akaike's F P E 

(1970), Akaike's AlC (1973) Mallow's Cp (1973), and Barron's PSE (1984). (See 
also Akaike (1974) and Eubank (1988).) These estimates are all based on equation 

(13). 

The generalized prediction error (G P E) generalizes the classical estimators F P E, 
AIC, Cp, and PSE to the nonlinear setting by estimating (14) as follows: 

() -. () ~2 Peff(>') 
GPE>' = PGPE = &train n + 2ueff . 

n 
(20) 

The estimation process and the quality of the resulting GP E estimates will be 
described in greater detail elsewhere. 
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