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with the asterisk superscript. Within the classical rep-

resentation on the strength of materials (see, for exam-

ple, [11]), it is given by the elementary formula

(1)

where ϕ = S/F is the porosity and F = πR2 is the total
rod cross-section area including the pore area. It is

easy to understand that  depends only on the value

of the matrix Young’s modulus E and the porosity ϕ
and is independent of the pore number n, it always

being valid that  < E for ϕ ≠ 0.

For nanomaterials, the size effect is characteristic,

and it is possible to expect the dependence of the

effective Young’s modulus also on the pore radius or

their number. Further, assuming that the pore area S is

set, we consider how the effective Young’s modulus

depends on the number n of pores if we take into

account the surface effects. For example, we can

determine for which cross sections shown in Fig. 2 the

effective Young’s modulus is higher.

SURFACE STRESSES

Using the relations of the theory of elasticity with

taking into account the surface stresses [1–6], we con-

sider the problem of the porous-rod tension if the sur-

face stresses act on the boundaries of pores. The equi-

librium equations and the boundary conditions on the

rod lateral surface have the form

(2)

Here σ is the stress tensor, ∇ is the three-dimensional
gradient operator, n is the vector of the normal to the
body surface, ∂V = Ω ∪ Ω1 ∪ … ∪ Ωn, Ω is the lateral

surface, while Ωk are the pore surfaces on which the

surface stresses τ act, ∇S is the surface gradient opera-

tor related with ∇ by the formula ∇S = ∇ – n , and r

is the coordinate counted along the normal to Ω and
Ωk. On the lateral surface Ω, there are no loads and
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surface stresses, and the boundary conditions are
accepted on the end faces in the sense of the Saint-
Venant conditions and consist in fulfilling the integral
equations

(3)

where Γk are the contours of apertures of pores.

The single-axis stress state for the cylinder with

pores is determined by the formulas

The remaining components of stress tensors are zero.
Restricting ourselves to the case of an isotropic mate-
rial, we can show that Hook’s law and its surface ana-
logue [1] result in the equalities

where ES is the surface analogue of the Young’s mod-

ulus having the dimension of N/m, εzz and �zz are the

longitudinal components of strain and surface strain.

For this problem, they are identical:  = �zz = ε.

Assuming the strain ε to be constant, we write the rela-
tion from Eq. (3)

(4)

For a homogeneous rod with the effective modulus

, the elementary formula is fulfilled

Comparing it with Eq. (4), we obtain the value of 

Because the value of S is fixed, the pore radius r is
related to their number n as

(5)

Hence, the relation is fulfilled

(6)

The mathematically correct formulation of the prob-
lem of the theory of elasticity with the surface stresses

requires that ES > 0. Thus,  is an increasing func-

tion of n and  > . In other words, the smaller the

pore radius, the more stiff the rod with surface stresses
becomes.

It is necessary to note that the surface stresses can

result in the fact that the stiffness can prove to be even

higher for a nanoporous rod than that for the solid one
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Fig. 2. Two cross sections of the rod with an identical pore
area S.



with the same radius R. In fact, it follows from Eq. (6)

that

The last condition can be transformed also to the form
r < 2ES/E. With taking into account the data for the

surface elastic constants [1, 5], the inequality  > E

can be fulfilled for such materials as, for example,
nanoporous anodic aluminum.

SURFACE LAYER

The variety of materials requires taking into

account various factors affecting their mechanical

properties. We consider another model of the surface

phenomena, which enables us to take into account

more precisely the surface effects for porous solids.

The comparison carried out in [12] with the case of

three-layer plates showed that taking into account sur-

face stresses is equivalent to the presence of surface

layers of a certain thickness, the surface elastic moduli

being expressed through the Lamé constants of the

surface-layer material multiplied by its thickness with

the thickness tending to zero. At the same time, there

are also differences—an elastic body with surface

stresses is similar to an elastic body on the surface of

which the elastic membrane [2, 3] is glued. Thus, the

presence of surface stresses in the model always ren-

ders a reinforcing action. We assume now that there is

a thin surface layer of thickness δ in a vicinity of each

pore, whose elastic properties differ from those of the

matrix. As an example of such a layer, the oxide film

arising on the surface of the material can serve. We

note that the elastic moduli of the surface layer, for

example, the Young’s modulus can be both higher (for

example, in the Al–Al2O3 system) and lower (Si–

SiO2) than that of matrix. For a softer surface layer, it
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is necessary to expect a decrease in the rod effective

stiffness.

For this problem, it is possible to use the formulas

of the theory of composites [8–10] representing the

matrix reinforced with fibers. Each fiber represents a
hollow cylinder of thickness δ and internal radius r. We

designate the Young’s modulus of the surface layer as

Ef. For the effective longitudinal Young’s modulus of

the rod, the rule of mixtures [8–10] is fulfilled, which

gives

(7)

where Sδ = πn[(r + δ)2 – r2] is the total cross-section

area of surface layers if they are not intersected. From
Eq. (7), it can be seen that an increase in stiffness
occurs if the Young’s modulus of the surface layer
exceeds the matrix modulus (Ef – E > 0). Otherwise, a

decrease in  takes place. Expressing r through n

with the help of Eq. (5) and considering that � � r, we
obtain

(8)

It should be noted that, contrary to Eq. (7), Eq. (8) is
not applicable for all n because Sδ ≤ F – S. If n

increases, the surface-layer area increases as  until

these layers begin to intersect; for n → ∞, the entire
cross section proves to be formed from the surface-

layer material. Thus,  → Ef(1 – ϕ) at n → ∞.

COMBINED MODEL

The results of the two previous paragraphs enable

us to propose a model including both the surface

stresses acting on the boundaries of pores and the pres-

ence of a thin surface layer around the pores. In this
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Fig. 3. Dependences of E*, , , and  on  for Ef > E (on the left) and for Ef < E (on the right).E0* ES* Ef* n



case, the effective Young’s modulus of the rod is

formed by the terms included in Eqs. (1), (6), and (7):

(9)

From Eqs. (8) and (9), it follows that E* increases with
n if the following relation is fulfilled

If this inequality is violated, which is possible if the
surface layer is softer in comparison with that of the
matrix, the dependence of E* is nonmonotonic: E*
first decreases but again increases for certain n. The
qualitative dependences of E* on n are shown in Fig. 3
(solid lines). The dashed lines in Fig. 3 also show the

dependences for , , and .

Thus, in our work, we analyzed how the surface

effects affected the effective longitudinal Young’s

modulus of a porous rod with the pores located in par-

allel to the rod axis. The combined formula (9), which

coincides in special cases with the formulas proposed

previously, enables us to take into account certain fac-

tors—the presence of surface stresses and the surface

layer on the boundaries of pores. It makes it possible to

take into account more exactly the presence of surface

effects including those for nanoporous materials. It is

shown that, depending on the problem parameters,

the rod stiffness can decrease with an increasing num-

ber of pores with a subsequent increase, or a mono-

tonic increase.
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