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Abstract 

Code design of unreinforced masonry (URM) buildings is based on elastic analysis, which requires as input parameter 
the effective stiffness of URM walls. Eurocode estimates the effective stiffness as 50% of the gross sectional elastic 
stiffness but comparisons with experimental results have shown that this may not yield accurate predictions. In this 
paper, 79 shear-compression tests of modern URM walls of different masonry typologies from the literature are 
investigated. It shows that both the initial and the effective stiffness increase with increasing axial load ratio and that the 
effective-to-initial stiffness ratios are approximately 75% rather than the stipulated 50%. An empirical relationship that 
estimates the E-modulus as a function of the axial load and the masonry compressive strength is proposed, yielding 
better estimates of the elastic modulus than the provision in Eurocode 6, which calculates the E-modulus as a multiple 
of the compressive strength. For computing the ratio of the effective to initial stiffness, a mechanics-based formulation 
is built on a recently developed analytical model for the force-displacement response of URM walls. The model attributes 
the loss in stiffness to diagonal cracking and brick crushing, both of which are taken into account using mechanical 
considerations. The obtained results of the effective-to-initial stiffness ratio agree well with the test data. A sensitivity 
analysis using the validated model shows that the ratio of effective-to-initial stiffness is for most axial load ratios and 
wall geometries around 75%. Therefore, a modification of the fixed ratio of effective-to-initial stiffness from 50% to 
75% is suggested.  
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1 Introduction 

Seismic design of structures can be conducted using two different concepts: force-based and displacement-based 
design [1]. In the former, the base shear force for which the structure needs to be designed depends on the mass 
and the first or several natural frequencies of the structure. To account for the effect of cracking, the dynamic 
properties of the structures are computed on the basis of effective stiffness rather than gross stiffness values. 
Furthermore, the stiffness of the individual components is important for the force distribution within the structure: 
The global force applied on a system is distributed between the system’s load bearing components according to 
their respective effective stiffnesses. 

Displacement-based procedures are mainly used for the assessment of existing structures, e.g. [2,3]. Besides the 
strength they also consider the deformation capacity of the components [4,5], which is typically defined for an 
unreinforced masonry (URM) wall as a certain ultimate drift capacity where drift is the horizontal displacement 
divided by the interstorey height, assumed in here to be equal to the wall height. For the assessment of URM walls, 
the non-linear force-displacement behaviour can be approximated by means of a bi-linear curve [6], Figure 1a. 
One input parameter for the construction of these curves is, again, the effective stiffness (kef). With the exception 
of procedures that make use of the substitute structure approach [5,7], which use the secant stiffness at ultimate 
displacement, the effective stiffness is an important structural property in both force-based and displacement-based 
assessment methods of URM structures.  
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Figure 1: (a) Monotonic shear force-drift response of an URM wall test in Petry & Beyer [8] and bi-linear 
approximation with indication of effective stiffness (kef), peak shear capacity (VP) and ultimate drift capacity (δult), 
drift is defined as the horizontal displacement by the wall height. (b) Wall with moment profile along with forces 
and corresponding degrees of freedom on top (normal force N and axial displacement w, moment M and rotation 
θ, shear force V and horizontal displacement u).  

A frequently used approach for modelling URM buildings is the so-called equivalent frame method, e.g. [9,10]. 
This term describes a simplified modelling approach in which walls and spandrels are represented by beam- or 
macro-elements that are connected by rigid nodes. In order to compute the shear force-displacement curve of the 
equivalent frame subjected to a horizontal load, the behaviour of its constituents, i.e., walls and spandrels, have to 
be known. For the analysis of URM buildings, beam- and macro-elements have been developed to be used in the 
equivalent frame method [11–16]. In several of these models, walls and spandrels are approximated by 
Timoshenko beams. The elastic stiffness of a Timoshenko beam with a linear moment profile can be obtained 
according to Eq. (1) where H is the wall height, H0 the shear span (Figure 1b), E the elastic modulus of masonry, 
I the gross sectional moment of inertia, κ the shear coefficient, G the shear modulus of masonry and A the gross 
sectional area. The factors f1 and f2 are the stiffness reduction factors for the flexural and the shear component, 
respectively.  

 ݇௘௙ ൌ ቌܪଶ ቀܪ଴ െ 3ቁଵ݂ܪ ܫܧ2 ൅ ଶ݂ܪߢ ቍିଵܣܩ
 (1) 

According to Eurocode 8 (EC8) Part 1 [17], the effective stiffness should account for the influence of cracking. In 
the absence of more accurate information, EC8 suggests that the effective stiffness be estimated as half the gross 
sectional stiffness. Therefore the stiffness reduction factors f1 and f2 are both set to 0.5. Such an approach assumes 
that the effect of cracking equally affects walls developing a shear controlled and walls showing a flexure 
controlled behaviour. The behaviour-type depends on the material parameters, the wall geometry, along with the 
static and kinematic boundary conditions. In a hyperstatic system, approximating the effective stiffness as a fixed 
percentage of the gross sectional stiffness means that the forces are effectively distributed proportional to the gross 
sectional stiffness. According to e.g. [18,19], the effective stiffness is dependent on the axial load, which is not 
taken into account by the current EC8 approach.  

When determining the effective stiffness from experimental results of shear-compression tests, it is typically 
defined as the secant stiffness of the wall at 70 % of its peak shear capacity, e.g. [6,16]. For stone masonry walls 
it is found that in average the effective stiffness corresponds to 50% of their elastic stiffness [18], as proposed by 
EC8, albeit with a coefficient of variation (CoV) of around 50%. Contrastingly, a comparison to full-scale tests on 
modern URM walls in Sect. 2 shows that EC8 may significantly underestimate the effective stiffness of modern 
URM walls. 

The objective of this article is to investigate which parameters influence the initial and effective stiffness of modern 
URM walls. The term modern URM walls is used in this article for walls made with masonry units in accordance 
to EN 771-1 to 4 [20–23] and mortars according to EN 1996-2 [24] and EN 998-2 [25] respectively. This 
encompasses walls made with clay, calcium silicate as well as (aerated or aggregate) concrete units with general 
purpose or thin layer mortar. Experimental evidence from the data of 79 full-scale shear-compression tests of in-
plane loaded modern URM walls, compiled for this study, is presented and trends of the initial and the ratio of 
effective to initial stiffness are investigated in Sect. 2. A mechanics-based method for estimating the effective 
stiffness of URM walls, which explicitly considers the influence of cracking on the effective stiffness by means of 
analytical formulations that are based on a model by Wilding & Beyer [26] is introduced in Sect. 3 and validated 
in Sect. 4. Subsequently, in Sect. 5, a parametric study is conducted using the analytical model to investigate the 
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influence of static and kinematic boundary conditions on the ratio of effective to initial stiffness before formulating 
recommendations for effective stiffness estimates in future code generations (Sect. 6). 

2 Experimental evidence 

The presented data stems from experimental campaigns of large-scale shear-compression tests of modern URM 
walls. The following masonry typologies are considered: walls made with clay, calcium silicate and aerated 
concrete units and both thin and normal-thickness bed-joints (Table 1). The selection criteria for the experimental 
campaigns are: (i) wall height ≥ 1.5 m, wall length ≥ 1.0 m; (ii) constant shear span during test; (iii) constant axial 
load during test, and (iv) availability of the force-displacement history. The considered results are obtained from 
ten campaigns [8,19,27–34] and comprise 79 specimens (Table 2). The main parameters of each test are 
summarized in Table 8 in Appendix A.  

2.1 Data base 
Figure 2 presents an overview of the test data by plotting the shear span ratio vs the axial load ratio (Figure 2a, b, 
c) and the ratio of wall-to-brick height vs the ratio of wall-to-brick length (Figure 2d, e). Furthermore, shear and 
flexural failure (Figure 2a), masonry typologies (Figure 2b, d) and experimental campaigns (Figure 2c, e) are 
distinguished. Generally, the considered data set covers a rather wide range of shear spans and axial load ratios. 
Figure 2a shows that the shear span ratio and the axial load ratio are rather good predictors of the failure mode; 
the higher the shear span ratio and the lower the axial load ratio, the more likely it is that the wall fails in flexure 
rather than in shear. However, there appears to be a domain in which both modes of failure may happen; this 
applies for shear span ratios of approximately one with a low to moderate axial load ratio. The presented failure 
modes correspond to the ones reported in the reference documents. If the behaviour was reported as ‘hybrid’ or 
‘doubtful’, it was assigned to flexure or shear based on the shape of the final cycles of the shear force-drift 
hysteresis.  

Table 1: Masonry typologies 

No. Abbreviation Typology No. of walls 

1 CL/PE/NO Vertically perforated clay units with normal thickness bed-joints 44 
2 CL/PE/TH Vertically perforated clay units with thin bed-joints 4 
3 CL/FU/NO Solid clay units with normal thickness bed-joints 5 
4 CS/FU/NO Solid calcium-silicate units with normal thickness bed-joints 10 
5 CS/FU/TH Solid calcium-silicate units with thin bed-joints 12 
6 AC/FU Solid aerated concrete units  4 

 

Table 2: Considered experimental campaigns 

No. Reference No. of walls Typology Test type 

1 Petry & Beyer [8] 6 CL/PE/NO Cyclic 

2 Bosiljkov et al. [29] 6 CL/PE/NO Cyclic 

3 Ganz & Thürlimann [27] 4 CL/PE/NO Mono, Cyclic 

4 Salmanpour et al. [19] 9 CL/PE/NO, CS/FU/NO Cyclic 

5 Bosiljkov et al. [28] 14 CL/PE/NO Cyclic 

6 Graziotti et al. [30] 2 CS/FU/NO Cyclic 

7 Graziotti et al. [31] 5 CL/FU/NO Cyclic 

8 Messali et al. [32] 6 CS/FU/NO Cyclic 

9 Magenes et al. [33] 17 CL/PE/NO, CL/PE/TH, CS/FU/TH Cyclic 

10 Ötes & Löring [34] 10 CL/PE/NO, CS/FU/TH, AC/FU Cyclic 

 

Figure 2b shows that while the CL/PE/NO tests cover a wide range of axial load and shear span ratios, experiments 
of CS/FU/NO walls are limited to roughly one axial load ratio but were conducted for various shear span ratios. 
The wall characteristics in terms of wall-to-unit size are illustrated in Figure 2d and e. Figure 2d shows that the 
wall-to-unit size of the CL/PE/NO walls is representative of modern unit sizes with approximately six to twelve 
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brick courses over the wall height. By contrast, three campaigns on walls with full bricks (CL/FU/NO and 
CS/FU/NO) were constructed using bricks of 50-70 mm height, which leads to a significantly larger wall-to-unit 
height ratios of up to 55 brick courses per wall. Most walls comprise 5-10 bricks per course but Figure 2e shows 
that some were built with as few as two and a half bricks per course. When the size of the bricks is of a similar 
order as the size of the wall, employing a Timoshenko beam element model for computing the wall stiffness, as 
employed in this study, might be questionable. However, in engineering practice, such wall geometries are likely 
to be rare.  

(a) 

 

(b) (c) 

(d) (e) 

Figure 2: Wall database: Distribution of test specimens with regard to several parameters: shear span ratio vs axial 
load ratio with walls separated by (a) failure mode, (b) masonry typology, (c) experimental campaign; wall to brick 
height vs wall to brick length with walls separated by (d) masonry typology, (e) experimental campaign 

2.2 Stiffness 
In the following, two measures of stiffness are used: the effective and the initial in-plane stiffness of the wall. The 
effective stiffness kef is computed as the secant stiffness of the shear force-displacement envelope at first attainment 
of 70% of the peak shear capacity (mean of both loading directions), while the initial stiffness kinit represents the 
mean of the initial stiffnesses of the envelope shear-force displacement responses in the two loading directions. 

2.2.1 Initial stiffness 

The elastic modulus per wall is determined by back-calculating it from the initial stiffness kinit using Timoshenko 
beam theory [see Eq. (2), the procedure of determining kinit is further outlined in Appendix B]. It is assumed that 
the shear modulus is one fourth of the elastic modulus of masonry (G = ¼ E) as suggested in [35] as there appears 
to be scientific evidence that the current estimate in Eurocode 6 Part 1 [36] and ASCE 41 [37] (referring to TMS 
402 [38]) to take 40% of the elastic modulus is too high for structural elements in masonry, e.g. [39]. Tomaževič 
[39] even suggests a G/E ratio as low as 0.1 based on a limited number of shear-compression and small-scale 
compression tests, back-calculated using Timoshenko beam theory. Furthermore, the American masonry code 
TMS 402 [38] states that there is no experimental evidence supporting a G/E ratio of 0.4 but that is simply a 
historically given value. 

௜௡௜௧ܧ  ൌ ݇௜௡௜௧ ቎ܪଶ ቀܪ଴ െ ܫ3ቁ2ܪ ൅ ܣܪߢ4 ቏ (2) 
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Figure 3a shows the ratio of back-calculated elastic moduli Einit to masonry compressive strength fu vs the axial 
load ratio. There appears to be a general upward trend for the elastic modulus with increasing axial load, which is 
in line with observations in Vanin et al. [18] for historical stone masonry walls. Derakhshan et al. [40] even report 
an increase in out-of-plane stiffness of URM walls subjected to one-way bending with increasing axial load. Yet 
many codes simply estimate the E-modulus as a multiple of the compressive masonry strength fu, e.g. E = 1000 fu,k 
as suggested in Eurocode 6 (EC6) Part 1 [36]. Since all values in this article are on the mean statistical level 
whereas the provision according to EC6 applies to the characteristic one (i.e. the 5 % quantile of a certain normal 
distribution), it is reformulated as E = 900 fu corresponding to a normal distribution with a coefficient of variance 
(CoV) of 6%, which agrees with the reported CoV of the masonry compression tests in [8,19,31] (if no information 
on the probability distribution were known EN 1052-1 [41] proposes the mean strength to be 20% larger than the 
characteristic one, corresponding to E = 833 fu). The modified relation is included in Figure 3a as dashed line. 
Estimating the stiffness as fixed multiple of the compression strength however appears not to be in line with the 
observed trend and leads to errors when estimating the effective stiffness.  

Considering the experimental results, two linear regressions of the elastic modulus based on the axial load may be 
proposed for practical applications, see Figure 3b and c. It is distinguished between walls with clay bricks and 
calcium-silicate bricks; for aerated concrete bricks the data base is insufficient. Besides the raw data, a moving 
average (blue line), a linear regression curve of the data (green and back line respectively), the Pearson correlation 
coefficient (r) and the p-value (p) are provided in Figure 3b and c. The correlation coefficient is a measure of how 
well the data corresponds to the linear regression curve; so the higher r, the better the linear correlation represents 
the actual data. The p-value is a measure of the strength of the evidence against a null hypothesis; the smaller the 
p-value, the stronger the evidence against said null hypothesis [42]. The null hypothesis in this article is: there is 
no correlation between the chosen indicators. A commonly used significance level is p < 0.05 [42,43]. For both 
types of bricks, the p-value suggests that there is a correlation between the ratio of E / fu and the axial load ratio 
σ0 / fu. The linear regression curves read as (σ0 is the axial stress on the wall): 

଴ሻ௨݂ߪሺܧ  ൌ ൞473 ൅ 1870 ଴௨݂ߪ for clay brick masonry	walls 																				713 ൅ 3119 ଴݂௨ߪ for calcium silicate brick masonry	walls
 (3) 

For design purposes, these equations can be approximated as: 

଴ሻߪሺܧ  ൌ ߙ ௨݂ ൬1 ൅ ߚ ଴݂௨ߪ ൰ (4) 

where α = 470 for clay brick and α = 720 for calcium silicate brick masonry walls while β = 4 for both types. 

(a) 

 

(b) (c) 

 
Figure 3: (a) Elastic moduli back-calculated from test results, (b) back-calculated elastic moduli of clay brick 
walls, (c) back-calculated elastic moduli of calcium silicate brick walls vs axial load ratio  

In Figure 4a, the empirical relation proposed in Eq. (4), and the approach according to EC6 are compared in 
predicting the actual elastic modulus Einit based on the measured initial stiffness.  
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(a) (b) (c) 

Figure 4: (a) Boxplot of performance of approaches of predicting elastic modulus, (b) normalized residuals for 
approach acc. to EC6, (c) normalized residuals for proposed approach acc. to Eq. (4) 

Equation (4), which expresses the elastic modulus as a function of fu and σ0 / fu, largely removes the bias with 
regard to σ0 / fu and predicts the elastic modulus more accurately than the approach in EC6 and may therefore be 
considered in practical applications where only few wall parameters are known and no force-displacement curves 
from similar tests are available. Figure 4b and c show the normalized residuals against the axial load ratio for the 
approach according to EC6 and the proposed formulation. The goodness of the predictions by EC6 changes 
significantly with the axial load ratio, while the residuals for Eq. (4) do not depend on it. 

In order to determine the elastic modulus experimentally, EN 1052-1 [41] demands a tangent modulus from axial 
compression tests of small-scale URM specimens to be retrieved. Consequently, the proposed EC6-formulation is 
possibly fitted from said small-scale tests. However, these are the only provisions there are. Therefore an engineer 
has to use this formulation also for predictions of the in-plane force-displacement of full-scale URM shear walls. 
In order to improve the situation with regard to the latter kind of structural element, the difference between 
measured data and code provision is highlighted while at the same an alternative is proposed. 

Throughout this article it is assumed that G/E = 0.25; the initial elastic moduli presented in this section are back-
calculated from the initial stiffness considering Timoshenko beam theory and the assumption of G/E = 0.25 
influences the value of said elastic moduli. If the hypothesis of G/E = 0.40 (acc. to EC6 [36]) were used, the initial 
elastic moduli would reduce and the factors α and β in the proposed Eq. (4) would change to α = 340 (clay units) 
and 550 (calcium-silicate units) respectively with β = 5. It should be stressed, however, that this assumption does 
not have a significant influence on the general trends presented in this section and has none at all on the stiffness 
ratios presented in Sect. 2.2.2. Furthermore it has neither a significant impact on the model presented in Sect. 3, 
nor its validation in Sect. 4, nor the parametric studies in Sect. 5. 

2.2.2 Effective to initial stiffness 

An overview of the effective-to-initial stiffness ratio in the dataset is provided in Figure 5. Figure 5a distinguishes 
between flexure and shear controlled walls. Independently of the failure mode, the effective stiffness of nearly all 
walls lies above the estimate according to EC8 Part 1 [17], which suggests the effective stiffness be approximated 
as 50% of the elastic stiffness (dashed line). The test results suggest however that the effective stiffness 
corresponds in average to around 70-75% of the initial stiffness. Furthermore it appears that flexure controlled 
walls show a slightly larger dispersion around the mean than shear controlled ones. Figure 5b suggests that there 
is no significant difference concerning the mean value of the effective-to-initial stiffness between the considered 
masonry typologies. Table 3 sums up the above-mentioned and provides the mean and the coefficient of variation 
(CoV) for the effective-to-initial stiffness ratio per failure mode and masonry typology, respectively. It is chosen 
in the following to propose an effective-to-initial stiffness ratio 0.75 as the typology for which the largest amount 
of tests were analysed (perforated clay brick walls, CL/PE/NO) shows this ratio. The other typologies are 
represented by significantly fewer tests, which furthermore seem to contain some outliers (especially for calcium-
silicate walls) reducing the value of effective to initial stiffness, see especially typologies 4 and 5 in Figure 5b. 
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(a) (b) 

 
Figure 5: Effective-to-initial stiffness ratio vs (a) failure mode, (b) wall typology; including corresponding 
lognormal probability distribution functions and indications of mean 

Table 3: Summary of effective-to-elastic stiffness ratio per failure mode and masonry typology 

Short  Indicator mean(kef / kinit) CoV(kef / kinit) No. of walls 

Failure mode  

S Shear     0.72     0.14 41 

F Flexure     0.71     0.23 38 

Typology  

1 CL/PE/NO     0.75     0.16 44 

2 CL/PE/TH     0.69       - 1) 4 

3 CL/FU/NO     0.68       - 1) 5 

4 CS/FU/NO     0.64     0.33 10 

5 CS/FU/TH     0.67     0.17 12 

6 AC/FU     0.76       - 1) 4 

1) For sample sizes smaller than 10, the CoV was not computed.  

All tests 

The effective-to-initial stiffness ratio kef / kinit vs the axial load ratio is presented in Figure 6a. It appears to be 
relatively constant with the axial load ratio, which indicates that both the effective and the initial stiffness depend 
on the applied axial loading, which was already indicated previously in e.g. [18,19]. Besides the raw data, a moving 
average (blue line) and a linear regression curve of the data (green line) is shown. Furthermore, the correlation 
coefficient (r) and the p-value (p) are provided. Figure 6b plots the same stiffness measure vs the shear span ratio 
(shear span H0 by wall length L). The p-value indicates that there appears to be no significant trend between them. 

(a) (b) 

 
Figure 6: Experimental results: effective-to-initial stiffness vs (a) axial load ratio, (b) shear span ratio 
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By failure mode 

Figure 7 presents the effective-to-initial stiffness ratio over the axial load ratio, this time separating the tests by 
failure mode. Figure 7b and c indicate that there appears to be a significantly stronger increase in the effective 
stiffness with the axial load ratio for flexure controlled walls than for shear controlled walls. 

(a) 

 

(b) (c) 

(d) 

 

(e) (f) 

Figure 7: Experimental results: effective-to-initial stiffness vs axial load ratio (a) all walls, (b) walls failing in 
shear, (c) walls failing in flexure; effective-to-initial stiffness vs shear span ratio (d) all walls, (e) walls failing in 
shear, (f) walls failing in flexure 

Generally, the decrease in stiffness (from initial to effective) may be attributed to two distinct cracking 
mechanisms: Diagonal shear cracking, prevalent in shear controlled walls, and flexural cracking or uplift of the 
bed-joints due to partial decompression of a cross section, which is the governing cracking mechanism in flexure 
controlled walls. The reason for why the effective stiffness in flexure controlled walls changes significantly more 
strongly with the axial load may be that the extent of flexural cracking is more dependent on the axial load than 
diagonal cracking. This seems to be indicated by the mechanics-based model introduced in Sect. 3.3.  

If only the shear controlled walls are considered, the effective stiffness seems to decrease with increasing shear 
span ratio, Figure 7e. This trend, however, vanishes for flexure controlled walls (Figure 7f). An explanation for 
this might be that as the shear span ratio gets higher, the failure mode will gradually change from shear to flexure 
(see also Figure 2). Shear controlled walls with a relatively high shear span ratio may experience a significant 
amount of diagonal and flexural cracking both of which lead to a softening of the wall stiffness. In flexure 
controlled walls, however, only flexural cracking takes place notwithstanding the shear span ratio. 

By masonry typology 

In this section, the data is separated by masonry typology, Figure 8. No difference in terms of dependency of the 
effective-to-initial stiffness ratio on the axial load ratio can be observed (Figure 8b, c). Similar can be said 
concerning the effective-to-initial stiffness vs the shear span ratio plots, see Figure 8e, f. There appears to be one 
weak downward trend in effective-to-initial stiffness for all typologies but vertically perforated clay unit walls 
with normal thickness bed-joints (CL/PE/NO). It might, however, well be that this possible dependency only 
appears due to a limited number of wall tests.  
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(a) 

 

(b) (c) 

(d) 

 

(e) (f) 

 
Figure 8: Results of selected test campaigns by typology; effective-to-initial stiffness vs axial load ratio (a) all 
walls, (b) vertically perforated clay units and bed joints of normal thickness, (c) other typologies; effective-to-
initial stiffness vs shear span ratio (d) all walls, (e) vertically perforated clay units and bed joints of normal 
thickness, (f) other typologies 

2.2.3 Summary of findings 

The main findings of this section can be summarized as follows: 

- There appears to be an upward trend for the effective and the initial stiffness with increasing axial load 
ratio. 

- For the initial stiffness, this increase in stiffness with increasing axial load ratio can be accounted for by 
expressing the E-modulus as a function of the axial load ratio [see Eq. (4)]. The effective stiffness can be 
interpreted as this initial stiffness times the ratio of effective-to-initial stiffness. 

- The experimental results indicate that this effective-to-initial stiffness ratio is only slightly dependent on 
the axial load ratio, the shear span ratio and the behaviour mode of the wall (shear vs flexure).  

- For flexure controlled walls, the effective-to-initial stiffness ratio appears to increase with increasing axial 
load ratio, while for shear controlled walls the effective-to-initial stiffness ratio seems rather independent 
of this measure. 

- The effective-to-initial stiffness ratio seems to decrease with increasing shear span ratio in shear 
controlled walls while there appears to be no such trend in flexure controlled ones. 

To investigate the dependency of the effective-to-initial stiffness ratio on the wall geometry, static and kinematic 
boundary conditions, a model is put forward in the next section, which allows for an analytical derivation of this 
ratio.  

3 An analytical model for the effective-to-initial stiffness ratio 

A simplified method accounting for the influence of the flexural cracking of bed joints and diagonal shear cracking 
based on the more complex Critical Diagonal Crack (CDC) model [26] is outlined in the following. To determine 
whether a wall develops shear or flexural cracks or both, an approach to distinguish between shear controlled walls 
(diagonal shear cracking) and flexure controlled walls (rocking with flexural cracking of bed-joints) is required. 
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Therefore, first, two different approaches are presented that may be used to differentiate shear and flexure 
controlled walls.  

3.1 Determining the failure mode 

3.1.1 Eurocode 8 

EC8 Part 3 [44] determines the behaviour type of a URM wall by comparing the shear capacity of the wall for 
shear and flexural failure. The capacity associated with shear failure is described by a Mohr-Coulomb criterion 
and the flexural capacity is based on a compressive failure at the wall toe. The smaller value of the two controls 
the failure mode. Advantages of this approach are the mechanical background and its simplicity. However, to 
determine the effective stiffness, EC8 neglects any effect of the behaviour type on the ratio of effective-to-initial 
stiffness and simply assigns half the gross sectional stiffness independently of the wall behaviour. 

3.1.2 Shear span ratio 

A simple approach to distinguish between shear and flexure controlled walls is to use the shear span ratio H0 / L 
since Figure 2a in Sect. 2.1 indicates that it nearly always permits a correct classification of the behaviour type. It 
is assumed that walls with a shear span ratio of one and larger develop a flexure controlled behaviour while walls 
with a shear span ratio smaller than one are shear controlled.  

3.1.3 Comparison of methods 

A comparison of the above-presented approaches to predict the wall behaviour-type is shown in Figure 9. First 
(Figure 9a) the ratio of correct predictions by the considered approaches per behaviour-type as observed in the 
tests for all masonry typologies are presented. While the provisions according to Eurocode 8 part 3 [44] are right 
in 61/79 cases, the shear span ratio fares similarly well and assigns the correct prediction to 63/79. The shear span 
ratio fares better in predicting shear controlled walls with the approach in EC8 being slightly superior for the 
prediction of flexure controlled ones. Only walls of the CL/PE/NO typology are considered in Figure 9b as they 
represent the biggest sample in the dataset with, as it appears, the lowest uncertainty. Furthermore the original 
CDC model, on which the model introduced in the following is based, has been validated with this typology. Both 
approaches show again similar agreement: 37/44 for EC8 and 38/44 using the shear span ratio. Concluding, it can 
be said that despite its simplicity, the shear span ratio proves to be a good indicator of the wall behaviour-type 
with an even slightly better performance than the approach in EC8. 

(a) (b) 

 
Figure 9: Comparison of prediction performance of failure mode, (a) Eurocode 8 [44] and shear span ratio, all 
tests; (b) Eurocode 8 [44] and shear span ratio, only CL/PE/NO typology. Black indicates predictions using the 
shear span ratio and grey the ones according to EC8. 

3.2 Gamma approach 
The gamma approach was introduced in [26] and permits to distinguish implicitly between controlled by shear or 
flexure by introducing a factor γ, which is dependent on an indicator and zero for shear while one for flexure 
controlled walls. The factor γ is suggested herein as a function of the shear span ratio and can be computed as 
given by Eq. (5). It allows for considering both flexural and diagonal shear cracking when computing the effective 
stiffness, as will be shown in Sect. 3.3 and Eq. (21). 
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3.3 Modelling the effective-to-initial stiffness ratio 
In this section, a simplified approach to explicitly derive the stiffness reduction factors for the flexural and the 
shear displacement component, to be used in Eq. (1), is presented. The method is based on the CDC model as 
introduced in [26] and attempts to approximate the curvature and shear strain profiles from the CDC model at 70% 
of the peak shear capacity by means of simplified interpolation functions. In the CDC model, it is assumed that 
flexural horizontal cracking in the bed-joints can be captured by reducing the respective cross section length. 
Furthermore diagonal shear cracking is captured by a further reduction of the length of cross sections that are 
crossed by said diagonal crack. Therefore all reduction in stiffness is attributed to a decrease in cross sectional 
values, i.e., the moment of inertia (I) and the area of the cross section (A). The material stiffness parameters E and 
G (elastic and shear modulus) are kept constant, i.e. the material is assumed to be linear-elastic in compression 
and shear; the tensile strength of the masonry is neglected. In the CDC model, the values of the moment of inertia 
and the cross sectional area vary over the height of the wall. For the simplified model presented here, average 
values are computed, which lead to the same top displacement for cross sectional values that are constant over the 
wall height. As a consequence, the stiffness reduction factors related to flexural (f1) and shear (f2) component of 
the horizontal displacement [see also Eq. (1)] can be written as the ratio of average-reduced to gross sectional 
values: 

 ଵ݂ ൌ ܫ௔௩௚ܫ , ଶ݂ ൌ ܣ௔௩௚ܣ  (6) 

3.3.1 Reduction of flexural stiffness 

To obtain the average-reduced moment of inertia, the horizontal flexural top displacements (ufl,top) for the double 
integral of the ‘real’ curvature profile [χ(x)] and the curvature profile obtained with a constant moment of inertia 
over the wall height [M(x)/EIavg] have to be equal. 

௙௟,௧௢௣ݑ  ൌ ඵ ௔௩௚ܫܧሻݔሺܯ ுݔ݀
଴ ൌ ඵ ߯ሺݔሻ݀ݔு

଴  (7) 

Where M(x) is the moment profile at the height x. Integrating the linear moment profile M(x) and solving the 
resulting expression for Iavg yields:  

௔௩௚ܫ  ൌ ଶܪܸ ቀܪ଴ െ ܧ3ቁ2ܪ ∬ ߯ሺݔሻ݀ݔு଴  (8) 

The shear force V is, in accordance to the definition of the effective stiffness, 70% of the shear capacity of the wall 
(V = 0.7 VP). Dividing Eq. (8) by the gross moment of inertia yields an expression for the flexural stiffness 
reduction factor f1 based on a curvature profile χ(x) that still needs to be determined. 

 ଵ݂ ൌ ܫ௔௩௚ܫ ൌ ଶܪ6ܸ ቀܪ଴ െ ܧଷܶܮ3ቁܪ ∬ ߯ሺݔሻ݀ݔு଴ ൌ ଶܪ6ܸ ቀܪ଴ െ ௙௟,௧௢௣ݑܧଷܶܮ3ቁܪ  (9) 

Where T is the wall thickness. For flexure controlled walls, an approximation of the required curvature profile 
with an exponential function is proposed based on the curvature at the wall base χb and a constant c. 

 ߯ሺݔሻ ൌ ߯௕݁௖௫ (10) 

The constant c can be obtained analytically by evaluating the curvature χ2 of a wall cross section at wall height H2, 
where H2 ≠ H0 for mathematical stability. Good estimates for H2 appear to be situated between H/2 and H/3. 
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 ܿ ൌ ln ൬߯ଶ߯௕൰ ଶܪ1  (11) 

The curvature of a cross section undergoing flexural decompression can be obtained using Eq. (12) [26,35]. The 
two curvatures χb and χ2 can therefore be obtained by setting x to 0 and H2 respectively.  

 ߯ሺݔሻ ൌ  ሻܶ (12)ݔ௖ଶሺܮܧ2ܰ

Where N is the normal force on the wall. The compressed length Lc(x) of a cross section undergoing only flexural 
decompression but no shear cracking (flexure controlled walls) can be determined as follows [26,35,45]. 

ሻݔ௖ሺܮ  ൌ 3 ቆ2ܮ െ ܸሺܪ଴ െ ሻܰݔ ቇ (13) 

Integrating Eq. (10) twice along the wall height yields an equation for the flexural displacement at the wall top for 
flexure controlled walls. 

௙௟,௧௢௣ݑ  ൌ ඵ ߯ሺݔሻ݀ݔு
଴ ൌ ߯௕ܿଶ ሾ݁௖ு െ ܪܿ െ 1ሿ (14) 

For shear controlled walls, the curvature profile is assumed to follow a linear function that is dependent on the 
base curvature χb and the shear span H0. 

 ߯ሺݔሻ ൌ ߯௕ ൬1 െ  ଴൰ (15)ܪݔ

The double integral of Eq. (15) over the wall height leads to an equation for the flexural top displacement for shear 
controlled walls.  

௙௟,௧௢௣ݑ  ൌ ඵ ߯ሺݔሻ݀ݔு
଴ ൌ ߯௕ ଶ2ܪ ൬1 െ  ଴൰ (16)ܪ3ܪ

For shear controlled walls that undergo diagonal shear cracking, the influence of said mechanism is considered by 
introducing an average reduction factor ravg. This factor reduces the gross sectional moment of inertia and therefore 
the base curvature χb increases: 

 ߯௕ ൌ ݔሺܯ ൌ 0ሻݎܫܧ௔௩௚ ൌ  ௔௩௚ (17)ݎଷܶܮܧ଴ܪ12ܸ

Corresponding to the assumptions in [26], diagonal cracking in the pre-peak regime at 0.7VP (70% of the peak 
shear capacity) is supposed to expand over the whole wall apart from the first and last course of bricks respectively 
due to the confinement effect of the rather stiff foundation and ceiling slabs (see Figure 10c). Figure 10a shows 
the resulting assumed linearized profile of reduced-to-full moment of inertia (Isc(x) / I) based in a diagonal crack 
separating two wall halves (and therefore splitting the subjected cross sections in two) as illustrated in Figure 10c. 
The said factor ravg represents therefore the average ratio of reduced to gross sectional moment of inertia. The 
formulation below can be used, evaluating two sections and assuming a linear distribution of the moment of inertia 
in-between due to diagonal cracking. 

௔௩௚ݎ  ൌ 2݄஻ݎଵ ൅ ሺݎଶ ൅ ଷሻݎ ቀ2ܪ െ ݄஻ቁܪ  (18) 

Where hB is the height of a brick. The ratios of reduced to gross sectional moment of inertia (r2, r3) in Eq. (18) can 
be obtained according to the following relations, with r1 = 1. 

ଶݎ  ൌ ሺܮ െ ݈஻ሻଷ ൅ ݈஻ଷܮଷ  (19) 

ଷݎ  ൌ 2ሺ0.5ܮሻଷܮଷ ൌ 14 (20) 

Examples of curvature, rotation and displacement profiles of a shear and a flexure controlled wall comparing the 
measured profiles (tests by [8], specimens PUP1 and PUP3, see also Table 8 in Appendix A), the ones according 
to the CDC model and the approximated ones (CDCs) following the above-introduced interpolation functions 
[Eqs. (14) and (16)] are shown in Figure 10b and c. A good agreement can be observed.  
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Figure 10: (a) assumed profile of reduced to gross sectional moment of inertia along the wall height; curvature, 
rotation and displacement profiles including test results by [8] (specimens PUP1 and PUP3) for (b) flexure 
controlled wall with shear span of 1.5H and (c) shear controlled wall with shear span of 0.5H 

Employing the gamma approach as introduced in Sect. 3.2, the flexural component of the horizontal top 
displacement can be determined by a linear combination of Eqs. (14) and (16) for all wall-behaviour types. Observe 
the different notation for the base curvatures: χb,fc for flexure controlled and χb,sc for shear controlled walls, since 
they are determined differently [see Eqs. (12) and (17)]. 

௙௟,௧௢௣ݑ  ൌ 	ߛ ߯௕,௙௖ܿଶ ሾ݁௖ு െ ܪܿ െ 1ሿ ൅ ሺ1 െ ሻߛ ߯௕,௦௖ ଶ2ܪ ൬1 െ  ଴൰ (21)ܪ3ܪ

3.3.2 Reduction of shear stiffness 

The reduction of the shear stiffness can be expressed by considering an average-reduced compressed length along 
the wall height, which is based on the compressed length of the base section [Lc(x = 0)] and the height along which 
decompression occurs (hd), see Figure 11a. 

 
Figure 11: (a) wall undergoing flexural decompression at the base, compressed area in grey; shear strain and 
displacement profiles including test results by [8] (specimens PUP1 and PUP3) for (b) flexure controlled wall with 
shear span of 1.5H and (c) shear controlled wall with shear span of 0.5H 

௖,௔௩௚ܮ  ൌ ܮ െ ܮ െ ݔ௖ሺܮ ൌ 0ሻܪ ݄ௗ2  (22) 

The decompressed height hd can be determined following the formulation introduced in e.g. [26]. The wall length 
is reduced by up to one brick length (lB) to account for the influence of diagonal shear cracking depending on the 
wall behaviour-type. 

 ݄ௗ ൌ ଴ܪ െ ܰሾܮ െ ݈஻ሺ1 െ ሻሿ6ܸߛ  (23) 

The compressed length at the base section is determined corresponding to Eq. (13), this time explicitly accounting 
for the wall behaviour-type similar to Eq. (23). 
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ݔ௖ሺܮ  ൌ 0ሻ ൌ 3 ቆܮ െ ݈஻ሺ1 െ ሻ2ߛ െ ଴ܰܪܸ ቇ (24) 

The stiffness reduction factor for the shear component of the horizontal displacement can therefore be obtained 
using the following relation: 

 ଶ݂ ൌ ܣ௔௩௚ܣ ൌ ܮ௖,௔௩௚ܮ ൌ 1 െ ܮ െ ݔ௖ሺܮ ൌ 0ሻܪܮ ݄ௗ2  (25) 

Figure 11b and c compare the shear strain and resulting shear displacement profiles of the above-introduced 
simplified formulation and the more complex CDC model. For both flexure and shear controlled walls, a rather 
good agreement can be achieved between measured profiles by [8], the CDC model [26] and its simplification.  

4 Comparison and validation 

The data set of full-scale shear-compression tests introduced in Sect. 2 is used for comparing the performance of 
the above-discussed methods in predicting the effective stiffness. The compared approaches are: (i) the original 
CDC model [26]; (ii) the proposed simplified version of the CDC model; (iii) the provision of EC8 Part 1 [17]; 
(iv) a modification of the approach according to EC8, reducing the initial stiffness only by 25% instead of the 
proposed 50%. In line with previous sections a G/E ratio of 0.25 is assumed for all approaches. Figure 12 illustrates 
the comparison by means of scatter and boxplots. The corresponding statistics are summarized in Table 4.  

(a) (b) 

(c) (d) 

Figure 12: Using measured initial stiffness as input (a) predicted vs measured effective stiffness, (b) corresponding 
boxplot; using proposed formulation of E (c) predicted vs measured effective stiffness, (d) corresponding boxplot 

Figure 12a and b present the comparison using the actual measured values of the initial stiffness as input parameter 
for all the models, while Figure 12c and d do so using the initial stiffness calculated according to the empirical 
relation proposed in Eq. (4). Consequently, the scatter is significantly higher for the latter case since the error 
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stems from both the estimation of the initial and the effective stiffness and not only from an error in the ratio of 
the effective-to-initial stiffness ratio as in the former case. Figure 12 shows that the largest part of the scatter results 
from uncertainties related to the initial stiffness and therefore not from errors in determining the effective-to-initial 
stiffness ratio. 

The EC8-approach underestimates the actual effective stiffness by quite a large margin. The other three approaches 
however lead to nearly the same result and therefore also to a very similar fit in predicting the effective stiffness 
of the tests. Apparently, using a constant reduction factor of 0.75 performs slightly better than the more complex 
models (CDC, simplified CDC) despite not accounting for an influence of axial loading on the effective-to-initial 
stiffness ratio. The good fit of this simple approach might be related to the following two factors. First, the 
reduction of the elastic stiffness by 25% (f1 = f2 = 0.75) is validated against the same data set from which the ratio 
was derived. The more complex and general formulations CDC and simplified CDC perform equally well without 
fitting and even predict the average reduction factor of 0.75 rather well, as will be shown in the following section. 
Second, the correlations between effective stiffness and wall geometry as well as effective stiffness and shear span 
are considered by all the present approaches as all methods are based on Timoshenko-beam models.  

Table 4: Performance of considered models for estimating the effective stiffness 

kef,pred / kef,test 

Mean Median Std. CoV 

Einit E(σ0/fu) Einit E(σ0/fu) Einit E(σ0/fu) Einit E(σ0/fu) 

CDC 1.19 1.28 1.17 1.21 0.32 0.51 0.27 0.40 

CDC simplified 1.17 1.25 1.12 1.16 0.28 0.50 0.24 0.40 

EC8 (f1=f2=0.5) 0.73 0.79 0.69 0.70 0.18 0.33 0.24 0.42 

EC8 mod. (f1=f2=0.75) 1.10 1.18 1.03 1.06 0.26 0.49 0.24 0.42 

 

To reinforce that a change in G/E ratio does not have a significant influence on the performance of the presented 
model, Table 5 compares the statistics from Table 4 for the option Einit to the ones using a G/E ratio of 0.4. As can 
be seen, the difference in results is negligibly small. The assumption of a G/E ratio has only a very limited effect 
on the proposed formulation for the reduction factor f1. The elastic modulus enters in the denominator and the 
numerator which cancels its influence mostly out [see Eqs. (9) and (14) in Sect. 3.3.1]. Moreover, no material 
parameter is used in the equation for f2 [Eq. (25) in Sect. 3.3.2]. Furthermore the elastic and shear moduli used in 
the validation are back-calculated form the same initial stiffness measurements simply using different values for 
G/E so the resulting initial stiffness has to be, again, the same notwithstanding the assumption of G/E. 

Table 5: Performance of considered models for estimating the effective stiffness, comparison G/E = 0.25 vs 0.40 

kef,pred / kef,test Mean Median Std. CoV 

G/E 0.25 0.40 0.25 0.40 0.25 0.40 0.25 0.40 

CDC 1.19 1.18 1.17 1.15 0.32 0.32 0.27 0.27 

CDC simplified 1.17 1.13 1.12 1.08 0.28 0.27 0.24 0.24 

EC8 (f1=f2=0.5) 0.73 0.73 0.69 0.69 0.18 0.18 0.24 0.24 

EC8 mod. (f1=f2=0.75) 1.10 1.09 1.03 1.03 0.26 0.26 0.24 0.24 

 

The stiffness reduction factors as predicted explicitly by the simplified CDC model for the considered tests are 
presented graphically in Figure 13 including the respective lognormal probability distribution functions with 
indications of the mean. There is little variation in the values, further explaining the good performance of the 
modified EC8 approach. It can be seen that the reduction of the flexural component is predicted to be significantly 
larger (mean of 0.66) than the reduction of the shear component (mean of 0.93). The statistics are listed in Table 
6. However for practical applications it might be sufficient to use one value for both flexure and shear component 
of the stiffness in-between the above-mentioned such as the already mentioned 0.75.  
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Figure 13: Distribution of stiffness reduction factors for flexural (f1) and shear (f2) component as determined with 
the simplified CDC model including corresponding lognormal probability distribution functions and indications 
of mean 

Table 6: Statistics of stiffness reduction factor samples for wall tests according to simplified CDC model 

Reduction factor Mean Median Std. CoV 

f1 0.66 0.66 0.10 0.15 

f2 0.93 0.94 0.05 0.06 

 

5 Parametric studies on the ratio of effective-to-initial stiffness 

In the following parametric study, the simplified CDC model is used to investigate the influence of the shear span 
ratio (H0 / L) and the axial load ratio (σ0 / L) on the ratio of effective-to-initial stiffness of in-plane loaded URM 
walls. The parameters provided in Table 7 are used throughout the whole study; these are the wall thickness T, the 
brick height hB, the brick length lB, the friction coefficient μ, the cohesion c, the compressive strength of masonry 
fu, the compressive strength of a brick fB,c and the E-modulus of masonry E.  

Table 7: Values used for all parametric studies, material parameters correspond to values obtained in [8] 

T hB lB  μ  c  fu fB,c E 

[mm] [mm] [mm] [-] [MPa] [MPa] [MPa] [MPa] 
200 190 300 0.94 0.27 5.86 35 Eq. (4) clay 

 

The influence of a change in shear span on the effective-to-initial stiffness ratio is presented in Figure 14a. The 
wall size is kept constant (H = L = 2.5m) while the shear span is increased. It can be seen that the effective-to-
initial stiffness ratio shows a slight downward trend for increasing shear span. As already stressed in the previous 
sections, the predictions for the effective stiffness lie around 0.75 times the elastic stiffness, which is significantly 
higher than the provisions in EC8 Part 1 [17] and corresponds to the presented test results. 

Figure 14b further illustrates that the effective-to-initial stiffness ratio reduces slightly with increasing shear span 
ratio. For this plot, the wall height and shear span remain constant (H = 2.5m, H0/H = 0.5, 1.0) while the wall 
length is decreased. For walls with a lower shear span ratio (i.e. wall that are more likely to be shear controlled) 
there is a downward trend with increasing shear span ratio, a trend that appears to correspond to test results as 
shown in Sect. 2.2.2 and Figure 7e. The predictions vary again between 0.7 and 0.9 times the initial stiffness and 
are therefore in the vicinity of the empirically determined reduction factor of 0.75. Subsequently the variation of 
the effective-to-initial stiffness ratio is investigated under increasing axial load ratio with a constant wall size and 
shear span (H = L = 2.5m, H0/H = 0.5, 1.5), Figure 14c. An upward trend with increasing axial load especially for 
walls with a higher shear span (that are therefore more likely to be flexure controlled) can be observed. This 
corresponds well to the finding that flexure controlled walls appear to show a slight upward trend in effective-to-
initial stiffness ratio with increasing axial loading (see Sect. 2.2.2 and Figure 7c). Yet the values remain again in 
the vicinity of 0.75 times the elastic stiffness confirming the determined stiffness reduction factors.  
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(a) H=L=2.5m  

 

(b) H=2.5m, σ0/fu=0.1 (c) H=L=2.5m 

Figure 14: Parametric studies using CDCs model, ratio of effective-to-initial stiffness vs (a) shear span ratio, 
constant wall size; (b) shear span ratio, constant wall height, reducing wall length; (c) axial load ratio, constant 
wall size 

6 Conclusions 

This article treats the effective stiffness of in-plane loaded unreinforced masonry (URM) walls, which is defined 
herein as the secant stiffness of the wall at attainment of 70% of the peak shear capacity. The considered URM 
walls are made of masonry with regular clay, calcium silicate or aerated concrete block units. An investigation of 
experimental evidence from a data base of 79 full-scale shear-compression tests shows that both the initial and the 
effective stiffness appear to be positively dependent on the axial load ratio. In this paper, the effective stiffness is 
expressed as product of the initial stiffness and the ratio of effective to initial stiffness. Based on the test data, 
assuming that the Timoshenko beam model is applicable and that G = 0.25 E, the initial masonry E-modulus can 
be estimated as follows: 

଴ሻߪሺܧ  ൌ ߙ ௨݂ ൬1 ൅ ߚ ଴݂௨ߪ ൰ (26) 

where α = 470 for clay brick and α = 720 for calcium silicate brick masonry walls with β = 4 for both types. For 
other masonry typologies, the data base is insufficient for determining a typology-specific α-value. This new 
expression for the E-modulus seems to yield less biased estimates of the measured initial stiffness than the 
provision in Eurocode 6 [36], which does not account for the dependency of the E-modulus on the axial load ratio 
but computes the E-modulus as a multiple of the compression strength fu. The uncertainty related to the initial 
stiffness estimate remains, however, significant. 

Furthermore, the experimental data shows that not only does the initial and effective stiffness depend on the axial 
load ratio but also the effective-to-initial stiffness ratio in flexure controlled walls shows a slight upward trend 
with the axial load ratio. In addition, the effective-to-initial stiffness ratio seems to show a downward trend with 
the shear span ratio for shear controlled walls. These observed trends are confirmed by an analytical model, which 
is put forward in this paper and validated against the experimental data.  

The analytical model suggests that the reduction in stiffness is mainly caused by a reduction in flexural stiffness 
and to a lesser extent in shear stiffness. Moreover, the test data and the model indicate that the variation of the 
effective-to-initial stiffness ratio with the axial load and the shear span ratio is not that strong and may be 
approximated for practical purposes by a constant ratio of 0.75. This ratio is, however, considerably higher than 
the value of 0.50 suggested in Eurocode 8 Part 1 [17]. Concluding, a comparison with experimental data shows 
that the scatter in the effective stiffness estimates may results to a large extent from the initial stiffness estimate 
and to a much smaller extent from errors in the determination of the effective-to-initial stiffness ratio.  
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9 Appendix A 

Table 8 summarizes the main parameters of the tests used for comparison reasons in this article, where L is the 
wall length, T the wall thickness, H the wall height, H0/H the ratio of shear span to wall height, hB the brick height, 
lB the brick length, σ0 the axial stress, fu the mean masonry compressive strength, Einit the initial elastic modulus. 

Table 8: Wall parameters used in the comparison of model/tests  

Name Ref. Typ1 Beh2 
L  

[mm] 
T 

 [mm] 
H  

[mm] 
H0/H 

 [-] 
hB 

[mm] 
lB 

[mm] 
σ0  

[MPa] 
fu  

[MPa] 

Einit  
[MPa] 

kef [kN 
/mm] 

PUP1 [8] 1 S 2010 200 2250 0.50 190 300 1.05 5.86 4196 96.2 

PUP2 [8] 1 S 2010 200 2250 0.75 190 300 1.05 5.86 3992 41.0 

PUP3 [8] 1 F 2010 200 2250 1.50 190 300 1.05 5.86 3741 37.9 

PUP4 [8] 1 F 2010 200 2250 1.50 190 300 1.54 5.86 4641 46.0 

PUP5 [8] 1 S 2010 200 2250 0.75 190 300 0.55 5.86 3243 44.7 

PUP6 [8] 1 S 2010 200 2250 1.05 190 300 1.05 5.86 3010 35.6 

BNW1 [29] 1 F 2567 297 1750 1.10 236 244 0.59 5.86 4425 213.2 

BNW2 [29] 1 S 2572 297 1753 1.10 236 244 1.19 5.86 6748 269.9 

BNW3 [29] 1 S 2584 297 1751 1.10 236 244 0.89 5.86 4105 160.7 

BZW1 [29] 1 S 2482 296 1750 1.10 237 244 0.95 5.86 4118 146.5 

BZW2 [29] 1 F 2484 296 1750 1.10 237 244 0.53 5.86 3683 164.6 

BSW [29] 1 S 2712 172 1820 1.10 188 288 2.07 5.86 6627 152.4 

W1 [27] 1 S 3600 150 2000 1.05 190 300 0.77 8.25 4153 136.7 

W4 [27] 1 F 3600 150 2000 2.00 190 300 0.78 8.25 5107 124.3 

W6 [27] 1 S 3600 150 2000 1.05 190 300 0.77 8.25 5252 175.5 

W7 [27] 1 S 3600 150 2000 1.05 190 300 2.39 8.25 6562 231.9 

P1 [19] 1 S 1500 150 1600 0.50 190 290 0.64 6.40 3209 66.7 

P2 [19] 1 S 1500 150 1600 0.50 190 290 0.96 6.40 4222 83.8 

P3 [19] 4 S 1500 150 1600 0.50 190 250 0.77 7.70 6481 121.5 

P4 [19] 4 S 1500 150 1600 0.50 190 250 1.16 7.70 7035 115.9 

T1 [19] 1 S 2700 150 2600 0.50 190 290 0.58 5.80 3677 73.7 

T2 [19] 1 S 2700 150 2600 0.50 190 290 0.29 5.80 3750 66.4 

T3 [19] 1 S 2700 150 2600 0.50 190 290 1.16 5.80 4927 105.9 

T6 [19] 1 S 3600 150 2600 0.50 190 290 0.58 5.80 4894 142.1 

T7 [19] 1 F 2700 150 2600 1.00 190 290 0.58 5.80 4643 56.1 

BNL1 [28] 1 F 1028 300 1510 1.06 240 245 0.60 4.13 3445 49.5 

BNL2 [28] 1 F 1030 300 1510 1.06 240 245 1.19 4.13 3912 47.1 

BNL3 [28] 1 F 1033 300 1515 1.06 240 245 0.60 4.13 3954 52.4 

BNL4 [28] 1 F 1025 300 1514 1.06 240 245 1.19 4.13 4839 60.7 

BNL5 [28] 1 F 1027 300 1511 1.06 240 245 1.19 4.13 4263 52.1 

BNL6 [28] 1 F 1026 300 1508 1.06 240 245 0.60 4.13 3568 48.9 

BGL1 [28] 1 F 989 300 1513 1.06 237 245 1.19 4.31 4532 55.7 

BGL2 [28] 1 F 987 300 1511 1.06 237 245 1.19 4.31 3971 47.9 

BPL1 [28] 1 F 985 300 1508 1.06 236 245 1.19 6.28 6623 51.1 

BPL2 [28] 1 F 985 300 1509 1.06 236 245 1.19 6.28 6854 50.2 

BPL3 [28] 1 F 986 300 1507 1.06 236 245 1.19 6.28 5308 43.8 

BZL1 [28] 1 F 988 300 1510 1.06 235 243 1.19 6.24 6738 60.5 

BZL2 [28] 1 F 987 300 1512 1.06 235 243 1.19 6.24 5137 53.6 

BZL3 [28] 1 F 986 300 1508 1.06 235 243 1.19 6.24 7894 60.5 

EC_Comp1 [30] 4 F 1100 102 2750 0.50 71 212 0.52 6.20 6229 11.7 

EC_Comp3 [30] 4 S 4000 102 2750 1.00 71 212 0.30 6.20 6900 111.1 
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Name Ref. Typ1 Beh2 
L  

[mm] 
T 

 [mm] 
H  

[mm] 
H0/H 

 [-] 
hB 

[mm] 
lB 

[mm] 
σ0  

[MPa] 
fu  

[MPa] 

Einit  
[MPa] 

kef [kN 
/mm] 

EC_Comp21 [31] 3 F 1200 208 2710 0.50 50 208 0.52 11.22 7041 53.7 

EC_Comp22 [31] 3 F 1200 208 2710 0.50 50 208 1.20 11.22 7997 48.8 

EC_Comp23 [31] 3 F 1200 208 2710 0.50 50 208 0.86 11.22 7341 44.5 

EC_Comp24 [31] 3 S 2740 208 2710 0.50 50 208 0.30 11.22 8160 209.3 

EC_Comp25 [31] 3 S 2740 208 2710 0.50 50 208 0.30 11.22 8921 175.8 

Comp0 [32] 4 F 1100 102 2760 0.50 71 210 0.70 5.90 7096 7.8 

Comp1 [32] 4 F 1100 102 2760 1.00 71 210 0.70 5.90 5163 4.3 

Comp2 [32] 4 F 1100 102 2760 1.00 71 210 0.50 5.90 5900 3.1 

Comp3 [32] 4 F 1100 102 2760 0.50 71 210 0.40 5.90 6005 12.6 

Comp4 [32] 4 S 4000 102 2760 0.50 71 210 0.50 5.90 7959 222.6 

Comp6 [32] 4 S 4000 102 2760 1.00 71 210 0.50 5.90 5669 100.1 

CL01 [33] 2 F 1500 175 2500 0.50 249 373 0.31 5.90 4918 54.2 

CL03 [33] 2 F 1000 365 2500 0.50 249 247 0.14 5.90 3686 29.2 

CL05 [33] 1 S 2500 300 2600 0.50 190 250 0.68 9.50 3300 113.7 

CL06 [33] 1 F 1250 300 2600 0.50 190 250 0.50 9.50 2827 39.5 

CL07 [33] 1 S 1250 300 2600 0.50 190 250 0.50 6.60 1756 22.4 

CL08 [33] 1 S 2500 300 2600 0.50 190 250 0.68 6.60 1940 73.6 

CL09 [33] 2 S 1250 300 2600 0.50 230 250 0.50 5.30 1994 23.4 

CL10 [33] 2 S 2500 300 2600 0.50 230 250 0.68 5.30 2262 68.6 

CS01 [33] 5 S 1250 175 2500 0.50 248 248 1.00 5.90 6844 41.9 

CS02 [33] 5 S 1250 175 2500 0.50 248 248 1.00 5.90 7894 51.2 

CS03 [33] 5 F 1250 175 2500 0.50 248 248 0.50 5.90 7961 71.0 

CS04 [33] 5 S 1250 175 2500 0.50 248 248 2.00 5.90 8377 60.8 

CS05 [33] 5 F 1250 175 2500 0.50 248 248 1.00 5.90 11859 71.5 

CS06 [33] 5 F 1250 175 2500 1.00 248 248 1.00 5.90 9058 28.2 

CS07 [33] 5 F 2500 175 2500 0.50 248 248 1.00 5.90 7771 145.8 

CS08 [33] 5 F 2500 175 2500 1.00 248 248 1.00 5.90 5415 69.2 

CS09 [33] 5 S 1250 175 2500 0.50 498 498 1.00 5.90 7506 60.3 

V1 [34] 5 S 2500 175 2500 1.00 248 498 0.50 15.00 6449 90.1 

V3 [34] 6 S 1250 300 2500 0.50 248 498 0.32 11.40 1839 19.7 

V4 [34] 5 F 1250 175 2500 0.50 248 498 0.67 15.00 5701 25.5 

V5 [34] 6 S 1250 300 2500 0.50 238 498 0.39 2.00 1693 20.2 

V6 [34] 1 F 1250 175 2500 0.50 238 498 0.55 5.60 4095 30.4 

V7 [34] 5 S 2500 175 2500 0.60 248 498 0.51 15.00 8868 143.5 

V8 [34] 1 S 2500 175 2500 0.60 238 498 0.51 5.60 3948 82.0 

V9 [34] 6 S 2500 175 2500 0.60 238 373 0.51 2.30 7823 174.2 

V10 [34] 6 S 2500 300 2500 0.60 249 498 0.30 11.40 1450 59.5 

V11 [34] 1 S 2500 175 2500 1.00 238 498 0.51 5.60 3355 49.4 
1) Masonry typology as explained in Table 1 
2) The shear force-displacement behaviour corresponds to the one reported in the reference document. If the 

behaviour was reported as ‘hybrid’ or ‘doubtful’, it was assigned to F or S based on the shape of the final 
cycles of the shear force-drift hysteresis, F: flexure controlled, S: shear controlled 

10 Appendix B 

The procedure used to determine the initial stiffness kinit of the considered URM shear-compression tests is outlined 
here. The following issues in the determination of the wall initial stiffness were identified: (i) the test results are 
often not available in digital format but only as pixel-graphics images which complicates the proper identification 
the initial force-displacement loops and the digitalization of the force-displacement response; (ii) as a result, the 
discretization of the resulting digitalized force-displacement responses may be rather low; (iii) the initial stiffness 
in both loading directions might be different; (iv) the reported measurements might refer to different heights (e.g. 
mid-height of loading beam, top of the wall); (v) at times it may be questionable if the reported shear-force-drift 
hysteresis really corresponds to the provided boundary conditions. 
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Problems (i)-(ii) were approached by digitalizing the available non-digital data as thoroughly as possible and only 
using the envelope of the force-displacement hysteresis in the analyses. The initial stiffness per loading direction 
is therefore usually determined by the first data point of the envelope (after the initial V = u = 0 of course). Issue 
(iii) was handled by averaging the initial stiffness of both loading directions to account for an un-symmetric force-
displacement hysteresis and problem (v) was dealt with by introducing a quality criterion, representing the shear 
force capacity of a wall against overturning: V = N L / (2 H0). If the reported shear force capacity were higher than 
this limit state, it could be inferred that the reported boundary conditions did not correspond to the reported force-
displacement behaviour. With regard to issue (iv), little can be done but assuming that the researchers conducting 
the tests had measured the displacement on the wall top as precisely and thoroughly as possible. 

The outlined procedure could be checked as Salmanpour et al. [19] reported the initial stiffness measured in their 
tests. These were compared to the ones determined according to the above-described procedure and a good 
agreement could be observed (mean reported/determined of 1.04 with a standard deviation of 0.12). 


