
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 24, 1509-1 532 (1987) 

THE 'EFFECTIVE-STRESS-FUNCTION' ALGORITHM FOR 
THERMO-ELASTO-PLASTICITY AND CREEP 

MILOS KOJIC 

ADINA R & D, Inc., Watertown, MA 02172, U.S.A. 

AND 

KLAUS-JURGEN BATHE 

Massachusetts Institute of Technology, Cambridge, M A  02139. U.S.A. 

SUMMARY 
An algorithm for stable and accurate computations of stresses in finite element thermo-elastic-plastic and 
creep analysis of metals is presented. The effective-stress-function algorithm solves the governing equations 
of the inelastic constitutive behaviour by calculating the zero of the appropriate effective-stress-function: a 
functional relationship which involves as unknown only the effective stress. The derivation of the 
effective-stress-function for thermo-elasto-plasticity conditions, including creep, for 2-D and 3-D analysis 
is presented, and the algorithmic steps of the stress solution are discussed. For use in the stiffness matrix 
a tangent material stress-strain relationship is evaluated consistent with the effective-stress-function 
algorithm. The solution of some demonstrative problems shows the effectiveness of the solution procedure. 

1. INTRODUCTION 

The non-linear analysis of thermo-elastic-plastic and creep conditions has attracted much 
attention in research and development, because with rapidly varying material conditions a stable, 
accurate and computationally efficient solution can be difficult to achieve. The basic difficulties 
are two-fold: the accurate integration of the stresses for given strains and the evaluation of 
accurate tangent stress-strain relationships for use in the element stiffness matrices. 

Consider a generic step in the solution of the finite element response. If we assume that the 
solution is known for time t (for the corresponding load) and let the time step (denoting also 
load step) be At, then the basic equations next to be solved are' 

F=O (1) 
t + A t ~  - t + A t  

where, at time t + At, t+AtR lists the externally applied nodal point forces and '+"F gives the 
nodal point forces equivalent (in the virtual work sense) to the internal element stresses.' Assume 
that in the solution of equation (1) the nodal point displacements corresponding to time t + At 
and iteration ( i  - l), denoted as r+AtU(i-l), have been evaluated, then the next nodal point 
displacement increment AU'" is obtained by solving 

(2) 
I+AtK(i-l)AU(i) = t + A f R  - t + A t  ( i  1) F -  

'We use in this paper the notation of Reference 1 
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and then 
t + A t U ( i )  = t + A t U ( i -  1 )  + AU") (3) 

We assume in equation (2) that the externally applied loads are deformation independent and 
that the full Newton-Raphson iteration is employed; here the stiffness matrix is 

In an actual practical analysis, the BFGS iteration scheme may be more effective, in which 
case the tangent stiffness matrix is evaluated only at the beginning of certain iterations and is 
then updated by rank two matrices.' We may also note that the initial conditions in the iteration 
of equations (2) to (4) are 

3 ( 5 )  t + A f F ( 0 )  = fF; 1 + A t ~ ( 0 )  = t K .  t + A t U ( O )  = t u  

The force vector r+AtF(i-l)  in equation (2) is (for a single finite element) calculated as 

where B is the strain-displacement matrix and " kc('- is the vector of stresses corres- 
ponding to the displacements l+AtU(i- In equation (6) we consider only materially non-linear 
conditions; if also geometric non-linearities are included, the strain-displacement matrix, stress 
vector and volume integration would correspond to a total or updated Lagrangian formulation.' 

To evaluate equation (6) we note that at each element spatial integration point, the stress 
vector is calculated using 

I + A t  I r - 1 )  

t+Atc ( r -  1 )  = t c+Je  C de (7) 

where 'u and 'e are the vectors of stresses and strains corresponding to time C. These vectors 
have been established as the solution at time t .  Also, the matrix C is the stress-strain matrix. 

The two basic difficulties in inelastic computations mentioned above and addressed in this 
paper for thermo-elasto-plasticity and creep are the integration of the stresses in equation (7) 
and the evaluation of the tangent material relationship used in the stiffness matrix t+AtK(i- l )  of 
equation (2).'s2 It is most important to perform the stress integration in equation (7) accurately 
and efficiently. Considering the accuracy, any error introduced here cannot in general be corrected 
during the later solution stages, and in complex analysis can also not easily be identified. The 
efficient solution is necessary to render large and complex analyses feasible. Further, an accurate 
tangent constitutive relationship in equation (2) is required in order to obtain the full benefits 
of establishing a new stiffness matrix in the convergence of the iteration. This observation is also 
applicable when the BFGS method is used for the iteration, since here too the tangent matrix 
is calculated in certain iterations. 

The objective in this paper is to present the 'effective-stress-function' (ESF) algorithm for 
analysis of metal structures, in which the integration of equation (7) is performed very efficiently 
and an accurate tangent constitutive relationship is established. The essence of the ESF algorithm 
lies in that the von Mises multi-axial thermo-elasto-plasticity and creep constitutive behaviour 
is written in terms of one variable-the effective stress-and the solution of the unknown stress 
state reduces to the evaluation of the effective stress corresponding to that stress state. This 
effective stress is solved for using the effective-stress-function. 

The ESF algorithm falls into the category of elastic predictor-radial return methods which 
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have been reported to display good accuracy characteristics in plasticity solutions even for 
non-radial loading  condition^.^-'^ We demonstrate these accuracy characteristics also in this 
paper. Our conclusion is that the ESF algorithm provides an efficient, generally applicable but 
yet relatively simple and accurate scheme for thermo-elasto-plastic and creep solutions. 

In the next section we present the basic equations used in the ESF algorithm. We consider 
von Mises thermo-elasto-plasticity with isotropic hardening, kinematic hardening, or perfectly 
plastic conditions, including creep. In the creep calculations the a-method of time stepping is 
employed.' We present the algorithm for three-dimensional and two-dimensional solutions, 
including plane stress analysis. 

In Section 3 we then present the calculation of the thermo-elastic-plastic-creep tangent 
constitutive matrix. This matrix is evaluated numerically from the basic relations of the ESF 
algorithm. Finally, in Section 4, we give the results of some sample solutions that demonstrate 
the accuracy and efficiency of the algorithm developed. 

The stress and strain tensors are usually represented using direct notation, with the scalar 
product of a tensor a defined as 

a-a  7 a.  11 a. .  ' I  

where summation on the indices i, j is implied. However, for ease of presentation we sometimes 
also use vector notation and engineering components instead of tensor components, which can 
be easily seen from the text. 

(8) 

2. THE EFFECTIVE-STRESS-FUNCTION ALGORITHM 

In this section we present the basic incremental equations for thermo-elasto-plasticity and creep 
and then formulate the effective-stress-function (ESF) algorithm for von Mises elasto-plasticity 
with isotropic and kinematic hardening or perfect plasticity and for creep conditions. 

2.1. Basic equations Jor thermo-plasticity and creep 

written in the form3 
Including thermo-elastic-plastic and creep deformations, the constitutive equations can be 

f f A f r  
t + AteP - (9) 

where for time t + At 

= deviatoric stress tensor 

= deviatoric strain tensor 
V v 

= plastic strain tensor 
= creep strain tensor 
= mean stress = t+Ataii/3 
= mean strain = +*'eiL/3 

f + A i s  

- ~ + d l ~ , , - t + A t  
- 11 OrnSij 

f + Atel 

= * + A f e . . - - ' + A t e  6 . .  
t + AteP 

f + AteC 

t + A f  

f + A t  
om 
e m  

r+ArE,r+Atv = Young's modulus and Poisson's ratio 
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corresponding to temperature '+Ahto 
e th = thermal strain. 

The thermal strain is calculated from 
t+Ateth = f + A t t l  (,+A,, - fl ) m ref 

where  at^, and Oref are the mean coefficient of thermal expansion and the reference temperature, 
respectively. In equations (9) and (lo), and the equations to follow, we omit the iteration counter 
( i j  (used in the preceding section) for simpler writing, but we always imply that the equations 
are valid for every solution and iteration step. 

Since the creep and plastic mean strains are zero, the mean stress is determined using equation 
(10) which does not involve the inelastic strains. To calculate the deviatoric stresses corresponding 
to time t + At we note that equation (9) can be written in the form 

where 
I + Alerl = I + Afei - teP - t,C (1 3) 

and 'eP,'ec are known plastic and creep strains at the start of the current time step. The task of 
integration of the constitutive relations is now reduced to designing an efficient method for the 
determination of AeP and AeC. The computation of Aep is presented for von Mises plasticity 
and isotropic hardening and perfect plasticity in Section 2.3, and for kinematic hardening in 
Section 2.4. We first determine the creep strain increment Aec. 

2.2. Creep with no plusticity 

Using the a-method' we can write 

where 
AeC = At'y'S 

'S = (1 - ajtS + a'+A's 

Here 'S and t+A7S are the deviatoric stresses at time t and time t + At, respectively, and a is the 
integration parameter (0 d c i  6 1 j. The function ' y  is given by 

(18) rfj = (1 - gyfj + a' + A t e  

are the increments of the effective creep strain and the weighted effective stress, respectively. The 
effective stress at time t + At is defined as 

(19) f + A f  - 3f +Ats.t+Ats)l/Z 
L7 = (7 

In order to compute the scalar function r y  some additional information which characterizes 
the crcep of the material is necessary. This information is provided by uniaxial creep experiments 
resulting in creep formulas, which in general can be written in the forrnll 

eC = fi ( W 2 ( t ) f 3 ( @  (20) 
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where f l  (C), f2(t) and f3 (0 )  are functions determined experientially. We list here three commonly 
used creep formulae.'2 

Power creep 

(21) e C  = ao5ai taz  

Exponential creep 

where 
eC = f ( 1  - e-'I) + gt 

.f = aoeuia 

g = age0@ 

Eight-parameter creep 
e C  = a o ~ a ~ ( t a 2  + a3ta4 + agta6)e-f17/(8+2'73.16) (23) 

where a,, a,, . . . , a7 are creep constants, independent of temperature, and dis the temperature in "C. 
Using equation (20) the increment of the efiective creep strain can be obtained as 

Adc = Atfl("6)j2(T)f3(V) (24) 
where f2(z) denotes the time-derivative of f 2  at the weighted time z, here T = t + ctdt, and the 
weighted temperature is 

=e = (1 - + " + A t e  (25) 

With equations (24) and (16) the function ' y  can be determined for a given value of '6, which 
corresponds to the use of the so-called time hardening procedure." Physical observations show 
that the use of the strain hardening procedure gives better results for variable stress conditions. 
In the strain hardening method, the creep strain rate is expressed in terms of the creep strain 
'8, rather than in terms of the time t. This is achieved by substituting for z the pseudo-time zp 
obtained by solving the equation 

which follows from equations (20) and (24). In general, equation (26) is a non-linear equation 
from which zp is obtained numerically. Once tp has been determined, the creep strain increment 
bec can be computed from equation (24) where z is replaced by zp, and ' y  is then obtained from 
equation (16). 

In the case of power creep we can compute analytically as 

(27) t+At -C e - - [a;'a'L\t"~"'/"' + ( t q l i a a l a 2  

and At?' = t+AteC - Hence, in this case, there is no need for a numerical solution of equation 
(26). 

It should be mentioned that when considering cyclic loading conditions, a modified effective 
creep strain ZH is used instead of eC.12-'5 

In summary, we note that for a given effective stress t+Ar5, the function ' y  is determined from 
equation (16) (with the use of equations (24) and (26)) so that AeC can be computed from equation 
(14). Hence, when there is no plastic deformation (AeP = 01, we can conclude that equations (12), 
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(14) and (15), with the use of equations (16), (18) and (24), represent a one parameter system of 
equations; the parameter is the effective stress t+a'5. An efficient method to solve this system of 
equations is discussed later, once the effects of plasticity have also been considered. 

2.3. Creep with von Mises isotropic hardening plasticity 

In the case of isotropic hardening the von Mises yield condition is represented by 

(28) + A t f y ( t  + Atoy) = l t + A t S . t + A t S  --( ; "A'oy)2 = 0 

where the yield stress is a function of temperature. We assume that to every temperature 
there corresponds one yield surface in the deviatoric stress space, as shown in Figure 1. For all 
possible temperatures these surfaces reduce to a family of curves 

py = d y ( ~ p ,  e)* (29) 
as also indicated schematically in Figure 1, where 2' is the effective plastic strain, 

and rsyv  is the virgin material yield stress. 

of associativc plasticity in the form 
Consider now the determination of the increment of plastic strain, AeP. We use the flow rule 

where A i  is a scalar function to be determined. This expression for AeP is the basis of the radial 
return algorithm described in References 13-61. Geometrically, this equation means that AeP is 
in the direction of t + A f S .  To determine Ai, we take the scalar product of both sides of equation (31) 
to obtain 

fy=0 BYY SX, fy=0 

t 

Figure 1. Von Mises yield condition represented in the deviatoric plane and as effective stress-effective plastic strain curves 

*Note that we do not give a left time superscript on a variable, here the yield stress oy, when we imply a generic value 
instead of the discrete value (or curve) at a specific time 
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'TY 
t 

General Case Bilinear Curve 

Figure 2. Conditions used for determination of the function A1 in case of isotropic hardening 

where At? is the increment of the effective plastic strain in the time (load) step At. We now impose 
the condition that the stresses should satisfy the yield condition (28), which can be written as 

Y (34) 
t + A t o  = t + A l b  (zP,t+Al()) 

The yield curve t + A t ~ y ( i ? ,  is shown in Figure 2. Since the function r + A ' ~ y ( Z p , r + A r O )  is known 
from experimental data, the value of r+ArZP for a given tiAr17 and '+"O can directly be computed; 

-P - r+At-P then Ae - e -'d and finally A>" can be obtained from equation (33). In case of a bilinear 
stress-strain relationship as in Figure 2, A 2  can be determined in closed form, 

and then 

Here f ~ y  is the yield stress corresponding to the known effective plastic strain 't?', and the plastic 
modulus t+ArEp is given as 

where trA'ET is the tangent modulus. It should be noted that at the beginning of the iteration 
to establish the stress state at time 1 + At, the value of the effective stress can be above or below 
the yield stress curve that corresponds to the temperature at time t + At (see Figure 2 with the 
possibilities 'tfB and ' ~ 7 ~ ) .  The iteration then ensures that at time t + At the effective stress-effective 
strain point is on the yield stress curve for that time. 

Based on the above discussion we can conclude that A i  is a function of the effective stress 
f + A r C  only. Starting with the known state defined by 'ZP, the solution for BE. is obtained by 
searching along the line CD, as indicated in Figure 2. Hence, equations (12), (14), (15) and (31) 
together with equations (16), (18), (24), (33) and (34) represent a one parameter system of equations, 
where the parameter is the effective stress t1arc7. 

Now we can proceed to define an additional equation for the determination of '+*'I7. 
Substituting AeC from equation (14) and AeP from equation (31) into equation (12), and solving 
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for '+"S we obtain 
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1 
f + A f a ,  + aAt'y + A1 

S =  rfAte''  - (1 - a)At'y'S] t + A t  

where 
f + A f  1 + r + A ' V  

f + A f E  

Taking the scalar product of both sides in equation (38) we obtain 

(401 f ( t + A t , j )  = a2 t + A f 5 2  + bry - C 2 r y 2  - d2 = 0 

where 
a = + MAP7 + AA 
b = 3(1 - r)Atf+Are"-'S (41) 
c = ( 1  - a)At'C 

d2 = t f + A t e f l . t + A t  e II 

The coefficients b,c and d are constants that depend only on the known values, independent of 
whereas the value of the coefficient 'a' varies with r+At6. The function f ( f + A * 5 )  defined by 

equation (40) is the effeective-stress-function whose zero provides the solution for Namely 
at this solution the assumptions used to calculate the creep and plastic strain increments, equations 
(14) and (31), as well as the yield condition, equation (28), are satisfied. 

To solve the non-linear equation (40), we employ a simple and stable bisection procedure with 
an acceleration scheme. Once r+At8 has been calculated, equations (38), (14) and (31) are used to 
evaluate r + A t S ,  Aec and AeP. The computational procedure is briefly summarized in Table I. 

A geometrical interpretation of the computational procedure is presented in Figures 2 and 3. 
It should be noted that when x = 1 the direction of t+A'S is determined by the unit normal 

where 
(42) '+Atn = f + A t  R e / /I  + *'err 11 

j / t+Arer/ / /  = ( r + A f e ! r . t + A t e " j 1 / 2  

In the case of thermo-plasticity only ('y = 0), the effective stress function (40) reduces to 

(43) f ( t + A f C j = ( f + A f a , + A ~ ) 2  I+A[62-d2=0 

which is solved numerically using equations (33) and (34). When the yield curve is bilinear, 

Table I. Solution steps in the effective-stress-function algorithm 
for thermo-plasticity and creep 

1. Initialize value f + A r & ' )  = '5; then for k = 1,2,. . , 
2. Compute ' y c r )  from the creep formula 
3. Compute 
4. Calculate the value of the effective stress function f('+A'b(k)) 
5. Compute '+ A*&k + I ) .  , here one step of a bisection algorithm 

is used. If r+Af8(k+1) does not represent (to a specified 
tolerance) the solution, go to 2. 

from the yield curve (when ' + > 'uy) 

6. Compute '+*S, AeC, Aep and ' 
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7 -  t t A t S E  

Case a - l  

Figure 3. Geometrical interpretation of solution by the ESF algorithm; isotropic hardening; '+&SF is the stress point 
corresponding to  thc elastic solution 

is obtained without bisections as 

f t A f -  2f+AfEpd + 3'0, 
O =  

2t+AtEpf+AfuE + 3 

The computational procedure is started by calculating the elastic solution r+4r8, 
' + A t - E  - d 

(7 - t + A f  
a E  

(44) 

(45) 

and then, if * '*'aE > 'cr,, the solution '+*'if is obtained from equations (43) or (44). This solution 
procedure corresponds to searching for t+A'S along DDE shown in Figure 3. 

The above procedure for solving thermo-elastic-plastic and/or creep problems is applicable 
when ttAtEp > 0. For perfect plasticity = 0) and creep we first solve equation (40) for 
t + A l g = t + A t - E  o 
l + A l -  o = 

using A i  =0, and then compare '+*'if with l f A 1 c r y .  If f 'ALif  > ' t a f ~ y  we use 
(see Figure 4) to compute the corresponding value of 'y and then determine A,? 

from equation (40) as 

aE - nAt'y (46) A I  = (d2 + c 2 1 y 2  - b ~ ~ ) l ! 2 / r + A r ~ ~  - t + A t  

In the case of no creep, this equation reduces to 

UE 
AA = d / t + A f O y  - (47) 

The ESF algorithm described above is directly used in general 3-D analysis, or in plane strain 
and axisymmetric problems for which the above derived equations are employed with appropriate 
strain quantities set equal to zero. 

Additional considerations arise in the solution of plane stress, beam and shell problems; namely 
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Figure 4. Yield condition for perfect plasticity 

in these cases some normal stress components are equal to zero and the corresponding strain 
(different from zero) must be determined. The formulation of the ESF algorithm for beam and 
shell problems is discussed in detail in Reference 16. In the following we briefly summarize the 
form of the effective-stress-function f("Ar6) for plane stress conditions. In this case equation (40) 
reduces to 

where 

s, = - ? + A t  s,, + + "'S,,) i + A t  

['+ Ate;z - (1 - a)At'y 'S,,] 
I f + A t S  =- ~~ 

f+AraE + ctAt'y + AI yz 

(49) 

The scalars b,,  bZ,cy and c, are functions of the effective stress, as summarized in the Appendix. 
It is interesting to analyse the accuracy of the solution obtained using the ESF algorithm. 

Consider the case when the integration parameter CI = 1. In this case equation (38) gives 

If during the time interval At the loading is radial, i.e. 

*+*'n = 'n = t S / ( J 2 / 3 t a )  (5  1) 

then the directions of '+&St Aep and AeC are without error; of course, the magnitudes of these 
variables are established with the approximations used in computing the creep strains. However, 
it is important to note that in case of thermo-plasticity only and radial loading, the solution is 
accurate for any load increment. This is also demonstrated in some numerical examples (see 
Section 4). 

In the case of non-radial loading the ESF algorithm exhibits good accuracy characteristics, 
as it corresponds to the radial return r n e t h ~ d . ~ . ~  However, the ESF solution procedure is more 
general, because it is applicable to thermo-plasticity and creep, and reduces the solution for the 
stresses to solving a single governing non-linear equation for the unknown t+At6. 
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Figure 5. Conditions used in solution of kinematic hardening plasticity 

2.4. Creep with uon Mises kinematic hardening plasticity 

In the case of kinematic hardening, the yield condition at the temperature is 
f f A f  f,=A 1 t + A f  s -  t + A t a ) . ( f + A r S  - ' + A t a )  - +(t+AtG, , )2  = 0 (52) 

where f f A r a  is the back stress2* and defines the position of the yield surface (Figure 5). As 
before, we assume that t + A t ~ y v  is defined by the temperature only (Figure 2), but using the 
equations of Section 2.3 our procedure can readily be extended to also include changes in the 
yield stress due to strain hardening. 

Following the radial return concept we can express AeP as 

or 

where 
(54) 

(55)  
is the radius shown in Figure 5. It should be noted that the magnitude of '+"S is related 
to f + A t  nYy through the relation 

l i t + A f S  1 1  ( f + A t S . t + A t S ) l / Z  = @ t + A t G y v  (56) 

In order to determine AL we need a constitutive relation defining the change of the back stress. 
We use 

where' 

From equation (57) and the yield condition (see Figure 5) we have 

(59) t + A t s  = tdl + (1 + f +AfcAA)f + A f S  

Taking the creep strains into account as in Section 2.1, we obtain, using equations (12), (14) 
and (54) the following constitutive relation: 

*Note that the back stress 'a is a tensor (bold symbol). We use the symbol a also for the integration parameter (scalar) 
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From the last two equations the radius can be obtained as 

where 

1 
s =  ay i- (1 + ‘+AtCa,)Al 

t + A t  

a, = t+A‘aE + ixAt‘y 

g = t+Ate“ - ay‘a - (1 - u)At‘y‘S (63) 
Now we can use the condition that the magnitude of is determined by equation (56) and 

this gives A l .  Taking the scalar product on both sides of equation (61) and solving for AA, we obtain 

where 
I/ g I1 = (g.gP2 (65) 

As in the case of isotropic hardening, A l  is in equation (64) a function of the effective stress 
‘ + A t i f ,  However, if creep strains are not included, A1 is independent of ‘+“if and is a constant 
determined by the strain ttAte” and the conditions at the start of the time step, which are 
considered to be known. 

The effective-stress-function is formed by using equation (60). Taking scalar products on both 
sides of equation (60) we obtain 

where 

The computational procedure for kinematic hardening plasticity and creep is basically the 
same as when isotropic hardening is considered, see Table I. The difference is now in the 
computation of A i .  Namely, A l  is calculated from equation (64), and then to determine the value 
of f c+At8 ) ,  the radius is computed using equation (61). 

Note that when there are no creep strains, the bisection algorithm is not employed: if the 
elastic solution gives stresses outside the yield surface, A l  is computed using equation (64), 
is obtained from equation (61) and 

We may note that in the case of no creep, our algorithm can be interpreted as the radial return 
mapping technique,’O with the appropriate change in the position of the yield surface. However, 
when creep is present, the displacement of the yield surface and the stress state do not correspond 
to the radial return method; this can be concluded from equations (60) and (61). 

The above procedure for solving kinematic hardening (and creep) has been presented for 
general 3-D analysis (and plane strain and axisymmetric solutions for which simply the 
appropriate strains are set to zero). If plane stress or shell analyses are considered, modifications 
of the procedure presented here are necessary, see References 15 and 16. 

Our observations about the solution accuracy in case of kinematic hardening are similar to 
those described for isotropic hardening. For example, if the loading is radial in a time (load) 
step, then in case of bilinear thermo-plasticity only, exact solutions are obtained for any integration 
time (load) step At. This is demonstrated in Section 4 (see Example 2). 

is calculated using equation (59). 

3. ELASTIC-PLASTIC-CREEP CONSTITUTIVE MATRIX 

In this section we present a numerical procedure to compute the elastic-plastic-creep tangent 
constitutive matrix consistent with the ESF method. We want to compute a tangent constitutive 
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matrix CEPC corresponding to the stress-strain state at  the end of the time (load) step, which by 
definition is given by 

, t + A t ,  * 
cEPcJ =___ r?* + *'e (68) 

t + A l  

To compute the above derivatives we use a perturbation procedure. Namely, we can write 

where the column vectors are 

C(') = 60("/6(') (no sum on i) (70) 

and 
vector corresponding to 8') and n is the dimension of the constitutive matrix. 

is the perturbation in the ith entry of the vector 

The computational procedure consists of the following steps. 

6d ' )  is the stress perturbation 

1. Compute the vector t+Atc 
2. From the perturbed strain vector 

t+At- ( i )  = ' + A t e  + &i) e 
where 

S t )  = 6(')6, (no sum on i) 

3. Compute the perturbed stress vector t-A'i?~i) and 

O (73) h c ( ~ )  = t + A t # i )  - f f A t  

4. Compute the column vector C") from equation (70). 

The computation is performed using the ESF algorithm. 
At the start of the iteration for time step At we use an approximate CEPC matrix, since '+Are 

has not yet been computed. Let t + A t S i  be the ith component of the deviatoric stress vector 
and be a component of the deviatoric strain vector t+Afe',  then we can obtain from equation 
(38) for isotropic hardening and/or creep, and from equations (60), (61) and (63) for kinematic 
hardening (and creep), 

where for isotropic hardening, 

and for kinematic hardening, 

1 + + *'CA;t 
uy + ( 1  + f fArCuy)AA 

c'= 

The approximate sign in equation (74) indicates that changes in AA and ' y  due to changes in 
are neglected. Also, it should be noted that CI = 1 is used in equations (75) and (76). From 

*Note that we use here engineering strain variables 
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equation (10) we obtain 
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Using the definitions of urn and ‘+*‘Sij given in equations (9) and (lo), the 
expressions for the Cyc can be derived from equations (74) and (77). For example, in the case 

l+Are!. .  y, 

of plane strain analysis, we obtain 
cEPC c E P C  0 

11 12 

c:y 0 
C E P C  

3 3  - Symm. 

cEPC = 

where 

We have implemented this procedure in ADTNA and observed good convergence characteristics 
(see Example 4). Also, the cost of evaluating this tangent constitutive matrix is quite reasonable. 

4. EXAMPLE SOLUTIONS 

In this section we present a number of example solutions which demonstrate the effectiveness 
of the ESF algorithm. In the first three examples we study the accuracy of thermo-plasticity 
solutions when a 2-D element (plane stress or plane strain) is subjected to radial and non-radial 
loading conditions. The last example shows the stability, as well as the accuracy, obtained in a 
creep solution. 

The solutions are obtained using the ADINA computer programI7 in which the ESF algorithm 
has been implemented. 

Example I. Thermo-plastic de$wmation of plane stress element (isotropic hardening) 

The plane stress element shown in Figure 6 is subjected to biaxial tension and shear, according 
to the loading curves shown. The changes of temperature over time and the virgin yield stress 
as a function of temperature (and time) are also shown in the figure. 

The loading in the time interval 0 to 1 is radial, in the interval 1 to 2 is non-radial, and from 
2 to 3 we have reverse radial loading. 

In the intervals 0 to 1 and 2 to 3, the solutions for increments of plastic strains are exact for 
any number of integration time steps. In the non-radial loading interval, the increments of plastic 
strains change direction and the solution depends on the number of time steps used in that 
interval. The 100-step solution in the non-radial loading interval is taken as the baseline solution, 
and the accuracy is studied by defining the angle $,. As shown, the accuracy of solution increases 
rapidly with the number of integration time steps used. 
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Figure 6 .  Solution of thermo-plastic deformation of plane stress element; isotropic hardening 
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Figure 7. Solution of thermo-plastic deformation of plane stress element; kinematic hardening 
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Creep Formula 
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Figure 9. Analysis of creep of thick-walled cylinder 
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Figure 9. (Continued) 

Example 2. Themo-plastic deformation of plane stress element (kinematic hardening) 

The plane stress element shown in Figure 7 is subjected to radial, non-radial, and reverse 
radial loading conditions. As in the case of isotropic hardening, the solution is exact in the radial 
loading, even for large translations of the yield surface. The percentage error in the effective 
plastic strain at time 2, measured on the 100-step solution, shows a rapid decrease as the number 
of time steps is increased. 
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Example 3 .  Thermo-plastic deformation of plane strain element (perfect plasticity) 

The plane strain element of Figure 8 is subjected to biaxial straining. Once initial yield has 
been reached (at point 1 on the yield surface), the element is strained with constant strain rate 
such that the direction of the deviatoric strain rate e is in the tangential direction to the yield 
surface at point 1. In the time interval 0 to 2 oYv is assumed to be constant, in order to compare 
the numerical results with the analytical solution of Reference 4. The accuracy of solution is 
measured by the angle $s between the deviatoric stress vectors 'S, and ' S X ,  and also by the 
error in the effective plastic strain, 'e;, where N denotes the number of time steps used. The 
errors in the deviatoric stress and in the effective plastic strain decrease rapidly as the number 
of steps is increased. 

In the radial loading interval 2 to 3, the solution is exact for any number of time steps, although 
there is a severe change in the yield stress. 

Example 4 .  Creep of a thick-walled cylinder 

In this example we demonstrate the accuracy of solution obtained when the ESF algorithm 
is applied to a creep problem, The results are compared with the solutions in References 2 and 12. 

The problem considered and the finite element mesh used are shown in Figure 9(a). All solution 
results presented here are obtained by starting the creep solution from the initial elastic solution. 

A baseline solution obtained with the ESF algorithm is shown in Figure 9(b). A comparison 
of this solution with the averaged solution results obtained with five computer programs" shows 
a difference of less than 2.3 per cent.12 Figures 9(c) to (f) show further solutions obtained with 
the ESF algorithm using different time steps and values of the integration parameter CI. As 
expected, the results are practically identical to those reported in Reference 2. Also, when a = 1, 
even with a time step of At = lo5 a reasonable solution is obtained using the ESF algorithm, 
the error being about 1 1  per cent! 

To demonstrate the effectiveness of using the elastic-plastic-creep constitutive matrix derived 
in Section 3, we show in Table I1 some results regarding the equilibrium iterations. The results 
correspond to At = lo5 and the full Newton iteration method' with the use of our elastic-plastic- 
creep matrix. 

The results in Table I1 show excellent convergence characteristics. 

5. CONCLUSIONS 

A procedure for the stress integration in thermo-elastic-plastic and creep analysis has been 
presented. The method-called the effective-stress-function (ESF)  algorithm-falls into the 

Table 11. Unbalanced energy and unbalanced force during 
equilibrium iterations (full Newton method with use of 

elastic-plastic creep constitutive matrix) 

0.82 x lo-' 

0-13 x 10-15 

0.4 x 104 

0.53 x 10-4 

0.90 x 10-4 
0.82 x lo-* 

0.39 x lo2 
0.17 x 10' 
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category of radial return methods but is more general because it is applicable to thermo-elasto- 
plasticity and creep. Consistent with the ESF algorithm a tangent stress-strain relationship for 
the calculation of the element stiffness matrices has also been presented. 

The main characteristics of the ESF algorithm are as follows. 
The method is computationally stable and accurate because the otherwise complex stress 

integration in thermo-elasto-plasticity and creep is reduced to the solution of a single equation. 
This effective-stress-function equation is solved using a simple and robust bisection technique. 

In thermo-elastic-plastic solutions, the algorithm exhibits excellent solution accuracy in radial 
loading, even for very large load steps, and in non-radial loading good accuracy is obtained 
when using reasonable load step magnitudes. 

In creep analysis the method displays no difficulties in the solution of the implicit integration 
equations. Hence there is practically no restriction on the time step size At to converge in the 
stress solution. Of course, the accuracy of the creep solution depends on the magnitude of the 
time step used. 

The method is directly applicable to large strain analysis." 
In this paper we considered only the analysis of problems modelled by the traditional von 

Mises plasticity and pressure-independent creep laws. Here, the only variable in the computations 
of the inelastic strains is the effective stress. An extension of our approach to material laws in 
which the inelastic strains depend on more than one variable would require the formulation and 
solution of additional functional relationships involving these variables. 

Our experiences with the ESF algorithm are most encouraging and we believe that the solution 
procedure provides an excellent basis for the development of more automatic and error-controlled 
schemes for inelastic finite element solutions. 

APPENDIX 

Eflectiue-stress-junction jor plane stress analysis (isotropic hardening) 

equations are 
Assume plane stress conditions with the stresses acting in the y z  plane. The constitutive 

t + A t S  = ? + A t  r E / t + A t  

f + A t  f + A t  I €  t + A f  
YY C,YI a E  

r + A t  S,, = t+Ate"/t+AfaE 
s z z =  ezz l  aE 

where t+Atej$ t + A r e : ~ , t + A t e ~ ~  are the deviatoric elastic strains. Using the condition that t+Araxx = 0 
it follows that the elastic strain through the thickness is 

and the mean elastic strain is 

where 

Using that 

?+Ate,, = t + A t C y ( t + A f  E eYy + + 
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where the ""'e!," are the inelastic strains, 

(A6) 

(A7) 

1 + AtelN = t + At P 
LJ e,, + + "e; 

and the t+Ate:," are the thermal strains, we can obtain from equations (A3) and (A5) 
t+AteIN - r + A t  IN - 

t + A t  E - t + A f  e,, 2'+A'e'h) em - C,, ( f+Atey , ,  + - Yl 

N~~ t + A f  rE e,,, and can be expressed as 
[ + A t  ,E - f + A f  I ?  

t + A f  rE - r + A t  ezz ( I  - (1  - ' + A t C , ) A e ~ ~  + *+"'CvAe; (AS) eY1 - 

ezz - 

e,,, - ( 1  - f+ArC,)AeE + "A'C,Aei~  

where 
t + A t  eYs II - - (1 - t + A t ~ ~ ) t + A f ~ ~ ~  - r + A t ~ ~ t + A t ~ ~ ~ -  (1 - A ArCY)teE 

+ Ateth + t + A t C v t e I N  - (1 - 2 t + A Z  
zz 

[ +  AfCvf +AteYY 
- (1 - t+AtCv)fei: + t + A t C y t e T N  YY - ( I  - 2 t + A t c V ) r + A f e t h  

f + Ate"z = ( 1 - f + A t C v ) t +  Ate,, - 

('49) 
Substituting equation (A8) into equation (Al)  we obtain 

t + A t u E t + A r S  

t + A t u E r + A t S  

= t+Ate:Y - (1 - t + A t c , ) A e E  + t+Afc,~,,,; 
= ( + A t  ezz R - (1 - r+AtCY)Ae~: + frAtC,,Ae:~ (A101 Y Y  

Z Z  

Next we use equations (14) and ( 3  1)  to express Aei: and Ae::. Then, solving from equation (A10) 
for f+AtSYy and t+AfSzz we obtain 

f + A t S V ) ,  = (b,c, + b,c,)/(b: - &;) 
(Al l )  *+AtSZZ = (b,c, + &,c,)/(b: - b;) 

where 
h,  = t + A t ~ E  + (1 - f+AtC, ) (A2 + aAt'y) 
b, = t+A'C,(AI, + aAt'y) 

(A 12) c y =  t + A f  evJ,-(t  I I  - ~ ) [ ( l  -t+AfC,)'Syy-'+AfC,'Sz,]Aht'y 
c z = f + A l  ezr 1' - ( 1  -.)[(I -t+AfC,l)tSZz - t+A*CvtSyy]At'y 

The quantities b,, b,, cy and c, depend on the effective stress t + A t ~ .  As before, the deviatoric stress 
t + A f S y z  is expressed in terms of by equation (38). Then the effective-stress-function has the 
form (48). 

strain through the thickness r+Afexx can be obtained as 
Finally, once and t + A l  ezz IN have been computed after solving equation (48), the total 

where 

(A14) t + A f  IN r + A t  IN t + A l  IN 
exx = - (  e y y  + e z z )  

REFERENCES 
1. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs. N.J., 1982. 
2. M. D. Snyder and K. J. Bathe, 'A solution procedure for thermo-elastic-plastic and creep problems', J .  Nucl. Eng. 

3.  A. Mendelson, Plasticity, Theory and A p p l m t i o n ,  Robert E. Krieger Pub. Co., Malabar, Fla.. 1983. 
Des., 64, 49-80 (1981). 



1532 M. KOJlC AND K. J. BATHE 

4. R. D. Krieg and D. B. Krieg, ‘Accuracies of numerical solution methods in the elastic-perfectly plastic model’, ASME 
J .  Press. Vess. Tech., 99, 510-515 (1977). 

5. H. L. Schreyer, R. F. Kulak and J. M. Kramer, ‘Accurate numerical solutions for elastic-plastic models’, ASME J .  
Press Vess. Tech., 101, 226-234 (1979). 

6. J. C. Nagtegaal, ‘On the implementation of inelastic constitutive equations with special reference to large deformation 
problems’, Comp. Methods Appl. Mech. Eng., 33,469-484 (1982). 

7. S. W. Key and R. D. Krieg, ‘On the numerical implementation of inelastic time dependent and time independent, 
finite strain constitutive equations in structural mechanics’, Comp. Methods Appl. Mech. Eng., 33, 439-52 (1982). 

8. M. Ortiz, P. M. Pinsky and R. L. Taylor, ’Operator split methods for the numerical solution of the elastoplastic 
dynamic problem’, Comp. Methods Appl. Mech. Eng., 39, 137-157 (1983). 

9. J. C. Simo and R. L. Taylor, ‘Consistent tangent operators for rate-independent elasto-plasticity’, Comp. Methods 
Appl.  Mech. Eng., 48, 101-118 (1985). 

10. M. Ortiz and J. C. Simo, ‘An analysis of a new class of integration algorithms for elastoplastic constitutive relations’, 
Int. j .  numer. methods eng., 23, 353-366 (1986). 

11. R. K. Penny and D. L. Marriott, Design for Creep, McGraw-Hill, London, 1971. 
12. M. D. Snyder and K. J. Bathe, ‘Finite element analysis of thermo-elastic-plastic and creep response’, Report No. 

13. C. E. Pugh, et al., ‘Currently recommended constitutive equations for inelastic design analysis of FFTF components’, 

14. C. E. Pugh, el al., ‘Interim guidelines for detailed inelastic analysis of high temperature reactor system components’, 

15. M. KojiC and K. J. Bathe, ‘Solution procedures for inelastic structural analysis’, Report, ADINA R & D, Inc., 

16. M. Kojii: and K. J. Bathe, ‘Thermo-elasto-plastic and creep analysis of shell structures’, Comp. Struct., in press. 
17. K. J. Bathe, ‘Finite elements in CAD and ADINA’, A’ucl. Eng. Des., 98, 57-67 (1986). 
18. J. A. Clinard, et al., ‘Verification by comparison of independent computer program solutions’, in D. E. Dietrich (ed.), 

Pressure Vessels and Piping Computer Program Evaluation and Qualification, PVP-PB-024, A.S.M.E., New York, 

19. K. J. Bathe, R. Slavkovii: and M. KojiC, ‘On large strain elasto-plastic and creep analysis’, in P. G. Bergan et al. 

82448-1 0, Acoustics and Vibration Laboratory, Department of Mechanical Engineering, MIT, 1980. 

Report No. TM-3602, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1972. 

Report No. ORNL-5014, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1974. 

Watertown, MA, U.S.A., 1987. 

1977, pp. 27-49. 

(eds), Finite Element Methods for Nonlinear Problems, Springer-Verlag, Berlin, 1986. 


