
The effective temperatures and colours of G and K stars

R. A. Bell Astronomy Program, University of Maryland, College Park, Maryland 20742. USA
 B. Gustafsson Uppsala Universitets Astronomiska Observatorium, Box 515, S-751 20 Uppsala, Sweden
 Accepted 1988 August 22. Received 1988 August 22; in original form 1988 April 14

 Summary. Temperature scales are found for G and K dwarf and giant stars, using new tables of synthetic infrared colours as well as the infrared flux ratio presented for grids of flux constant, line blanketed models. One grid has been

 temperature and abundance range but with $3.75<\log g<4.5$ is also used. The
 'ши' 09 рие 60 иәәмңәq у 0.T pu
The following colours and magnitudes are presented: Glass $J-H, H-K, K-L$

 are compared with those found from observational data.
 1982; Frisk et al. 1982) that the problem of determining red-giant temperatures is an important one that has still not been satisfactorily solved. It plays a vital role in the analysis of

 individual element, have sharpened the requirements for accurate effective temperatures. The

of Blackwell \& Shallis (1977) has been applied: the integrated fluxes of stars relative to their K -
 lations. Secondly, observed and computed colours have been compared. Finally, an attempt to establish a relation between spectral type and effective temperature by classification of
Observations of late G and K stars in the infrared are of great value for finding the temperatures of these cool stars, since they have their flux maxima in this wavelength region and their spectra are clean enough to provide well-defined continuum regions, in contrast to the visible region. For these reasons, broad-band near-IR colours are very good temperature criteria,
 lengths between 0.7 and $1.0 \mu \mathrm{~m}$). The flux curves are also quite temperature sensitive in the near-IR regions, in contrast to the longer wavelength regions. However, the use of all infrared
observations to determine temperatures is non-trivial; the blocking from stellar and terrestrial spectral lines still presents serious problems that have to be overcome in accurate analyses. The colours and flux ratios are given for the model atmospheres in the grid of yellow and red giant models published previously (Gustafsson et al. 1975, hereafter GBEN75; Bell et al. 1976, hereafter BEGN76). In addition, we also present infrared colours for a set of dwarf models, computed using the methods and programs of GBEN. Some colours have been published for these models by VandenBerg \& Bell (1985, hereafter VB85) and Bell \& Vanden-

 computed by Manduca \& Bell (1979). However, at least using the methods and programs of

 Johnson J, K and L.
Synthetic spectra and colours have been computed for one other model, the Vega model of Dreiling \& Bell (1980). The latter model has been used to establish the colour zero points, by requiring that the colours of Vega (HR 7001) be the colours of this model. (The same zero
 and GB79, where $\phi^{2} \operatorname{Ori}(H R 1907$, K0III) was used as the zero-point star. While the present treatment does rely more heavily on knowledge of the sensitivity functions of the various filter

 more recent work on the sensitivity function of the U band of the $U B V$ system does suggest

 zero-point star will allow these problems to be explored.
 synthetic spectra used by VB85 were computed using a turbulent velocity of $1 \mathrm{~km} \mathrm{~s}^{-1}$,

 velocity is taken to be constant with optical depth. The Cousins colours and
magnitudes were calculated by the same routines for VB85 and the present paper.
The sensitivity functions of the R, I passbands of the $U B V R I$ system of Johnson appear to

 factory. For this reason we have found it necessary to discuss transformations between colour systems in detail.
The synthetic colours presented below have been computed under a variety of assumptions and approximations. For example, the model atmospheres are homogeneous and planeparallel. The fluxes and colours are computed using LTE and, in general, using a limited list of atomic and molecular line data, containing about 125000 lines altogether. A further 200000 lines of TiO were added for the calculation of fluxes and colours for some of the 4000 K models, the data having been assembled by Lengyel-Frey (1977). It is known that some computed colours are erroneous; for example, the $B-V$ colour of the solar model (0.616) is bluer than the colour of the $\operatorname{Sun}[0.63<(B-V)<0.69$, Hayes 1985]. It is clearly desirable to explore different ways of finding effective temperatures, in order to map out regions where particular colours give the most reliable results. A priori, one would expect that the welldefined narrow-band colours in the near infrared, and the IR broad-band colours, which are not so well defined but have a broader wavelength base, would be well suited, due to the small blocking of spectral lines, but this suitability remains to be proven.
For a few stars, e.g. Vega, angular diameters are known with sufficient precision that the flux measured at the Earth in a particular bandpass can be converted to the flux in that bandpass

 different bandpasses, i.e. either to use colours or to use the ratio of the observed integrated flux to that observed in a particular bandpass. This latter bandpass is frequently chosen to be an
 ties in model atmospheres and opacities. The method (called the IR flux method or IRFM below) has been used for many different kinds of stars.
The strategy of the present study is as follows: We establish a set of comparison stars within the spectral interval G0-K5, and of luminosity class II-V. These stars are selected such that
 relatively well known. A group of standard stars in the MK spectral classification system is also included. In practice, these requirements will limit us to essentially Population I stars, with some representation from Intermediate Population II.
For the stars in the set, we determine the effective temperatures by the IR flux method and, alternatively, from a comparison between suitable observed and calculated colours. After a
discussion of the different temperature scales that result from this, a choice is made and established as our preferred scale - this is then used in further comparisons with observations and for calibrating additional photometric temperature indices and spectral types.
Photometric CO indices and IRAS fluxes of G-K stars will be treated in subsequent papers.
2 Calculations of synthetic spectra and colours
2.1 MODEL ATMOSPHERES
 atomic and molecular lines. Atomic lines with wavelengths $<7200 \AA$ were included, although The molecular systems considered included infrared CN and CO , as well as bands of $\mathrm{C}_{2}, \mathrm{CH}$,

656 R. A. Bell and B. Gustafsson
OH, NH and MgH at shorter wavelengths. The effects of water vapour have not been included
 (1967) opacities, confirm that this omission is justified for the models in our grid
$\left(T_{\text {eff }} \geq 4000 \mathrm{~K}\right)$. 2.2 SYNTHETIC SPECTRUM CALCULATIONS
The models and synthetic spectra and colours were calculated with different overall heavyelement abundances M / H, but the abundances of all elements heavier than He were changed
in unison. Thus, the non-solar C / Fe and N / Fe ratios found in red giants as a probable consequence of CNO burning and subsequent dredge-up (Lambert \& Ries 1981; Kjærgaard et al. 1982) were not allowed for, nor were the tendencies for metal-poor stars to show abundances of $\mathrm{O}, \mathrm{Mg}, \mathrm{Si}$ and Ca relative to Fe to be greater than those of Population I (Clegg, Lambert \&
 1985). The neglect of such non-solar abundance ratios on the infrared colours and fluxes are
relatively small - some sample calculations with changes in C and N abundances were given in BG78. The effects on the effective temperature scales are discussed further below.
In previous work we have attempted to use mainly oscillator strengths which were based on laboratory measurements. Since accurate measurements are available for only a small number of lines, we have had to use them to obtain correction factors which we have applied to the more extensive series of measurements. We have also had to utilize stellar spectra, particularly the solar spectrum, to obtain additional line data. A study of the data available in the infrared
showed a dearth of laboratory data when a synthetic spectrum was compared with the
 utilized the compilation of Kurucz \& Peytremann (1975, KP), which gives wavelengths, identifications, lower excitation potentials and oscillator strengths for many lines. These calcu-

 were not available in digital form at the time that this work was done, and so we used the tabulation of solar-line wavelengths and intensities by Swensson et al. (1970).
A comparison of lines expected in the solar spectrum, computed using the KP list, with the
 (on the Swensson et al. scale) were missing from the KP list. The lower limit of 10 in intensity corresponds to an equivalent width of $W_{\lambda}=10 \mathrm{~mA}$. 'Astrophysical oscilator strengths' for these lines were then determined from a comparison between observed and calculated solar

 were used without being checked. In addition to the atomic lines, we have included molecular lines for $\mathrm{CN}, \mathrm{CO}, \mathrm{SiO}, \mathrm{OH}, \mathrm{C}_{2}$, $\mathrm{H}_{2} \mathrm{O}$ and TiO . Isotopic lines of $\mathrm{CH}, \mathrm{C}_{2}$, CO, CN and Ti .
 used. While included in the synthetic spectrum program, water vapour lines do not affect the spectra of these relatively warm stars significantly and are not expected to have any influence on the temperature structures. The sources of molecular line data are given in Table 1.

Temperatures and colours of G and K stars 657
$\begin{array}{llll}\mathrm{MgH} & 1.27 & \text { A-X } & 0.161 \\ \mathrm{TiO} & 6.78 & \alpha & \text { Balfour \& Cartwright (1976) } \\ & \beta & 0.077 & \text { Davis, Littleton \& Phillips (1986, DLP86) } \\ & \gamma & 0.255 & \text { DLP86 } \\ & \gamma^{\prime} & 0.119 & \text { DLP86 } \\ \\ \text { The data is from Bell \& Gustafsson (1978) except where otherwise indicated. The values for the TiO } \alpha \text { and } \gamma \\ \text { systems are for the } 1-0 \text { and 2-0 bands, respectively, converted to } f_{00} \text { using the zero rotation Franck-Condon } \\ \text { factors of Bell } \text { et al. }(1979) .\end{array}$
A general discussion of the methods used to compute the synthetic spectra has been given
BG78, who also give the sources of the atomic and molecular lines. We have made no
The dominant opacity source in the infrared is H^{-}We have used the polynomial fits, given by Gray (1976) and Dreiling (unpublished) respectively, to the bound-free and free-free calculations of Geltman (1962) and Bell, Kingston \& McIlveen (1975). The polynomial fit for

 dependence. In addition, the dipole velocity formula gives a cross-section which may be as

 illustrated further in the present paper. The uncertainty in these values causes an error in the

The synthetic spectra were computed for the interval $0.3-1.2 \mu \mathrm{~m}$, with a separation of $0.1 \AA$ between successive flux calculations, and for the interval $0.9-6.0 \mu \mathrm{~m}$, where a separation of $1.0 \AA$ was used. The first was used for photometric systems in the visual and near infrared, while the second set was used for systems extending from the J band towards longer

2.3 COLOUR CALCULATIONS

The colours are computed from integrals of the form
$\int F(\lambda) S(\lambda) A(\lambda) d \lambda$,
where $F(\lambda)$ is the flux radiated by the model, $S(\lambda)$ is the sensitivity function of the telescope-filter-photometer system and $A(\lambda)$ is the transmission of the Earth's atmosphere. If needed, the contribution of interstellar reddening can also be included.

 658 R. A. Bell and B. GustafssonThe sources of the sensitivity function data adopted for the various colour systems are:
(i) Johnson $J K L$ - Johnson (1965);
(ii) Cousins $V R I-$ Cousins (1980), with some tests using Bessell's (1983) values;
(iii) Glass $J H K L-$ Glass (1973);
(iv) Wennfors $J H K L-$ Wennfors (1986); 658 R. A. Bell and B. Gustafsson
The sources of the sensitivity function data adopted for the various colour systems are:
(i) Johnson $J K L$ - Johnson (1965);
(ii) Cousins $V R I-$ Cousins (1980), with some tests using Bessell's (1983) values;
(iii) Glass $J H K L-$ Glass (1973);
(iv) Wennfors $J H K L-$ Wennfors (1986); 658 R. A. Bell and B. Gustafsson
The sources of the sensitivity function data adopted for the various colour systems are:
(i) Johnson $J K L$ - Johnson (1965);
(ii) Cousins $V R I-$ Cousins (1980), with some tests using Bessell's (1983) values;
(iii) Glass $J H K L-$ Glass (1973);
(iv) Wennfors $J H K L-$ Wennfors (1986); 658 R. A. Bell and B. Gustafsson
The sources of the sensitivity function data adopted for the various colour systems are:
(i) Johnson $J K L$ - Johnson (1965);
(ii) Cousins $V R I-$ Cousins (1980), with some tests using Bessell's (1983) values;
(iii) Glass $J H K L-$ Glass (1973);
(iv) Wennfors $J H K L-$ Wennfors (1986); 658 R. A. Bell and B. Gustafsson
The sources of the sensitivity function data adopted for the various colour systems are:
(i) Johnson $J K L$ - Johnson (1965);
(ii) Cousins $V R I-$ Cousins (1980), with some tests using Bessell's (1983) values;
(iii) Glass $J H K L-$ Glass (1973);
(iv) Wennfors $J H K L-$ Wennfors (1986);
(iv) Wennfors $J H K L$ - Wennfors (1986);
(v) Johnson, Mitchell and Latham (1967), and Johnson and Mitchell (1975), 13 colour -
Johnson \& Mitchell (1975), and Johnson \& Mitchell (1975), and
(vi) Frisk - Frisk (private communication).
In addition, a few test calculations were ma

In addition, a few test calculations were made using the Sopar \& Malyuto (1974) representa-
tion of the Johnson R and I passbands.
We have used the treatment of Hayes \& Latham (1975) to compute the atmospheric
extinction due to Rayleigh scattering by molecules and scattering by aerosols. The effects of terrestrial line absorption at wavelengths greater than $7600 \AA$ have been included, by using the Manduca \& Bell (1979) computations of the winter extinction at Kitt Peak. The terrestrial spectrum has been computed using a single-layer approximation of the Earth's atmosphere (see
 absorption line tape (McClatchey et al. 1973). The resultant transmission at the zenith is averaged over $100 \AA$ intervals. In the present paper, we have not attempted to treat the line extinction in detail by computing colours at different air masses but have simply applied the

 Caltech-CTIO system.

As noted above, ϕ^{2} Ori was used to establish the zero points of the colours in previous work. ว ou!! Bell (1980) have shown that their Vega model gives a good fit to the observed Vega fluxes
in the visible and near-IR, the model colours should match the observations of Vega

\qquad

659
 spectral type than Vega does, despite being hotter.
 A0V stars as a result of abundance differences. Clearly, Vega may be cooler than other A0V stars. However, since the infrared colours for early A stars are not very sensitive to tempera-
ture, as shown above, it is hard to confirm these temperature differences with infrared photometry.
There have been few published tests of the predictions of model stellar atmospheres in the infrared. The principal tests to date involve checks of models and observations of Vega. These have shown reasonably good agreement (e.g. Selby et al. 1983, and the comments on this work by Saxner \& Hammarbäck 1985) but there may be discrepancies which are as large as 5 per cent in the fluxes. It is not certain whether the discrepancies are effects of the dust emission which is prominent at longer wavelengths (Aumann et al. 1984) or are due to errors in the measurements or a fundamental difficulty with the models. Blackwell et al. (1986) compare the Tenerife calibration with the Vega model in their analyses of α Boo and $\mu \mathrm{Her}$. The critical point for the present paper is at $2 \mu \mathrm{~m}$, where one of the Mountain et al. (1985) calibration points agrees with the Vega model and the other is about 3 per cent greater.
Dr S. Ridgway kindly sent us KPNO FTS scans of a number of stars, including Vega. This
 object for $\operatorname{Br} \gamma, \operatorname{Br} 11, \operatorname{Br} 12, \operatorname{Br} 13$ and $\operatorname{Br} 14$, the profiles being computed using the Starkbroadening coefficients of Edmonds, Schluter \& Wells (1967). The fit is satisfactory. This data
would be of value in testing future non-LTE model calculations for Vega. The Brackett lines have been included in the synthetic spectrum and colour calculations. They occur in the H bandpass and therefore affect the zero point of the H magnitudes.

2.4 COMPARISON OF OBSERVED AND COMPUTED FLUXES

 stars, we have compared model and observed fluxes in the ultraviolet, visible and near-IR. Similar comparisons were made for longer wavelengths by Manduca et al. (1981). Cochran (1980) has observed several of the stars for which we subsequently derive effective tempera-
 the comparison at shorter wavelengths, we have used the data of Gunn \& Stryker (1983). Fig. 1 shows a comparison of the flux from the Vega model and the A0V star θ Vir
 apart from Vega and θ Vir having the same spectral type. For the purposes of the present

 comparison of the Vega model to other A stars. The fit of the Paschen lines appears to be reasonably satisfactory and suggests that Vega can be used to normalize theoretical photometry, even in the region of the Paschen discontinuity around $9000 \AA$.
 HD 152306, 91 Aqr (HR 8841) and α Tau (HR 1457) in Figs 2, 3 and 4 for the Gunn-Stryker and Cochran photometry. The choice of the stars to be compared with the models has been ? However, the alternative of choosing the stars on the basis of spectral type gives a misleading

R. A. Bell and B. Gustafsson

in the ultraviolet than are the stars, as wou
other red giants (Gustafsson \& Bell 1979).
2.5 the influence of TiO lines on stellar colours

The need to add TiO line data for the coolest (4000 K) giants was evident from the comparison of calculated fluxes with the observed fluxes published by Cochran (1980) and Gunn \& Stryker (1983). Fig. 5 shows the necessity of including the effects of TiO in the giant star models with $T_{\text {eff }}=4000 \mathrm{~K}$, synthetic spectra computed both with and without TiO lines being

 affect the redder colours of the coolest stars. After studying the results of the molecular

 have not yet been included in the work.

In order to determine the influence of the TiO lines, the colours of spectra computed with

 include the effects of TiO lines.

3 Selection of a sample of comparison stars

The sample of stars used for establishing the temperature scale and for further comparison
with the computed colours consists of 95 bright giant, giant and dwarf stars which had been

รี̊ํํ

学

IIIII I.7
6

[^0]

[^1]

Figure 3. The fluxes of the model $4500 / 2.25 / 0.0$ are compared with the Gunn \& Stryker (1983) observations
of the K2III star 91 Aqr.

[^2]た

Name	HR	Spectral Type	$\mathrm{TR}_{\mathrm{T} \cdot \mathrm{ff}}^{\mathrm{M}}$	$\begin{gathered} \mathrm{T}_{\text {eff }} \\ \text { adopled } \end{gathered}$	$\mathrm{F}_{\mathrm{bol}}$	ϕ	$\log 8$	[Fe / H]	
θ CMa	2574	K4 III	4070	3980	144.4	4.13	1.9	-0.03	C
β Cnc	3249	K4 III	4111	4031	234.9	5.17	1.87	-0.21	C Ba0.5
β UMi	5563	K4 III		4050			1.6	-0.14	KG
$\mu_{2} \mathrm{Hya}$	4094	K4.5 III	4108	4028	193.2	4.69		-0.20	HK
$\zeta^{2} \mathrm{Sco}$	6271	K4 III		4164			1.8		
δ Psc	224	K5 III	3998	3918	117.9	3.87		-0.07	HK V?
α Tau	1457	K5 III	4023	3943	3422.	20.62	1.2	-0.10	C
γ Dra	6705	K5 III	4035	3955	890.6	10.45	1.55	-0.23	
$\boldsymbol{\alpha}$ Hya	3748	K3 II-III	4221	4141	872.8	9.44	1.86	-0.19	C
ε Leo	3873	G1 II	5379	5299	194.2	2.72	2.4	-0.13	C
α Sge	7479	G1 17b	5509	5429	52.39	1.35			
37 LMi	4166	G2 Ila		5590			2.0		
β Sct	7063	G4 IIa	4782	$4702{ }^{2}$	81.89	2.24			
θ Lyr	7314	K0 II	4581	4501	78.50	2.40	1.72	-0.20	C
σ Oph	6498	K2 II	4155	4075	109.4	3.45		0.01	C
π Her	6418	K3 Ifab	4203	4123	293.8	5.52			
Column 6 is the apparent bolometric flux in units of $10^{-15} \mathrm{~W} \mathrm{~cm}^{-2}$, while column 7 is the predicted angular diameter in units of milliarcsec.									
Star Catalogue (Hoffleit 1982); Fe-1, CN-0.5, etc. are from Keenan \& McNeil (1976).									
Sources $\begin{aligned} & \text { GKA }= \\ & (1971) \text {; } \\ & (1981) . \end{aligned}$	$[\mathrm{Fe}]$ stafs $\mathrm{G}=\mathrm{K}$	$\mathrm{H}]$ values n, Kjær ærgaard,	$: C=C$ Gusta	ayrel de Anders fsson,	Strob (19 alker		$\begin{aligned} & 1985 \\ & K=H \end{aligned}$ tquist	$\begin{aligned} & ; F= \\ & \text { insen } \\ & (1982) \end{aligned}$	isk (198 Kjærga $\mathrm{N}=\mathrm{Nis}$
Notes on temperatures of individual stars suggested by colours: ${ }^{1} T_{\text {eff }}$ higher by about 100 K for HR 1136,4785 and $7504 ;{ }^{2} T_{\text {eff }}$ lower by about 100 K for									
HR 5287 and 7063; ${ }^{3}$ The colours for the K7V star HR 8086 indicate									

4 Stellar temperatures using the infrared flux method

The infrared flux method is based upon measurements of the integrated stellar flux and a monochromatic flux, usually measured at infrared wavelengths in order to make the ratio of the two fluxes reasonably sensitive to effective temperature. The choice of this wavelength region also makes the flux ratio relatively independent of gravity and metal abundance and of uncertainties of the model atmospheres used in the analysis. This method has been applied to

 application of this method. The present paper's approach closely follows that of SH85. In particular, we have used the 13 -colour photometry of Johnson \& Mitchell (1975) to find the integrated stellar fluxes between 3300 and $11000 \AA$, satellite observations to find fluxes shortward of $3300 \AA$ and Johnson JKL data (Johnson et al. 1966) to obtain the infrared

 compromise, dictated by the lower accuracy and smaller number of photometric IR observa-
 passband are given in Table 3. Some of the model flux ratios on which these temperatures are based are given in Table 7.

The data on the UV fluxes of the stars were obtained from the IUE Ultraviolet Spectral Atla

 and so the limit was increased to $2400 \AA$ for these objects. The flux between 3000 an

 3200-3367 \AA region to the total flux.
In order to obtain UV fluxes for the stars which had not been observed with the IUE, th UV integrated fluxes were normalized to the same V magnitude and the resulting fluxe plotted versus $V-K$. A mean curve drawn through this data was used to supply fluxes for th stars not observed.
The UV fluxes are much more important for the determination of the temperatures of the (stars than the K stars. For example, the temperature of the G0V star HR 4785 is increased b 100 K when the UV fluxes are included in the manner described above. However, th
We follow SH85 in adopting the relative calibration of the 13-colour system from Johnso: \& Mitchell (1975). This calibration and the calibration of the infrared passbands is given i Table 4. We also use the SH85 calibration of the 52 filter, i.e. the flux from a zero-magnitud star in the 52 passband is taken to be $4.34 \mathrm{E}-9 \mathrm{erg} \mathrm{cm}^{-2} \AA^{-1} \mathrm{~s}^{-1}$), which is consistent wit the absolute Vega flux measured by Hayes (1985) at $5556 \AA$. The stellar fluxes in the 13 pass bands of the system were then computed for each star. The effective wavelengths of the 3 filter and the 110 filter are 3367 and $11078 \AA$, respectively. The trapezoidal rule was the used to give the integrated flux between these wavelengths.
As a check on how accurately the integrations using the
As a check on how accurately the integrations using the filter fluxes represented the overa
flux, the same calculations were made using stellar model fluxes. The results were compare Table 4. Flux calibration (in ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$) band.

Filter (pass-band)

667

$$
\text { Temperatures and colours of } G \text { and } K \text { stars }
$$

 for models with $T_{\text {eff }}=5500,5000,4500$ and 4000 K . (The model fluxes discussed in this section were computed without allowing for TiO lines.) While the models do not fit the stellar fluxes, particularly at shorter wavelengths in the cooler stars, the correction factor needed to convert filter fluxes to true fluxes should still be valid to first order. The correction factor $(F-T) / T$, given as a function of $V-K$ by the models, was applied to the stellar filter fluxes as a
The infrared fluxes were found using the Johnson et al. (1966) broad-band JKL data. A number of stars in the sample were not observed in the L band. A plot of $V-K$ versus $V-L$ for the remaining stars showed very little scatter and so the missing $V-L$ values were obtained by interpolation in this plot. The SH85 calibrations of J, K and L in terms of absolute fluxes were used, as well as the SH85 effective wavelengths. The flux at wavelengths beyond $3.4 \mu \mathrm{~m}$ (the effective wavelength of the L band) was included by assuming that the stars radiate like black bodies at these wavelengths. This blackbody flux was normalized to the L band flux at $3.4 \mu \mathrm{~m}$. The errors introduced by this approximation for the long-wavelength flux in the integrated

 less than 4 per cent of the total flux for the coolest stars, the resulting errors in the final
effective temperatures are negligible.
The infrared flux data obtained using the NASA aircraft (Strecker et al. 1979) allow a check

 in the comparison of 'airborne' fluxes and 'colours' fluxes, we have included β And (HR 337),
 μ Her (HR 6623) which are in the sample of 95 stars. Table 5 gives the fluxes deduced for this

 әч sic se ‘иәл! flux from the 110 magnitude of the 13 -colour photometry, and the flux at $1.25 \mu \mathrm{~m}$ from the airborne work.
Unfortunately, the airborne data do not extend to short enough wavelengths for the J
magnitudes to be computed. It is seen that the J-band fluxes fall in between the $1.1 \mu \mathrm{~m}$ flux

$\stackrel{\square}{9}$

(from the 110 filter of the 13 -colour photometry) and airborne $1.25 \mu \mathrm{~m}$ flux, as expected, е оұ วnp sị s!̣ч

 The effective wavelength of the J filter changes by $125 \AA$ as $T_{\text {eff }}$ is altered from 4000 to
 flux derived by trapezoidal integration using the mean J, K and L band fluxes (denoted by F) with the flux found by direct integration (denoted by T) gave a check of the accuracy of the integrations. The values of F / T, given in Table 6, are very similar to those of Table 5. In view of
 suoseəı әq!़s

 type for the passbands. Some of the variation of F / T with effective temperature is presumably due to the increasing importance of the $1.6 \mu \mathrm{~m}$ peak with decreasing temperature. Errors in
 HR 337 differ by 16 per cent, whereas those for α Tau differ by only 8 per cent. More details of the fit of scans and models can be seen in Manduca et al. (1981).
The integrated fluxes of the stars are given in Table 3.
4.3 THE REFERENCE BAND
A problem with the K band is the presence of a considerable fraction of the CO vibrationrotation first overtone lines within the photometric band. Although these lines are included in the synthetic-spectrum calculations, they may be affected by non-standard microturbulent velocity (deviating from our choices of $\mathrm{DBV}=2 \mathrm{~km} \mathrm{~s}^{-1}$ and a turbulent velocity of $1 \mathrm{~km} \mathrm{~s}^{-1}$ for giants and dwarfs, respectively) or non-solar [C/Fe] ratios (cf. Lambert \& Ries 1981, and
 about 0.2 dex, probably as a result of CNO burning). The K magnitudes of the models $4000 /$ $1.50 / 0.0,4500 / 2.25 / 0.0,5000 / 3.0 / 0.0$ and $5500 / 3.0 / 0.0$ are increased by $0.072,0.039,0.025$
and 0.014 mag respectively, due to line blocking. Most of the blocking is due to CO. In the extreme case of CO bands not being present in the spectrum of a star, the deduced value of the temperature would be about 90 K too low at a $T_{\text {eff }}$ of 4000 K and the error would decrease at

 the carbon abundance is decreased by 0.2 dex. The effect of similar changes in metal
abundance on K magnitude, assuming that CNO scale with Fe , are in the thousandths of a

Temperatures and colours of G and K stars 669

$\left(\mathrm{C}^{12} / \mathrm{C}^{13}=7\right.$, Day, Lambert \& Sneden 1973) will increase the strength of the CO bands.
 not always consistent with those found from the IRFM. Furthermore, the question of the uncertainty in the H^{-}absorption coefficient suggests that other passbands be checked. The availability of 13 -colour photometry suggests that one of these bands could serve as a reference. We consequently calculated flux ratios, using both the 99 and 110 bands as the

 1.3 and when the 99 band is used, it becomes 1.15 .
Some comparisons of the temperatures using the
Some comparisons of the temperatures using the 110 and K bands as reference bands were
made. A comparison for K2III stars (α Boo being excluded) showed that the K band (using the Doughty-Fraser H^{-}opacity) gave temperatures which were 33 K higher, but the individual differences, $T_{\text {eff }}(K)-T_{\text {eff }}(110)$, ranged from -309 to 341 K . Much of this scatter is ascribed to the uncertainties in the 110 magnitudes.
The point which is quite critical in the application of the IRFM is the accuracy of the K band flux. (This is the point made by SH85 in the comparison of Vega models and Vega observations.) If, for example, the K-band filter were to be shifted $0.1 \mu \mathrm{~m}$ to longer wavelengths, then the mean flux in this band is reduced by about 18 per cent, the exact value

H^{-}Opacity Source

Lim
depending on the model concerned. Such a change does affect the K-band magnitudes, but the change made is compensated for by the change made in the Vega model magnitude. However,

 wavelength of the Glass K filter is $0.03 \mu \mathrm{~m}$ longer than that of the Johnson K filter, and so the model fluxes on the Glass system are 7 per cent less than the fluxes on the Johnson system. However, the K magnitudes on the two systems are very similar, those on the Glass system averaging 0.01 mag fainter. The temperatures deduced from the IRFM using the Glass K magnitudes then average about 80 K less than those derived from the Johnson K magnitudes. In the following section, $T_{\text {eff }}$ (IRFM) is used to refer to results from the Johnson K magnitude, whereas the results from Glass are referred to in Section 5.
Bessell \& Brett (1987) have studied transformation equations between infrared colour systems. They have used the Strecker et al. (1979) data and Wing's (1967) data for the computation of synthetic colours and find that the Johnson K filter should be shifted bluewards in order for the Johnson synthetic colours to match those of other systems. Calculations using data from Bessell (private communication) suggest that the shift is about $0.03 \mu \mathrm{~m}$. If such a shift is appropriate, then the temperatures deduced from Johnson K magnitudes would be increased by about 80 K . We agree that the effective wavelength of the Glass K filter is $0.03 \mu \mathrm{~m}$ greater than that of Johnson K, but use Johnson's (1965) profile.
We studied the effects of interstellar reddening in the following way. The stellar distances were computed using absolute magnitudes from Blaauw (1963) and Keenan (1985) and reddening estimates were then made on a statistical basis. Following Sturch (1966), the extinction for a
 where the scale height of the dust is 124 pc and the reddening in the galactic plane is taken to be $A_{\mathrm{v}}=0.7 \mathrm{mag} \mathrm{kpc}^{-1}$. The interstellar reddening law used to find the reddening at other

 VandenBerg 1987).
The most distant The most distant dwarfs in the sample are HR 7503 and 7504 , at 19 pc . The dereddening
correction would increase the derived values of $T_{\text {eff }}$ by only 13 K . All of the giant stars are within 100 pc of the Sun. The temperature of the most distant one, HR 434, would be increased by 25 K if this dereddening correction were applied. The bright giant stars are all more than 100 pc from the Sun, HR 7479 being at 200 pc . The dereddening correction causes

 reddening were neglected.
Blackwell and collaborators (Blackwell \& Shallis 1977; Shallis \& Selby 1979; Blackwell, Petford \& Shallis 1980; Blackwell et al. 1986; Leggett et al. 1986b) have used the IRFM to derive effective temperatures for a number of G and K giants. Various infrared flux bands beyond $2 \mu \mathrm{~m}$ were used as the reference band in these papers. These authors have 16 stars in
common with us - the results are compared in Table 8 .

671

 stars. There is an indication that the temperature difference increases with decreasing $T_{\text {eff }}-$ it amounts to about 120 K for the coolest K giants. Blackwell \& Shallis present diagrams showing the angular diameters one would obtain, using the IRFM with different choices of reference bands. It is noteworthy that the K-band fluxes according to these plots tend to produce smaller diameters, i.e., higher $T_{\text {cff }} \mathrm{s}$, than fluxes at longer wavelengths. The size of this

 calibration by SH85 were used.
The effective temperatures det
The effective temperatures determined by Blackwell et al. (1979) were based on the K band as reference band and agree better with our $T_{\text {eff }}$ (IRFM) values, as expected, with the exception of HR 4785 (G0V). In the determinations of Blackwell et al. (1980) it is again obvious that the
 Blackwell et al. obtain lower values. Leggett et al. (1986b) also find systematically lower values than ours (again with the L band as a reference).
The greatest difference relative to previous $T_{\text {eff }}$ determinations with the infrared flux method
 (1986b). The reason for this discrepancy is not known. We note, however, that the $(b-y)$ and
 Saxner \& Hammarbäck (1985). These calibrations are, however, based on a temperature scale established with basically the same method as ours.
In their most recent work, Blackwell et al. (1986) have derived results for α Boo and $\mu \mathrm{Her}$,

672 R. A. Bell and B. Gustafsson

(Mountain et al. 1985) and (b) the Dreiling \& Bell (1980) Vega model atmosphere absolute
calibration. The $T_{\text {eff }}$ values have been derived using a number of reference wavelengths, with
the goal of seeing if all these wavelengths give the same $T_{\text {eff }}$. The results are inconclusive, with
the Vega model giving a better result for α Boo and a poorer one for μ Her. Blackwell et al. give
$T_{\text {eff }}$ IRFM $)(K)=4230 \pm 80$ and 4307 ± 80 for α Boo, and 5510 ± 110 and 5605 ± 110 for
μ Her, the calibrations being the Tenerife one and the Vega model one, respectively. The
adopted values obtained in the present paper, after the correction of Section 8 has been
applied, are 4321 and 5527 K , respectively.
We conclude that our effective temperatures are consistent with those of Blackwell and
collaborators, provided that the differences in absolute flux calibration are taken into account;
also more recent calibrations than that of Johnson (1966) leads to an improved consistency
between effective temperatures derived with different infrared reference bands.
However, we conclude that it cannot be excluded that our choice of the K band and the
uncertainties in the calibration of that may lead to $T_{\text {eff }}$ (IRFM) values which are systematically
somewhat high.
4.6 SYSTEMATIC ERRORS IN THE $T_{\text {eff }}$ (IRFM)
The effective temperatures derived with the IRFM for our sample are listed in Table 3. These temperatures may be in error due to random errors in the observed fluxes (magnitudes). For the hottest stars the errors in the ultraviolet fluxes may contribute significantly to the errors in the integrated fluxes; for most of the stars, however, the errors in the IR fluxes are more important. A typical error of 0.03 mag in the observed magnitudes as well as in the reference K
The most important sources of systematic error, which in the zero-order approximation shift the zero-point of the temperature scale, are the integration uncertainties in the total flux, IR McEachran (1966) and Doughty \& Fraser (1966), consistent with the data used for the model
 al. (1979). The latter fluxes give flux ratios $F_{\text {tot }} / F_{\text {ref }}$ lower by about 3 per cent ($c f$. Table 7). Typical errors in the effective temperatures $T_{\text {eff }}$ (IRFM), owing to uncertainties in the H^{-}data,
may thus amount to about 40 K .
The relative errors in the integrated fluxes, including the calibration errors, are estimated to contribute an uncertainty to the flux ratio $F_{\text {tot }} / F_{\text {ref }}$ of less than 4 per cent ($c f$. also the discussion

 (IRFM) is possible - an error twice as great does, however, not seem probable.
The model atmospheres used here are consistent with those of BEGN76, describ

 warming which would be produced by the veiling opacity would heat the deeper layers of the atmospheres where the continuum fluxes are formed.

 for the extra opacity, assuming it to be due to a veil of weak Fe I lines of rather high excitation,

 good agreement between calculated and observed ultraviolet and blue colours in the $U B V$ and Geneva systems.
Magain used fluxes calculated directly through the $100-\AA$ wide Opacity Distribution
Functions of the model atmosphere code. A similar study, based on the more accurate fluxes from the synthetic spectrum program, shows that the opacity corrections adopted by Magain are overestimated. However, we have adopted his recipe to estimate an upper limit to the errors caused by this missing opacity.
A temperature sequence of models was calculated with this extra opacity added. The temperature increase around $\tau_{\text {Ross }}=0.67$ due to the extra back-warming was found to be around 60 K and is only weakly dependent on effective temperature. The extra blocking in the ultraviolet and blue increased the flux in the K band by 0.8 per cent $\left(T_{\text {eff }}=6000 \mathrm{~K}\right)$ to 11.7 per cent $\left(T_{\text {eff }}=4000 \mathrm{~K}\right)$, corresponding to an effective temperature increase of typically 20 K . The
effective temperatures derived from the infrared colours were, however, found to decrease by about 55 K , this decrease being almost independent of the colour index used.
Other systematic errors in the model atmospheres may also be of importance. One should note, however, that a major objective of the present study is to establish a relation between the model atmospheres of the Bell et al. grid and the stars, such that the characteristic temperature of the line-forming region can be estimated from colours, for applications in abundance
 that the temperature structure of the layers where weak lines are formed are reproduced by the model reasonably well. Whether this label is an adequate measure of the total flux or not is actually less important for such an application. It is noteworthy that the infrared flux method
 measure of the temperature in the flux-forming layers. We shall see later that some inconsistency may exist between these different $T_{\text {eff }}$ estimates - an inconsistency which might contain information about further shortcomings of the model atmospheres.

5 Effective temperatures from colours

In order to check the temperature scale established with the IRFM, as well as the accuracy of the calculated infrared colours, we have derived effective temperatures by interpolation in our grids of calculated colours for a number of colour systems. This was done for all stars in our standard sample that had been observed in the system in question, taking the gravity and metal abundance given in Table 3 into account. The results are displayed in Figs 6-16, where the differences $\Theta($ colour $)=T_{\text {eff }}($ colour $)-T_{\text {eff }}($ IRFM $)$ are plotted. These results will be commented on below for each colour system.
The bulk of the colour calculations were made using spectra computed using the Bell et al. (1975) H^{-}absorption coefficients. In addition, in view of the differences in the calculated
infrared fluxes caused by the use of different opacities, we computed colours from a few giant model spectra calculated using Doughty \& Fraser (1966) absorption coefficients.
Since the model atmospheres, as well as the $T_{\text {eff }}$ (IRFM) values, are based on the Doughty \&
Fraser data, the use of the Bell et al. data in the colour calculations introduces some incon-
 $T_{\text {eff }}$ (colour) estimates. A comparison of the Glass colours (see below) showed that the $J-H$

 The changes in other colours are less than 0.002 mag for $H-K$ and 0.004 mag for $K-L$, while
 $T_{\text {eff }}$ values from $V-K$ about 25 K cooler when the Doughty \& Frazer absorption coefficients are used. Owing to the general similarity of the filters of the different infrared colour systems,
similar $T_{\text {eff }}$ changes are expected for other colour systems.

$$
5.1 \text { THE JOHNSON BROAD-BAND SYSTEM }
$$

The synthetic colours for this system and the Johnson V and K magnitudes are given in
It has been generally assumed that a colour such as $V-K$ is independent of abundance. The data of Table 9 show that this is generally true. However, at $T_{\text {eff }}=4000 \mathrm{~K}, V-K$ shows a very complex behaviour for the $[\mathrm{A} / \mathrm{H}]=-3.0$ models. These are redder than models of other abundance at the lower gravities and bluer at higher gravities. The reason for this is the effect which convection in the H_{2} dissociation zone has on the model structure (cf. GBEN figs 4 and 13). The TiO bands also affect the V magnitude in the coolest $[\mathrm{A} / \mathrm{H}]=0.0$ models.
As is seen in Fig. 6, the Johnson $(V-K)$ observations tend to give lower effective tempera-
ures than the IRFM by typically 100 K for the cooler stars - for the hotter stars $\Theta(V-K)$ seems closer to zero, and is even positive for the G dwarfs. On the other hand, in Fig. 7 $\Theta(J-K)$ is systematically positive by more than 100 K . The greater scatter in Fig. 7 is mainly

 discrepancies may be caused by errors in any of the magnitudes involved. Thus, an extra

 We consider the error of the magnitude required in V as much less probable than the two other possibilities. Alternatively, if a 300 K cooler model were adopted for Vega, the temperature adopted from $V-K$ would become cooler, by about 40 K at 6000 K and 20 K at 4000 K . The corresponding numbers found using $J-K$ are 75 and 35 K , respectively.
For a star with $T_{\text {eff }}=4500 \mathrm{~K}$, an error in the calculated K magnitude of the size suggested would, when corrected for, lead to a reduction of $T_{\text {eff }}(J-K)$ by typically 300 K , while $T_{\text {eff }}(V-K)$ would be reduced by less than 50 K . However, such a correction, if due simply to an error in the calculation of K-band flux, would cause the temperatures derived from the IRFM to increase, by perhaps 150 K , and therefore remain inconsistent with $T_{\text {eff }}(V-K)$. The only
manner in which $T_{\text {eff }}(V-K)$ could be made consistent with $T_{\text {eff }}(\operatorname{IRFM})$ is by arguing that the

 әрпи!

 и! sә!

 in the temperature scales derived from $V-K$ and $J-K$ with the $T_{\text {eff }}(I R F M)$ scale is acceptable.

$>$	nN		ゅ～～～～～～ ツलヴm			$\begin{aligned} & \text { 오소N․ } \\ & \text { NiN } \end{aligned}$	$\stackrel{\infty}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty}$		$\cdots 9$
\cdots									
					0000				
					甘 엉 응 $00^{\circ \circ}$		둥․․ㅇㅇㅇㅇㅇㅇ 0000°	¢0\％ 888 0000 000	प ©óoo
－	$\begin{aligned} & \text { 융ㅇㅇㅇ } \\ & 000 \end{aligned}$		껑్ㅇ్ㅇㅈㅇ 0000	VN					
$\stackrel{y}{\text { 足 }}$	$\begin{aligned} & \text { Nơ } \\ & 0.000 \\ & 0.0 \\ & 0.0 \end{aligned}$	웅 प्त力 $0.00{ }^{\circ}$	$00^{\circ 0} 0$	0000°	00.00	OO	OO 0 0000	틍 엉00000	
							00000		
$\stackrel{4}{\square}$					$00^{\circ} 0^{\circ}$	 00000		NNNJ$=0000$	
$\stackrel{y}{3}$	N	芝	min	mmmず	－№nn Nivini		\％	\％	
\checkmark	管曷	す気気志 0000			ふू\％ 8 －00－～	$\stackrel{\sim}{\circ}$	60030 $00^{\circ} 0^{\circ}$	nNMn	
$\underset{j}{ \pm}$	 oio		퐁ㅇㅇㅇㅇㅇㅇọó		ㅐㅜ웡엉ㅈㅇㅇ $00^{\circ} 0^{\circ}$	必苑00000			
		헝ㅇㅇㅇㅇㅇㅇ $00^{\circ} 0$							
菏	$\begin{aligned} & \text { 등 } ్ ర ్ \\ & 000 \end{aligned}$	정응응중 0.00	크응응 00000	$\begin{aligned} & \text { 응응 } 50.0 \\ & 00000 \end{aligned}$	$0000{ }^{\circ}$	－0ㅇㅇ․ 0.000°		00000 00000	$\begin{aligned} & 9 r 00 \\ & 0.0 \\ & 000 \\ & 000 \end{aligned}$
			Non	¢ ¢ ¢ ¢ F	옹 0000	606 00000	nnnn 00000		aip moo pom0.000
$\stackrel{\square}{\square}$	号								
		¢0꾼		onooo	$00 \div r$	óp	onooo 	onooo 	onooo $00 \div 7$
	으우․								
		88888 mimmin 88888 minnnin	へiNiv ళ్ర్ర		으눙 88888 	은은운 ザがずす 88888 	8号识品 よ寸がす 88888 nnnin		
앙									

The two colour scales bracket the IRFM scale；however，there are some indications from the colours that $T_{\text {eff }}$（IRFM）could be somewhat reduced，in accordance with the discussion above． The neglect of TiO－band absorption in the 4000 K ，solar abundance model colours of

 identical to those of the Johnson system，similar temperature errors will occur if $V-K$ or $V-J$ on these systems is used to derive $T_{\text {eff }}$ ．

5．2 THE WENNFORS $J H K$ COLOURS

 are plotted versus $T_{\text {eff }}(\operatorname{IRFM})$. The stellar
V, diamonds. This symbolism is used in Figs 6-19.

Figure 7. The differences between the effective temperatures deduced from Johnson $J-K$ and from the IRFM
are plotted versus $T_{\text {cff }}$ (IRFM).
noted that Wennfors' passbands are well defined and in particular that the J band, in contrast to Johnson's J, avoids the terrestrial absorption band longwards of $1.34 \mu \mathrm{~m}$. As is seen in Fig. 9, $\Theta(J-K)_{w}$ is around -100 K , and thus supports a lower $T_{\text {eff }}$ than $T_{\text {eff }}$ (IRFM). The results are thus compatible with those of Johnson's $V-K$ but not those from Johnson's $J-K$. The Wennfors $J-K$ colour gives rather lower $T_{\text {eff }} s$.

$$
5.3 \text { THE GLASS } J H K \text { COLOURS }
$$

The synthetic Glass colours for giants star models are given in Table 9. The number of stars in common with Glass is only 11 ; however, the scatter is small enough for a systematic tendency to be visible (Fig. 10). It is seen that, in contrast to the Cousins system (see below), $\Theta(J-K)_{\mathrm{G}}$ suggests that $T_{\text {eff }}$ IRFM) should be increased by somewhat less than $100 \mathrm{~K} . \Theta(J-H)_{\mathrm{G}}$ indicates an even greater positive correction to $T_{\text {eff }}$ (IRFM).
It was noted earlier that the $T_{\text {eff }}$ given by the IRFM when the Glass K magnitude was used is
about 80 K less than that found using the Johnson K magnitude. Since the $V-K$ colours on the about 80 K less than that found using the Johnson K magnitude. Since the $V-K$ colours on the
Glass and Johnson systems differ by only 0.01 mag on average for the stars in our sample,

Figure 9. The differences between the effective temperatures deduced from Wenfors $J-K$ and from the IRFM
are plotted versus $T_{\text {cff }}$ (IRFM).
while the model colours are almost identical, this suggests that the $T_{\text {eff }}$ error found by using $(V-K)_{\mathrm{G}}$ [taken to be the error in $(V-K)_{\mathrm{J}}$ in Table 16], would be consistent with that found using $T_{\text {eff }}$ (IRFM) with Glass K magnitudes.
5.4 the cousins vir colours
The synthetic Cousins colours
The synthetic Cousins colours and R magnitudes for the giant star models are given in Table
11. The colours for the dwarf models have been published by VandenBerg \& Bell (1985),
© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

The TiO-band studies suggest that the Cousins colours $V-R$ and $R-I$ must be used with

 suggest that the TiO effects predicted by the models may well be too large.
 is non-trivial and involves accurate measurements of filter transmission profiles, detector sensitivity and the wavelength dependence of atmospheric transmission. These problems are considerably reduced for narrow-band systems, provided that they span a wavelength interval that is broad enough. Several such systems have been used in the near infrared and some colours that have been measured are suitable for temperature determinations.

5.5 THE JML 13 -COLOUR PHOTOMETRY

The 13-colour photometry of Johnson et al. (1967) and Johnson \& Mitchell (1975) is very useful in the problem of determining stellar temperatures. The synthetic photometry is given in Table 12.
 the integrated fluxes of stars. The passbands are sufficiently well separated in wavelength that
 suitable for this purpose since they are affected by line blocking and consequently depend

Figure 12. The differences between the effective temperatures deduced from Cousins $V-I$ and from the IRFM
are plotted versus $T_{\text {cff }}$ (IRFM).
that the long-wavelength side of this band is cathode limited, not filter limited, and consequently temperature dependent. An error would have crept in if the cathode response were measured at a different temperature than that used for the stellar work.
Eighty-five of our standard stars have been observed in the JML system. For these stars, we derived effective temperatures from all 15 colour combinations of the six passbands. For each star an average temperature was derived, and the scatter around these averages, allowing for a zero-point shift individual to each colour, was adopted as a measure of the power of each colour as a temperature criterion. Not unexpectedly, the colours with the longest wavelength

 เəี上I S!

,

Figs 13 and 14 essentially corresponds to the observational errors. In conclusion, we find that the JML system seems to roughly verify the IRFM scale.

The two-colour diagram, (58-99) versus (72-110) (Fig. 15), shows the effect discussed in the previous paragraph. The slope of the line computed for solar abundance giant branch models matches that found from the stars in a fairly satisfactory manner. However, it is offset ses to 0.1 in $72-110$) or 0.15 in $(58-99)$ at 4000 K . If we assume, following the subsequent discussion in
 about $0.07-0.10 \mathrm{mag}$ in $(72-110)$ corresponds to the temperature found from (72-110) being about 250 K too high. If a systematic change of about 0.08 mag is made to the computed
 the $(72-110)$ colour alone would be in reasonable accord with the revised $T_{\text {eff }}$ (IRFM)

Both (58-99) and ($72-110$) must be treated with caution when used as temperature indicators for stars with TiO lines in their spectra. The 72 magnitude, from the data of Table 2, is strongly affected, although use of the $(72-110)$ co
the $\mathrm{TiO} \phi$ system, with lines in the $11000 \AA$ region.

$$
5.7 \text { THE WING EIGHT-COLOUR PHOTOMETRY }
$$

The Wing (1971) synthetic photometry is given in Table 13 . For 32 of our standard stars measurements in the eight-colour system were available from Wing (1971). The system contains two 'continuum points', centred at $7810 \AA$ and $10540 \AA$, which are only slightly affected by CN (see Wing et al. 1985). In fact, our calculations prove that the $m(7810)-m(10540)=78-110$ colour is indeed very little gravity and metallicity dependent -

Figt re 13. The differences between the effective temperatures deduced from Johnson and Mitchell 58-99 and
front the IRFM are ploted versus $T_{\text {eff }}$ (IRFM).

Figure 14. The differences between the effective te
and from the IRFM are plotted versus $T_{\text {eff }}$ (IRFM).
abundances is possibly as high as 150 K , although the results shown in Fig. 16 suggest that this
is an overestimate.
5.8 THE PHOTOMETRY OF FRISK
Frisk (1983) obtained photometry in three bands, centred at $5930 \AA, 7800 \AA$ and $10640 \AA$, respectively. However, only nine stars were observed that are in common with our standard sample for which $T_{\text {cff }}$ (IRFM) are available. Both the indices $m(5930)-m(7800)$ and $m(5930)-m(10640)$ lead to temperatures in reasonable accord with the IRFM, with $\langle\Theta\rangle$ around -50 K . It should be noted that Frisk's stars are mainly dwarfs and subgiants.
5.9 THE CALTECH-CTIO PHOTOMETRY

		으유융
$\stackrel{\text { ¢ }}{ }$		
$\stackrel{8}{\dot{\sim}}$		
产		
蒿		
$\stackrel{8}{8}$	ד్ד ¢	¢ ¢ ¢ ¢ ¢
安	E\％	
㝘		\％\％\％eve
$\stackrel{\sim}{8}$		\％\％
O		융 ${ }^{\text {a }}$ 융융
	00000	00000
欳	Notho	\％${ }^{2}$
或		
®		88888

		\％\％	\％ֻext			す̧\％		
	\bigcirc			\％\％ำ			莒号员员	
	\％	京㐫		\％\％\％\％\％	수ㅇㅜㅜㅜㅜ	等等军年		吉合易管
	¢	\％R	\％		\％\％	每军写妥		
	劲	感管		韦合号岢	E¢¢	翤号吊品	夺夺导冎	
	$\stackrel{\text { ® }}{\text { ¢ }}$	ず筞	骨		E雨筞		す！	す
	¢	すฺ		か़	突筞示筞			\％
	皆	¢		ำ	ন্สণ ત্নী ন্ণ		或曷曷昌	
$\stackrel{5}{6}$	每	匂筞		安奄点考	每穻登员	哃奇鳥声	T\％	
密	$\stackrel{\text { ® }}{\stackrel{\text { ¢ }}{ }}$	可管	ह，	古包号号	\％	ज़		区ِ
$\stackrel{5}{0}$	㰤	E旲	우ำ\％				정％ㅜㅇ	
E.	$\underset{\sim}{\tilde{m}}$	¢¢			ㄲọ发学		후우웅응	
\％	厤	$\stackrel{\bigcirc}{-1}$	－noor	$\bigcirc \bigcirc \bigcirc$	\bigcirc	\bigcirc		－noㅇㅜㅜ
வ่ ลิ	－	吕号	88888	－nnen	品号号号	8888	niminim	品号夺寽
	${ }_{5}^{5}$	\％\％\％			\％\％\％ㅜㅇ중중			ళ్ర\％్సర్గళ్ర

Figure 16．The differences between the effective temperatures deduced from Wing $7810-10540$ and from
the IRFM are plotted versus $T_{\text {cff }}($ IRFM $)$ ．

	荌	NiNiN		Nivi તi			웃뻥		óso
	$\begin{aligned} & 9 \\ & \underset{\sim}{8} \end{aligned}$	夺用雨 iN	 NiNiN	 NiNiN	옹옹둥증 NiNiN	NiलiN			N尺⺀大
	$\underset{\widehat{O}}{\underset{\sim}{6}}$	为多夺夺	Nicini	 NiNiN			웅웅옹웅 NinNiN		
	$\begin{aligned} & \approx \\ & \stackrel{6}{6} \end{aligned}$	NiNiN	会云思苟志 nNNN	N～N～N		웅홍ㅇㅇㅇ응영 ヘiNi土	동쿵 웅 융 응 NiNiN		
	$\underset{\sim}{\infty}$		NiNiNi	욱 NiNiN		ERCNEज			
	$\underset{\sim}{\circ}$	츠N Nivi	NiNiN	NiNiN	－	\％\％주우ㅇㅓㅜㅇ	，		뀪 \sim_{\sim}^{\sim}
$\dot{\Xi}$	景	各领等 MNNM	等䊾笑刍弪 Nivin	NWNNN		N \％\％\％			888888
$\frac{ \pm}{y}$	축	NNNN	志蹩品合 NiNiN	NiciNi					
	专	$\begin{aligned} & \text { onoo } \\ & \text { ono } \end{aligned}$	$\begin{aligned} & 0 n 000 \\ & \text { ón ion } \end{aligned}$	onooo ○○்	onooo ○O～ポ	$0 n 000$ OO~			onooo －웁
$\dot{9}$	${ }^{80}$	ninns 0000		ヘักฟั ～NNN	シッッット 0000		ヘัฟฟฟ vinin	$\begin{aligned} & 88888 \\ & \text { min } \end{aligned}$	
$\frac{\overline{\mathrm{e}}}{\underline{G}}$	5				8, 夺夺夺夺夺	৪夺夺夺苻夺			$\mathcal{L}_{1} 88 .$

	笤		W\％${ }^{\text {® }}$	夺寺䂞槑哥				
	$\stackrel{8}{8}$				第守学辇导		さ¢ ¢ ¢ ¢ ¢ ¢－	す
	シ		¢ ${ }_{-1}$				克き，	
	骨				둑№mem			
	$\stackrel{8}{\infty}$							
	\％	OXEE		0000	总高たまそ 0000	00000		
둥	嶓	흧ำ気			\％	\＄80		
苞	$\stackrel{\square}{2}$		B8 ${ }^{\text {dob }}$	齐気気志䂞				
0	気					¢		－
$\stackrel{5}{8} \frac{1}{2}$	\％		8888	号号号号㫛				88888
\mathfrak{c}	5		ह్రి		\％	\％		\％్రిర్రెర్ర్రి

 둔

R. A. Bell and B. Gustafsson

需

\%

Ki kigiz

" ${ }^{5}$

问

5 気

.

H

Н

7 Comparison with effective temperatures from angular diameters
The most direct effective-temperature determinations for giant stars are based on angular diameter measurements, which in combination with limb-darkening estimates and apparent bolometric fluxes give effective temperatures. The most extensive set of angular diameter measurements for normal red giants has been obtained with the lunar occulation technique such a set was used by Ridgway et al. (1980) to establish a temperature scale. Their set contained nine G and K giants with estimated errors varying from about 100 to 500 K . These errors are, however, only formal errors in the differential corrector reduction of the angular diameter measurements; in addition, important systematic errors may exist in the measure-
ments and in the analysis. Ridgway et al. emphasize that these sources of error all will lead to ments and in the analysis. Ridgway et al. emphasize that these sources of error all will lead to
underestimated $T_{\text {eff }}$. In Fig. 17 we compare the $V-K$ calibration of Ridgway et al. with ours. It is seen that our temperatures tend to be about 100 K hotter. In view of the considerable errors
 we conclude that the result of the comparison is acceptable.
Two of the stars in our sample, α Tau and α Boo, have relatively large angular diameters. Di Benedetto \& Foy (1986) have discussed α Boo. From a Michelson interferometer, they find an angular diameter of 20.95 ± 0.20 milliarcsec. With our bolometric flux of $5.16 \mathrm{E}-12 \mathrm{~W} \mathrm{~cm}{ }^{-2}$, this gives $T_{\text {eff }}=4335 \pm 30 \mathrm{~K}$. The angular diameter of 20.88 ± 0.10 milliarcsec found by gives 3917 K. The small error is overly reassuring, since White \& Kreidl (1984) give an
 20.13 milliarcsec. This last value gives $T_{\text {eff }}=3990 \mathrm{~K}$. The value of the present paper is 3943 K .
 Rabbia (1987). Using their angular diameters and our bolometric fluxes gives $T_{\text {eff }}=4938$ and 4017 K , respectively, for these two objects, compared with the values of 4896 and 3955 K
given in Table 3.
Angular diameters (ϕ) have been computed for the standard stars, using the equation $\phi=2^{*} F^{0.5} / T_{\text {eff }}^{2}$
These are given in Table 3, as well as the integrated fluxes (F).
8 The spectral type- $T_{\text {eff }}-(B-V)$ relation for $G-K$ Population I stars
From the adopted $T_{\text {eff }}$ values of Table 3 we have obtained a relation between effective tempera-
ture and spectral type, basically derived from the standards of Keenan \& McNeil (1976) but
complemented with stars from the rest of the sample. We have avoided stars with $[\mathrm{Fe} / \mathrm{H}]$
values known to be less than -0.3 dex. The resulting temperature calibration of spectral type
is given in Table 17 and illustrated in Fig. 18 . The scatter in $T_{\text {eff }}$ and the small number of stars
result in a weak calibration for subgiants (IV) and bright giants (II). Among the K stars, the

Figure 17. The observed $V-K$ colours of the stars are plotted versus the adopted values of $T_{\text {crf }}$. The line is the
$V-K, T_{\text {cff }}$ relation of Ridgway et al. (1984).
subgiants and bright giants are, however, about 150 K hotter and 400 K cooler, respectively, than the corresponding giant stars (III).
The $(B-V), T_{\text {eff }}$ diagram is given as Fig. 19 for the stars in the sample. The relationship is less tight than for the $(V-K), T_{\text {eff }}$ diagram. This is caused partly by gravity effects - at a given computations by BG78. It is also partly caused by abundance effects; α Boo, ϕ^{2} Ori, μ Psc and, to a lesser extent, ρ Boo, all of which have $[\mathrm{Fe} / \mathrm{H}]<-0.5$, have blue $B-V$ colours for their $T_{\text {eff }}$, also in agreement with the BG78 calculations.
One point which is suggested by the data in Table 3 is that abundance differences can affect the spectral type versus $T_{\text {eff }}$ relation to a significant degree. For example, both $\beta \mathrm{CVn}$ and metal rich by $0.5 \mathrm{in}[\mathrm{Fe} / \mathrm{H}]$ presumably explains this. For this reason, our K0V and K 1 V dwarfs
 IEI! spectral type are ϕ^{2} Ori, α Boo and ρ Boo, all of which have $[\mathrm{Fe} / \mathrm{H}] \cong-0.5$.
The temperature scale for Population I G and K stars suggested by Tables 3 and 17 and Fig. 17 is estimated to be correct within 100 K , at least when applied to stars in the luminosity-class interval III-V. The differential effects in $T_{\text {eff }}$ should be even better known.

$\stackrel{\ominus}{2}$

The general agreement between the different $T_{\text {eff }}$ (colour) determnations and that of the IRFM is satisfactory also, as an indication that the mean temperature of the flux-forming regions in the model atmospheres is reasonably correct; the sensitivity of the IRFM to the detailed structure of the model atmospheres is less than and different to the corresponding sensitivity of the colour temperatures. The different tendencies for different colours traced in
 spectra. However, in view of the problems with the proper definition of the colour systems as regards transmission functions (including that of the atmosphere) and calibrations, this pos-
 calibration accurate to about 1 per cent would instead be relevant means for such important studies.

Acknowledgments

We are grateful for the assistance of Mr M. Briley, Dr K. Eriksson and Mr J. T. Ohlmacher. We thank Dr M. S. Bessell for sending a preprint of his work with Dr J. M. Brett. We wish to thank P. Williams and the anonymous referee. Special thanks are due to Dr Sandra Leggett for a detailed reading of the manuscript and for many constructive critical points and suggestions. Our work was supported by the Swedish Natural Science Research Council and by the

 display system, purchased under the above grants.

References
Auman, J. R., 1967. Astrophys. J. Suppl., 14, 171.
Aumann, H. H., Gillett, F. C., Beichman, C. A., de Jong, T., Houck, J. R., Low, F. J., Neugebauer, G., Walker,
R. G. \& Wesselius, P. R., 1984. Astrophys. J., 278, L15.
Balfour, W. J. \& Cartwright, H. M., 1977. Astr. Astrophys. Suppl., 26, 389.
Bell, K. L., Kingston, A. E. \& McIlveen, W. A., 1975. J. Phys. B. Atom. Mol. Phys., 8, 358.
Bell, R. A. \& Dreiling, L. A., 1981. Astrophys. J., 248, 1031.
Bell, R. A. \& Gustafsson, B., 1978. Astr. Astrophys. Suppl., 34, 229.
Bell, R. A. \& VandenBerg, D. A., 1987. Astrophys. J. Suppl., 63, 335.
Bell, R. A., Dwivedi, P. H., Branch, D. R. \& Huffaker, J. N., 1979. Astrophys. J. Suppl., $41,593$.
Bell, R. A., Eriksson, K., Gustafsson, B. \& Nordlund, A., 1976. Astr. Astrophys. Suppl., 23, 37.
Bessell, M. S., 1983. Publs. astr. Soc. Pacif., 95, 480.
Bessell, M. S., 1986a. Publs. astr. Soc. Pacif., 98, 354.
Bessell, M. S., 1986b. Publs. astr. Soc. Pacif, 98, 1303.
Bessell, M. S. \& Brett, J. M., 1987. Preprint.
Blaauw, A., 1963. In: Basic Astronomical Data, p. 383, ed. Strand, K. Aa., University of Chicago Press.
Blackwell, D. E. \& Shallis, M. J., 1977. Mon. Not. R. astr. Soc., 180, 177.
Blackwell, D. E., Petford, A. D. \& Shallis, M. J., 1980. Astr. Astrophys., 82, 249.
Blackwell, D. E., Shallis, M. J. \& Selby, M. J., 1979. Mon. Not. R. astr. Soc., 188, 847.
Blackwell, D. E., Petford, A. D. \& Shallis, M. J., 1980. Astr. Astrophys., 82, 249.
Blackwell, D. E., Booth, A. J., Petford, A. D., Leggett, S. K., Mountain, C. M. \& Selby, M. J., 1986. Mon. Not. R.

$$
\begin{aligned}
& \text { astr. Soc., 221, 427. } \\
& \text { Branch, D. R., Lambert, D. L. \& Tomkin, J., 1980. Astrophys. J., 241, L83. } \\
& \text { Carney, B. W., 1983. Astr. J., 88, } 623 .
\end{aligned}
$$

Cayrel, R., Cayrel de Strobel, G. \& Campbell, B., 1985. Astr. Astrophys., 146, 249. Cayrel, R., Cayrel de Strobel, G. \& Campbell, B., 1985. Astr. Astrophys., 146, 249.
Cayrel de Strobel, G., Bentolila, C., Hauck, B. \& Duguennoy, A., 1985. Astr. Astrophys. Suppl., 59, 145. Clegg, R. E. S., Lambert, D. L. \& Tomkin, J., 1981. Astrophys. J., 250, 262
Cochran, A. L., 1980 . Publs. Astr., 16, The University of Texas, Austin. Cochran, A. L., 1980 . Publs. Astr., 16, The University of Texas, Austin.
Cousins, A. W. J., 1980. S. Afr. astr. Obs. Circ., 1, 234. Cousins, A. W. J., 1981. S. Afr. astr. Obs. Circ., 6, 4. Davis, S. P., Littleton, J. E. \& Phillips, J. G., 1986. Astrophys. J., 309, 449. Davis, S. P., Littleton, J. E. \& Phillips, J. G., 1986. Astrophys. J., 30,
Day, R. W., Lambert, D. L. \& Sneden, C., 1973. Astrophys. J., 185, 213.
Di Benedetto, G. P. \& Rabbia, Y., 1987. Astr. Astrophys., 188, 114. Di Benedetto, G. P. \& Rabbia, Y., 1987. Astr. Astrophys., 188, 11
Di Benedetto, G. P. \& Foy, R., 1986. Astr. Astrophys., 166, 204. Doughty, N. A. \& Fraser, P. A., 1966. Mon. Not. R. astr. Soc., 132, 267. Doughty, N. A. \& Fraser, P. A., 1966 . Mon. Not. R. astr. Soc., 132, 267.
Doughty, N. A., Fraser, P. A. \& McEachran, R. P., 1966. Mon. Not. R. astr. Soc., 132, 255.
Dreiling, L. A. \& Bell, R. A., 1980 . Astrophys. J., 241, 736 .
Edmonds, F. N., Schluter, H. \& Wells, D. C., 1967. Mem. R. astr. Soc., 71, 271. Doughty, N. A. \& Fraser, P. A., 1966. Mon. Not. R. astr. Soc., 132, 267.
Doughty, N. A., Fraser, P. A. \& McEachran, R. P., 1966. Mon. Not. R. astr. Soc., 132, 255.
Dreiling, L. A. \& Bell, R. A., 1980 . Astrophys. J., 241, 736 .
Edmonds, F. N., Schluter, H. \& Wells, D. C., 1967. Mem. R. astr. Soc., 71, 271. Edmonds, F. N., Schluter, H. \& Wells, D. C., 1967. .
Frisk, U., 1983. PhD Thesis, Stockholm University.
Frisk, U., Bell, R. A., Gustafsson, B., Nordh, H. L. \& Olofsson, S. G., 1982. Mon. Not. R. astr. Soc., 199, 471.
Frogel, J. A., Persson, S. E., Aaronson, M. \& Matthews, K., 1978. Astrophys. J., 220, 75. Frogel, J. A., Persson, S. E., Aaronson, M.
Geltman, S., 1962 . Astrophys. J., 136, 935.
Gigas, D., 1986. Astr. Astrophys., 165, 170.
Glass, I. S., 1973. Mon. Not. R. astr. Soc., 164, 155. Glass, I. S., 1974a. Mon. Notes astr. Soc. Sth Afr., 33, 54.
Glass, I. S., 1974b. Mon. Notes astr. Soc. Sth. Afr., 33, 71. Glass, I. S., 1974b. Mon. Notes astr. Soc. Sth. Afr., 33, 71.
Gray, D. F., 1976 . The Observation and Analysis of Stellar Photospheres, John Wiley and Sons.
Gunn, J. E. \& Stryker, L. L., 1983. Astrophys. J. Suppl. Ser., 52, 121 . Gunn, J. E. \& Stryker, L. L., 1983. Astrophys. J. Suppl. Ser., 52, 121. Gustafsson, B. \& Bell, R. A., 1979. Astr. Astrophys., 74, 313.
Gustafsson, B., Kjærgaard, P. \& Andersen, S., 1974. Astr. Astrop
Hayes, D. S., 1985. Calibration of Fundamental Stella Pasinetti, L. E. \& Philip, A. G. D., Reidel, Dordrecht. Hoffleit, D., 1982. Catalogue of Bright Stars, Yale University Press, New Haven, Conn. Johnson, H. L., 1965. Astrophys. J., 141, 923.
Johnson, H. L., 1966. Ann. Rev. Astr. Astrophys., 4, 193.
Johnson, H. L. \& Mitchell, R. I., 1975. Rev. Mex. Astr. Astrofis., 1, 299.

Vega zero point.
$K_{\mathrm{J}}=K_{\mathrm{G}}+0.003(V-K)$

and

R. A. Bell and B. Gustafsson
from the models $4000 / 1.5 / 0.0,4500 / 2.25 / 0.0,5000 / 3.0 / 0.0$ and $5500 / 3.0 / 0.0$, based on the
$K_{\mathrm{CIT}}=K_{\mathrm{G}}-0.018+0.002(V-K)$.

Similar very small colour terms are found in the synthetic colour results, namely

$K_{\mathrm{CIT}}=K_{\mathrm{G}}-0.005(V-K)$,
In other words, both the calculated and observed $(V-K)$ colours of the three systems are very
There is also good agreement between the calculated and observed $(J-K)$ colours of the three systems. BB87 find the Glass and Johnson systems to be identical, whereas the CIT system gives colours which are about 0.05 mag bluer. We find the calculated Glass colours to be intermediate between the Johnson and CIT colours, with a difference of about 0.02 mag between each. The Glass and CIT $H-K$ colours are also predicted to be very similar, but we do

 only about 0.02 mag. Finally, we see that the Johnson system is predicted to give rather bluer
 whereas the models predict a smaller coefficient of $V-K$, about 0.03 .
BB87 present a Table of mean colours for giant and dwarf stars. In addition to the infrared colours, they include Cousins V-I. Comparison of the giant star colours with those of the

 coolest model is unknown.
As noted earlier, Sopar \& Malyuto (1974) have suggested new sensitivity profiles for the

Johnson colours obtained from the transformation of observed Cousins colours. To do this, we
use Bessell's (1983) transformation equations derived from observations by Neckel \& Chini
 region. The results for the Population I giant branch models are given in Table A1.
A comparison of the $(V-R)_{\mathrm{J}}$ and $(R-I)_{\mathrm{J}}$ colours predicted using Bessell's transformation of the Cousins colours shows that there is much better agreement with the Sopar \& Malyuto version of the Johnson R and I response functions than with the original Johnson response functions. There does, however, seem to be some problems with the zero point. This may partly due to the normalization of our colours to the curiously blue $V-R(=-0.04)$ colour of

[^0]: $\begin{array}{lllllll}4000.0 & 5000.0 & 6000.0 \quad 7000.0 & 8000.0 & 9000.0 & 10000.0 \\ \text { wavelength } & & \end{array}$
 Figure 1. The fluxes of the model $9650 / 3.9 / 0.0$ are compared with the Gunn $\&$ Stryker (1983) observations of
 the $A 0 V$ star θ Vir. The feature at $7700 \AA$, in this and in Figs $2-5$, is the atmospheric A band.

[^1]: Figure 2. The fluxes of the model $5000 / 3.0 / 0.0$ are compared with the Gunn \& Stryker (1983) observations of the K0III star HD 152306.

[^2]: Figure 4. The fluxes of the model $4000 / 1.5 / 0.0$ are compared with the Cochran (1980 observations of the K5III star α Tau.

