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Abstract: Gravity and general relativity are considered as an Effective Field Theory
(EFT) at low energies and macroscopic distances. The effective action of the conformal
anomaly of light or massless quantum fields has significant effects on macroscopic scales,
due to associated light cone singularities that are not captured by an expansion in local
curvature invariants. A compact local form for the Wess-Zumino effective action of the
conformal anomaly and stress tensor is given, requiring the introduction of a new light
scalar field, which it is argued should be included in the low energy effective action for
gravity. This scalar conformalon couples to the conformal part of the spacetime metric
and allows the effective value of the vacuum energy, described as a condensate of an exact
4-form abelian gauge field strength F = dA, to change in space and time. This is achieved
by the identification of the torsion dependent part of the Chern-Simons 3-form of the Euler
class with the gauge potential A, which enters the effective action of the conformal anomaly
as a J ·A interaction analogous to electromagnetism. The conserved 3-current J describes
the worldtube of 2-surfaces that separate regions of differing vacuum energy. The resulting
EFT thus replaces the fixed constant Λ of classical gravity, and its apparently unnaturally
large sensitivity to UV physics, with a dynamical condensate whose ground state value
in empty flat space is Λeff = 0 identically. By allowing Λeff to vary rapidly near the
2-surface of a black hole horizon, the proposed EFT of dynamical vacuum energy provides
an effective Lagrangian framework for gravitational condensate stars, as the final state of
complete gravitational collapse consistent with quantum theory. The possible consequences
of dynamical vacuum dark energy for cosmology, the cosmic coincidence problem, and the
role of conformal invariance for other fine tuning issues in the Standard Model are discussed.
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1 The quantum vacuum and vacuum energy in black holes and cosmology

Observations of type Ia supernovae (SN) at moderately large redshifts indicate that the
expansion of the universe is accelerating [1, 2]. This is possible in classical general relativity
(GR) only if the dominant energy of the universe has an effective mean eq. of state satisfying
ρ+ 3p < 0, i.e. assuming positive energy density ρ > 0, it must have negative pressure. As
the cosmological term Λ enters Einstein’s eqs. as a constant with pΛ = −ρΛ = −Λ/8πGN
pervading all space, the SN observations taken at face value imply a Λ value of [3]

ΛSN = ΩΛ × 3
(
H0
c

)2

'
( ΩΛ

0.70

)(
H0

70 km/sec/Mpc

)2
(

3.1× 10−122

L2
Pl

)
(1.1)

when expressed in terms of the present Hubble expansion rate of H0 ' 70 km/sec/Mpc,
or the microscopic Planck length LPl =

√
~GN/c3 ' 1.616× 10−33 cm. respectively. Thus

some ΩΛ ' 70% of the energy in the present universe is in the form of Λ dark energy, and
is the principal component of the current ΛCDM model of cosmology.

The contrast in (1.1) between the dimensionless value of the cosmological term ΩΛ,
of order unity in cosmological Hubble units, but of order 10−122 in microscopic Planck
units, is striking. From the time of W. Pauli it has been thought that Λ is related to the
zero-point energy density of the vacuum in quantum field theory (QFT), in which it appears
as an ultraviolet (UV) divergent sum over all field modes [4–7]. If Λ is such a UV sensitive
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quantity, and the short distance cutoff is of order of LPl, then the value of ΛSN in Planck
units represents the most severe scale hierarchy problem in all of physics, clashing with
expectations of ‘naturalness’ developed over several decades of successful application of
Effective Field Theory (EFT) methods [8–10].

On the other hand, if one adopts the EFT hypothesis that macroscopic gravity and
the value of Λ at cosmological scales should be decoupled from and not require detailed
knowledge of extreme UV physics, then (1.1) suggests instead that the EFT of gravity is
incomplete at low energies, and one or more additional EFT degrees of freedom are needed
to account for a vacuum energy naturally of order of the Hubble scale.

If the EFT of gravity relates Λeff to the cosmological Hubble scale 3H2
0 rather than the

microscopic Planck scale L−2
Pl , the further implication is that Λeff would have to become

a dynamical quantity, i.e. dependent upon the content and evolution of the universe, as
the Hubble ‘constant’ itself is [6]. Related to both possibilities of additional low energy
gravitational degrees of freedom other than the metric of classical GR and of Λeff becoming
dynamical as a result, it is worth noting that current cosmological models already require
at least one additional scalar (inflaton) field of unknown origin, in order to generate the
present small (∼ 10−5) CMB anisotropies during a very early epoch of cosmic inflation [11].
This epoch is assumed to have been dominated by a much larger effective Λeff vacuum
energy, that is supposed to have dynamically ‘relaxed’ to its present much smaller value.

Indications that the EFT of gravity may require some additional degree(s) of freedom
relevant at macroscopic scales come also from the quite different domain of black hole (BH)
physics. EFT methods in gravity for BHs have been put into question by both the extreme
blueshifting of energy scales in the presence of horizons, invalidating the EFT assumption
of decoupling of short distance from long distance physics [12], and by the BH ‘information
paradox’ [13–20], and apparent conflict with unitary evolution it entails [21]. The various
forms of this paradox arise from ascribing an enormous entropy to a BH, equal to 1/4 its
horizon area AH in Planck units,

SBH = kB
AH

4L2
Pl
' 1.1× 1077 kB

(
M

M�

)2
(1.2)

despite the assumed classical nature of the BH horizon as a mathematical causal boundary
only, with no independent degrees of freedom of its own. Significant quantum effects on
the macroscopic scale of the BH horizon are also in apparent conflict with the usual EFT
approach to gravity, which relies on an expansion in local curvature invariants [22–24], since
these can yield only negligibly small corrections for large BHs with small local curvatures
at their horizons. In fact, the enormous entropy (1.2) and Hawking effect upon which it is
predicated rely crucially upon the specification of the quantum vacuum state, which (as
always in quantum theory), requires non-local boundary conditions, that are not determined
solely by the local curvature [25–27].

In previous work it has been noted that large quantum effects on the horizon follow
quite generally from the stress tensor of the conformal anomaly in both BH and cosmological
spacetimes [28–30]. The importance of the conformal anomaly in the near horizon behavior
of the stress tensor is a consequence of the conformal scaling behavior of the metric near the
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horizon and the extreme blueshifting of local frequencies, which renders all finite mass scales
irrelevant there [30]. It is just this extreme blueshifting of frequencies, hence energies, that
can lead to effects not accounted for in local EFT expansions based on the assumption of
decoupling and strict separation of scales. State dependent quantum vacuum entanglement
and polarization effects are contained in the effective action of the conformal anomaly,
which by its nature spans multiple scales.

That the physics of BHs and vacuum energy are related is inherent also in the proposed
resolution of the BH information paradox by the formation of a gravitational vacuum
condensate star with interior Λeff eq. of state p = −ρ [31, 32]. This Λeff eq. of state in the
interior of a gravastar, collapsed to its gravitational radius rM = 2GNM/c2 prevents further
collapse to a BH singularity for the same reason that it causes the Hubble expansion of the
universe to accelerate, namely by defocusing (rather than the usual focusing) of worldline
geodesics, avoiding the classical singularity theorems [33–35]. The localized formation of
such a p = −ρ gravitational vacuum condensate within an ultra compact star can occur
only if there is at least one additional degree of freedom in the low energy EFT of gravity,
whose variation allows Λeff to change abruptly at or near r = rM . This turns the BH horizon
from a mathematical surface to a physical phase boundary layer with a positive surface
tension [36–38].

The purpose of this paper is to propose and develop the EFT of low energy gravity,
deduced from general principles of QFT in curved space and the conformal anomaly, in which
finite dynamical vacuum energy is consistently described as a scalar vacuum condensate.
The description of vacuum energy by the scalar dual to an exact 4-form abelian field
strength F = dA requires Λeff ≥ 0 with Λeff = 0 the unique value of lowest energy in flat
space, independently of UV physics. When the 3-form potential A is identified with the
Chern-Simons 3-form of the Euler class, a J · A interaction is induced by the conformal
anomaly effective action, in analogy with electromagnetism. The 3-current J source for F
describes the worldtube of 2-surfaces that separate regions of differing vacuum energy Λeff ,
which therefore becomes spacetime dependent. The observational implications of this EFT
extension of classical GR and identification of the relevant low energy degrees of freedom
describing Λeff as a dynamical gravitational vacuum condensate for both BH physics and
cosmological vacuum dark energy can then be studied in detail.

The metric and curvature conventions of the paper are those of MTW [39], while the
definitions and conventions for tetrads and differential forms used are reviewed in appendix A.
A second appendix B is devoted to the topological aspects of the Euler density, associated
Chern-Simons 3-form and physical interpretation of the new constant κ introduced in the
EFT, as a torsional topological susceptibility of the gravitational vacuum.

2 Relevance of the conformal anomaly to macroscopic gravity

If one takes as the basic building block of a gravitational theory the spacetime metric
gµν(x), with the requirements that the field eqs. must transform as tensor eqs. under general
coordinate transformations, and be no higher than second order in derivatives of the metric,
one arrives at the classical theory of general relativity (GR). This is described by the
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classical action

Scl = SEH −
Λ

8πGN

∫
d4x
√
−g = 1

16πGN

∫
d4x
√
−g

(
R− 2Λ

)
(2.1)

namely the Einstein-Hilbert (EH) action involving the Ricci curvature scalar R, second
order in derivatives of the metric, or first order in derivatives of the symmetric Christoffel
connection

Γλµν = Γλνµ = 1
2g

λρ
(
− ∂ρgµν + ∂µgνρ + ∂νgµρ

)
, (2.2)

together with the cosmological constant term Λ, involving no metric derivatives. In modern
terms the requirement of an action Scl composed of sums of all integrals of scalars that are
invariant under general coordinate transformations (up to possible surface terms) and yield
field eqs. no higher than second derivatives of the metric is just what is meant by a low
energy EFT of gravity, since local invariant terms higher order in derivatives of the metric
are negligible at low energies or long wavelengths. In (2.1) the constants GN and Λ can be
determined only by experiment or astronomical observations. At this purely classical level,
if Λ is given by observations to be (1.1) there is no naturalness problem, for there is no
other scale in the classical theory to which it can be compared.

As É. Cartan pointed out soon after the appearance of GR [40, 41], the most general
setting of an affine geometry and differential manifold allows also for a non-zero torsion,
which is described by an anti-symmetric part of the connection Γλ[µν] 6= 0 that Einstein
had assumed to be vanishing, as the simplest realization of the Equivalence Principle. An
anti-symmetric part of Γλµν drops out of the geodesic eq. for the worldlines of freely falling
point particles in any case. Einstein-Cartan theory allows the connection Γλµν and functions
of it to be treated as dynamical variables in their own right, a priori independent of the
spacetime metric [41], a property that will be exploited in section 5.

Let us note that the problems of reconciling classical GR with QFT first appear with
the stress-energy tensor Tµν , which is treated as a completely classical source in Einstein’s
eqs., whereas T̂µν is a UV divergent operator in QFT. Since matter and radiation in the
Standard Model (SM) are certainly quantum in nature, replacing the quantum operator
T̂µν by its renormalized expectation value 〈T̂µν〉 in a semi-classical approximation amounts
to two different assumptions, which should be recognized and distinguished at the outset.

The first assumption is that UV divergences of QFT are to be removed by counterterms
involving up to dimension-four curvature invariants, such as RαβµνRαβµν , RαβRαβ , R2, by
adding them to the effective action with finite renormalized coefficients, leaving the low
energy EFT unchanged. These terms ∼ (∂2gµν)2, involve up to four derivatives of the
metric, in contrast to the dimension-two EH action. Since quantum theory introduces a
new scale LPl, this standard renormalization procedure amounts to the assumption that
such higher derivative terms may be important only on the corresponding Planck energy
scale of MPlc

2 = 1.221× 1019 GeV. Since this scale is so much higher than those generally
encountered either in terrestrial accelerators or astrophysics, the reasonable assumption
of an EFT approach is that Planck scale physics decouples from the low energy EFT, so
that knowledge of the UV completion or full quantum theory is not needed to describe
macroscopic gravitation.
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Less often noted is a second critical assumption in the replacement of the stress tensor
source in Einstein’s eqs. by a finite renormalized 〈T̂µν〉, treated classically, namely that
the operator T̂µν can be well approximated by its sharply peaked mean value. It is easily
verified in QFT that even after renormalization there are quantum fluctuations from the
mean, and e.g.

〈
T̂αβ(x) T̂µν(y)

〉
−
〈
T̂αβ(x)

〉 〈
T̂µν(y)

〉
6= 0 at one-loop order [42]. Connected

higher point correlation functions of this kind probe the polarization and entanglement
properties of the quantum vacuum even at macroscopic scales. These quantum correlators
exhibit operator product singularities as x→ y. All is well with these UV singularities since
dimensional analysis, as well as explicit calculations show that these quantum correlations
grow large as L2

Pl/`
2 relative to 〈T̂µν〉 only for metric variations on the length scale ` . LPl.

Neglecting these short distance correlations at scales ` � LPl reduces then to the first
decoupling assumption of EFT.

There is however a second kinematic regime where the Lorentz invariant distance
(x− y)2 → 0, even for x 6= y, and where two and higher point quantum correlation functions
of T̂µν can become large, namely on the light cone. Since light cones extend over arbitrarily
large distances, lightlike correlations are not limited to the ultrashort LPl, but can lead to
macroscopic quantum effects, in particular on null horizons [28], which can be relevant in
both BH and cosmological spacetimes with positive Λ, such as de Sitter space. The two very
different sorts of quantum effects, short distance UV vs. macroscopic lightlike correlations
are distinct and require two quite different EFT treatments.

The short distance UV quantum corrections to GR are taken into account by adding to
the action (2.1) of classical GR the expansion in ascending powers of higher derivatives of
local invariants, divided by appropriate powers of the UV cutoff scale, expected to be the
Planck scale MPl for gravity. This is the most common EFT approach [22–24]. As already
mentioned, it amounts to the decoupling assumption common to all EFT approaches, based
on the decoupling theorem of massive states in the UV from the low energy degrees of
freedom [43].

On the other hand it has also been known for some time that QFT anomalies are not
captured by such an expansion in higher order local invariants, nor are they suppressed
by any UV scale. Anomalies are associated instead with the fluctuations of massless fields
which do not decouple, and which lead to 1/k2 poles in momentum space correlation
functions, that grow large on the light cone k2 → 0 rather than the extreme UV regime
k2 ∼M2

Pl. The prototype of this light cone pole is the Schwinger model of 1 + 1 dimensional
massless electrodynamics and its chiral anomaly [44], which extends to the two-dimensional
conformal anomaly in curved space [45, 46]. In 3 + 1 dimensional flat space, light cone poles
are found in explicit calculations in the triangle anomaly diagrams of 〈Ĵλ5 ĴαĴβ〉, 〈T̂µν ĴαĴβ〉
in massless QED4 [29, 47], and in the stress tensor three-point correlator 〈T̂αβT̂ γλT̂µν〉 of
a general conformal field theory (CFT), by solution of the conformal Ward Identities in
momentum space [48, 49].

Quite contrary to the decoupling hypothesis, quantum anomalies lead instead to the
principle of anomaly matching from UV to low energy EFT [50]. In the strong interactions,
the chiral anomaly of the UV theory, QCD, survives to low energies, requiring a specific
Wess-Zumino (WZ) addition to the low energy meson EFT [8, 51], which is not suppressed
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by any high energy scale, and is technically a marginally relevant operator in the infrared
(IR). Indeed, as befits being associated with light cone singularities, the chiral anomaly
has both UV and IR features. The successful prediction of the low energy π0 → 2γ decay
rate provides a window into the UV and evidence for the SU(3)color group and fractional
charge assignments of quarks that helped establish QCD as the UV theory of the strong
interactions [52–54].

For gravitational theory it is the conformal anomaly in the trace of the stress-energy
tensor T̂µν that is associated with 1/k2 anomaly poles in higher point correlation functions,
such as 〈T̂αβT̂ γλT̂µν〉. Such lightcone singularities imply the existence of at least one
additional light (a priori massless) degree of freedom in the low-energy EFT of macroscopic
gravity, that is not accounted for in the classical action of GR (2.1), nor by an expansion in
higher order local curvature invariants.

A representative of the light cone singularities and massless pole associated with
conformal anomalies is afforded by the effective action of two-dimensional gravity coupled
to conformal matter [45, 55]

SNL, 2D
anom [g] = − cm

96π

∫
d2x

√
−g(x)

∫
d2y

√
−g(y) R(x)

( −1)
xy
R(y) (2.3)

where cm = Ns + Nf is the central charge, given by the sum of the numbers of massless
scalar and fermion fields, and

( −1)
xy

denotes the Green’s function inverse of the scalar
wave operator. This exhibits the light cone pole of the 2D conformal anomaly, appearing
already in the connected two-point function 〈T̂αβ(x)T̂µν(y)〉 of the underlying CFT. The
massless scalar pole in (2.3) indicates that there is an additional scalar degree of freedom in
2D gravity coupled to conformal matter.

The scalar degree of freedom can be made explicit by expressing the non-local anomaly
effective action (2.3) in the equivalent local form

S2D
A [g;ϕ] = − cm

96π

∫
d2x
√
−g

{
gµν(∇µϕ)(∇νϕ)− 2Rϕ

}
(2.4)

by the introduction of the scalar field ϕ describing a collective spin-0 degree of freedom,
which is linearly coupled to R, and whose massless propagator gives rise to the light cone
singularities of the underlying massless CFT [46]. Variation of (2.4) with respect to ϕ gives
its eq. of motion − ϕ = R, which when solved for ϕ = − −1R and substituted back
into (2.4) returns the non-local form of the effective action (2.3). At the same time variation
of (2.4) with respect to the metric gµν yields the stress tensor TµνA [g;ϕ] whose trace is
−(cm/24π) ϕ = cmR/24π which is the 2D conformal anomaly. Taking two variations with
respect to gαβ(x) and gµν(y) yields the connected two-point CFT correlator 〈T̂αβ(x)T̂µν(y)〉
which exhibits a massless 1/k2 light cone pole in flat space [46]. Clearly such a massless
scalar degree of freedom affects the macroscopic behavior of 2D gravity [56], but cannot be
described by a local action in curvature invariants alone, as is the very nature of an anomaly.

3 The effective action of the conformal anomaly and conformalon scalar

The anomalous Ward identities for all higher point quantum correlation functions of the
stress tensor containing anomalous light cone singularities can be derived by functional
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variation of the basic one-point expectation value of 〈T̂µν〉 in a general curved space
background [49]. In D = 4 this mean value, defined and renormalized by any method
that preserves its covariant conservation, results in it acquiring an anomalous trace in
background gravitational and gauge fields, the general form of which is [57–59]〈

T̂µµ
〉
≡ gµν

〈
T̂µν

〉
= bC2 + b′

(
E − 2

3 R
)

+
∑
i
βi Li (3.1)

even if the underlying QFT is conformally invariant at tree level, and one might have
expected this trace to vanish. In (3.1)

E = RαβγλR
αβγλ − 4RαβRαβ +R2 , C2 = RαβγλR

αβγλ − 2RαβRαβ + 1
3R

2 (3.2)

are the Euler-Gauss-Bonnet invariant and the square of the Weyl conformal tensor respec-
tively. The b, b′, βi coeffcients in (3.1) are finite dimenionless coefficients (in units of ~) that
depend only upon the number and spin of the massless conformal fields contributing to the
anomaly, i.e.

b = 1
(4π)2

1
120

(
Ns + 6Nf + 12Nv

)
, b′ = − 1

(4π)2
1

360

(
Ns + 11Nf + 62Nv

)
(3.3)

where (Ns, Nf , Nv) are the number of free conformal scalar, Dirac fermion, and gauge
vector fields respectively. Interactions of the massless or light QFT degrees of freedom
are taken into account by the Li terms in (3.1), which denote invariant Lagrangians to
which these fields are coupled, such as LF = FαβF

αβ for light charged particles coupled to
electromagnetism, or LG = tr

{
GαβG

αβ
}
for light quarks coupled to the SU(3)color gluonic

gauge fields of QCD. The βi are proportional to the β-functions of these couplings.
All terms in (3.1) are dependent only upon the low energy QFT particle content,

independently of a UV cutoff or the Planck scale. They are therefore independent of UV
physics and with fixed matter content cannot be removed in any metric theory of gravity
with a covariantly conserved stress tensor. Successive variations of (3.1) with respect to the
arbitrary metric background yield the anomalous trace Ward identities that the stress tensor
correlators must satisfy, even in flat space. Note that these variations are independent of
the purely local counterterms needed to define a renormalized

〈
T̂µµ

〉
.

To construct the effective action corresponding to (3.1) one notes that upon multiply-
ing (3.1) by

√
−g, the various terms transform as

√
−g C2 →

√
−g C2 (3.4a)

√
−gLi →

√
−gLi (3.4b)

√
−g

(
E − 2

3 R
)
→
√
−g

(
E − 2

3 R
)

+ 4
√
−g∆4 σ (3.4c)

under the conformal variation of the metric gµν → e2σgµν . Here

∆4 ≡ ∇µ
(
∇µ∇ν + 2Rµν − 2

3Rg
µν
)
∇ν = 2 + 2Rµν∇µ∇ν − 2

3R + 1
3(∇µR)∇ν (3.5)

is the (unique) fourth order scalar differential operator that is conformally covariant [60, 61]
√
−g∆4 →

√
−g∆4 (3.6)
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for arbitrary σ(x). It is thus the four-dimensional analog of the second order wave operator
which has the conformal property

√
−g →

√
−g in D = 2.

Using these properties under conformal variations and the fact that the anomaly density

A ≡
√
−g

〈
T̂µµ

〉
= δSanom

δσ
= 2 gµν

δSanom
δgµν

(3.7)

is the conformal variation of an effective action of the anomaly, it is straightforward to find
an action satisfying (3.7). The non-local form of this anomaly effective action is [61–64]

SNL
anom[g] = 1

4

∫
d4x
√
−gx

(
E − 2

3 R
)
x

×
∫
d4y

√
−gy

(
∆−1

4
)
xy

{
b′

2

(
E − 2

3 R
)

+ bC2 +
∑
i
βi Li

}
y

(3.8)

where
(
∆−1

4
)
xy

denotes the Green’s function inverse of the fourth order differential opera-
tor (3.5) between the spacetime points x and y, indicated by subscripts in (3.8), so that∫
d4x

(√
−g∆4

)
x

(
∆−1

4
)
xy

= 1, for all y. The non-local effective action (3.8) of the conformal
anomaly in D = 4 is the analog of non-local effective action (2.3) in D = 2 spacetime
dimensions. Note that due to the appearance of the fourth order curvature invariants
in (3.1) and (3.8) of D = 4, a single light cone 1/k2 pole of the anomaly first appears
for three variations of (3.8) with respect to the metric, in the 3-point correlation function
〈T̂αβT̂ γλT̂µν〉 in flat space. This has been checked explicitly for a general CFT in [49].

The anomaly effective action (3.8) is one term in the full one-particle irreducible (1PI)
effective action obtained by integrating out all the matter/radiation fields in a fixed but
arbitrary metric and background gauge fields. It is possible to classify all the terms in the
full 1PI effective action of QFT into three general classes, so that the full 1PI action may
be expressed as the sum [65]

S1PI[g] = Slocal[g] + SNL
anom[g] + Sinv[g] (3.9)

of (i) purely local, (ii) non-local anomalous, and (iii) non-local invariant under the action
of the local Weyl transformation gµν → e2σgµν . The classification of terms (3.9) for the
possible quantum corrections to the effective action for gravity and the conformal anomaly
effective action (3.8) applies in a general curved space background, and hence is considerably
more general than expansions around flat space [66–68]. The local terms Slocal are the
ones usually considered in EFT approaches including the clearly IR relevant cosmological
constant and EH term of (2.1) which scale as e4σ0 and e2σ0 under global Weyl rescalings
respectively, together with terms higher order in local curvature invariants, divided by some
high energy UV energy scale, which scale as e−2nσ0 for n ≥ 0. For n > 0 these local terms
are irrelevant in the IR. The n = 0 terms are marginal and require special care.

The local R2 and C2 actions are neutral under global Weyl rescalings, while SNL
anom

of (3.8) is unique (up to the b, b′, βi coefficients and Sinv) in scaling linearly with σ0,
i.e. logarithmically under the global rescalings of the metric and distance scales. Hence
the anomaly terms (3.8) can grow to importance in the IR and are classified as marginally
relevant. All other n = 0 terms satisfying Sinv[e2σg] = Sinv[g] are neutral under all Weyl
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rescalings, and hence do not grow in the IR. While contributions to low energy gravity of
the Weyl invariant terms Sinv[g] cannot be excluded, the minimal assumption is to take
only the relevant n < 0 local terms of (2.1) and the logarithmic non-local (3.8) as the basis
for an EFT treatment of gravity. One could add to (3.1) a R term with an arbitrary
coefficient, but since this term is the trace of the metric variation of a local R2 action, it is
classified with the local terms Slocal and not as part of the true anomaly, which is not the
trace of a variation of any local action [65].

Like the chiral anomaly in QCD, the conformal anomaly is intrinsically a non-local
quantum effect and like (2.3), SNL

anom[g] is non-local in terms of the original metric and
curvature variables. The non-local 1PI effective action of the conformal anomaly (3.1) in
4D can nevertheless be rendered in a compact local form [30, 61, 64, 69] by introducing an
additional local scalar field ϕ and making the replacement

SNL
anom[g]→ SA[g;ϕ] = b′

2

∫
d4x
√
−g

{
− ( ϕ)2 + 2

(
Rµν − 1

3Rg
µν
)

(∇µϕ) (∇νϕ)
}

+ 1
2

∫
d4xAϕ . (3.10)

Since SA[g;ϕ] is quadratic in ϕ with kinetic term −(b′/2)
∫
d4x
√
−g ϕ∆4ϕ, variation of (3.10)

with respect to ϕ gives the linear eq. b′
√
−g∆4ϕ = A/2, which when solved for ϕ and

substituted back into (3.10) returns the non-local form of the effective action (3.8), up to a
surface term and a Weyl invariant term that can be absorbed into Sinv[g]. The anomaly
effective action (3.10) is the 4D analog of (2.4), and both are non-trivial solutions of the
WZ consistency condition [63–65]

SA[e−2σg;ϕ] = SA[g;ϕ+ 2σ]− SA[g; 2σ] (3.11)

under Weyl conformal transformations. The scalar degree of freedom ϕ is therefore closely
related (by the shift ϕ→ ϕ+ 2σ) to the conformal factor of the spacetime metric to which
it couples.

The general classification (3.9) does not preclude the possibility that Sinv might contain
additional light cone singular terms relevant in the IR, implying additional low energy
degrees of freedom besides ϕ. However only a single scalar ϕ is necessary to account for
the known anomaly. Although it is possible to introduce additional low energy degrees of
freedom, as was done in [28, 69], there is no general symmetry-based reason to do so, and
the simplest possibility is the minimal one of SA[g;ϕ], with ϕ the single scalar carrying
all the conformal transformation properties of the WZ effective action and identity (3.11).
Thus (3.10) is the minimal addition to the classical action (2.1) needed to take into account
the light cone singularities of correlation functions of the stress tensor of quantum matter.
Also although ϕ resembles the dilaton of string theory in some respects, it should be
distinguished from it, because of the specific WZ identity (3.11) required by the Weyl
cohomology of the anomaly [65], which reflects its quite different physical origin. The
scalar ϕ is a collective mode, composed of a quantum correlated pair of massless SM fields
contributing to 〈T̂µν〉 [29, 30], similar to the Schwinger boson in QED2, or a U(1)ch flavor
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singlet (η or η′) meson in low energy QCD. For this reason the distinct term of conformalon
is reserved for ϕ.

As an explicit solution of the WZ consistency condition (3.11), the effective action (3.10)
is a generating functional that reproduces all the anomalous conformal Ward identities of
a CFT. Since ϕ has zero scaling dimension, and its propagator

(
∆−1

4
)
xy
∼ log(x− y)2 in

position space, (3.10) scales logarithmically under global Weyl rescalings, and is a marginally
IR relevant operator under finite size renormalization group scaling [70]. In SA[g;ϕ] the
b, b′ coefficients are to be fixed by experiment, as they may receive contributions from the
gravitational field(s) themselves [63]. These coefficients may become dependent upon the
energy scale as well, since the number and spin of fields that can be considered light enough
to be effectively massless, and contributing to the conformal anomaly, is scale dependent.

As in 2D the WZ effective action of the anomaly SA is not purely a local functional of
higher order curvature invariants, unlike the higher dimensional quantum corrections to
GR usually considered [22, 24, 71]. Being derived from non-local quantum fluctuations of
massless fields, the effects of (3.10) need not be negligible on macroscopic scales far greater
than LPl, and generally are relevant on null horizons, even when local curvatures are small
there [28, 30, 72]. The massless excitations described by ϕ do not generally decouple, so
they can have physically relevant effects at low energies, which must be studied on a case
by case basis, and particularly in cases where naive EFT decoupling arguments would seem
to fail. In fact the covariantly conserved stress tensor

T µν
A [g;ϕ] ≡ 2√

−g
δ

δgµν
SA[g;ϕ] (3.12)

derived from (3.10), whose trace is (3.1), generally grows without bound like (r−rM )−2, resp.
(r− rH )−2, as either the Schwarzschild or de Sitter horizons at rM or rH are approached [28],
cf. section 8.

The effective action SA thus amounts to a specific addition to Einstein’s GR, consistent
with, and in fact required by first principles of QFT, general covariance, and the general
form of the conformal anomaly (3.1). It is a relevant addition in both the mathematical
and physical sense [65], capturing the macroscopic light cone singularities of anomalous
correlation functions. It is therefore a necessary part of the low energy EFT of gravity, and
should be added to (2.1) of classical GR, much as the WZ term must be added to the low
energy meson theory to account for the chiral anomaly of QCD.

4 The cosmological term as a 4-form gauge field

The action (3.10) of the conformal anomaly is the first essential element in the EFT of
gravity taking macroscopic quantum effects into account. Quite apart from and independent
of the anomaly, there is a second element that plays an essential role in the characterization
of vacuum energy and resolution of the naturalness problem of Λ. This is the observation
that the constant Λ term in (2.1) can be reformulated in terms of an abelian gauge theory
as follows [73–77]. Let

F = 1
4! Fαβγλ dx

α ∧ dxβ ∧ dxγ ∧ dxλ (4.1)
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be a 4-form field strength which is the curl of a totally anti-symmetric 3-form gauge potential

Fαβγλ = 4 ∂[αAβγλ] = 4∇[αAβγλ] = ∇αAβγλ −∇βAαγλ +∇γAαβλ −∇λAαβγ (4.2)

so that
F = dA , A = 1

3! Aαβγ dx
α ∧ dxβ ∧ dxγ (4.3)

i.e. F is an exact 4-form. As a natural generalization of ordinary electromagnetism
where F = dA is an exact 2-form exterior derivative of the 1-form vector gauge potential
A = Aµ dx

µ, let F be provided with the ‘Maxwell’ action

SF = − 1
2κ4

∫
F ∧ ?F = − 1

48κ4

∫
d4x
√
−g FαβγλFαβγλ = 1

2κ4

∫
d4x
√
−g F̃ 2 (4.4)

where
F̃ ≡ ?F = 1

4! εαβγλ F
αβγλ , Fαβγλ = −εαβγλ F̃ (4.5)

is the scalar Hodge star ? dual to F , cf. (A.6), and κ is a free parameter whose significance
as the topological susceptibility of the gravitational vacuum is discussed in appendix B.

Now the point is that when the rank of the D-form F is matched to the number of
D = 4 spacetime dimensions, the free ‘Maxwell’ theory (4.4) has two very special properties,
namely: (i) F is constrained to be a constant, with no propagating degrees of freedom, and
(ii) its stress tensor TµνF is proportional to the metric gµν , hence equivalent to a cosmological
term. The simplest example of this is usual 2-form electrodynamics in D = 2 spacetime
dimensions, where the classical Maxwell action is

− 1
4e2

∫
d2x
√
−g FαβFαβ = 1

2e2

∫
d2x
√
−g F̃ 2 (4.6)

with the dual F̃ = 1
2εαβF

αβ = F 01 the electric field in one spatial dimension. The stress
tensor corresponding to (4.6) is −gµνF̃ 2/2e2, provided Fαβ = ∂αAβ − ∂βAα is taken to be
independent of the metric, with spacetime indices raised by gαβ. Since the electric field
F̃ is constrained by Maxwell’s eqs. ∂νFµν = jµ in D = 2, to be a spacetime constant of
integration, i.e. F̃ = const. in the absence of sources jµ = 0, the stress tensor of electric
field energy, proportional to gµν is equivalent to a cosmological vacuum energy. Classical
Maxwell theory contains no propagating degrees of freedom at all in one space plus one
time dimension, in the absence of sources, and the constant F̃ simply parametrizes the
energy of the vacuum. In D = 2 the electric charge e has mass dimension one, while in
D = 4, the constant κ also carries mass dimension one if the field strength tensor Fαβγλ is
mass dimension four.

The exactly analogous situation obtains in D = 4 for (4.1)–(4.5), and in fact may be
generalized to any even D spacetime dimension [76]. The equivalence to Λ in D = 4 follows
again the fact that the energy-momentum-stress tensor corresponding to (4.4)

TµνF = 2√
−g

δSF
δgµν

= − 1
4!κ4

(
1
2g

µνFαβγλFαβγλ − 4FµαβγF ναβγ
)

= − 1
2κ4 g

µν F̃ 2 (4.7)

is proportional to the metric tensor, if the convention that Fαβγλ with all lower indices
is independent of the metric is again adopted. Analogous to the D = 2 case that F̃ is
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a constant follows from the sourcefree ‘Maxwell’ eq. obtained by variation of (4.4) with
respect to Aαβγ , viz.

∇λFαβγλ = 0 , for Jαβγ = 0 (4.8)

and ∂λF̃ = 0, so that F̃ = F̃0 is a spacetime constant — in the complete absence of any
sources J = 0.

Hence (4.1)–(4.5), and (4.7)–(4.8) are completely equivalent to a cosmological term in
Einstein’s eqs. in D = 4 dimensions, with the identification

Λeff = 4πGN
κ4 F̃ 2 ≥ 0 (4.9)

the effective (necessarily non-negative) cosmological constant term for κ and F̃ = F̃0 real
constants. In this way one can freely trade a positive cosmological constant Λ of classical
GR for a new fundamental constant κ of the low energy EFT, together with an integration
constant of the constraint ∂λF̃ = 0.

It may seem at first sight that little has been gained by this trade of an equivalent
reformulation of the Λ term as a 4-form gauge field at the classical level. However the free
integration constant F̃0 can then be fixed by a classical global boundary condition in flat
space, without any reference to quantum zero-point energy, UV divergences, or cutoffs. A
vanishing Λeff corresponds instead to the vanishing of the sourcefree ‘electric’ field strength
F̃ = F 0123 in infinite three-dimensional empty flat space, analogous to the vanishing of
F̃ = F 01 electric field of one space dimension in the absence of sources. In either case this
is simply the classical state of lowest energy, as well as the unique state that is even under
the discrete symmetry of space parity inversion.

Moreover this setting of the value of the free constant F̃ = F̃0, which is a priori inde-
pendent of geometry, to zero in empty flat space is required by the sourcefree Einstein’s eqs.[

Rµν −
R

2 gµν
]

flat
= 0 = −Λeff

∣∣∣
flat

ηµν (4.10)

viewed as a low energy EFT. This shows already that flat space QFT estimates of vacuum
energy in any way dependent upon UV cutoffs or heavy mass scales are inconsistent with
Einstein’s eqs. It is well-known that QFT in flat space is sensitive only to differences
in energy. Hence the absolute value of quantum zero point energy in flat space, and its
dependence upon cutoffs or UV regularization schemes is arbitrary and of no physical
significance, a point made before, e.g. [78], but well worth emphasizing. The value of Λeff is
significant only through its gravitational effects, and hence cannot be evaluated in isolation,
but only within the context of a gravitational EFT, ‘on shell’ as in (4.10), and only if each
side of (4.10) can be evaluated independently. This becomes possible only if Λeff is a free
constant of integration, not a fixed parameter of the Lagrangian.

What has been gained then is that whereas in the usual treatment of Λ as a fixed
parameter of the classical theory (2.1), which receives quantum corrections, dependent upon
zero point energies and is apparently sensitive to UV physics, treating Λeff instead as an
integration constant of the classical ‘Maxwell’ eq. ∂λF̃ = 0 of a 4-form gauge field, the free
constant F̃ = F̃0 is independent of UV physics. Initially independent also of spacetime
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curvature, its value is uniquely determined by evaluating both sides of (4.10) in flat space. If
Λeff is given by (4.9), F̃ and Λeff necessarily vanish in the flat space limit of GR, if classical
(or semi-classical) GR is to be a consistent approximation to the low energy EFT of gravity.

Since the condition F̃0 = 0 in flat space holds for any value of the EFT parameter κ in
D = 4, which remains arbitrary, the condition on the value of the integration constant F̃0
at the minimum of energy does not involve any fine tuning of fundamental constants or
naturalness problem in the EFT with the Λ term replaced by (4.4), any more than it does
for setting the electric field strength F 01 =0 in D = 2 classical Maxwell theory. Parameters
of the EFT Lagrangian, such as κ (or Λ), may receive UV divergent contributions at higher
loop order that require UV regularization and renormalization, but the value of the classical
‘electric’ field and integration constant F 0123 in flat space does not.

Thus the reformulation (4.9) of the cosmological constant Λeff in terms of F̃ = F̃0 and
κ shifts the consideration of cosmological vacuum energy away from the UV divergences of
QFT to a macroscopic (IR) boundary condition solving the classical constraint eq. (4.8) and
minimization of energy in flat space. Although very simple mathematically, and a completely
equivalent parametrization of the Λ→ Λeff term in the classical Einstein eqs. in the absence
of any sources for F , trading Λ for F̃ and a boundary condition through (4.9) is a significant
step conceptually. For in addition to removing the fine tuning or naturalness problem of
Λ, introducing an independent 4-form field F in place of constant Λ also allows for the
introduction of sources in (4.8) that will enable F (and hence Λeff) to change, departing
from its zero value in infinite sourcefree flat space in finite calculable ways, and eventually
to become a full-fledged dynamical variable of the low energy EFT in its own right.

5 The Chern-Simons 3-form and anomaly current source for F

In section 4 the 4-form field strength F = dA was postulated as an independent degree of
freedom, with the observation that it contributes to the EFT of low energy gravity in the
same way as an effective vacuum energy and cosmological term according to (4.9). This
has the advantage of reformulating the naturalness problem of a vanishing cosmological
term as simply the solution of the sourcefree ‘Maxwell’ eq. (4.8) that minimizes the ‘electric’
energy in flat space, required by consistency of GR in its flat space limit (4.10). In this
section a fundamental geometric origin of F is proposed by identifying the abelian 3-form
potential A with the possible torsion dependent part of the Chern-Simons 3-form defined
by the topological Euler-Gauss-Bonnet term in the trace anomaly (3.1). This identification
determines the source current for the ‘Maxwell’ eq. (4.8) in terms of the conformalon scalar
ϕ, that allows F and hence the vacuum energy Λeff to change.

Of the several terms in the trace anomaly, the Euler-Gauss-Bonnet invariant E in (3.2)
is distinguished by its topological character. Its integral is a topological invariant insensitive
to local variations, and therefore can be related to global macroscopic effects, analogous
to the index theorems associated with the εαβµνFαβFµν topological density of the axial
anomaly [54]. Just as the axial anomaly density can be expressed as the total divergence of
a gauge dependent Chern-Simons current, the topological character of E implies that it is
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also is a total divergence of a topological current, E = ∇µΩµ, with Ωµ dependent upon the
choice of local Lorentz frame, through the SO(3, 1) gauge connection.

The explicit form of the topological 3-form gauge field and Ωµ associated with E follows
from its relation to the 4-form field strength

F ≡ εabcd Rab ∧ Rcd = 1
4εabcdR

ab
αβ R

cd
γλ dx

α ∧ dxβ ∧ dxγ ∧ dxλ (5.1)

by the Hodge star ? dual operation

?F = εαβγλ
(

1
4εabcdR

ab
αβ R

cd
γλ

)
= 1

4εabcd ε
mnrsRab mnR

cd
rs

= −
(
RabcdR

abcd − 4RabRab +R2
)

= −E (5.2)

where the Latin a, b, . . . are tangent space indices and the Greek α, β, . . . are spacetime
coordinate indices respectively. The overall minus sign in (5.2) is the result of Lorentzian
metric signature cf. (A.11).

The curvature 2-form Rab in (5.1) is defined by the Cartan structure eq.

Rab = dωab + ωac ∧ ω b
c ≡

1
2R

ab
µν dx

µ ∧ dxν (5.3)

that gives the Riemann curvature components Rabµν in terms of the affine connection 1-form

ωab = −ωba = ωabµ dx
µ (5.4)

which specifies the law of parallel transport of orthonormal frames in tangent space. Thus
ωab may be regarded as a local gauge potential for the Lie algebra of the G = SO(3, 1)
Lorentz group, in close analogy to Yang-Mills gauge potentials for any internal group G, for
which Rab would be the 2-form field strength tensor.

The 4-form F dual to E by (5.2) is exact, i.e. F = dA, where A is the SO(3, 1) Lorentz
frame dependent Chern-Simons 3-form [81]

A = εabcd

(
ωab ∧ dωcd + 2

3 ω
ab ∧ ωce ∧ ωfd ηef

)
(5.5)

which has the spacetime coordinate components

Aαβγ = 3! εabcd
(
ωab[α ∂β ω

cd
γ] + 2

3 ω
ab

[α ω
ce
β ω

fd
γ] ηef

)
(5.6)

completely anti-symmetrized in its three indices α, β, γ. These relations imply, cf. (A.13)

E = −
(
?dA

)
= 1

3! ε
αβγµ∂µAαβγ = 1

3!
1√
−g

∂µ
(√
−g εαβγµAαβγ

)
= 1

3! ∇µ
(
εαβγµAαβγ

)
(5.7)

demonstrating that the integrand
√
−g E is in fact a total derivative of a coordinate

frame dependent abelian current dual to A, with Ωµ = εαβγµAαβγ/3!, analogous to the
topological density εαβµνFαβFµν of the axial anomaly which is the total derivative of the
gauge dependent Chern-Simons current. Eq. (5.7) holds in the absence of torsion, since the
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it has been so far implicitly assumed that the connection ωab is the usual Riemannian or
Levi-Civita connection of the metric gµν .

To show that A is indeed an abelian gauge field, consider the response of the gauge
connection to an infinitesimal local SO(3, 1) tangent frame rotation

δθ ω
ab = 2ωc[a θ b]c + dθ ab , δθ Rab = 2 Rc[a θ b]c (5.8)

where θab(x) = −θba(x) are the 6 functions of the local Lorentz frame transformation. A
short exercise then shows that the gauge potential 3-form A of (5.6) transforms under (5.8)
as the exact differential

δθ A = εabcd dθ
ab ∧ dωcd = d

(
εabcd θ

abdωcd
)

(5.9)

and hence δθ F = 0, so that the corresponding abelian field strength tensor is invariant
under the particular form of the local 2-form gauge parameter Θ = εabcd θ

ab dωcd. This
gauge transformation establishes the Chern-Simons 3-form A as an abelian gauge potential.
Since in order for the transformation (5.9) to be non-null, Θ itself must be co-exact, i.e. not
itself an exact 2-form, the gauge transformation (5.9) has just 3 independent components.
This means that of the 4 independent components of A, three of them are pure gauge, and
only one is gauge invariant under (5.8). Hence the single scalar ?F carries the full gauge
invariant field content of the 3-form A.

Now the essential point is that although E is given in terms of the metric and its
derivatives in Riemannian spacetime by (3.2), the 3-form potential A given by (5.5) is
defined in terms of the SO(3, 1) spin connection ωab in an orthonormal basis, and a priori
independently of the spacetime metric gµν . This distinction becomes clear when one considers
Cartan’s second equation of structure

Ta = dea + ωab ∧ eb = 1
2 T

a
bc e

b ∧ ec = 1
2 T

a
µν dx

µ ∧ dxν (5.10)

which defines the torsion 2-form Ta [41, 79]. This definition may be solved algebraically for
the spin connection, viz. [41]

ωab µ = −ωba µ = υνa ηbc
(
∇µec ν

)
−Kabc e

c
µ (5.11)

whose first term is a purely Riemannian part in terms of the torsionless covariant derivative

∇µecν = ∂µe
c
ν − Γλµνecλ (5.12)

with respect to the symmetric Levi-Civita connection Γλµν of (2.2), which depends upon
the metric and its derivatives. The second part of (5.11) is dependent upon the torsion
through the contorsion tensor

Kabc = 1
2
(
Tabc + Tbca − Tcab

)
(5.13)

which is defined by (5.10) independently of the metric. The definitions and properties of the
vierbein field eaµ and its inverse υµa used here are given by eqs. (A.1)–(A.3) of appendix A.
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It follows from (5.11) that if all components of torsion vanish, T abc = 0, then the affine
connection ωab µ reduces to the Levi-Civita connection, which in holonomic coordinates is just
the usual symmetric Riemann-Christoffel symbol Γλ µν of (2.2), that is fully specified by the
metric and its derivatives. In that case of vanishing torsion the Chern-Simons 3-form (5.6)
is purely Riemannian A = AR and metric dependent in the standard way. Conversely, if
torsion (5.10) is non-vanishing, both ωab µ and A will contain a torsion dependent part AT,
which may be treated as dynamical variables that can be varied independently of the metric
gµν . In the general case (5.5) will contain both purely Riemannian and torsion dependent
terms, so that

A = AR + AT , E = −(?dAR) (5.14)

since the spin connection (5.11) itself by which A is defined contains purely Riemannian and
torsional terms. In (5.14) E is understood to be the purely Riemannian, torsionless Euler-
Gauss-Bonnet integrand of (3.2), derived from AR alone, so that E = −(?dAR) replaces (5.7)
when torsion is present and AT 6= 0.

The independent variation of the affine connection is the basis of the first order or
Palatini formalism of GR [39, 80]. In the case of the EH action this first order formalism
leads to T abc = 0 in the absence of spin currents, and hence turns out to be equivalent
to the more common approach to GR where the connection is fixed to be the torsionless
Christoffel connection (2.2) from the start. For more general actions, including that of the
conformal anomaly, independent variation of the affine connection and the metric generally
leads to different Euler-Lagrange eqs., so that the resulting Einstein-Cartan theory differs
in general from the torsionless theory.

In the EFT based on the conformal anomaly it is only the particular dependence on the
spin connection through the 3-form gauge field A of (5.6) that enters, which has only 4 (not
the 24 of ωab µ) independent components. Hence rather than adopting the full first order for-
malism, the proposal for the EFT is that the torsional parts of the Chern-Simons 3-form (5.5)
and 4-form (5.1) be identified with the corresponding quantities introduced in section 4, i.e.

A = AT and F = FT (5.15)

with E replaced by E − (?dAT) = E − F̃ in the anomaly effective action (3.10), and with
A = AT treated as an independent variable, to be varied independently of the spacetime
metric gµν . From (5.10)–(5.13) this independent variation is possible since (5.6) holds also
in a general Einstein-Cartan spacetime, if there is no a priori condition on the torsion,
which is defined independently of the metric.

With (5.7), the decomposition (5.14), and the identification (5.15), the term in the
anomaly effective action linear in E and the conformalon ϕ is replaced by (E − F̃ )ϕ, and
the second term can be integrated by parts, so that

b′

2

∫
d4x
√
−g

(
E − F̃

)
ϕ = b′

2

∫
d4x
√
−g E ϕ− b′

2
1
3!

∫
d4x
√
−g Aαβγ εαβγµ ∂µϕ (5.16)

up to a surface term which does not affect local variations and may be taken to vanish for
suitable boundary conditions. Then defining the 3-current

Jαβγ ≡ − b′

2 εαβγµ ∂µϕ (5.17)
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the last term in (5.16) can be expressed in the form

Sint[ϕ,A] = 1
3!

∫
d4x
√
−g JαβγAαβγ (5.18)

analogous to a J ·A interaction of ordinary electromagnetism.
The analogy with electromagnetism is apt because the current (5.17) is covariantly

conserved, i.e.

∇γJαβγ = − b′

2
1√
−g

∂γ
(√
−g εαβγµ ∂µϕ

)
= − b′

2 εαβγµ ∂γ∂µϕ = 0 (5.19)

since
√
−g εαβγµ is independent of the spacetime metric cf. (A.13). Thus the J ·A interac-

tion (5.18) is invariant under the abelian gauge transformation

δΘA = dΘ δΘF = d2Θ = 0 (5.20)

where Θ is an arbitrary 2-form, by another integration by parts. This means that (5.17) is a
candidate source term for the ‘Maxwell’ eq. (4.8), consistent with abelian gauge invariance,
in analogy with ordinary electromagnetism.

With A defined by the identification (5.15) in terms of the spin connection a priori
independent of the spacetime metric, it is a dynamical variable of the EFT in its own right.
Its variation independently of gµν is just what is required to arrive at ‘Maxwell’ eqs. for F
with the conserved current (5.17) as their source. Thus identifications of the 3-form A and
4-form F = dA by (5.15), with the interaction (5.18) deduced from the anomaly effective
action have the consequence that the vacuum energy defined by Λeff of (4.9) will change if
and when ϕ does and Jαβγ 6= 0, provided torsion (5.10) and AT 6= 0.

6 The effective theory of gravity in the absence of torsion

Assembling the elements of the previous sections, the effective action for low energy gravity
in the absence of any torsional contribution to the Chern-Simons 3-form (5.5) is

S
(I)
eff [g;ϕ;A] = 1

16πGN

∫
d4x
√
−g R+ SA[g;ϕ] + SF [g;A] (I) (6.1)

where
SA[g;ϕ] = b′

2

∫
d4x
√
−g

{
− ( ϕ)2 + 2

(
Rµν − 1

3Rg
µν
)

(∇µϕ) (∇νϕ)
}

+ 1
2

∫
d4x
√
−g

{
bC2 + b′

(
E − 2

3 R
)

+
∑
i
βi Li

}
ϕ (6.2)

is the conformal anomaly effective action (3.10) and SF is the ‘Maxwell’ action (4.4) of
the 4-form gauge field F , with (4.2). In this case (I) the 3-form gauge field A and 4-form
field strength F = dA are not coupled in any way to the anomaly effective action SA[g;ϕ].
Hence F̃ = F̃0 is sourcefree and constant, as in (4.8), and entirely equivalent to an effective
cosmological term Λeff by (4.9).

With the condition that F̃0 = 0 in asymptotically flat space, the lowest energy ground
state, F̃ and SF [A; g] then drop out entirely. In this case the EFT (I) is just classical GR
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with Λeff = 0 and with the addition of the conformal anomaly effective action SA[g;ϕ].
Alternately, SF [A; g] with non-zero constant F̃ may be retained to parametrize an arbitrary
positive constant vacuum energy Λeff in some region(s) of space, its value to be determined
by appropriate boundary conditions, as in the application to gravitational condensate stars
of section 8.

The classical Euler-Lagrange eqs. following from variation of (6.1) are

∆4ϕ ≡ ∇µ
(
∇µ∇ν + 2Rµν − 2

3Rg
µν
)
∇νϕ = 1

2

(
E − 2

3 R

)
+ 1

2b′
(
bC2 +

∑
i
βiLi

)
(I)
(6.3)

for the conformalon scalar ϕ, together with the semi-classical Einstein eq.

Rµν −
1
2Rgµν = 8πGN

(
TF µν + TAµν [g;ϕ] + T clµν

)
(6.4)

with TµνF and Λeff given by (4.7) and (4.9), and with

T µν
A [g;ϕ] ≡ 2√

−g
δ

δgµν
SA[g;ϕ] = b′Eµν + bCµν +

∑
i
βiT

(i)µν (6.5)

the stress tensor resulting from the metric variation of SA[g;ϕ]. The first contribution
here is

Eµν = −2 (∇(µϕ)(∇ν) ϕ) + 2∇α
[
(∇αϕ)(∇µ∇νϕ)

]
− 2

3 ∇µ∇ν
[
(∇αϕ)(∇αϕ)

]
+ 2

3 Rµν (∇αϕ)(∇αϕ)− 4Rα(µ
[
(∇ν)ϕ)(∇αϕ)

]
+ 2

3 R (∇(µϕ)(∇ν)ϕ)

+ 1
6 gµν

{
−3 ( ϕ)2 +

[
(∇αϕ)(∇αϕ)

]
+ 2

(
3Rαβ −Rgαβ

)
(∇αϕ)(∇βϕ)

}
− 2

3 ∇µ∇ν ϕ− 4C α β
µ ν ∇α∇βϕ− 4Rα(µ∇ν)∇αϕ+ 8

3 Rµν ϕ

+ 4
3 R∇µ∇νϕ−

2
3

(
∇(µR

)
∇ν)ϕ

+ 1
3 gµν

[
2 2ϕ+ 6Rαβ ∇α∇βϕ− 4R ϕ+ (∇αR)∇αϕ

]
(6.6)

which is the metric variation of all the b′ terms in (3.10), both quadratic and linear in
ϕ [28, 30, 64], while

Cµν ≡ −
1√
−g

δ

δgµν

{∫
d4x
√
−g C2 ϕ

}
= −4∇α∇β

(
C α β

(µ ν) ϕ
)
− 2C α β

µ ν Rαβ ϕ (6.7a)

T (i)
µν ≡ −

1√
−g

δ

δgµν

{∫
d4x
√
−gLi ϕ

}
(6.7b)

are the metric variations of the last two b and βi terms in (3.10), both of which are only
linear in ϕ.

In (6.4) a classical matter/radiation stress tensor T clµν independent of ϕ has been allowed
as well. If any βiLi or T clµν terms are non-zero, the Euler-Lagrange eqs. of the fields (or
fluid constitutive relations) upon which these additional degrees of freedom depend must
be appended to (6.3) and (6.4), to close the system (6.3)–(6.7).

Note that the stress tensor T µν
A [g;ϕ] derived from SA[g;ϕ] with ϕ treated as a classical

field, is the finite renormalized stress tensor of the underlying quantum conformal QFT,
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after all short distance UV divergences have been removed, with
〈
Tµν

〉
flat in infinite flat

space defined to be zero, by the consistency condition (4.10), where ϕ may be taken to
vanish as well. If boundary conditions different from infinite empty flat space are considered,
TµνF and Λeff of (4.7) parametrize any finite vacuum energy in place of Λ by (4.7), and ϕ
may be different from zero. For example the stress tensor (6.6) with ϕ ∝ z2/a2, 2ϕ = 0
and Λeff = 0 can account for the Casimir energy and force between two parallel plates a
distance a apart in the z direction in flat space, when boundary conditions appropriate to
that situation are imposed on ϕ [28].

The scalar-tensor theory (6.1), based on first principles of QFT and the conformal
anomaly SM fields, is quite distinct from other modifications of GR, such as Brans-Dicke
theory, Hordenski theory or massive gravity. As the possible anomaly sources for ϕ in (6.3)
are negligibly small in our local neighborhood, this effective theory easily passes the most
constraining solar system tests, as well as the laboratory bounds on ad hoc modified gravity
or other scalar-tensor theories [64, 82]. Being generally covariant, the theory described
by (6.1)–(6.7) is consistent with the Weak Equivalence Principle (WEP) and local Lorentz
invariance. The solutions of (6.3) propagate at c, the speed of both light and of gravitational
waves, consistent with present gravitational wave observations.

There are nevertheless two situations where the effects of (6.5) are significant at
macroscopic scales and lead to effects qualitatively different from the purely classical theory:

(1) In the vicinity of horizons, where there are large local blueshifts and the light cone sin-
gularities of anomalies come to the fore, relevant for BHs and cosmology, cf. section 8;

(2) When the source for ϕ in (6.3) is non-gravitational in origin and sufficiently strong,
such as from the QCD trace anomaly LG in dense nuclear matter, where scalar
gravitational waves may be generated in compact binary mergers and in the hot,
dense early universe [64].

Since the eq. of motion (6.3) for ϕ involves the fourth order conformal Panietz-Riegert
operator ∆4 of (3.5) [60, 61], and typically, differential eqs. higher than second order possess
negative energy and/or unstable solutions growing in time, a few additional comments
are in order here. Note first that SA and ∆4 do not occur in isolation, but as part of the
EFT of gravity, subject to the first class constraints of diffeomorphism invariance. These
constraints restrict the class of physically allowed solutions both classically and quantum
mechanically. Since SA is quadratic in ϕ, a simple case in which the specific effects of the
higher derivative terms in the anomaly effective action can be studied is the exactly solvable
limit of G−1

N → 0, where the EH term is neglected, and on the product space R× S3, where
E,C2 and R all vanish. The result of this analysis is that only a small subset of solutions
survive the constraints of diffeomorphism invariance, and correspondingly, only a small
subspace of physical states with positive norm, and no propagating modes whatsoever,
survive quantization [83].

When G−1
N 6= 0 and the EH term of classical GR is added, the resulting EFT (6.1)

becomes non-linear, but then can be studied in linearized perturbation theory around
flat space. The mixing of the scalar ϕ with the conformal factor of the metric turns this
constrained mode of classical GR into a propagating one. The result is that (6.1)–(6.6)

– 19 –



J
H
E
P
1
1
(
2
0
2
2
)
0
3
7

predicts the existence of scalar gravitational waves of positive energy [64], i.e. a ‘breather’
mode polarization in addition to the two transverse, traceless gravitational wave modes
of classical GR. The active linearized solutions of (6.3) are those with 2ϕ = 0, but
Υ = ϕ 6= 0. In other words, the modes with ϕ = 0 decouple entirely, and the remaining
solutions satisfy the second order eq. Υ = 0, with positive energy. Thus in linearization
around flat space, half of the solutions of the fourth order ∆4 operator are eliminated by the
constraints, and do not appear in the physical asymptotic states and S-matrix of the EFT.
There is no instability in this case either, consistent with general results on the stability of
flat space to quantum corrections [42, 84].

Since SA is derived from the conformal anomaly of well-behaved SM fields, each with a
unitary S-matrix in flat space, the EFT incorporating the anomaly is not expected to lead to
unphysical instabilities in weakly curved or asymptotically flat space at low energies, within
its range of validity. While this interesting issue certainly deserves further investigation,
and should be revisited now with the introduction of the 4-form gauge field, the detailed
studies of the EFT obtained from the conformal anomaly to date are consistent with this
physical expectation.

7 The effective theory of gravity in the presence of torsion

In the presence of torsion the Chern-Simons 3-form potential (5.5) acquires a torsional
dependent term AT, which may be identified with the 3-form potential of section 4 and
makes the additional contribution (5.18) to the effective action, which in this case becomes

S
(II)
eff [g;ϕ;A] = 1

16πGN

∫
d4x
√
−g R+ SA[g;ϕ] + SF [g;A] + Sint[ϕ;A] (II) (7.1)

in which Sint is given by (5.18). Since A = AT is independent of the metric, the independent
variables of (7.1) are (gµν , ϕ,Aαβγ).

A possible additional torsion dependent term arising from the conformal anomaly of
Nf massless fermions is [68, 105, 108]

SW [g;ϕ;W ] = − Nf
48π2

∫
d4x
√
−g

(
∇µW⊥ν −∇νW⊥µ

)2
ϕ (7.2)

in terms of the transverse part of the axial vector field

Wµ = 1
4 εabcdK

abc edµ = 1
8 εabcd T

abc edµ (7.3)

dependent upon torsion. This term has been omitted from (7.1), assuming that it can be
varied independently of (gµν , ϕ,Aαβγ), and the resulting Euler-Lagrange eq.

∇ν
(
∇νW⊥µ ϕ

)
= 0 (7.4)

admits the solution W⊥µ = 0.
Since

√
−g εαβγµ appearing in (5.18) is in fact independent of the metric, cf. (A.13),

the additional term Sint makes no contribution to the stress tensor, and variation of (7.1)
with respect to the metric gives the Einstein eqs., identical in form to (6.4).
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Variation of (7.1) with respect to ϕ yields

∆4ϕ = −1
2 F̃ + 1

2

(
E − 2

3 R

)
+ 1

2b′
(
bC2 +

∑
i
βiLi

)
(II) (7.5)

instead of (6.3). Since the ‘Maxwell’ action (4.4) and interaction term (5.18) may be varied
independently with respect to Aαβγ , with gµν and ϕ held fixed, the novel feature of (7.1) is
the ‘Maxwell’ eq.

∇λFαβγλ = κ4Jαβγ = −κ4b′

2 εαβγλ ∂λϕ (7.6)

with the source current (5.17). Upon taking its dual, with (4.5), this becomes

∂λ

(
F̃ − κ4b′

2 ϕ

)
= 0 (7.7)

which is an eq. of constraint that is immediately solved by

F̃ = κ4b′

2 ϕ+ F̃0 (7.8)

in which F̃0 is a spacetime constant. Thus F̃ can be eliminated in favor of ϕ and (7.5)
becomes

∆4ϕ+ κ4b′

4 ϕ = − F̃0

2 + 1
2

(
E − 2

3 R

)
+ 1

2b′
(
bC2 +

∑
i
βiLi

)
. (7.9)

For asymptotically flat boundary conditions F̃0 may be set to zero, but is retained here for
more general cases.

For the second form of the effective action (7.1), the result is that F̃ given by (7.8) is
no longer a constant, and will change, as will the effective cosmological term Λeff , when ϕ
changes according to (7.9). Eq. (7.9) for ϕ and the Einstein eq. (6.4) together with (4.7)
and (6.5)–(6.7) is the form of the proposed EFT of low energy gravity and dynamical
vacuum energy in the presence of torsion.

In deciding which form of the EFT (6.1) or (7.1) applies, the critical question is whether
spacetime acquires a non-vanishing torsion. This question remains open at present. Since the
vanishing of torsion is equivalent to the vanishing of the covariant derivative of the vierbein,
according to the definition (5.10), it has been suggested that a natural place for torsion
to appear is where the vierbein vanishes, and the locking together of the SO(3, 1) tangent
space gauge group and GL(4,R) group of coordinates transformations is broken [100]. This
hypothesis will be adopted in the application of the following section.

8 Gravitational vacuum condensate stars in the EFT of gravity

In [31, 32, 36] it was proposed that the solution of the multiple BH paradoxes is that the
final state of complete gravitational collapse is a gravitational condensate star rather than
a BH. The proposed gravastar is a compact object with a physical surface of positive
surface tension replacing the BH horizon, and a static region of de Sitter space with the
eq. of state p = −ρ replacing the singular interior of a BH. Because such an object is both
horizonless and non-singular, with low entropy, it suffers from no information paradox, and
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is consistent with quantum unitary evolution. The EFT of section 7 provides a fundamental
first principles Lagrangian basis for this proposal.

The requirements for a gravitational condensate star to be realized in gravitational
collapse are first, that quantum vacuum polarization effects can grow large in the vicinity
of a BH horizon and second, they can induce a phase transition to a non-vanishing interior
gravitational Bose-Einstein condensate (GBEC) with p = −ρ, equivalent to a non-zero Λeff .
That the anomaly effective action SA[g;ϕ] and stress tensor (6.6)–(6.7) of section 6 can have
substantial effects in spacetimes with horizons, satisfying this first part of the gravastar
hypothesis may be seen in the case of the exterior static Schwarzschild spacetime

ds2 = −f(r) dt2 + dr2

h(r) + r2
(
dθ2 + sin2 θ dφ2

)
(8.1)

with
f(r) = h(r) = 1− r

M

r
= 1− 2GNM

c2 r
. (8.2)

The general solution to (6.3) for ϕ = ϕ(r), F̃ = F̃0 = 0 and Li = 0 that is finite as r →∞
for the Schwarzschild metric (8.1)–(8.2) was found previously to be [28, 30]

dϕ
S

dr
= c

S
r

M

r(r − r
M

) −
2

3r
M

(
r

r
M

+ 1 + r
M

r

)
ln
(
1− r

M

r

)
− 2

3r
M

− 1
r

(8.3a)

ϕS (r) = cS ln
(
1− r

M

r

)
+
∫ ∞
r/r

M

dx

{
2

3x

(
x2 + x+ 1

)
ln
(

1− 1
x

)
+ 2

3 + 1
x

}
(8.3b)

in terms of the dimensionless integration constant cS . This solution has the limits

ϕS (r)→


cS ln

(
1− r

M

r

)
+ c1 − 2

(
1− r

M

r

) [
ln
(
1− r

M

r

)
− 1

6

]
+ . . . , r → rM

−
(
cS + 11

9

)
r

M

r
−
(

2cS + 13
9

)
r2

M

4r2 + . . . , r →∞
(8.4)

where the constant c1 is the finite integral in (8.3b) evaluated at the lower limit r = rM , x = 1.
Substituting the solution (8.3) into the anomaly stress tensor (6.5)–(6.6), one finds

(
Tµν

)
A →

c2
S

6r2
M

b′

(r − rM )2 diag (−3, 1, 1, 1)→∞ as r → rM (8.5)

diverging on the Schwarzshild BH horizon for any cS 6= 0.
This leading order (r − rM )−2 divergence of the stress tensor on the horizon may be

understood from the kinematic blueshifting of local frequencies in (8.2) near the horizon
according to

ωloc(r) = ω∞√
f(r)

(8.6)

relative to that at r =∞. The corresponding energy ~ωloc(r) diverges as r → rM and
therefore becomes much greater than any finite mass scale. This is reflected in the fact that
the wave eq. for a quantum field of arbitrary finite mass and spin becomes indistinguishable
from that of a massless conformal field in the horizon limit r → rM [30], and hence the

– 22 –



J
H
E
P
1
1
(
2
0
2
2
)
0
3
7

conformal anomaly effects come to the fore. Since the stress tensor is a dimension four,
conformal weight four operator, it behaves generically as the fourth power of ωloc in (8.5),
i.e. ∝ f−2. Noting that ϕ is a scalar, as is the norm of the static Killing field K = ∂t of (8.1),
which is

√
−KµKµ =

√
−gtt =

√
f(r), the divergence of (8.5) depending on the inverse

fourth power of this norm is also a coordinate invariant scalar, and observer independent.
The diverging behavior of the local stress tensor (8.5) shows that the anomaly stress

tensor can become important near the horizon of a BH and even dominate the classical
terms in the Einstein eq. (6.4), the smallness of the curvature tensor there notwithstanding.
Even with cS = 0 in (8.3), which can be arranged by specific choice of the state of the
underlying QFT, to remove the leading f−2 divergence in (8.5), there remain subleading
divergences proportional to f−1, (ln f)2 and ln f . In fact, there is no solution of (6.3) in
Schwarzschild spacetime with ϕ = ϕ(r) only, corresponding to a fully Killing time t invariant
and spherically symmetric quantum state, with a finite stress tensor at both regular singular
points r = rM and r = ∞ of the differential eq. (6.3). This result, following simply and
directly from the conformal anomaly effective action, confirms results of previous studies of
the stress tensor expectation value in specific states in Schwarzschild spacetime [27].

The divergences on either the future or past BH horizon (but not both) can be cancelled
by allowing linear time dependent solutions of (6.3), which give rise to a Hawking flux 〈T tr〉,
such as in the Unruh states; or by relaxing the regularity condition at infinity which gives
rise to a non-zero stress tensor there, as in the Hartle-Hawking state. This thermal state
is both incompatible with asymptotically flat boundary conditions and unstable. Usually
the assumption of regularity of the semi-classical 〈Tµν〉 on the horizon is used to argue for
the necessity of Hawking radiation flux 〈T tr〉 > 0 [85]. However the converse is also true:
if a truly static and stable asymptotically flat solution of the final state of gravitational
collapse is sought with 〈T tr〉 = 0, then quantum effects at the horizon, specifically due
to the conformal anomaly T µν

A cannot be neglected, and imply instead the breakdown of
regularity there.

A similar behavior is observed in de Sitter spacetime, and indeed in any spherically
symmetric static spacetime (8.1) with a horizon at which −KµKµ = f(r) → 0. With Λ
positive, the static patch of de Sitter space is of this form with f(r) ∝ h(r) = 1−H2r2 =
1− Λr2/3. The general spherically symmetric static solution of (6.3) for ϕ = ϕ(r) which is
regular at the origin in this case is [28, 30]

ϕdS(r) = ln
(
1−H2r2

)
+ c0 + q

2 ln
(1−Hr

1 +Hr

)
+ 2cH − 2− q

2Hr ln
(1−Hr

1 +Hr

)
→
[
cH +

(
cH − 1− q

2

)(
1−Hr

)
+ . . .

]
ln
(
1−Hr

)
+ c′ +O (1−Hr) (8.7)

where the constant c′ = c0 + (2 − cH ) ln 2. Substituting this into the anomaly stress
tensor (6.5) gives

(
Tµν

)
A →

2
3 c

2
H
H4 b′

(1−Hr)2 diag (−3, 1, 1, 1)→∞ as r → rH ≡ H
−1 (8.8)

which also diverges as f−2 for any cH 6= 0 as the de Sitter static horizon is approached.
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As in the Schwarzschild case this divergence can be removed if a thermal state is
considered, but then only if the temperature is precisely matched to the Hawking temperature
TH = H/2π associated with the horizon, which in the de Sitter case leads to the maximally
O(4, 1) symmetric state [86, 87]. However, this state is not a vacuum state of QFT and is
unstable to particle pair creation, much as a uniform, constant electric field is [88–92], and
for essentially the same reason. Due to the non-existence of a global static time by which
positive and negative frequency (particle and anti-particle) solutions can be invariantly
distinguished, a time independent Hamiltonian bounded from below and stable vacuum
state cannot be defined. The horizon where f = 0 and the Killing vector of time translation
∂t becomes null in either Schwarzschild or de Sitter space is the sign of this, so that Λ cannot
be globally constant and positive everywhere in space in QFT. The conformal anomaly
shows this through its sensitivity to lightlike correlations on the horizon and non-local
boundary conditions on the quantum state. Only flat space with Λeff = 0 can be a candidate
stable ground state of the semi-classical EFT, as the state of lowest energy with vanishing
‘electric’ field F̃ = 0, a global static Killing time and no horizon, as also required by the low
energy EFT consistency condition (4.10).

With Λeff replaced by a dynamical condensate according to (4.9), vacuum energy can
be non-zero only if localized in space, within the static patch r < rH = H−1 of de Sitter
space. If one seeks a stable spherically symmetric static solution of the EFT, the light cone
enhanced effects of the anomaly stress tensor (3.12) at both the Schwarzschild and de Sitter
horizons, (8.5) and (8.8) respectively, should be taken into account, and the assumption that
either horizon is a mathematical boundary only should be re-examined. In the gravastar
proposal [31, 32], the BH horizon is the location of a physical surface phase boundary layer
between two different phases characterized by different values of the vacuum energy Λeff ,
regarded as a gravitational condensate. On general thermodynamic grounds the Gibbs
relation ρ+ p = sT + µn = 0 implies that the eq. of state of a zero temperature condensate
with no conserved particle number should be p = −ρ. An argument based on non-relativistic
condensed matter analogs given in [93] reached a similar conclusion.

In [36] the gravitational condensate star was shown to follow directly from
Schwarzschild’s constant density interior solution in the limit r → rM , with f(r) = h(r)/4
leading to equal and opposite surface gravities of the surface at rM = rH . The surface
tension of this physical boundary layer replacing the Schwarzschild and de Sitter horizons
is determined from the δ-function discontinuity in gradients of the surface gravities there,
and the First Law becomes a purely mechanical relation of a gravastar with this surface
tension, and the relativistic analog of the Rayleigh surface tension of a fluid droplet.

The singular behavior of both ϕ and the anomaly stress tensor at the Schwarzschild
and de Sitter horizons (8.4), (8.5) and (8.7), (8.8) is clearly associated with the vanishing
of the norm of the static Killing vector field ∂t in each case. The coordinate singularities
at these static horizons coincide with the vanishing or divergence of the vierbein e0

t or e1
r

respectively. This is exactly the locus of a possible breakdown of the locking together of the
SO(3, 1) tangent space gauge group and GL(4,R) group of coordinates transformations,
where torsion may be expected to arise [100]. Thus it is natural to describe this region where
f(r), h(r)→ 0 by the EFT (II) of section 7. This EFT (II) then provides a mechanism and
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Lagrangian description for the second part of the gravitational condensate star proposal
of [31, 32, 36], by allowing the value of Λeff to change from exterior to interior of the
gravastar, through (4.9), (7.8) and (7.9).

The scalar F̃ , dual to the 4-form field strength of sections 4–5, is a classical coherent
field that provides an explicit realization of a gravitational condensate Λeff interior. When
coupled to the conformalon scalar through the 3-form abelian current Jαβγ , concentrated
on a three-dimensional extended world tube of topology R × S2 where ∂µϕ grows large,
ϕ, F̃ and the condensate Λeff all change rapidly in the radial direction. This is precisely the
appropriate description of a thin shell phase boundary layer of a gravastar with S2 spatial
topology sweeping out a tube in spacetime.

One may now search for static, rotationally invariant solutions of the EFT eqs. of
sections 6–7 which are asymptotically Schwarzshild-like with Λeff vanishing in the exterior
region, changing rapidly but continuously near the Schwarzschild rM = 2GNM/c2 or de
Sitter rH = H−1 classical horizons by (7.8) and (7.9) in the phase boundary region, and then
remaining nearly constant 3H2 in the interior region. The blueshifting of local frequencies
∼ f−

1
2 as in (8.6) leads to the ϕ field having an increasingly large radial derivative in the

vicinity of rM ' rH , so that (5.17) and (6.5) and the torsional effects become significant
there. The physical thickness of the phase boundary surface layer where the anomaly stress
tensor (8.5) or (8.8) becomes significant and large enough to compete with the classical
terms and where the EFT (II) of 7 must be used is of the order of

√
rMLPl. The effects of

this surface layer and regular de Sitter interior on binary BH mergers, gravitational waves,
ringdown and ‘echoes’ can then be investigated in the EFT.

9 Discussion and outlook: vacuum energy as a dynamical condensate

In this paper an EFT of gravity has been proposed taking account of the most significant
macroscopic light cone effects of the conformal anomaly of massless or light SM fields. In
this EFT Λ is no longer a fundamental constant, whose value appears to be sensitive to
ultra high energy physics, but rather a dynamical condensate described by a classical 4-form
field strength and 3-form abelian gauge potential of sections 4–5.

The EFT based on the conformal anomaly (3.1) introduces two relevant scalar degrees
of freedom to low energy gravity beyond classical GR. This follows from the local form of
the effective action of the anomaly SA[g;ϕ] of (3.10) in terms of the scalar ϕ conformalon
field, which satisfies a fourth order eq. of motion (6.3)–(7.5). Before the addition of SA[g;ϕ],
the conformal factor of the metric in GR is constrained to be non-propagating by the
classical diffeomorphism constraints of Einstein’s eqs. Once SA[g;ϕ] is added to the effective
action, the conformal part of the metric mixes with one of the two ϕ modes, and gives rise
to scalar gravitational waves [64]. Likewise before the identification (5.15) of the potential
A of the 4-form gauge field (4.1) with the torsional part of the Chern-Simon 3-form, F
is constrained to be a constant and simply equivalent to a cosmological constant term in
Einstein’s eqs. by (4.9). Once the interaction Sint[ϕ,A] is added to the effective action, the
3-form current J of (5.17) provides a source for F through (7.6), and F , hence Λeff becomes
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dynamical through ϕ. It is this second scalar degree of freedom of ϕ in SA[g;ϕ] that allows
(and requires) the vacuum energy to become a dynamical variable through (4.9) and (7.8).

Thus in the EFT each of the two scalar conformalon degrees of freedom present in the
anomaly action for ϕ mix with, and source the previously classically constrained conformal
factor of gµν and F , turning each into full-fledged dynamical degrees of freedom. Assuming
the SM, the only new free parameter of the EFT is the constant κ, a kind of gravitational
vacuum susceptibility cf. appendix B, determining the coupling of the current J to the
gauge field A, field strength F , and Λeff of (4.9).

For the longstanding problem of the cosmological term when QFT is coupled to gravity,
in either form of the EFT the classical state of minimum energy is that of vanishing 4-form
condensate: F̃ = F̃0 =0. By the identification of Λeff in (4.9), this condition automatically
sets the value of the cosmological term to zero in infinite flat Minkowski space. By simply
allowing a flat Minkowski solution, this removes one oft-stated obstacle and ‘no-go theorem’
to solution of the ‘cosmological constant problem’ [4, 94]. Moreover Λeff =0 is required by
consistency with the classical or semi-classical Einstein eqs. (4.10) or (6.4) in infinite flat
Minkowski space, in the complete absence of matter and radiation. The condition (4.10)
is independent of UV physics or cutoffs, as simply the unique classical state of minimum
energy with zero curvature and zero torsion, and the stable ground state of the EFT of
low energy gravity.

Empty flat space with zero external fields is also the unique classical state where the
total anomaly A = 0, so that the WZ anomaly action (3.10)–(3.11) has an additional global
shift symmetry under ϕ→ ϕ+ ϕ0 in that state, and F 0123 = 0 is also required by spatial
parity invariance of the ground state. These enhanced global or discrete symmetries may
be regarded as replacing the ’t Hooft naturalness criterion [50] for Λeff = 0.

The consistency condition of Λeff = 0 on the classical condensate in the low energy EFT
of gravity in flat space indicates that estimates of vacuum energy as sensitive to UV physics
are not applicable if GR, with or without the conformal anomaly addition, is to be a well-
behaved EFT at macroscopic scales. Arguments or estimates of the cosmological term in flat
space as proportional to the fourth power of a UV cutoff (which break Lorentz invariance)
or the fourth power of all masses

∑
i
m4
i lnmi in QFT (as in dimensional regularization)

have no physical meaning in the absence of gravitation, as well as being in conflict with
observations even on non-cosmological, solar system scales [7].

Instead a way around the ‘naturalness’ problem of the Λ term is to extend the EFT
of gravity beyond classical GR to contain the additional scalar conformalon degree(s) of
freedom inherent in the conformal anomaly effective action (3.10), and to replace the fixed
parameter Λ of the classical theory by Λeff of (4.9) in terms of a 4-form gauge field F . As a
result of the ‘Maxwell’ eq. F satisfies, this abelian gauge field becomes a fully dynamical
degree of freedom of low energy gravity by (7.6) and (7.8). The setting of an integration
constant to zero at the minimum of energy in flat space is a solution of the naturalness
problem of the cosmological term that involves no fine tuning of any fixed parameters of
the EFT Lagrangian (6.1) of macroscopic gravity.

At lowest order all fields (gµν , ϕ,A) in (6.1)–(7.1) are treated as classical. Quantum
loop corrections are then to be computed by the usual EFT method of appending local
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terms as needed to absorb UV divergences in an expansion in powers of 1/M2
pl, maintaining

the physical meaning of the constants of the lowest order EFT. Thus at one-loop order the
energy of the vacuum will continue to be defined to be identically zero in flat space by the
consistency condition (4.10) on the constant F̃0 = 0, hence Λeff = 0 in the absence of any
sources, and with ϕ = 0. All formal divergences in 〈T̂µν〉flat in purely flat space, quartic
or otherwise, are treated as without physical significance and removed by this consistency
condition on F̃0. There is no sensitivity of this free integration constant, or Λeff defined in
terms of it by (4.9), on UV divergences or UV mass scales.

Following the usual logic of EFT, divergences of quantum loops require the introduction
of additional local terms which are higher order in powers of the Riemann curvature tensor
and its derivatives, divided by higher powers of a UV scale, presumably the Planck mass
scale MPl [22–24], which ultimately limits the range of applicability of the low energy EFT.
These higher order effects and their renormalization should be defined so as not to disturb
the meaning of the low energy parameters at lowest order, such as GN , or ground state
boundary condition on the condensate, Λeff = 0 in flat space. Logarithmic divergences in
curved space (regulated by any covariant method) require the introduction of counterterms
proportional to the local R2 and C2 curvature invariants, together with the finite logarithmic
running of their dimensionless couplings. These terms and local terms involving still higher
numbers of derivatives are not treated as fundamental, but rather as suppressed at energy
scales far below the Planck energyMPlc

2, remaining negligibly small at macroscopic distance
scales much greater than LPl, as consistent with existing EFT results [22–24].

One may also turn the EFT logic around, to conjecture that the important role of the
conformal anomaly and anomalies in general as windows into the UV, and exceptions to
the usual decoupling hypothesis of EFT, may indicate that in the fundamental theory all
masses vanish and conformal invariance is restored — broken perhaps only spontaneously,
at asymptotically high energies. Speculations of this kind for resolution of the naturalness
problem of the cosmological term and possible relation with that of the Higgs mass hierarchy
have been advanced by a number of authors, e.g. [95–99]. Although no clearly successful
complete theory has emerged from these speculations, the idea of fundamental conformal
invariance and relation between these large hierarchy problems and the properties of the
quantum vacuum rather than UV physics remains intriguing.

That both Λ and Higgs hierarchies may be resolvable only by the consistent inclusion of
gravity receives some support from the EFT approach to vacuum energy and the cosmological
‘constant’ as a dynamical condensate proposed in this paper. To the extent that ∂λF̃ 6= 0,
this dynamical condensate necessarily requires non-vanishing spacetime torsion. The role
of relaxing the torsionless condition of classical GR in describing the condensate by (5.15)
as relevant to resolving BH singularities was anticipated in [100], where specific models
generating torsion were proposed. The possible extensions of the EFT proposed in this
paper to generate torsion dynamically and self-consistently remain to be explored. The
coupling of fermions to a condensate with torsion through the spin connection and possible
relation to neutrino mass generation is another intriguing direction for future research. The
microscopic constituents of the gravitational Bose-Einstein condensate (GBEC) described
by F̃ from which its superfluid nature is emergent remain to be elucidated [101, 102].
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As a more immediate matter, the description of Λeff as a dynamical condensate of a
4-form gauge field in the EFT of sections 6–7 makes possible calculations of vacuum energy
in numerous applications, first and foremost for a gravitational condensate star interior and
surface. For cosmology, the universe as the interior of a gravastar realizes the hypothesis
made in section 1 of automatically relating the effective value of the vacuum energy Λeff
to 3H2, and hence to the horizon Hubble scale H−1, with no fine tuning. More realistic
cosmological models, with ΩΛ < 1, require dynamical EFT solutions including matter and
radiation, rather than a purely static de Sitter vacuum condensate.

The tying of the value of Λeff to the Hubble scale is clearly relevant to the ‘cosmic
coincidence problem’ of the ΛCDM model, and immediately suggests a rather different set
of possibilities for cosmological models, in which spatial inhomogeneities and/or boundary
conditions at the Hubble scale H−1 play an important role. The EFT of the conformal
anomaly coupled to the 3-form potential and 4-form abelian field strength term presented
in sections 6 and 7 thus provides a distinctly new framework for dynamical dark energy in
cosmology based on fundamental theory.

From the form of the anomaly A in (3.1), any deviation from exact homegeneity
and isotropy will lead in general to FµνF

µν 6= 0 for the photon radiation field, and
tr {GµνGµν} 6= 0 for the electroweak and QCD color gauge fields in the unconfined phase of
the early universe. This will induce changes in the conformalon field ϕ through its eq. of
motion (6.3), which will then cause the field strength F̃ and hence the vacuum energy Λeff
to change. After the transition to the confining phase of QCD, baryonic matter will still
contain non-vanishing gluonic condensates and thus still act as a source for ϕ, thereby
coupling non-relativistic baryonic matter to dynamical vacuum energy as well.

Thus although ϕ is not an inflaton, it is a dynamical scalar that is well-grounded in QFT
of the SM and can produce backreaction effects on the vacuum energy when fluctuations
away from exact homogeneity and isotropy are admitted. It permits interaction between
both radiation and matter with dynamical dark energy, in which adiabaticity of the matter
and radiation components will no longer be satisfied in general, in effect introducing a
bulk viscosity into the cosmological fluid. If Λeff ∝ F̃ 2 does not remain constant in the
de Sitter phase, deviations from the ΛCDM cosmological model are to be expected, and
evolution away from a pure de Sitter phase due to cosmological horizon modes [103] becomes
calculable, and testable by the cosmological data of large scale structure.

In addition to removing the singularity and paradoxes of BHs, developing detailed
predictions from the EFT proposed will allow study of gravastar stability, normal modes
of oscillation, surface modes and ‘echoes’ that can be tested with gravitational wave and
multi-messenger signals from binary merger events, in the increasing data samples expected
in the future. The prediction of scalar gravitational waves can also be tested by the coming
global array of gravitational wave antennae [104].

The effects of rotational angular momentum have been neglected in the simplest
gravastar solution, although the first steps in including those effects have been taken
in [37, 38]. The EFT solutions of static or stationary gravastars also leaves unexamined
the process of their formation, and in particular the behavior of the stress tensor near
the would-be horizon of collapsing matter, which would have to activate the dynamical
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condensate terms of (7.1)–(7.5). These and many other interesting questions remain to be
addressed in the context of the EFT of dynamical vacuum energy proposed in this paper.
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A Metrics, tetrads, differential forms, and Hodge star dual

In this first appendix conventions and mathematical details used in the text are collected
and catalogued. The metric and curvature conventions used in this paper are those of
Misner, Thorne & Wheeler [39]. Greek indices are four-dimensional coordinate (holonomic)
indices, while Latin indices refer to local othonormal tangent space.

In the tetrad or vierbein formalism the metric line element is written

ds2 = gµν(x) dxµdxν = eaηabe
b (A.1)

with ηab = diag (−1, 1, 1, 1) the flat spacetime tangent space Minkowski metric tensor, and
ea(x) are the 1-forms

ea = eaµ dx
µ satisfying eaµ e

b
ν ηab = gµν , gµν eaµ e

b
ν = ηab . (A.2)

The dual basis of vectors υa satisfy

eaµυ
µ
b = δab (A.3a)

eaνυ
µ
a = δµν (A.3b)

υµaυ
ν
b gµν = ηab (A.3c)

υµaυ
ν
bη
ab = gµν (A.3d)

defining the orthonormal basis in tangent space. Coordinate indices are lowered (resp. raised)
by the metric tensor gµν (resp. its inverse gµν). Tangent space indices are lowered or raised
by the flat Minkowski tensor ηab or ηab. The covariant derivative of the vierbein field
in (5.12) is defined with respect to the torsionless Levi-Civita connection, that in holonomic
coordinates is the familiar Christoffel symbol (2.2), which is specified entirely by the metric
tensor and its first derivatives.

The exterior derivative operator d maps the general p-form

Q(p) = 1
p! Q

(p)
µ1...µp dx

µ1 ∧ · · · ∧ dxµp = Q(p)
[µ1...µp] dx

µ1 ∧ · · · ∧ dxµp (A.4)

into the p+ 1-form

dQ(p) = 1
p!
∂Q(p)

µ1...µp

∂xλ
dxλ ∧ dxµ1 ∧ · · · ∧ dxµp = ∂ [λQ

(p)
µ1...µp] ∂x

λ ∧ dxλ ∧ dxµ1 ∧ · · · ∧ dxµp

(A.5)
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where the square brackets denote anti-symmetrization with respect to the enclosed indices,
and both p and p + 1 must be ≤ D in D dimensions, by the anti-symmetry of the
wedge product.

The Hodge ? dual operator maps the p-form (A.4) into the (4− p)-form

?Q(p) = 1
(4− p)!

1
p! εµ1...µ4 g

µ1ν1 . . . gµpνp Q(p)
ν1...νp dx

µp+1 ∧ · · · ∧ dxµ4 (A.6)

in D = 4 dimensions. We make use of the notation

εabcd =


+1 if (a, b, c, d) = Peven (0, 1, 2, 3)
−1 if (a, b, c, d) = Podd (0, 1, 2, 3)

0 any two indices equal
(A.7)

for the totally anti-symmetric Levi-Civita tensor in the tangent basis, where Peven and Podd
denote even or odd permutation respectively of the four indices which are its argument.
The corresponding tensor in the coordinate basis is denoted by

εαβγλ ≡ εabcd eaα eb β ec γ edλ (A.8)

which is used to define the volume 4-form

?1 = 1
4! εabcd e

a ∧ ea ∧ ec ∧ ed = 1
4! εαβγλ dx

α ∧ dxβ ∧ dxγ ∧ dxλ (A.9)

dual to the unit scalar, and the 4-volume element∫
?1 =

∫
εtxyz dt dx dy dz =

∫
εabcd e

a
t e
b
x e

c
y e

d
z dt dx dy dz

=
∫

det
(
eaµ
)
d4x =

∫ √
−g d4x (A.10)

where xµ = (t, x, y, z) are general spacetime coordinate labels (not necessarily Minkowski).
Since by (A.7) ε0123 = 1, raising all indices by use of the Minkowski metric ηab changes

its sign, so that ε0123 = −1, which leads to

εabcdεmnrs = −4! δa[m δ
b
n δ

c
r δ

d
s] (A.11)

and (4.5) of the text, as well as

??Q(p) = (−)p+1Q(p) (A.12)

for the double dual of a p-form. Since εαβγλ ∝
√
−g it follows that εαβγλ ∝ 1/

√
−g and

∂µ
(
εαβγλ

√
−g

)
= 0 (A.13)

which also can be verified directly from εαβγλ = gαα
′
gββ

′
gγγ

′
gλλ

′
εα′β′γ′λ′ and proper-

ties (A.1)–(A.3), with the definition (A.8). These properties of the ε tensor are used at
several points in the main text, e.g. in (5.19) and (7.7) to convert covariant derivatives to
coordinate partial derivatives and vice versa. That Sint of (5.18) with (5.17) is independent
of the spacetime metric gµν(x), and hence makes no contribution to the Einstein eq. (6.4),
also follows from (A.13).
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B Topological and torsional susceptibility of the gravitational vacuum

In this appendix we consider the physical interpretation of the parameter κ in (4.4), as a
kind of torsional topological susceptibility of the gravitational vacuum. This depends upon
the identification of the 3-form gauge field and associated field strength F , and follows by
close analogy with the cases of the topological susceptibility of the QED2 vacuum, and
chiral susceptibility of QCD in D=4.

In QED2 〈F̃ (x)F̃ (y)〉 = e2δ2(x− y), and its Fourier transform at k2 = 0 (or indeed any
k in the absence of charged sources) is simply the constant e2 [109]. Likewise for the free
action (4.4) in D = 4 flat space we have

〈F̃ (x)F̃ (y)〉0 = κ4 δ4(x− y) and (B.1a)

χF, 0(k2) =
∫
d4x eik·(x−y) 〈F̃ (x)F̃ (y)

〉
0 = κ4 = χF, 0(0) (B.1b)

a finite constant. Since this free correlator is computed with the source current of (5.17) set
to zero, it corresponds to b′ = 0, where all the matter fields contribution to the conformal
anomaly are neglected, as in the quenched limit of QCD, where an analogous expression for
the chiral susceptibility holds [109–112]. Once matter vacuum polarization effects are taken
into account χF (k2) 6= χF, 0(k2) will no longer be independent of k2. However the limit

lim
k2→∞

χF (k2) = lim
k2→∞

χF, 0(k2) = κ4 (B.2)

remains to reflect the local δ4(x− y) short distance correlator of the free action (4.4).
If one were to define the topological susceptibility of the Riemannian E

χE(k2) =
∫
d4x eik·x

〈
E(x)E(0)

〉
(B.3)

directly in terms of the curvature invariants one would encounter the correlator of two
dimension-four operators, with the expected short distance singularity of 1/x8 as x→ 0.
Thus the integral in (B.3) is undefined in perturbative quantum gravity and badly (in fact,
quartically) UV divergent. To define it requires promoting the correlator to a distribution
with a2

2δ4(x), a1 δ4(x) and a0 δ
4(x) local contact terms added with arbitrary finite

coefficients a2, a1, a0, as in [109]. This corresponds to adding three local counterterms to the
action in order to make the three subtractions necessary to remove the quartic, quadratic
and logarithmic divergences from (B.3), and thence to obtain a finite renormalized result in
terms of these three finite but unknown parameters. In the quenched approximation where
the remaining finite terms vanish, only the local δ-functions and derivatives thereof remain,
and for k2 = 0, χE, 0(0) = a0 = κ4.

When F̃ is identified with the torsional part of the topological density of the Euler class,
as in (5.15), κ4 in the action (4.4) parametrizes the logarithmic short distance κ4 δ4(x)
renormalized singularity of this torsional density. Because of (B.1b)–(B.2), this is the
leading order effect of quantum gravitational vacuum fluctuations at short distances that is
physically relevant to the k2 → 0 low energy (light cone) correlations of the EFT.

– 31 –



J
H
E
P
1
1
(
2
0
2
2
)
0
3
7

Since F involves just one derivative of the gauge potential A in the low energy EFT,
F/κ2 is a quantum operator of mass dimension 2 in terms of A/κ2, in contrast to E which
is fourth order in metric derivatives. By this accounting (4.4) is a dimension 4 (rather
than dimension 8) operator which is marginally IR relevant in the Wilsonian EFT sense
in D = 4, just as (4.6) is in D = 2. In the QED2 Schwinger model case there are no
UV divergences whatsoever and e2 is a UV finite coupling, despite having dimensions of
(mass)2. This may provide an interesting prototype of how parameters with positive mass
dimensions can nevertheless remain finite and insensitive to UV corrections. If the matter
contributions to the vacuum polarization self-energy

∫
d4x eik·(x−y)〈Jαβγ(x)Jλµν(y)〉 are

also UV finite, as suggested by its bosonized form (5.17), which converts this self-energy
to a classical tree graph in terms of ϕ, just as occurs in D = 2 [46], then the torsional
topological susceptibility κ will also be UV finite in D = 4. This interesting possibility also
merits an independent investigation.

Although one might expect the distance scale 1/κ of non-trivial vacuum topology
change to be of order LPl, and the value of κ to be of order of MPl, there is no a priori
relation between the two scales. They are initially distinct, just as ΛQCD and fπ are in QCD,
to become possibly related only in a UV complete theory of quantum gravity. Otherwise κ
and MPl are treated as independent and unrelated dimensionful constants in the low energy
EFT of gravity proposed in this paper.
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