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ABSTRACT 
The Effectiveness of Categorical Variables 

in Discriminant Function Analysis 

by 
Preston Jay Waite, Master of Science 

Utah State University, 1971 

Major Professor: Dr. Rex L. Hurst 
Department: Applied Statistics 

A preliminary study of the feasibility of using categorical 
variables in discriminant function analysis was preformed. Data 
including both continuous and categorical variables were used and 
predictive results examined. 

The discriminant function techniques were found to be robust 
enough to include the use of categorical variables. 

Some problems were encountered with using the trace criterion 
for selecting the most discriminating variables when these variables 
are categorical. No monotonic relationship was found to exist between 
the trace and the number of correct predictions. 

This study did show that the use of categorical variables does 
have much potential as a statistical tool in classification procedures. 

(50 pages) 
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CHAPTER I 

INTRODUCTION 

The technique of discriminant function analysis was originated by 
R.A. Fisher and was first applied by Barnard (1935}. Fisher's first 

paper on the subject appeared in 1936 (fisher, 1936). In this study, 

Fisher was using measurements made on the Iris plant to predict the 
various varieties of Iris. This �ork, by Fisher, was based on the 
multivariate normal, with all the variables continuous. From Fisher's 

work it is seen that the discriminant function analysis is basically 

a procedure for finding a linear function of variables which will predict 
the group membership of observations. Much of the data currently being 
collected are at least in part categorical in nature. In the area of 
multiple regression, the usage of categorical variables has been added 
to the multiple regression techniques by means of dummy variables such 
as indicated by Harvey (1964), Henderson (1953) and Searl (1966). 
The multiple regression techniques have been found robust enough so 
that the usage of categorical variables has become prevalent, and it 
was decided to see if the discriminant function techniques are robust 
enough to use dummy variables in predicting categories or group member­
ship. 

This study will concentrate on basically two questions: 

1. Can categorical variables be used in discriminant function
analysis? 

2. What problems, if any, are encountered in interpretation of
the results when categorical variables are used? 



The first part of the study will give the mathematical derivation 
of discriminant function analysis and classification procedures. 

This chapter will also indicate how the categorical variables 
have been added to the discriminant function procedure by the use 
of dummy variables. 

Chapter III contains a discussion of the first question concerning 
the feasibility of using categorical variables in discriminant function 
analysis. To examine this problem, a sample problem is analyzed using 
data collected by the author from a dental health survey conducted in 
the State of Utah. 

Chapter IV contains a detailed discussion of the behavior of dummy 
variables in discriminant function analysis. 

Chapter V, the final chapter, is a summary of the study. In this 
chapter, areas of further research are suggested for consideration 
of the reader. 

If categorical variables can be used in discriminant function 
analysis, then statistical techniques are available which will handle 
the building of mathematical models when the dependent variables are 
categorical and the independent variables are any mixture of qualitative 
and quanative variables, via discriminant function analysis. 
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CHAPTER 2 

MATHEMATICAL FORMULATION 

2.1 Discriminant function 
The technique of discriminant function analysis was ori�inated 

by R.A. Fisher and was first applied by Barnard (1935). Fisher's first 

paper on the subject appeared in 1936 (Fisher, 1936). Fisher (1936) 

defines discriminant function between two populations as that linear 
function of characters for which the ratio 

(mean difference) 2 f variance 

is a maximum. 
Rao (1965) gives a more recent discussion of discriminant function 

analysis, which follows very closely the development of Fisher. The 
mathematical formulation in this study follows the procedures suggested 
by Rao. 

Let a1 x1 . + a 2x2 . + . . . a x .1 1 p p1 
be the linear function and di

the difference of the expected values of x. in the two populations. 
1 

mean difference = I:a.1 

variance = Ha.a .a . .1 J lJ 

E(x.1) - a. E(x.2)1 1 1 (2.1.1) 

(2.1.2) 

3 



The quantity to be maximized is then 

2 (Ea . d . } + 
. 1 1 
1 

na.a .a . .
. . 1 J 1 J 
lJ 

differentiating with respect to ai and setting the derivative
equal to zero gives the result 

(2.1.3) 

a.a .. + a
2

a. 2 + . . .  a a .  = ccS. 
1 lJ 1 p lp 1 i = 1, . . . p (2.1.4)

Since only the ratio of a. can be uniquely determined, c can 
1 

be chosen to be equal to 1. 

The coefficients a. can be estimated by solving the equations 1 

where s .. 
lJ 

is the variance-covariance matrix for i and j. 
Discriminant function is a useful tool of statistics in that 

(2.1.5) 

it allows the researcher to reduce the dimensions of his problem without 
loosing a great deal of predictive power. The classification procedures 
to be discussed in this study do not depend on the use of discriminant 

function. Individuals could be classified directly from the observations. 

Using discriminant function makes interpretation of the classification 
procedure more straightforward. Procedures are also available (Miller, 
1960) for obtaining a stepwise deletion of the variables. 

4 



2.2. Classification procedures using discriminant function 
In using discriminant function for classification purposes, the 

problem becomes one of deciding on the membership of an individual 
in one of a given set of populations. An attempt is made to look 
at the entire profile of the individual and compare this with the 
profile of the various groups. In order to obtain a satisfactory 
solution to the problem, the following information is necessary. 

1. Probability densities P1 (z}, P2(z), . . .  Pk(z) for
a given set of measurements z on an individual in k alternative 
populations. 

2. A priori_ probabilities n1 ,n2,n3, . . .  nk for the populations.
3. Assignment of loss function, Ri j, for misclassification.

Given an individual with measurements z, his probability of being 
in population j' and having measurements z given he comes from 
population j' is a measure of interest. The assumption is made 
that P(Gi), probability that an individual comes from population
j, and P(z./G.), probability that an individual would have a measure­, J 
ment Z. given that he came from population j, are independent. 1 

Therefore 

P((G.)("'\ (Z./G.)) = P(Gj) • P(Z./G.).J J J J J (2.2.1) 

Now multiplying each term by its appropriate loss function and taking 
the negative sum over all groups results in the equation 

(2.2.2) 

5 



S. is then the individual 1 s discriminant function score and J 
the individual is classified in the group for which his score is the 
highest. Such a rule is shown by Rao (1965) to minimize the expected 
loss. 

In many real world problems, the losses due to wrong classification 
may be difficult if not impossible to obtain. In such cases the best

rule is to assign the individual wi th measurements Z to that population 
for which the posterior probability has the highest value. In this 
case the discriminant score for the j th population is 

k E j=l 1T • P. (z).J J (2.2.5) 

Consider the case where (Z) is distributed as a p-variate normal 
in each population. Choose Pi (Z) as the normal densi ty

(21r)-P/2 jEJ. -½ exp (-½(Z-µ.) J J E.-l (Z-µ.)) rr. = 1;2, .. k (2.2.6)J J J 

with mean µj and dispersion matrix Ej.
Rao (1965) suggests taking the logarithm of n.P. (Z} and omittingJ J 

the factor (21r)-P12 common to all j and obtaining the equivalen t

discrimination score. 

-½ (Z-µ . )J (2.2.7) 
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consider 

(2.2.9) 

2 
which is distributed as x with p degrees of freedom. 

Under the assumption that the populations do not differ in the 

dispersion matrices, equation 2.2.7 can be rewritten as 

where E is the pooled variance-covariance matrix. 
2.2.8 can also be rewritten as 

2 
This is still distributed as x with p degrees of freedom. 

(2.2.9) 

(2.2.10) 

Ommiting the parts of 2.2.9 not included in 2.2.10, will not alter 
the assignment of classification. Since 

P(X/G.) = P(Z-µ) 
1 

L-l (Z-µ)
l 

(2.2.11) 

2 
evaluation of equation 2.2.10 will result in a x value for each 
group. 

For classification analysis, we will assign the individual to 

the group for which x
2 

= (Z-µ)
1 

E-l (Z-µ) is a minimum, or
equivalently, assign the individual to the group for which P(X/Gi)
is maximum. 

] 



In order to preform the classification, a discriminant function 
score is computed for each individual. These scores are compared 
with the profile of the corresponding scores of each group centroid. 
The individual is then assigned to that group with 9rofile most 
resembling his own. 

The discriminant function score for an individual for group 

j can then be calculated by 

n 
E a .. z .. 

i=l 1J lJ j=l,2, . . . k 

where n is the number of variables measured and the a .. lJ 
be obtained from the formulas 

a .. lJ = 11 a m .. lJ + . . . ln 
(J mnj

may 

(2.2.12} 

21 + 2n (2.2.13) a2j = a m1j . . . (J m nJ

a nJ
nl = a m1j + . . • nn a m • nJ. 

The procedure reconvnended by Rao (1965) produces discriminant 

function scores which are highly correlated. Because of the high 

correlation of these discriminant function scores, it is difficult 
to interpret their meaning. Since this procedure produced scores 
which are highly correlated, it is called a nonorthogonal solution. 

An orthogonal solution to this problem has been proposed by researchers 
using discriminant function analysis in the social and behaviorial 
sciences. Cooley and Lohnes (1962) give a good discussion of this 
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approach. Orthogonal, as it is used here, refers to the fact that 
the discriminant function scores obtained by this method are uncorrelated. 
This procedure produces one less function than the number of groups 
or the number of variables whichever is smaller. 

The discriminant functions in this problem are represented by 
the solution of 

w-l B V. = A- V.- -� ,� (2.2.14) 

where the \; are the characteristic roots of 1� 1 � - Ai II = 0 
and Vi are the columns of the weighting coefficients matrix V.

W = error variance-covariance matrix 
A= group variance-covariance matrix 
Group centroids (G) are computed by the equation 

Mis a vector of group means 
Vas defined above 

(2.2.15) 

The variance-covariance matrix of group centroids is given by 

I = V WV. (2.2.16) 

All covariates should be zero since columns of y_ are orthogonal. 

These discriminant function scores form the basis for a decision 
concerning to which group an individual should be assigned. 



The actual problem of classification reduces to one of testing 

a group of hypotheses regarding group memoership. The likelihood 
of such a hypothesis may be written as P(G./x.} J 1 i=l,2, . . . n
and j = 1 , 2, . . . g. There are g such hypotheses and the hypotheses 
with the highest probability is selected. Cooley and Lohnes (1962) 

refer to this as the maximum likelihood method of classification. 
An attempt is made to look at the entire profile of the individual 
and compare this with the profile of various groups. One way to 
describe such a distribution is in terms of ellipsis, each being the 
locus of points of a specified density. The size of the ellipse is 

2 I l determined by the value z = x. D- x. where D is the variance-1 - l 

covariance matrix and x1 is an m element vector of deviations.

' . . . X n,

As the values of z 2 increase, the density at that point

(2.2.17) 

x12, x22 , . . . xn2 decreases. If points are selected at random from

a multivariate normal, z2 is distributed as x 2 {chi-·square) 

with p degrees of freedom. The x value is a measurement of the 
standardized distance in n space, that a point is from a given group 

centroid. One selection criterion then becomes: Classify the individual 
into the group with centroid whose normalized distance is nearest in 
the n dimensional sense to the individuals score, or select R. suchJ 
that 

k = 1,2, . . .  g. 

10 



If (D. = D.l and the sizes of the g groups are equal, this 1 J 
decision rule will result in the minimum number of misclassifications 
(Cooley and Lohnes, 1962}. The question entertained using this decision 
rule is: What is the probability that an observation from group j 
would lie this far from group j centroid? 

Another way of looking at this problem is: Given an observation, 

what is the probability that it came from group j? This can be 
computed using Bayes's theorem which results in the equation. 

P • . (.H . / X • } = lJ J J 

j=l,2, g 

i=l,2, n. 

(2.2.18) 

This second method of classification will generally give more 
accurate predictions when the a priori densities vary widely from 
uni form. 

The classification procedures discussed earlier can be used for 
both the orthogonal and nonorthogonal procedures. The orthogonal 
procedure has the advantage of easier interpretation. For this reason, 
the orthogonal approach has been used on the data throughout this 
study. The approach has been to look at the discriminant function 
scores of an individual and compare the pattern of these individual 
scores with group centroids of the same scores for the sample data. 

11 



Some additional problems arise when the variables used to obtain 

these function scores are categorical in nature. One important under­
lyinq assumption in Fisher's derivation of the discriminant function 
techniques was that the independent variables were normally distributed. 

The generated dummy variables are by no means normally distributed. 
This problem is not as severe as one would originally fear. The 
Central Limit Theorem guarantees that if a fairly large number of 
variables are considered, the distribution of the discriminant function 
scores approaches the normal. The Central Limit Theorem becomes 
weaker and weaker as the number of variables decreases. It is also 
weakened when the preoonderence of cateoorical variables in the final 
model increases. The situation will be most extreme when a model 

of only one categorical variable. with a small number of levels, 
is used. 
2.3 Selection of variables 

In discriminant function problems. a large number of independent 
variables are generally available. Freauently the number is too larqe 
to be considered practical. There are ways of reducing the number of 
independent variables while retainina maximum predictive power. 

As a first step in reducing the number of variables to be constdered. 
Hurst (1971) suggests computino a simple analysis of variance, completely 
randomized design, for continuous variables and a two-way independence 
x 2 for cateoorical variable analysis. Variables that are not 
significant by these tests may be eliminated from further study. ff 
a continuous variable does not show sionificance between group means, 
the frequency distributions will overlap to the extent that the variable 
will be useless for predictive purposes. 

12 
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With the categorical variables, an attempt is made to develop 
relationships between these variables and another categorical variable, 
group membership. The two-way independence x tests for independence 
of pairs of categorical variables. Any categorical variable which 

is not significantly associated with group membership can not be expected 
to contribute discrimination information between groups. 

This screening is not the limit of the available procedures. 
Many variables which show significance between groups may be giving 

the same information due to a high association between or among variables. 
Miller (1960) has shown that the trace of 

Q = (w-1 fl) (2.3.1) 

is a useful criterion for further reducing the number of variables 
to be used. 

The trace of Q is computed as 

trace (Q) = qll + q22 + · • · qkk. (2.3.2) 

In the univariate case, this statistic reduces to the F ratio. 
Hurst (1971) has modified the work of Shatzoff, Tsao and Fienberg 

(1968), wherein they give an alogrithm for computing all possible 
multiple regressions, to evaluate the trace of� matrix under stepwise 

conditions. 
The trace is first evaluated with all variables in the model. 

Each variable is then successively removed from the model and the trace 



is again evaluated with that variable removed*. The variable which 
causes tne smallest decrease in the trace is then removed permanently 

and the entire process is repeated. This process continues until 
only one variable remains in the model thus allowing the researcher 
to discover, in order of importance, the most discriminating variables. 
The last variable to reamin in the model is the one which best dis­
criminates between groups. This procedure is analogous to the step­

wise deletion procedures used in multiple regression with R2 as
the selection criterion. 

When the number of independent variables to be considered is 
not too large, the initial screening procedures can be omitted and 
all Vdriables run on the stepwise procedure. 
2.4 TrP. usaqe of qualitative variables 

�n discriminant functlon analys, s 
Categorical variables can be introduced into discriminant function 

analysis by means of dummy variables. 
Consider the case where an experiment contains p continuous 

variables and q categorical variables. The discriminant function 
model can be written as 

where 

q p+q 
Y. = r aiJ.xJ.lm + r 1lm j=l j=p + 1 

x.1 are the categorical variablesJ m 

nj 
r 

k=l 

zjklm are the dummy variables of non full rank

nj is the number of levels of the j th categorical variable

* The dummy variables associated with a categorical variable are
treated as a subset for deletion and trace comparisons. 

(2.4.1) 

14 



The dummy variables can be brought to full rank by imposing the 
condition 

(2.4.2} 

For example: If x1 is a qualitative variable with five possible
levels or categories, the following dunvny variable would result. 

Level 

5 

z,, 
1 

0 

0 

0 

0 

0 

0 

0 

z, 3
0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

z,s 
0 

0 

0 

0 

1 

These Z variables produce a Z'Z matrix of non full rank, but 
by imposing the conditions 

E aiJ"k k=l 
= 0 

the following full rank variables are obtained. 

15 



x,,* x,2* x,3* Xl4
* 

l 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

-1 -1 -1 -1

* where xjk = ZJ. k - Z. Jnj k = 1,2, . . •  nj-1.

The model using dummy variables of full rank then becomes 

and 

p 
y. = z: 1lm j=l

a . .  1Jn. J

a . .  X 'l lJ J m 

n.-1 
= - z:J 

k=l 

p+q n. -1 *+ z: z:J a
j=p+l k=l i j k

* 
a 
i j k. 

The total number of resulting variables is then 

N = (P + 
p+q z: 

j=p+l 
(n. -1}). J 

* 
X 

j klm 
(2.4.4) 

(2.4.5) 

(2.4.6)

Once these dummy variables have been created they are used along 
with the continuous variables. The (nj-1) dummy variables formed
from a qualitative variable are treated as a subset representing the 
categorical variable. 

16 



CHAPTER 3 

APPLICATION Of DISCRIMINANT ANALYSIS TO CATEGORICAL VARIABLES 

3.1 Summary of the sample problem 
The methodology for adding categorical variables to the discriminant 

function model has now been developed. Up to this point the use of 
categorical variables in discriminant function seems at least feasible. 
In order to test this further, some data were needed. Methodology which 
should work, but does not give accurate prediction, is of little use to 
the researcher. 

The data for this example come from a dental survey of the State 
of Utah. This survey was sponsored by the Utah Foundation for Dental 
Health Education and Research. It was financed by the Utah State 
Division of Health. The data were collected by a team of pollsters 
under the direction of Rex L. Hurst. Since most of this data is of a 
categorical nature, it offers a good base for the examination of the 
use of categorical variables in discriminant function analysis. 

The data used consist of eighteen variables from groups of sizes 
56, 465, and 711. The three groups in this example represent individuals 
answering no response, yes, and no to the question: Would you favor 
a prepaid dental insurance plan in the State of Utah? Fourteen of 
the eighteen variables are categorical in nature and the remaining four 
are continuous. 

Table l lists the eighteen variables as well as indicating which 
ones were selected for use in the final model. Eight of the nine 
variables selected were categorical in nature. Table 2 gives the codes 
and their meanings for these eight variables. 

lJ 



Table l. Variables involved in original sample 

Variables 

1. Oral health score
2. Sex

3. Age

4. Number of missing teeth
5. Number of fillings
6. Number of cavities
7. Teeth replaced
8. Do you wear dentures
9. Visit dentist adults

10. Visit dentist children
11. Why don't you visit dentist
12. Gum troub 1 e
13. Occupation
14. Hospital plan

15. Cost of dental work
16. Frequency of brushing
17. Education of husband
18. Dental knowledge score

*Indicates variables used in final model.

Codes 

continuous 
0-2 
continuous 

continuous 
0-4 
o-4 
0-2 

0-2 
0-6 

* 

* 
* 

* 
0-6 (no code 1) *
0-4 

0-2 
0-9 * 
0-2 * 
0-4 * 
0-5 * 
0-5 

continuous 

18 



3.2 Analysis and interpretation of the 
samp 1 e P'tob"Fem 
The data were analyzed using a group of programs available at 

Utah. State University and cal led Th.e Discriminant function Package 
(Hurst 19711. This package consists of seven separate programs which,
when used in combination, will provide an analysis of the type desired. 
The particular segments of the package used in this study were: 

1. MACRDT

2. SDF
3. ODF
4. DFS
A stepwise deletion procedure was applied to the eighteen variables. 

Because of storage restrictions of the computer used to analyze the 
problem, the eighteen variables were arbitraily divided into two groups. 
Each group was separately analyzed by the stepwise deletion criterion. 
The variables selected to go into each group can be found in Table 3 
parts A and B. Following the stepwise procedure, the most discriminating 

variables from each group were then combined into a single group and 
a stepwise procedure was preformed on them again. These final nine 
variables were subsequently used in the model for prediction of group 

membership. 
The results of this procedure are listed in Table 3 part c. 

Age, a continuous variable, was the last variable to be deleted. 
This indicates that if a researcher were allowed only one unit of 
information on an individual and from this was required to classify 

him, age would be the best unit to obtain. The other variables are also 
listed in order of their contribution to the trace of (Q=w- 1�).

19 



Table 2. Codes and meanings for categorical variables 

Occupation 
0= Non response 
3= Trades 

6= Government 
Visit dentist children 
0= Non response 
4= Every year 
Hospital plan 
0= Non respon!:.e 
Cost of last years dental 
0= Non response 
3= $200-299 
Number of cavities 
0= Non response 
3= 4-6 

Visit dentist adults 
O= Non response 
3= 2-3 years 
Freguency of brushing 
0= Non response 
3= Once a day 

Number of fillings 
O= Non response 
3= 10-19 

l= Manual labor 
4= Farming 

7= Owner-operator 

2= When have trouble 
5= Every six months 

l= Yes 

1 = $0-99 
4= $300+ 

l = None
4= 7+ 

1= Never 
4= Every year 

l= Never 
4= Twice a day 

l= None 
4= 20+ 

2= Clertcal service 

5= Housewife 

8= Professional 

3= 2-3 years 
6= More often 

2= No 

2= $100-199 

2= 1-3 

2= When have trouble 
5= Every six months 

2= Seldom 
5= Three times or 

more a day 

2= 1-9 

20 



Table 3. Results of stepwise deletion for selection of discriminat­
ing -var tables 

Vartabl e 
A, ScrP.ent� run Part I 

Trace 

Gum trouble 
Dentures 
Oral health score 

Number of missing teeth 
Sex 
Why don't you visit dentist 
Teeth replaced 
Number of fillings 
Visit dentist adults 
Number of cavities 
Visit dentist children 
Age 

179,58 
177 .44 
175.36 

172 ,36 
170.07 
166.76 
160.96 
154. 51
146.92 
137.30 
123. 04
100.20 

B. Screening run
Variable 

Dental knowledge score 
Education of husband 
Frequency of brushing 
Hospital plan 
Cost of dental work 
Occupation 

Trace 

1 25. 98 

124 .49 
117. 58

107.67 
96.67 
78 .10 

Part II 

* 
* 
* 
* 
* 

* 
* 
* 
* 

*Indicates variable selected to be used for final stepwise. 
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Table 3. Continued 

Variable 

Number of fillings 
Frequency of brushing 

Visit dentist adults 

Number of cavities 
Cost of dental work 

Hospital plan 
Visit dentist children 
Occupation 
Age 

C. Final run
Trace 

216.78 
209.88 
201.82 

193.07 
181 . 20 
165. 60
147.84 
129.32 
100.20 

When all variables involved are continuous, Miller (1960) has 
shown that contributions to trace and predictive power have a monotonic 
relationship. This means that the higher the contribution to the 
trace of a particular variable, the more predictive power the variable 
contains. A major purpose of this study was to find out if the trace 

criterion can be used as a measure of predictive power when using 
categorical variables. In order to investigate this problem, the 
discriminant function scores corresponding to the categorical variables 

were computed and the prediction results examined. 
When the eight categorical variables are written with their 

dummy variable representation, they are expanded to 39 variables. 
These 39, plus the continuous variable age, result in 40 variables 
for the predictiye model, The transformation to orthogonal discriminant 
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functi'on space results in minimum lg-1, rl = two discriminant 
functions (Cooley and Lohnes, 1962}. 

The coeficients for the discriminant functions for the sample 
problem are listed in Table 4 parts A and B. Tnese coeficients are 
analogous to be b, IS 

l 
in regression analysis. An individual's score 

is computed as a linear combination of these coeficients. For example,
if the average scores of Group One were relatively high while the
average scores for Group Two were relatively low, the variables with
higher positive coefficients would likely indicate a person from Group
One.

The group centroids represent the average of all the discriminant 
function scores for a particular group on a given function. The 
profile of scores for a particular group centroid represent a pattern 
for that group. It is this pattern that is compared with the pattern 
of an individual in the classification procedures. The centours of 
the centroid� �re a measure of the overlap of the data from two different 
groups. The group centroids and centours of the centroids are listed 
in Table 5. 

Figure l shows a two dimensional plot of the three group centroids 
for this problem. Some interpretation of what each of the scores 
mean based on the relative position of the centroids can now be made. 
The first score gives maximum discrimination between the No and Yee, 
groups. The Non Response group can be looked at as being a comrosite 
of three groups. 
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Table 4. Individual coeficients for the discriminant function scores 

A. Coeficients for discriminant function one
Variable 0 1 2 3 4 5 6 7 8 9 Cont. 

Age .018 
Occupation .322 .273 .045 .063 . 154 .... 129 .,. .173 -.093 . 170 -.09]

Visit dentist children .... 025 -.004 . 051 .011 .033 -.067 

Hospital plan -.025 .128 -.102 

Cost of dental work -.270 -.257 .049 . 117 .361 

Number of cavities . 193 -.069 .076 . 221 .421 

Visit dentist adults -.588 - . 123 -.928 .090 -.160 1 .843 

Frequency of brushing .264 . 136 -.184 -.328 .034 -.089 

Number of fillings .023 .025 .080 -.064 -.064 



Table 4. Continued 

B. Coeficients for discriminant function two

Variable 0 1 2 3 4 5 6 7 8 9 Cont. 

Age -.001 

Occupation .038 .058 -.016 .045 .072 . 188 .177 .381 -.978 .039 

Visit dentist children .218 .136 . 149 . 154 .067 -.724 

Hospital plan -.033 .055 -.023 

Cost of den ta 1 work - . 1 77 -.042 -.059 -. 151 .430 

Number of cavities . 136 -.023 -.026 .099 - .184

Visit dentist adults .058 -.068 -.066 .088 -.383 . 21 2 

Frequency of brushing -.410 .280 . 122 . 137 .055 -.084 

Number of fillings • 183 .292 -.065 .084 .090 



Table 5. Group centroids and centours of the centroids 

A. Group centroid for discriminant function one

B. 

Group 

l .
2. 
3. 

Centroid 

.8345 

.4680 

. 9108 

Group centroid for discriminant function 

Group Centroid 

1. .3550 
2. . 5801 

3. .5896 

C. Centours of the centroids

l . 0000 .2892 .5997 
.2892 1.0000 .5547 
.5997 .5547 1 . 0000 

two 

Those giving no response may be from one of the following groups. 
1. In favor but choose not to answer.
2. Opposed but choose not to answer.

3. Really have no opinion.
As might be expected, the centroid of the Non Response group 

lies between the Yes and No groups on score one. The second 
discrimination score seems to be a score which tends to discriminate 
between response categories and the Non Response group. 
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Figure 1. Relative position of group centroids on the two function 
scores. 
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By corresponding these scores to these meanings, some interpretation can 

be given to the coeficients in Table 4 parts A and B. 
for di'scrimi'nant functton one, Groups One and Three represent 

indtvidaals giving no response and those opposed to a dental insurance 
respectively. Both of these group centroids show a higher value. 
Those in favor show a somewhat lower centroid. The coefficients of 
Table 4 part A then can be given some interpretation. The higher 
postive coefficients for categories tend to classify the individual 
in either Non Response or No groups on discriminant function one. 
Consider, for example, the category, number of fillings. Table 2 
indicates the five possible codes for this variable. In Table 4A, 

the coefficients for code three and four have negative coefficients. 
These coefficients indicate that based on discriminant function 
one alone, individuals who have more fillings would be more likely to 
favor the insurance. 

The centroids in discriminant function two show that higher scores 
correspond with answering the questionaire, while lower scores 
correspond with non responses. In the question on hospital plan, 
those individuals who would not answer this question and those who 
had no hospital plan were generally non commitial on a dental plan. 

An example of one respondent, and how he was classified, may 
be instructive to look at. This individual was actually from the 
group of Non Response, but individuals from any other group would be 
analyzed in the same manner. The data for this respondent are shown 
in Table 6. 



Table 6. Data for individual case study 

Variable Variable 
number name 

l Age 

Respons-e 

51 

Code DulllTly var,able 
representation 

51 

29 

2-10 Occupation Trades 3 0 0 0 1 0 0 0 0 0 0 

11-15 Vtsit dentist children No response 0 l O O O 0
16-17 Hos pita 1 pl an Yes 1 0 1 
18-21 Cost of dental work 0-$99 l 0 1 0 0
22-25 Number of cavities None 1 0 1 0 0
26-31 Visit dentist adult 2-3 Times/yr. 2 0 0 1 0 0 0
32-36 Frequency of brushing 3+ 5 -1-1-1-1-1
37-40 Number of fillings 1-9 2 0 0 1 0 

The two discriminant function scores for this individual are then 
computed by adding his variable score times the weighting factor for 
that category, 

Score for discriminant function one. 

51 (.018) + 1 (.063) + 1 (-.025) + 1 (.128) + 1 (-.257) 
+ 1(-.069) + 1(.090) + 1(-.089) + 1(.080) = .839 

Score for discriminant function two. 

51 (.001) + 1 (.045) + 1 (.218) + 1(.055) + 1(.042) 
+ 1 (.023) + 1(.088) + 1(-.084) + l(-�065} = .348 



The three group centroids along with the respondents score are 
ploted in Figure 1. From looking at this figure it can readily be 
seen that this person would be placed in Group One by the minimum 
distance criterion discussed in Chapter II. 
3.3 Classification results using nine 

variable model 
To test the effectiveness of the categorical data in predicting 

of group membership, an attempt was made to classify the data into 
one of the three groups. This classification was preformed via the 
two classification criterion discussed in section 2.2. 

2
1. A minimum x technique assigns the individual to the group

for which x
2

• = (Z�µ.} 1 [-l (Z-µj) is a minimum.J J 
2. A Bayesian approach was also used which takes into account

the a priori distribution of group membership. The a priori 
distributions used in this study were the sample sizes. If the sample 
sizes are not representative of the population probabilities, the 
population probabilities should be used, 

Table 7 gives the results of the classification procedure, By 
2use of the minimum x , which assumes a uniform prior, 62 percent 

of the individuals were correctly predicted. Since the data varied 
substantially from uniform, the Bayesian approach would be expected 
to give better results. This is indeed the case. As Table 9 shows, 
66 percent of the individuals were correctly predicted using this 
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method. This represents an improvement of 100 percent over guessing, 
which would be expected to correctly predict 33 percent of the individuals. 
This adds credence to the use of categorical variables in discriminant 
function analysis. 



Table 7. Compairson between actual and predicted responses on the 
nine variable model 

A. Using minimum X

Predicted 
NR YES NO TOTAL 

NR 25 15 16 56 
Actual YES 49 333 83 465 

NO 65 243 403 711 

Total 139 691 502 1232 
761 correct out of 1232 or 62 percent correct 

B. Using Bayesian
Predicted

NR YES NO TOTAL 

NR 9 15 32 56 

Actua 1 YES 11 275 179 465 
NO 18 159 534 711 

Total 38 449 745 1232 
818 correct out of 1232 or 66 percent correct 

The results of the two methods of selection for the case study 

discussed in section 3.2 are given in Table 8. This individual was 
placed in Group One using the minimum distance criterion. When the 
Bayesian appraoch was used the classification was switched to Group 
Three. 
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This sh.ift in the second predicti'on is due to the fact that a small 
percentage of the data were actually from people from the first group. 
The low prior probability pushes the observation into one of the other 
groups. 

Table 8. Probabilities and classification 
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,;:a= 

Group l Group 2 Group 3 Cl ass ifi catio,1 

Minimum X .9688 .6664 .8899 l 
Probability 

Bayesian .0539 .3105 .6356 3 

To give a more detailed picture of the behavior of the categorical 
variables, a new model was formed using only the three most discriminat­
ing variables. Two of these variables were categorical and one was 
continuous. As a final refinement of investigation, each of the three 
variables were used individually and in all possible combinations with 
the other two. Models were formed from each of these and a classifica­
tion of every individual was made at each stage. Chapter N gives 
a detailed breakdown of the results of these investigations. 



CHAPTER IV 

BEHAVIOR OF CATEGORICAL VARIABLES IN DISCRIMINANT ANALYSIS 

4.1 Investigation procedures 

In order to investigate the categorical data in detail, the three 
variables judged most discriminating by the trace criterion were 
selected for closer examination. One of these variables (age) is a 
continuous variable while the other two (occupation and visit dentist 
of children) are categorical. Table 9 gives the results of preliminary 
investigation of these three variables. The entries into the chi-square 
tables represent percentages of the group in each category and not 
actual numbers of observations. 

As discussed in Chapter II, this univariate F test for the 
continuous variable age gives a measure of discrimination power for 
this variable. An F ratio of 100.2 is significant at the .001 level. 
A look at the means indicates why this is so high. Group three in. 
dividuals, answering no, have the highest mean with a mean age of 
49.01. This indicates that older people were more likely to be opposed 
to the plan. The mean of Group Two, those answering yes, is lower at 
36.43. The Non Response group falls between the other groups as would 
be expected. 

The two-way independence chi-square test was applied to the two 
categorical variables. This test gives some insight into where the 
discrimination power of the categorical variables occurs. Some levels, 
such as level one, indicate a wide disparity between groups. Based 

on occupation alone, those answering no response will likely come from 
group one. 
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Those in cle t ical - service occupations, column tllree of x table, 

are likely in Group Two. Other answers such as column one, manual 

labor, give little or no information on group membership. 

Table 9. Results of univariate tests on the three most discriminating 
variables 

Source of variation 

Total 

Groups 

Error 

Group 

1. 

2. 

3. 

N = 56 

N = 465 

N ;::: Jl l 

.08 

.02 

.02 

l 

.00 

.01 

.02 

A9e 

Degrees of freedom Mean sa.uares F test value 

1231 

2 22,585.3 100.2 

1229 225.4 

Mean Standard deviation 

47.66 17.90 

36.43 11 .12 

49.01 16.86 

Occueation 

2 3 4 5 6 7 8 9 

. 16 .24 .02 .oo • 16 .05 .02 .27 

.25 .28 .02 . 01 . 19 .07 .07 .06 

.02 .23 .05 .04 .09 .04 .06 .29 

2 

X lB = 147 .379 
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Table 9. Continued 

N = 

N = 

N = 

Visit dentist children 
0 2 3 4 5 6 

56 .48 .02 .02 . 17 .29 .02 
465 .30 .02 • 01 .38 .28 .01 

711 .55 .02 .01 • 18 .23 . 01 

x,o = 79.271 

A similar situation occurs with the third variable. Column 4 
of the visit dentist children table, shows that those visiting the 
dentist every year, are likely to favor the insurance. Those not 
responding to this question are more likely to be opposed to the idea. 
Many individuals not responding to this question did so because they 
had no children living with them, which helps to explain why so many 
people in this category were opposed to the insurance. 

As can be seen, all three variables have a large amount of dis­
crimination information between groups. The trace criterion, shown 
in Table 3C, indicates that age is the most discriminating of the three 
variables. 

If the three variables were to behave as continuous variables, 

then using age alone would result in more correct predictions than 
either of the other two variables alone. The results using categorical 
data did not seem to follow this pattern. 

The procedure used to examine the behavior of categorical variables 

was to investigate the relative predictive power of the individual 
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variables alone as well as in combination with the other two, It was 

reasoned that by looking at a single categorical variable, and from 
that classifying all the individuals into one of the three groups, the 

effect of that variable alone could be examined, Since the trace 

criterion is available for these variables, a comparison of trace with 
ability to correctly predict could be made, In addition, investigation 
of combinations of variables would give an indication of how variables 
interact, 

The fact that only the three most discriminating variables were 
thus examined is of no particular significance. Examination of more 
variables would have greatly magnified the analysis without providing 
a great deal of additional information. 
4,2 Results and interpretation 

All individuals in the study were classified using each model. 
A comparison of their power to correctly predict could then be made. 
Tables 10 and 11 give a complete breakdown of the successful predictions 
for each model. 

These results tend to suggest that the trace criterion does not 
have a one to one correspondence with ability to correctly predict 
group membership. Using the minimum x criterion, age which should 
have been the best predicting single variable, correctly predicted 
only 407 individuals. Occupation, the variable with the second 
highest contribution to trace correctly predicted 679 individuals. 
This apparent contradiction can be explained, at least in part, without 
reference to the face that occupation is a categorical variable. 
The problem here is with the variable age. An extremely large group 

of individuals were incorrectly classified as coming from Group One. 
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This means that a large group of individuals, actually from Groups Two 
and Three were closer to the Group One centroid. From examining Figure 

1, we see that the Group One centroid corresponds to lower values of 
discriminant function two than do the other two centroids. In Table 

48, coefficients for discriminant function two, the coefficient correspond­
ing to age is .001. Using age alone, many individual scores would be 

low in function two, hence the misclassification. 

Table 10. Comparison of the effectiveness of classification models 
using minimum x 2

Actual group Age alone 
membership 

56 29 
465 196 
711 182 

Total correct 
predictions 407 

Correctly predicted 
Occupation 

5 
411 
261 

679 

Visit dentist 
children 

19 
175 
401 

595 

Complete nine 
variable model 

25 
333 
403 

761 

When the Bayesian approach is used, this problem is alleviated. 
Since the a priori probabilities of group one membership are so low, 

The Bayesian approach tends to force the individual into one of the 
other groups. When this is done the correct predictions increase to 
759. This procedure is not a cure for all the problems. Using this
criterion, the variable selected as third most discriminating correctly 
predicts more individuals than does the variable chosen second. 



Table 11. Compairson of effectiveness of classification models using Bayesian procedure 

Correctli eredicted 

Actual Age Occupation Visit Full nine Age and Age and Occupation Age and 
group dentist variable occupation visit and vi'sit occupation 
membership children model dentist dentist and vis it 

children en i1 dren dentist children 

56 0 0 0 9 0 0 1 0 

465 208 248 175 275 247 270 210 276 

711 551 496 581 534 538 504 564 528 

Total 
correct 
predictions 759 744 756 818 785 783 775 804 
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Combinations of these three variables were then examined. The results 

did not agree with the results expected after seeing how the variables 

behaved by themselves. 
The problem can best be analyzed using a two-dimensional example. 

The theory underlying the use of discriminant function requires that 

populations or groups in question follow a multivariate normal dis­
tribution. A one-dimensional picture may be helpful in illustrating 
the problem. 

A B C 

Figure 2. Regions of assigned group membership for continuous data. 

This one dimension may be broken down into three areas. If an 
observation falls in region A, it will be classified as coming from 
Group I. If the observation falls in region C, it will be classified 
as coming from Group II. But what of those observations falling in 
region B? It is desired that this region of overlap be as small as 
possible. The trace criterion is in some sense a measure of this distance. 



It is reasoned that the smaller this region for a particular variable 
the better is the power of predicting group membership. 

When we are considering variables with good predictive power, 
the only portions of the curves of Groups I and II, lyinq in region 
B, are the tails of the multivarite normals. Therefore, if the 
selection criterion is moved slightly, this will cause a change in 
prediction of a very few observations. The trace has a monotonic 
relationship to the number of observations correctly predicted as long 
as the data are continuous. 

When the case of categorical data is considered, the resulting 
distributions differ widely from the normal. 

A B C 

I 
I I 

I I I 
I I I I I I 

I I I I I I 
I 

I I I I I I I I 
I I I I I I I I I I I I I I I 

I 
I 
I 
I 
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Figure 3. Regions of assigned group membership for categorical data. 



The distributions are now discrete with several observations being 
clustered at only a few points. Now a very small change in selection 
criterion may cause the classification of several observations to be 
changed. The trace region still gives a measure of the width of B, 
but his width is no longer directly related to the power of correct 
prediction. 
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH 

The use of categorical variables in discriminant function analvsis 
was shown to be an effective tool in the study of information. Many 
problems, however, still exist. The trace may not be the most effec­
tive tool in measuring discriminatina information. The lack of 
a one-to-one correspondence makes omitting variables because of 
a small drop in trace, riskv. At the present time, the author knows 
of no criterion which will give better results than does the trace. 
A rearcher desiring to use categorical variables should be aware of 
this problem when interpreting results. The only sure way of obtaining 
the unique best set of variables is to study all possible combinations 
and compare the results. 

Future areas of study could include the derivation of a statistic 
similar to the trace which is not dependent on normality. This 
tvpe of statistic should aeneralize to cateaorical data much easier. 
In addition some statistical test to indicate when a variable should 
remain in the model would be a real contribution. At present, the 
decision as to how many variables to keep for the final model is an 
arbitrary one with the researcher. 
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