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a b s t r a c t

Several experiments on the effects of pair versus solo programming have been reported in the literature.

We present a meta-analysis of these studies. The analysis shows a small significant positive overall effect

of pair programming on quality, a medium significant positive overall effect on duration, and a medium

significant negative overall effect on effort. However, between-study variance is significant, and there are

signs of publication bias among published studies on pair programming. A more detailed examination of

the evidence suggests that pair programming is faster than solo programming when programming task

complexity is low and yields code solutions of higher quality when task complexity is high. The higher

quality for complex tasks comes at a price of considerably greater effort, while the reduced completion

time for the simpler tasks comes at a price of noticeably lower quality. We conclude that greater attention

should be given to moderating factors on the effects of pair programming.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Much of the current interest in pair programming is likely due

to the popularity of extreme programming (XP), of which pair

programming is one of the core practices [2]. Common-sense,

but scientifically unwarranted claims as to both the benefits

and the adversities of pair programming abound. Advocates of

pair programming claim that it has many benefits over individual

programming when applied to new code development or when

used to maintain and enhance existing code. Stated benefits in-

clude higher-quality code in about half the time as individuals,

happier programmers, improved teamwork, improved knowledge

transfer, and enhanced learning [53]. There are also expectations

with respect to the benefits and drawbacks of various kinds of

pairing, e.g., that ‘‘expert–expert pairings seem to be especially

accelerated” (ibid., p. 102) and that ‘‘novice–novice is the most

problematic” (ibid., p. 120). Stephens and Rosenberg [49] claim

that pair programming is clearly the least beneficial of XP prac-

tices and also that novice–novice pairing is obviously an undesir-

able combination, because it is akin to ‘‘the blind leading the

blind”.

With the considerable interest in pair programming by the

software industry and academia, it is important to determine sci-

entifically, whether, and if so when, pairing two programmers is

beneficial in terms of important cost drivers such as duration, ef-

fort, and quality. The finding across decades of small group re-

search is that groups usually fall short of reasonable

expectations to improved performance [48,35,33]. An important

question, therefore, is whether the claims regarding pair pro-

gramming can be substantiated by empirical evidence and how

pair programming relates to such group research. Several empir-

ical studies have now been conducted that set out to examine the

effects of pair programming in a systematic manner. This article

provides a systematic review in terms of a meta-analysis of all

published experiments on the effectiveness of pair programming

and subsequently offers recommendations for evidence-based

practice [18]. This review extends the intermediate analysis re-

ported in [15], which briefly summarized pair programming

experiments published up and until 2006. In the present full-scale

analysis, we take into account between-study variance, subgroup

differences and publication bias. We also take into account stud-

ies published in 2007.

Section 2 presents the methods for systematic review and sta-

tistical meta-analysis. Section 3 presents the results from the anal-

ysis, and Section 4 discusses implications for theory and practice.

Section 5 concludes.

2. Method

Informed by the general procedures for performing systematic

reviews [34] and the established methods of meta-analysis

[39,45], we undertook the meta-analysis in distinct stages: identi-

fication of inclusion and exclusion criteria, search for relevant

studies, identification and selection of studies, data extraction,

and statistical analysis and synthesis, see details below.

The meta-analysis focused on combining quantitative effects

on three central outcome constructs that were investigated in

the included studies. We did not assess the quality of the in-

cluded studies in terms of, e.g., the appropriateness of the chosen

effect size measures [30], the appropriateness of randomization

procedures [31], subject/task selection and validity issues [46],

statistical power [17], the use of theory [25], the approach to real-

ism [24], etc. Future meta-analyses might incorporate study qual-

ity, but at present, it is not clear how to aggregate this

multifaceted concept into a single measure to be used in a

meta-analysis.

2.1. Inclusion and exclusion criteria

Studies were eligible for inclusion in the meta-analysis if they

presented quantitative data on the effectiveness of pair program-

ming in which a comparison was made between pairs and individ-

uals, possibly in a team context. The subjects could be either

students or professional software developers. Included studies

had to report one of the primary outcomes Quality, Duration, or Ef-

fort. We did not want to put any restrictions on the operationaliza-

tion of these outcome constructs. Furthermore, the studies had to

be reported in English.

2.2. Data sources and search strategy

The search strategy included electronic databases and hand

searches of conference proceedings. We searched in the following

electronic databases: ACM Digital Library, Compendex, IEEE

Xplore, and ISI Web of Science. We did not perform separate

searches in the SE-specific databases Kluwer Online, ScienceDirect,

SpringerLink, and Wiley Inter Science Journal Finder, because pre-

vious experience with systematic search strategies has shown that

articles retrieved from these databases are also returned by either

ISI Web of Science or Compendex [16]. In addition to the electronic

databases, we hand-searched all volumes of the following thematic

conference proceedings: XP, XP/Agile Universe, Agile, and Agile

Development Conference. We used the basic search string ‘‘ ‘pair

programming’ OR ‘collaborative programming’” to conduct the

searches.

2.3. Study identification and selection

The identification and selection process consisted of three

stages. At Stage 1, the second author applied the search string to

the titles, abstracts, and keywords of the articles in the included

electronic databases and conference proceedings. All retrieved arti-

cles were published, or accepted for publication, before or in 2007.

Excluded from the search were editorials, prefaces, article summa-

ries, interviews, news items, correspondence, discussions, com-

ments, reader’s letters, and summaries of tutorials, workshops,

panels, and poster sessions. This search strategy resulted in a total

of 236 unique citations.

At Stage 2, the first and second authors went through the titles

and abstracts of all the studies resulting from stage 1 for relevance

to the review. If it was unclear from the title, abstract, and key-

words whether a study conformed to our inclusion criteria, it

was included for a detailed review. This screening process resulted

in 57 citations that were passed on to the next stage.

At Stage 3, the full text of all 57 citations from Stage 2 were re-

trieved and reviewed in detail by the first and second authors. This

resulted in 23 included articles according to the inclusion criteria.

Five of these did not report enough information to compute stan-

dardized effect sizes and were excluded. Thus, 18 studies (all

experiments) met the inclusion criteria and were included in the

review (see Appendix).

2.4. Data extraction and checking

We collected data from the 18 articles, including type of treat-

ment, type of system, type of tasks, duration of the study, number

of groups, group assignment, type of subjects and their experience

with pair programming, number of pairs, number of individuals,

outcome variable, means, standard deviations, counts, percentages,

and p-values. Every article included in the review was read in de-

tail and the data was extracted and cross-checked by the first, sec-

ond and third authors. Discrepancies were resolved by discussion

among all four authors.

J.E. Hannay et al. / Information and Software Technology 51 (2009) 1110–1122 1111



2.5. Statistical analysis

We used Comprehensive Meta-Analysis v2 to calculate

effect size estimates for all the tests in the 18 articles.1 In

order to be comparable across studies, effect sizes must be standard-

ized. In this meta-analysis, we used Hedges’ g as the standardized

measure of effect size. Like Cohen’s d and Glass’ D, Hedges’ g is sim-

ply the difference between the outcome means of the treatment

groups, but standardized with respect to the pooled standard devia-

tion, sp, and corrected for small sample bias [37]:

Hedges’ g ¼
�x1 � �x2

sp
ð1Þ

The pooled standard deviation is based on the standard deviations

in both groups, s1, s2:

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � 1Þs21 þ ðn2 � 1Þs22
ðn1 � 1Þ þ ðn2 � 1Þ

s

ð2Þ

Hedges’ g, Cohen’s d, and Glass’ D have the same properties in

large samples (i.e., they are equivalent in the limit

ðn1 þ n2Þ ! 1), but Hedges’ g has the best properties for small

samples when multiplied by a correction factor that adjusts for

small sample bias [26]:

Correction factor for Hedges’ g ¼ 1�
3

4ðN � 2Þ � 1
; ð3Þ

where N = total sample size.

An effect size of .5 thus indicates that the mean of the treatment

group is half a standard deviation larger than the mean of the con-

trol group. Effect sizes larger than 1.00 can be assumed to be large,

effect sizes of .38–1.00medium, and effect sizes of 0–.37 small [30].

2.6. Synthesis

We conducted separate meta-analyses for the three outcome

constructs Quality, Duration, and Effort. Some studies applied sev-

eral tests on the same outcome construct. In theses cases, we used

the mean of the effect sizes over these tests to give only one effect

size per outcome per study. Comprehensive Meta-Analysis calcu-

lates these mean effect sizes as an option.

Because we expected considerable heterogeneity, we decided to

calculate the resulting meta-analytic effect sizes both under the

assumption of the random-effects model and under the assump-

tion of the fixed-effects model. These models lead to different sig-

nificance test and confidence intervals for meta-analytic results

[29].

The fixed-effects model assumes an unknown and fixed popula-

tion effect size that is estimated by the studies in the meta-analy-

sis. All the studies in the meta-analysis are seen as drawn from the

same population, and variances in effect sizes between individual

studies are viewed as due to subject variability [27].

The random-effects model, on the other hand, assumes an un-

known and stochastic population effect-size distribution. That is,

the true effect size of pair programming varies around a mean l.

This caters for the view that the effect of pair programming de-

pends on situational variables and other factors (both known and

unknown) that are not taken into consideration in the analysis.

Variance in effect sizes are then seen as due to subject variability,

and also to inter-study variability, since each study is seen as

approximating a different part of the true effect size distribution

[27,4].

Both models relate to an unknown population parameter. The

approaches are hence referred to as unconditional [37]. The choice

of which model to use is made prior to the analysis based on the-

ory, past empirical findings, and on insights as to what the in-

cluded studies describe.

However, one may also use the analysis techniques associated

with the two models merely to characterize the studies relatively

to each other without any reference to a population effect size.

Which model to use in this case, is determined from the observed

data based on heterogeneity measures, which are calculated under

the assumption of a fixed-effects model. If heterogeneity is non-

significant, a fixed-effects model is an appropriate characterization

of data. Otherwise, a random-effects model best characterizes the

data. The results from such conditional approaches should, how-

ever, not be confounded with statements regarding population

parameters.

We conducted our analysis from both an unconditional and a

conditional perspective. For the unconditional perspective, we

chose the random-effects model. Hedges and Vevea state that

‘‘In the case of random-effects models, for example, some individ-

ual effect-size parameters may be negative even though l is po-

sitive. That corresponds to the substantive idea that some

realizations of the treatment may actually be harmful even if

the average effect is beneficial” [27]. Results in [1] suggest that

the effects of pair programming may be positive or negative

dependent on other factors (e.g., expertise and task complexity).

Also, the outcome constructs Quality, Duration, and Effort are

not yet well-defined in software engineering. These constructs

are operationalized in very diverse ways (Section 3.1), and for

the time being, it is reasonable to view these diverse operational-

izations as different aspects of a construct (a so-called formative

measurement model [3,6,12,40]). Under these circumstances,

and until the constructs are better understood, it is reasonable

to relate to a random-effects model.

In the conditional approach, we tested whether there were gen-

uine differences underlying the results of the studies (heterogene-

ity), or whether the variation in the findings was compatible with

chance alone.

In the following, we give an overview of the technical details

of the meta-analysis. For further elaborations, see e.g., [27,4,39].

Let k be the number of studies in the meta-analysis. Let T i be

the standardized effect size estimate (in our case, Hedges’ g) of

study i. In the fixed-effects model, the estimate T� of the as-

sumed fixed population effect size, and the estimate’s variance

v�, are

T� ¼

Pk
i¼1wiT i

Pk
i¼1wi

v� ¼
1

Pk
i¼1wi

ð4Þ

where wi ¼ 1=v i is the weight assigned to study i, i.e., the reciprocal

of the variance v i for study i. Thus, T� is a weighted mean over the

effect sizes of the individual studies, where studies with less vari-

ance are given greater weight. In the random-effects model, the

weights are based on between-study variance in addition to with-

in-study variance v i. Specifically, the estimate T�
� of the mean l of

the assumed population effect size distribution, and the estimate’s

variance v
�
�, are

T�
� ¼

Pk
i¼1w

�
i T i

Pk
i¼1w

�
i

v
�
� ¼

1
Pk

i¼1w
�
i

ð5Þ

where w�
i ¼ 1=v�

i , for v
�
i ¼ v i þ s2. Here, s2 is the additional be-

tween-study variance:

s
2 ¼

Q � df

C
if Q > df

0 if Q 6 df

8

<

:

ð6Þ

where the degrees of freedom df ¼ k� 1, and Q represents the total

variance:1 Comprehensive Meta-Analysis is a trademark of Biostat Inc.
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Q ¼
X

k

i¼1

wiðT i � T�Þ
2 ð7Þ

In Eq. (6), C is simply a scaling factor that ensures that s2 has the

same denomination as within-study variance, i.e.,

C ¼
P

wi �
P

w2
i =

P

wi.

In fact, Q is a statistic that indicates heterogeneity, and one that

we used for this purpose. A significant Q rejects the null hypothesis

of homogeneity and indicates that the variability among the effect

sizes is greater than what is likely to have resulted from subject-le-

vel variability alone [27]. We also calculated the I2-statistic, which

indicates heterogeneity in percentages:

I2 ¼ 100%ðQ � df Þ=Q ð8Þ

A value of 0 indicates no observed heterogeneity, 25% low, 50%

moderate, and 75% high heterogeneity [28].

2.7. Assumption of parametric normality

Hedges’ g is a parametric effect size measure that is based,

firstly, on the assumption that one wishes to relate to a population

distribution, and, secondly, that each sub-population (solo, pair) is

normally distributed on the response variable. This assumption

also underlies the meta-analytic procedures and estimates that

we used. It is well-known that Duration and Effort measures have

Gamma distributions, and the various Quality measures in this

study may or may not have normal distributions. Thus, one may

question whether other standardized effect-size measures should

have been used for the meta-analysis. Non-parametric effect-size

measures would merely allow one to characterize data and not al-

low one to relate to a population. On the other hand, specifying

other distributions (e.g., Gamma) would demand that we had ac-

cess to the individual studies’ raw data. Since means are meaning-

ful measures for all three outcome constructs, we therefore

decided to use Hedges’ g as a best compromise for conducting

the meta-analysis. Note also that even if the assumed population

distribution is not evident in a (small) sample, this reason alone

should not lead one to abandon the model (unless the sole aim is

to characterize data). Small samples will of course, lead to less con-

fident parameter estimates but these confidence estimates will be

calculated correctly according the assumed population

distribution.

3. Results

We first present characteristics of the 18 studies that were in-

cluded in the review and meta-analysis. We then give the meta-

analytic results in terms of overall effects, subgroup effects and

publication bias.

3.1. Description of studies

Characteristics of the 18 studies included in the meta-analysis

are summarized in Table 1 in alphabetical order, while full cita-

tions are provided in the Appendix.

Of the 18 studies, 11 were from Europe and seven from North

America. The number of subjects in the studies varied from 12 to

295. Thirteen of the studies used students as subjects, while four

used professionals. One used both professionals and students. Five

studies made the comparison within a team context, that is, teams

of pairs versus teams of individuals (marked with an asterisk in the

first column). The studies often administered several tests and the

number of data points may have varied across tests (numbers in

parentheses in Table 1).

All studies used programming tasks as the basis for comparison.

In addition, Madeyski (2006) and Madeyski (2007) included test-

Table 1

Characteristics of the included studies.

Study Subjects NTot NPair NInd Study setting

Arisholm et al.

(2007)

Professionals 295 98 99 10 sessions with individuals over 3 months and 17 sessions with pairs over 5 months (each of

1 day duration, with different subjects). Modified 2 systems of about 200–300 Java LOC each
*Baheti et al. (2002) Students 134 16 9 Teams had 5 weeks to complete a curricular OO programming project. Distinct projects per

team

Canfora et al. (2005) Students 24 12 24 2 applications each with 2 tasks (run1 and run2)

Canfora et al. (2007) Professionals 18 5(4) 8(10) Study session and 2 runs (totalling 390 min) involving 4 maintenance tasks (grouped in 2

assignments) to modify design documents (use case and class diagrams)

Domino et al. (2007) Professionals

Students

88 28 32 Run as several sessions during a period of two months. Pseudocode on ‘‘Create-Design” tasks

Test-driven development
*Heiberg et al. (2003) Students 84(66) 23(16) 19(17) 4 sessions over 4 weeks involving 2 programming tasks to implement a component for a larger

‘‘gamer” system

Madeyski (2006) Students 188 28 31(35) 8 laboratory sessions involving 1 initial programming task in a finance accounting system (27

user stories)

Madeyski (2007) Students 98 35 28 Java course project of developing a 27 user story accounting system over 8 laboratory sessions

of 90 min each. Test-driven development

Müller (2005) Students 38 19 23 2 runs of 1 programming session each on 2 initial programming tasks (Polynomial and Shuffle-

Puzzle) producing about 150 LOC

Müller (2006) Students 18(16) 4(5) 6 1 session involving initial design + programming tasks on an elevator system

Nawrocki &

Wojciechowski

(2001)

Students 15 5 5 4 lab sessions over a winter semester, as part of a University course. Wrote four C/C++

programs ranging from 150–400 LOC

Nosek (1998) Professionals 15 5 5 45 min to solve 1 programming task (database consistency check script)
*Phongpaibul &

Boehm (2006)

Students 95 7 7 12 weeks to complete 4 phases of development + inspection

*Phongpaibul &

Boehm (2007)

Students 36 5 4 Part of a team project to extend a system. 13 weeks to complete 4 phases of

development + inspection

Rostaher & Hericko

(2002)

Professionals 16 6 4 6 small user stories filling 1 day

*Vanhanen &

Lassenius (2005)

Students 20 4 8 9-week student project in which each subject spent a total of 100 h (400 h per team). A total of

1500–4000 LOC was written

Williams et al.

(2000)

Students 41 14 13 6-week course where the students had to deliver 4 programming assignments

Xu & Rajlich (2006) Students 12 4 4 2 sessions with pairs and 1 session with individuals. 1 initial programming task producing

around 200–300 LOC
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driven development; Müller (2005), Phongpaibul and Boehm

(2006), and Phongpaibul and Boehm (2007) included inspections;

and Müller (2006) included design tasks.

Quality was typically reported as the number of test cases

passed or number of correct solutions of programming tasks, but

student grades, delivered functionality, and metrics for code com-

plexity were also used as measures of Quality. Duration was re-

ported mainly in two modes: as the total time taken to complete

all tasks considered (all solutions), or as the total time taken to

complete the tasks that had been assessed as having passed a cer-

tain quality standard (checked solutions). For comparisons be-

tween pairs and solo programmers, pair Effort was reported as

twice the duration of each individual in the pair. For team-based

comparisons, e.g., teams of individuals versus teams of pairs, Effort

was reported as the total effort spent by the respective groups.

Thus, the studies included in the meta-analysis do not all apply

the same measures or have similar context variables. Rather, they

investigate the effectiveness of pair programming with respect to

different aspects of the constructs Quality, Duration, and Effort. As

such, the studies may be seen as differentiated replications [36],

and any measure from a particular study in the meta-analysis is

but one indicatorof, perhaps,many indicators regardingoneof these

constructs.

3.2. Effects of pair programming

Table 2 summarizes the meta-analysis. The g column shows the

meta-analytic estimates T� and T�
�, in terms of Hedges’ g, of the

population effect size parameter in the fixed-effects model and

random-effects model, respectively, along with 95% confidence

intervals and p-values. Also given are heterogeneity measures cal-

culated under the assumption of a fixed-effects model. The Overall

effects analysis will be described in detail in this section, and the

Subgroup analysis will be given in detail in Section 3.3.

Overall, 14 studies used Quality as an outcome construct, 11

used Duration, and 11 used Effort. Fig. 1 shows Forest plots2 of

the standardized effects for each of the three outcome constructs.

The studies are sorted according to the relative weight that a study’s

effect size receives in the meta-analysis. Relative weights are nor-

malized versions of the weights wi or w�
i used in calculating the

meta-analytic estimates T� or T�
�. The rightmost columns in Fig. 1

show these weights according to the fixed-effects and random-ef-

fects models. Estimates from larger studies will usually be more pre-

cise than the estimates from smaller studies; hence, larger studies

will generally be given greater weight.

The squares indicate the effect size estimate for each study. The

size of each square is proportional to the relative weight of the

study according to the random-effects model. The relative weights

of a random-effects model are generally more uniform than those

of fixed-effects models, due to the incorporation of between-study

variance into all the studies’ weights. The horizontal lines indicate

the 95% confidence intervals for each study’s effect size estimate

according to the random-effects model.

The diamonds at the bottom give the meta-analytic effect size

estimate according to the fixed-effects and the random-effects

model, i.e., T� and T�
�, respectively. The diamonds’ centers and

widths indicate the estimates and their 95% confidence interval,

respectively.

Fig. 2 shows one-study-removed analyses for each of the three

outcome constructs. The plots show the meta-analytic effect size

estimate when each study is removed from the meta-analysis.

The resulting deviation from the full analysis indicates the sensitiv-

ity of the full analysis with respect to each study, that is, howmuch

difference a given study makes to the meta-analysis.

3.2.1. Effects of pair programming on Quality

Fourteen studies compared the effects of pair programming on

Quality in a total of 38 tests. These studies used a total of 1160 sub-

jects, although in some studies, not all subjects were used in these

particular tests. The subjects were distributed to study units (pairs,

solo, teams of pairs, teams of solo) in various ways (Section 3.1).

The meta-analytic effect size estimate is .23 in the fixed-effects

model and .33 in the random-effects model.

Both the fixed-effects model and the random-effects model sug-

gest that there is a small3 positive overall effect of pair program-

ming on Quality compared with solo programming. Only one study

showed a negative effect of pair programming on Quality (Domino

et al., 2007). All the other studies showed mostly small to medium

positive effects. The three studies by Domino et al. (2007), Arisholm

et al. (2007), and Madeyski (2006) contribute more than 50% of the

total weight in the meta-analysis for Quality. The one-study-re-

moved analysis shows that the meta-analysis is most sensitive to

the inclusion/exclusion of Williams et al. (2000). Heterogeneity is

significant at a medium level (Q ¼ 35:97; p < :01; I2 ¼ 63:86%).

3.2.2. Effects of pair programming on Duration

Eleven studies reported effects on Duration in a total of 21 tests.

These studies used a total of 669 subjects. Both the fixed-effects

model and the random-effects model suggest that there is a med-

ium positive overall effect of pair programming on Duration.

Table 2

Summary of meta-analysis.

Analysis k Model Effect Size Heterogeneity

g 95% CI p Q I2 s2 p

Overall effects

Quality 14 fixed .23 .09 .37 .00 35.97 63.86 .14 .00

random .33 .07 .60 .01

Duration 11 fixed .40 .21 .59 .00 33.57 70.21 .28 .00

random .54 .13 .94 .01

Effort 11 fixed �.73 �.94 �.51 .00 66.36 84.93 .87 .00

random �.52 �1.18 .13 .12

Subgroups Students

Quality 11 fixed .22 .06 .38 .01 32.97 69.66 .18 .00

random .32 �.01 .65 .06

Duration 7 fixed .58 .33 .84 .00 12.28 51.13 .13 .06

random .63 .24 1.02 .00

Effort 8 fixed �.59 �.88 �.30 .00 48.85 85.67 1.17 .00

random .04 �.82 .91 .92

Professionals

Quality 3 fixed .26 �.05 .57 .10 2.97 32.56 .07 .23

random .37 �.10 .85 .12

Duration 4 fixed .16 �.13 .46 .28 16.87 82.22 .83 .00

random .50 �.55 1.54 .35

Effort 3 fixed �.90 �1.22 �.58 .00 15.48 87.08 1.54 .00

random �1.99 �3.56 �.41 .01

Teams

Quality 3 fixed .19 �.22 .60 .36 .23 .00 .00 .89

random .19 �.22 .60 .36

Duration 2 fixed .34 �.13 .81 .16 1.46 31.55 .06 .23

random .31 �.27 .89 .30

Effort 2 fixed .74 �.13 1.61 .09 11.25 91.11 4.14 .00

random .99 �1.96 3.94 .51

No teams

Quality 11 fixed .24 .09 .39 .00 35.70 71.99 .18 .00

random .38 .05 .70 .02

Duration 9 fixed .41 .20 .63 .00 32.02 75.02 .37 .00

random .63 .13 1.13 .01

Effort 9 fixed �.82 �1.05 �.60 .00 43.36 81.55 .61 .00

random �.85 �1.48 �.23 .01

2 The plots were generated with PSTricks postscript macros in LaTeX within an

Excel spreadsheet using data produced by Comprehensive Meta-Analysis.
3 The effect size is small compared with the effect sizes reported in other software

engineering experiments [30].
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Compared with Quality, the studies on Duration show a more

mixed picture; two of the 11 studies show a negative effect, while

the remaining nine show a positive effect. In addition, the smaller

studies show medium to large contradictory effects. The three

studies by Arisholm et al. (2007), Canfora et al. (2005), and Naw-

rocki and Wojciechowski (2001) contribute more than 60% of the

total weight in the meta-analysis of Duration. The one-study-re-

moved analysis shows that the meta-analysis is most sensitive to

the inclusion/exclusion of Nosek (1998). Heterogeneity is signifi-

cant at a medium level (Q ¼ 33:57; p < :01; I2 ¼ 70:21%).

3.2.3. Effects of pair programming on Effort

Eleven studies reported effects on Effort in a total of 18 tests.

These studies used a total of 586 subjects. Both the fixed-effects

model and the random-effects model suggest that there is a med-

ium negative overall effect of pair programming on Effort com-

pared with solo programming. All the included studies show a

negative effect on Effort, apart from the two studies by Phongpaibul

and Boehm (2006,2007). However, the results of those studies are

not directly comparable, because the researchers compared pair

programming teams with teams of individuals who also performed

inspections. The three studies by Arisholm et al. (2007), Canfora

et al. (2005), and Müller (2005) contribute almost 70% of the total

weight in the meta-analysis of Effort. The one-study-removed anal-

ysis shows that the meta-analysis is most sensitive to the inclu-

sion/exclusion of either of Phongpaibul and Boehm (2006,2007).

Heterogeneity is significant and high (Q ¼ 66:36; p < :01;

I2 ¼ 84:93%).

3.3. Subgroup analyses

Because of medium to high heterogeneity, we decided to con-

duct subgroup analyses as a step to identify possible immediate

sources of heterogeneity. Two subgroup types stand out due to

surface dissimilarities: the type of developers (students or profes-

sionals) and the type of comparison (isolated pairs vs. individuals,

or teams of pairs vs. teams of individuals). The results of these

analyses are summarized in Table 2.

The most dramatic result of the subgroup analysis is the rever-

sal of effect on Effort for the Teams subgroup (from �.52 in the

Fig. 1. Forest plots for meta-analysis of Quality, Duration and Effort.
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overall analysis to .99 (non-significant) in the subgroup analysis,

for the random-effects model). This is due to the two studies

Phongpaibul and Boehm (2006, 2007), which we remarked upon

above. Without these two studies (No teams subgroup), the effect

size increases to from .�52 to �.85 in the random-effects model.

Apart from this reversal, effect sizes in the subgroups remain in

the same order of magnitude as in the overall analysis, except for

the following cases: For Quality, the No teams subgroup reaches a

medium level in the random model’s estimate (.38). For Duration,

the Professionals subgroup declines to a small level in the fixed

model’s estimate (.16). For Effort, the Students subgroup declines

to small (.04) (but non-significant, p ¼ :92), and the Professionals

subgroup increases to a large effect size (�1.99) in their respective

random-effects models.

Heterogeneity levels remain medium to high. Professionals and

No teams increase to high heterogeneity for Duration (82.22) and

Teams decreases to small (.00) (but non-significant, p ¼ :89) for

Quality.

Significance levels for both effect size estimates and heteroge-

neity decrease dramatically in several instances in the subgroups,

probably due to small k. This is particularly the case in the Profes-

sionals and Teams subgroups. Note however, that the effect on Ef-

fort actually turns significant in the Professionals subgroup. Note

that the Professionals subgroup excludes Phongpaibul and Boehm

(2006, 2007) since they have student subjects.

3.4. Publication bias

Publication bias captures the idea that studies that report rela-

tively large treatment effects are the ones that were most likely to

be initiated in the first place, and/or submitted and accepted for

publication. The effect size estimated from a biased collection of

Fig. 2. Forest plots for one-study-removed meta-analysis of Quality, Duration and Effort.
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studies will tend to overestimate the true effect. We used Compre-

hensive Meta-Analysis to assess the likely extent of publication

bias, and its potential impact on the conclusions.

Figs. 3–5 show funnel plots for Quality, Duration and Effort,

respectively. These graphs plot each study according to a measure

of study size called precision (which is simply 1=StdError) on the

vertical axis, and according to effect size (Hedges’ g) on the hori-

zontal axis.

Hence, large studies tend to appear toward the top of the graph,

and smaller studies tend toward the bottom of the graph. Since

there is more inter-study variance in effect size estimates among

the smaller studies, these studies will be dispersed wider, while

larger studies will tend to cluster near the meta-analytic estimate

of effect size.

In the absence of publication bias, studies should be distributed

symmetrically on either side of the meta-analytic estimate of effect

size. In the presence of bias, the bottom part of the plot should

show a higher concentration of studies on one side of the meta-

analytic estimate than the other. This would reflect the fact that

smaller studies are more likely to be published if they have larger

than average effects, which makes them more likely to meet the

criterion for statistical significance. Various statistical measures

can be used to complement the picture given by the funnel plots.

Duval and Tweedie’s trim and fillmethod [13,14], takes the basic

idea behind the funnel plot one step further and imputes (com-

putes and inserts) assumed missing studies to obtain symmetry

if the funnel plot is asymmetric and then recomputes the meta-

analytic estimate of effect size. The method initially trims the

asymmetric studies from the biased side to locate the unbiased ef-

fect (in an iterative procedure), and then fills the plot by re-insert-

ing the trimmed studies on the biased side as well as their imputed

counterparts on the opposite side of the meta-analytic estimate of

effect size. Figs. 6–8 show the plots of Figs. 3–5 with imputed stud-

ies (black dots) and adjusted meta-analytic estimates of effect size

(black diamonds).

These analyses suggest that there is indeed some publication

bias in our sample. For example, six studies are imputed to obtain

symmetry for Quality. This might be taken as an incentive to pub-

lish more high-quality studies that, perhaps, exhibit low effects or

opposite effects to those that are expected. This might include pro-

moting gray literature to be readily accessible in journals and

conferences.

However, it is important to note that publication bias may not

be the only cause of funnel plot asymmetry. For instance, asymme-

try may be caused by between-study heterogeneity, study quality,

or other factors [44].

In the presence of heterogeneity (which we are assuming),

there are three meaningful ways to impute the assumed missing

studies. (1) A random-effects model is used to trim and fill, and

then the adjusted meta-analytic estimate of effect size is calculated

from the filled data using a random-effects model (a so-called ran-

dom–random approach) [13,14]. However, in a random-effects

model meta-analysis, smaller studies are given added weight in

the synthesis. Thus, if publication bias exists, the meta-analytic

estimate is likely to be more biased than that obtained from a

fixed-effects model meta-analysis [44]. Thus, an alternative is:

(2) a fixed-effects model is used to trim and fill, and then the ad-

justed meta-analytic estimate of effect size is calculated from the

filled data using a fixed-effects model (fixed–fixed). It is recom-

mended to report both fixed–fixed and random–random analyses

[51]. The fixed–fixed approach may be unsatisfying if one wishes

to view adjustments relative to the original random-effects model

meta-analysis. (3) A third approach is to use a fixed-effects model

to trim and fill the meta-analysis, but a random-effects model to

calculate the meta-analytic effect size estimate from the filled data

(fixed–random). The fixed-effects trim and fill process is less likely

to be influenced by any publication bias than the random-effects

model approach, but the resulting estimate from the random-ef-

fects model is likely to be more conservative than if a fixed-effects

model is used [44]. The plots in Figs. 6–8 were generated using the

fixed–random approach.

Fig. 3. Funnel plot quality.

Fig. 4. Funnel plot duration.

Fig. 5. Funnel plot effort.
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Table 3 presents the results from all perspectives. For example,

for Quality a fixed-effects model approach to trim and fill yields six

imputed studies and adjusts the estimate in the fixed-effects mod-

el from .23 to .03 (fixed–fixed), while it adjusts the estimate in the

random-effects model from .33 to .07 (fixed–random).

The trim and fill procedure searches for missing studies on one

side at a time. For Qualtiy and Duration missing studies were found

on the left (Table 3), i.e., in the opposite direction of the estimated

effect, which is consistent with the assumption of publication bias.

For Effort, the fixed approach found a missing study on the left,

while the random approach found missing studies on the right.

The missing study on the left is not consistent with the assumption

of publication bias and is due to the overly large effort estimate of

one of the studies in the opposite direction of the estimate.

Sterne and Egger [50] note that trim and fill plots merely detect

a relationship between sample size and effect size, not a causal

mechanism between the two. The effect size may be larger in small

studies due to publication bias. However, it is also possible that

small studies estimate a different part of the population effect size

distribution than do large studies, e.g., because smaller studies use

different operationalizations of the outcome constructs, or have

different situational variables than large studies. Because one does

not know for certain whether funnel plot asymmetry is really

caused by publication bias, it is recommended to use the trim

and fill method mainly as a form of sensitivity analysis [44].

3.5. Moderating effects of task complexity and expertise

Due to the interdisciplinary and complex nature of industrial

software engineering, it is usually not reasonable to test an

hypothesis that considers only one independent (predictor) vari-

able and one dependent (criterion) variable. Hypotheses related

to software engineering should typically include additional vari-

ables and test more complex relationships in order to provide a

more accurate description of reality. Indeed, the relatively small

overall effects and large between-study variance (heterogeneity)

indicate that one or more moderator variables might play a signif-

icant role.

Only two of the studies in the review, Vanhanen and Lassenius

(2005) and Arisholm et al. (2007), tested explicitly for moderator

effects, while only one of the other studies discussed the potential

influence of such effects; Williams et al. (2000) suggested that the

relative improvement by pairs after the first programming task in

their experiment was due to ‘‘pair jelling”.

The literature on group dynamics (e.g., [5,21]) suggests that the

extent to which group performance exceeds that of individuals,

and the mechanisms by which such gains in performance may be

achieved, depend upon the composition of the group and the char-

acteristics of the tasks. Vanhanen and Lassenius (2005) found that

task complexity did not affect the differences in effort between

Fig. 7. Funnel plot duration trim and fill fixed–random.

Fig. 8. Funnel plot effort trim and fill fixed–random.

Fig. 6. Funnel plot quality trim and fill fixed–random.

Table 3

Trim and fill analysis.

Imputed Fixed Random Q

g 95% C.I. g 95% C.I.

Quality

Observed .23 .09 .37 .33 .07 .60 35.97

fixed 6 .03 �.09 .16 .07 �.23 .37 81.42 Left

random 0 .23 .09 .37 .33 .07 .60 35.97 Left

Duration

Observed .40 .21 .59 .53 .13 .94 33.57

fixed 2 .34 .15 .54 .35 �.10 .80 49.77 Left

random 1 .37 .18 .56 .44 �.01 .88 45.01 Left

Effort

Observed �.73 �.94 �.51 �.52 �1.18 .13 66.36

fixed 1 �.75 �.97 �.54 �.74 �1.46 �.01 86.01 Left

random 2 �.58 �.78 �.37 �.07 �.79 .65 104.46 Right
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solo and pair programming; the Pearson correlation between task

complexity and effort difference was as low as r ¼ �:02.

On the other hand, Arisholm et al. (2007) found moderating ef-

fects of both task complexity and expertise. The results are shown

in Fig. 9. Overall, the results showed that the pairs had an 8% de-

crease in duration (g ¼ :21) with a corresponding 84% increase in

effort (g ¼ �:68) and a 7% increase in correctness (g ¼ :11)

(Fig. 9a). However, the main effects of pair programming were

masked by the moderating effect of system complexity, in that

simpler designs had shorter duration, while more complex designs

had increased correctness (Fig. 9e).

Furthermore, when considering the moderating effect of pro-

grammer expertise, junior pairs had a small (5%) increase in dura-

tion and thus a large increase in effort (111%), and a 73% increase in

correctness (Fig. 9b). Intermediate pairs had a 28% decrease in

duration (43% increase in effort) and a negligible (4%) increase in

correctness (Fig. 9c). Senior pairs had a 9% decrease in duration

(83% increase in effort) and an 8% decrease in correctness

(Fig. 9d). Thus, the juniors benefited from pair programming in

terms of increased correctness, the intermediates in terms of de-

creased duration, while there were no overall benefits of pair pro-

gramming for seniors. When considering the combined

moderating effect of system complexity and programmer expertise

on pair programming, there appears to be an interaction effect:

Among the different treatment combinations, junior pairs assigned

to the complex design had a remarkable 149% increase on correct-
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Fig. 9. The moderating effects of programmer expertise (a)–(d) and system complexity (e)–(h) on the relation of pair programming on duration, effort, and correctness

(Arisholm et al., 2007).
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ness compared with individuals (Fig. 9f). Furthermore, intermedi-

ates and seniors experienced an effect of pair programming on

duration on the simpler design, with a 39% (Fig. 9g) and 23%

(Fig. 9h) decrease, respectively. However, the cost of this shorter

duration was a corresponding decrease in correct solutions by

29% and 13%, respectively.

4. Discussion

The unconditional part of the meta-analysis suggests that the

population effect size mean l for each of the outcome constructs

are small to medium.

More interestingly, the conditional part of the meta-analysis

showed large and partly contradictory differences in the reported

overall effects of pair programming, specifically with respect to

Duration and Effort. Our subgroup analyses do not suggest that

these differences are due to differences in samples (e.g., students

or professionals). Differences in organization (e.g., teams or no

teams) were apparent from the subgroup analysis, but these differ-

ences were due to two particular studies that, when removed, did

not decrease overall heterogeneity.

At the outset, we anticipated between-study variance (hetero-

geneity) due to moderating factors such as expertise and task com-

plexity and to the fact that the outcome constructs of the meta-

analysis are operationalized by indicators that are different aspects

of the constructs. Such heterogeneity was taken into account by

using a random-effects model for the unconditional interpretation.

Nevertheless, contradictory differences still manifested them-

selves. Thus, it seems clear that moderating factors play an impor-

tant role and should be investigated further. The study in [1]

corroborates this conclusion for expertise and task complexity,

but other moderating factors, such as amount of training in pair

programming, motivation, team climate, etc., are likely to be rele-

vant as well.

Consequently, the question of whether pair programming is

better than solo programming is not precise enough to be mean-

ingful, since the answer to that question in the present context is

both ‘‘yes” and ‘‘no”. On the basis of the evidence from this review,

the answer is that ‘‘it depends”: It depends on other factors, for

example, the expertise of the programmers and on the complexity

of the system and tasks to be solved.

In the literature, expertise and task complexity are perhaps the

most central situation-independent predictors of performance.

(Situation-dependent factors, on the other hand, include more dy-

namic factors such as motivation, team climate, organizational is-

sues, etc.). Theory predicts that experts perform better on complex

tasks than do novices because experts’ level of understanding cor-

responds to the deep structure [10,8,9,19] of a complex task. That

is, experts perceive (objectively) complex tasks as subjectively less

complex, i.e., less variable and more analyzable [43,38]. Conversely,

experts perceive (objectively) less complex tasks as more variable

and less analyzable since such tasks do not match the expert’s

deep-level understanding of the problem. Novices, on the other

hand, do have an understanding that matches the surface structure

of a non-complex task, and are expected to do better on non-com-

plex tasks than on complex tasks. Moreover, they may be expected

to even outperform experts on non-complex tasks [23].

These effects are evident in [1], in which the levels of correct-

ness for individual juniors, intermediates, and seniors on the

non-complex system were 63%, 87%, and 86%, respectively,

whereas the levels on the complex system were 34%, 41%, and

81%, respectively. Thus, the performance drop was much higher

for juniors than for intermediates and seniors, when moving from

the non-complex to the complex system, although juniors did not

outperform higher expertise groups on the non-complex system,

see also [23].

In our context, one of the most interesting observations is that

the pairing up of individuals seems to elevate the junior pairs up to

near senior pair performance. Thus, pair collaboration might com-

pensate for juniors’ lack of deep understanding, for example, by

inducing an expert-like strategy.

Change tasks rely heavily on program comprehension. To com-

prehend code, experts use a top–down model [47] that short-cuts

the available information by only investigating details as dictated

by domain knowledge. This approach to comprehension is more

efficient than bottom–up comprehension, which builds under-

standing from details, and which is the approach found to be used

by programmers encountering totally unfamiliar code [41,42].

By forcing junior peers to rationalize their ideas to each other,

junior pairs might adopt a top–down strategy to comprehension,

rather than getting lost in code on their own. The mere act of think-

ing aloud whilst solving problems has been shown to increase

performance, when the verbalization is intended to reason or

explain action, e.g., [7] (Type 3 verbalization, in Ericsson and Si-

mon’s terminology) [20]. Several studies have concluded that

apparent successes of pair programming are not due to the partic-

ularities of pair programming (such as the specific roles of driver

and navigator), but rather to the shear amount of verbalization that

the pair programming situation necessitates [11,22].

Group performance not only relies on task complexity but also

on the collaborative nature of a task. In fact, the appropriateness of

each of the familiar adages ‘‘two heads are better than one”, ‘‘many

hands make light work”, and ‘‘a chain is only as strong as its weak-

est link” depends on whether a task is additive, compensatory, dis-

junctive or conjunctive [48]. For example, the chain analogy is

appropriate for conjunctive tasks, where all group members must

contribute to the solution, but is inappropriate for disjunctive tasks

for which it suffices that one group member has the ability to com-

plete the task. It is not obvious what sort of task pair programming

is in this respect.

The precise collaborative nature of pair programming also

influences what social mechanisms (social loafing, social labour-

ing, social facilitation, social inhibition, social compensation, etc.)

are applicable. However, these social mechanisms also depend on

a host of other factors. In a meta-analysis of social loafing (the

phenomenon that individuals tend to expend less effort when

working collectively than when working individually), Karau

and Williams [32] identified several conditions in which such

loafing is eliminated (e.g., by high group cohesion) and some in

which the opposite phenomenon, social laboring [5], could be

observed (i.e., greater effort on group tasks). Social laboring seems

to occur when complex or highly involving tasks are performed, or

when the group is considered important for its members, or if

the prevailing values favor collectivism rather than individualism

[5].

5. Conclusion

Our meta-analysis suggests that pair programming is not uni-

formly beneficial or effective, that inter-study variance is high,

and that perhaps publication bias is an issue. Hence, if further

investigations are to be undertaken on pair programming, then

the focus should be on untangling the moderating factors of the ef-

fect of pair programming.

However, with respect to the central factors expertise and task

complexity, the current state of knowledge suggest that pair pro-

gramming is beneficial for achieving correctness on highly com-

plex programming tasks. Pair programming may also have a time

gain on simpler tasks. By cooperating, programmers may complete

tasks and attain goals that would be difficult or impossible if they

worked individually. Junior pair programmers, for example, seem

able to achieve approximately the same level of correctness in
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about the same amount of time (duration) as senior individuals.

However, the higher quality for complex tasks comes at a price

of a considerably higher effort (cost), while the reduced completion

time for the simpler tasks comes at a price of a noticeably lower

quality. This fact confirms Voas’ [52] contention that you cannot

expect faster and better and cheaper. These relationships give rise

to a few evidence-based guidelines for the use of pair program-

ming for professional software developers. If you do not know

the seniority or skill levels of your programmers, but do have a

feeling for task complexity, then employ pair programming either

when task complexity is low and time is of the essence, or when

task complexity is high and correctness is important.

In the future, we intend to investigate deeper into the theoret-

ical and empirical underpinnings of collaboration in pairs, e.g., by

studying group dynamics and analyzing pair dialogues to obtain

insights into subjects’ learning and reasoning processes. Only by

understanding what makes pairs work, and what makes pairs less

efficient, can steps be taken to provide beneficial conditions for

work and to avoid detrimental conditions; or to avoid pairing alto-

gether when beneficial conditions cannot be provided.
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Baheti et al. (2002). P. Baheti, E. Gehringer, D. Stotts, Exploring the

efficacy of distributed pair programming, in: Proc. XP/Agile Uni-

verse 2002, ser. Lecture Notes in Computer Science, vol. 2418,

Springer Verlag, 2002, pp. 208–220.
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Proc. PROFES 2007, ser. Lecture Notes in Computer Science, vol.
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Müller (2005). M. Müller, Two controlled experiments concerning

the comparison of pair programming to peer review, J. Systems

and Software 78(2) (2005) 169–179

Müller (2006). M. Müller, A preliminary study on the impact of a

pair design phase on pair programming and solo programming,

Information and Software Technology 48(5) (2006) 335–344

(May)

Nawrocki and Wojciechowski (2001). J. Nawrocki, A. Wojciechow-

ski, Experimental evaluation of pair programming, in: Proc.

European Software Control and Metrics Conference

(ESCOM’01), 2001, pp. 269–276.
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Comm. ACM 41(3) (1998) 105–108 (Mar.)
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