
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

7-2006

The Effectiveness of Threshold-Based Scheduling Policies on The Effectiveness of Threshold-Based Scheduling Policies on

BOINC Projects BOINC Projects

Trilce Estrada

David A. Flores

Michela Taufer

Patricia J. Teller
The University of Texas at El Paso, pteller@utep.edu

Andre Kerstens

See next page for additional authors

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Engineering Commons

Comments:

UTEP-CS-06-30

Recommended Citation Recommended Citation
Estrada, Trilce; Flores, David A.; Taufer, Michela; Teller, Patricia J.; Kerstens, Andre; and Anderson, David P.,
"The Effectiveness of Threshold-Based Scheduling Policies on BOINC Projects" (2006). Departmental
Technical Reports (CS). 192.
https://scholarworks.utep.edu/cs_techrep/192

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/192?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Authors Authors
Trilce Estrada, David A. Flores, Michela Taufer, Patricia J. Teller, Andre Kerstens, and David P. Anderson

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/192

https://scholarworks.utep.edu/cs_techrep/192

Technical Report UTEP-CS-06-30, July 2006

 1

The Effectiveness of Threshold-based Scheduling Policies
in BOINC Projects

Trilce Estrada 1, David A. Flores 1, Michela Taufer 1, Patricia J. Teller 1, Andre Kerstens 1,
David P. Anderson 2

1 Computer Science Department
University of Texas at El Paso

El Paso, Texas, 79968

2 Space Sciences Lab
University of California at Berkeley

Berkeley, California, 94720
{tpestrada, daflores, mtaufer, pteller, akerstens} @utep.edu daves@ssl.berkeley.edu

Abstract
Several scientific projects use BOINC (Berkeley Open

Infrastructure for Network Computing) to perform large-
scale simulations using volunteers’ computers (workers)
across the Internet. In general, the scheduling of tasks in
BOINC uses a First-Come-First-Serve policy and no
attention is paid to workers’ past performance, such as
whether they have tended to perform tasks promptly and
correctly.

In this paper we use SimBA, a discrete-event
simulator of BOINC applications, to study new
threshold-based scheduling strategies for BOINC
projects that use availability and reliability metrics to
classify workers and distribute tasks according to this
classification. We show that if availability and
reliability thresholds are selected properly, then the
workers’ throughput of valid results increases
significantly in BOINC projects.

1. Introduction
BOINC (Berkeley Open Infrastructure for Network

Computing) is a software system for distributed
computing using Internet-connected PCs owned by the
general public [1]. Several scientific projects use
BOINC to do large-scale simulations. In general, the
scheduling of tasks in BOINC uses a First-Come-First-
Serve (FCFS) policy: a server generates a large number
of independent tasks and distributes them to workers in
the order in which they were created. No attention is
paid to the worker’s past performance, such as whether
it has tended to perform tasks promptly and correctly.

Our goal is to enhance BOINC scheduling to take into
account these worker characteristics. Such new
scheduling policies can increase the number of valid
results delivered by specified deadlines, while at the
same time not increasing the load on the master.

In previous work [2] we proposed the introduction of
availability and reliability metrics for the classification
of workers in BOINC projects. In this paper we extend
this previous work by using these metrics as a part of

new scheduling policies that allow us to deliver larger
numbers of valid results in shorter amounts of time, as
compared to the scheduling policy used in current
BOINC projects. The major contributions of this paper
are the following:
1. We show that through the use of scheduling policies

based on worker availability and reliability
thresholds, the workers’ throughput of valid results
can be changed. Such thresholds can play a key role
in assigning tasks only to workers that are likely to
deliver valid results by specified deadlines.

2. We show that if worker availability and reliability
thresholds are both on either end of the spectrum
(i.e., close to 0 or 1), performance is unacceptable
(i.e., fewer results are delivered in a given amount
of time).

3. We show that BOINC applications have “sweet
spots”, i.e., worker availability and reliability
thresholds that when used to make scheduling
decisions deliver the largest number of valid results
in a given amount of time.

These conclusions are based on the results of trace-
driven simulations. Currently, a simulation environment
is the best way to evaluate the effectiveness of BOINC
scheduling policies. Changing the policy within a
running project would involve the large population of
BOINC volunteers and could cause them some
inconvenience.

Our simulator is called SimBA, Simulator of BOINC
Applications. SimBA models the behavior of a BOINC
master, including its different scheduling strategies for
the distribution of tasks. The simulator is driven by real
traces from in-production BOINC projects such as
Predictor@Home (P@H) [3] to model the behavior of
workers that join, participate in, and leave a project.

The remainder of the paper is organized as follows.
Section 2 briefly discusses background concepts, i.e.,
Volunteer Computing (VC) environments, BOINC as a
representative VC environment, and P@H as a
representative BOINC project. Section 3 summarizes
the taxonomy of a BOINC project and worker

Technical Report UTEP-CS-06-30, July 2006

 2

classifications in terms of worker availability and
reliability. Section 4 introduces two scheduling policies
for BOINC projects, one of which is a prototype for a
new scheduling paradigm. SimBA, the Simulator of
BOINC Applications, which is used in this paper to
evaluate the effectiveness of scheduling policies, is
described in Section 5. Results of the evaluation of the
performance of the new scheduling paradigm in
comparison to the one currently used in BOINC are
presented in Section 6. In Section 7 we present related
work and in Section 8 we conclude and introduce some
future work.

2. Background
In this section we briefly describe Volunteer

Computing (VC) environments, the Berkeley Open
Infrastructure for Network Computing (BOINC) as a
well-known representative of these environments, and
Predictor@Home (P@H), a BOINC project; P@H
traces were used to drive the simulations discussed in
this paper.
2.1. Volunteer Computing

Volunteer Computing (VC) uses computing resources
(e.g., desktops, notebooks, and servers) connected
through the Internet and owned by the public
(volunteers) to address fundamental problems in
science. VC projects typically are simulations of
phenomena in Nature. Some examples of VC projects
are: climateprediction.net [4], which explores how the
Earth’s climate may change in the next century under a
wide range of different scenarios; Predictor@Home [3],
which predicts protein structures; and Folding@Home
[5], which explores the physical processes of protein
folding. The VC paradigm emerged in the mid-1990s
with two projects, GIMPS and Distributed.net.
SETI@Home, which was launched in 1999, was the
first project with appeal that extended beyond
hobbyists.

VC environments provide higher throughput than
traditional computing systems, such as clusters and
supercomputers, at a lower cost in terms of installation,
maintenance, power, and infrastructure. However, these
environments are particularly challenging because of
the nature of their resources: they are volatile, error
prone, and heterogeneous.
2.2. BOINC

BOINC (Berkeley Open Infrastructure for Network
Computing) is a well-known representative of VC
environments. It is an open-source system that
harnesses the computing power and storage capacity of
thousands or millions of personal computers (PCs)
owned by the general public for large-scale scientific
simulations.

The computing resources available to a BOINC
project are highly diverse: the hosts differ by orders of
magnitude in their processor speed, available RAM,

disk space, and network connection speed. Some hosts
connect to the Internet by modem only every few days,
while others are permanently connected. Computations
may have varying bounds on completion time, and in
some cases computations can be aborted. Nevertheless,
BOINC projects are very attractive for large-scale
simulations because they can potentially sustain a very
high processing rate (tens or hundreds of TeraFLOPS).
For example, SETI@Home now runs on approximately
one million computers, providing a sustained
processing rate of about 250 TeraFLOPS [6].

BOINC is based on a master-worker paradigm. A
master distributes tasks among volunteer computers, or
workers. Workers request tasks from the master and
send back the computed results when the tasks are
completed. BOINC provides the user with the ability to
attach and donate resources to several projects at the
same time. The user can specify the amount of time that
he or she wants to dedicate to each of the projects (e.g.,
70% of the resources are dedicated to SETI@Home,
while the remaining 30% are dedicated to P@H). When
a worker successfully sends back a result, it is rewarded
with credit (so-called Cobblestones) once the result has
passed certain validation checks that aim to determine
whether the result is valid or invalid, e.g., affected by
malicious attacks or invalidated by hardware
malfunctions [7].
2.3. Predictor@Home

Predictor@Home, or P@H, is a BOINC project for
large-scale protein structure prediction. Predicting the
structure of an unknown protein is a critical problem in
enabling structure-based drug design to treat new and
existing diseases.

From a sequence of amino acids P@H attempts to
predict the folded, functioning form of the protein
either a priori, i.e., in the absence of detailed structural
knowledge, or by homology with other known, but not
identical, proteins. In the case of a priori folding or
“new fold” prediction, no homology information is
available and a blind search based on the sequence of
amino acids alone is performed. In contrast, homology
modeling first identifies other proteins of known
structure with some level of sequence similarity to the
unknown structure, and then constructs a prediction for
the unknown protein by homology. In both cases the
choice of a putative candidate is based on energy
values; moreover, both approaches may utilize multi-
scale optimization techniques to identify the most
favorable structural models, e.g., force fields and
solvent representations. The protein structure prediction
algorithm in P@H is a multi-step pipeline that consists
of (a) a sequence analysis and identification of
secondary structures as well as potential homology
modeling templates using web-based servers such as
BLAST, SAM-T02, and PSIPRED; (b) a
conformational search using a Monte Carlo simulated

Technical Report UTEP-CS-06-30, July 2006

 3

annealing approach using MFold [8]; and (c) protein
refinement, scoring, and clustering using the
CHARMM Molecular Dynamics simulation package
[9].

3. Characterization of a BOINC Project
This section briefly presents the taxonomy of tasks in

a BOINC project and introduces two metrics for the
classification of workers in terms of their availability to
compute tasks and reliability to compute trusted results.
3.1 Taxonomy of Tasks

Since VC environments are error-prone, BOINC
projects use redundant computing to capture possible
discrepancies in results due to factors such as malicious
attacks or hardware malfunctions. Computation
instances of the same task or work-unit (WUs) are
performed on different PCs and returned results are
compared. A BOINC project consists of a set of N
work-unit instances (WUIs):

BOINC project = { WUIk | k=0,…,N >> 1},

where N is on the order of thousands or millions.
When workers request computation by contacting the

master, the master generates WUs and distributes their
WUIs to the workers in bundles. Pending WUIs, i.e.,
WUIs that have been distributed to VC workers but for
which results have not yet been returned, may be
completed successfully or unsuccessfully. Failures to
complete successfully may be the result of upload
errors, download errors, computation errors, or time-
outs (i.e., results are returned to the master with
significant delay). The WUIs that are associated with
one WU and have completed successfully are valid if
they “agree”; otherwise they are invalid. Because of the
volatility of VC environments, it is unlikely that all
distributed WUIs complete successfully. Moreover, it is
unlikely that all successfully returned results are also
valid.
3.2 Worker Availability

 In VC environments in general and in BOINC
environments in particular, an available worker is not
“on” all the time as is the case in cluster or Grid
computing. Instead, an available worker is one that is
productive, i.e., it returns a number of results over a
certain interval of time. Indeed the worker can be “on”
but because of volunteer-imposed restrictions, such as
exclusive CPU use by other applications, it may not be
dedicated to BOINC projects. Consequently, the
availability of a workeri at time t is defined as:

availability i (t) = WUIcompleted i (t) / WUIdistributed i (t),

where WUIcompleted is the number of work-unit instances
completed successfully (and, therefore sent to the
master), and WUIdistributed is the number of work-unit
instances that were assigned to workeri. A worker may
not return all its assigned WUIs successfully because of
errors or timeouts.

3.3 Worker Reliability
An available worker is not necessarily a reliable

worker: returned results may be affected by hardware
malfunctions, incorrect software modifications, or
malicious attacks. For example, participants in BOINC
projects might increase their CPU frequency to gain
more credits. This “overclocking” can cause hardware
bit errors (hardware malfunctions) and these errors
can affect floating-point calculations but do not crash
the computer and might occur sporadically, for example
because of fluctuations in ambient temperature. Such
errors can be detected by comparing the results of
multiple instances of the same WUs. In particular, in
BOINC these checks are performed on multiple
instances of the same WU and for projects such as P@H
are based on strict equality comparison combined with
Homogeneous Redundancy (HR) [7]. The reliability of
a workeri at time t expresses the level of trust in terms
of returned results and is defined as:

reliability i (t) = WUIvalidated i (t) / WUIcompleted i (t),

where WUIvalidated is the number of valid results
(instances that have passed the validity check) over the
total number of completed instances.

Availability and reliability are not directly correlated:
an available worker is not necessarily reliable. A certain
level of availability and reliability characterizes each
workeri at time t:

workeri (t) ⇒ {availabilityi(t), reliabilityi(t)}

Our new approach to scheduling in a BOINC project
proposes to associate a rating of availability and
reliability to each worker updating its ratings each time
it returns results. The scheduling policy described in the
Section 4.2 takes into account a worker classification in
terms of availability and reliability ratings when
assigning a new bundle of WUIs to workers: workers
that request computation tasks, because of their often
discontinuous network connection, are assigned a
bundle of WUIs and return a bundle of results. The
number of instances in the bundle is determined by
dividing the total number of floating-point operations
that the worker is willing to commit to the project over
the floating-point operations per instance waiting to be
distributed.

4. Scheduling Policies
Most existing scheduling policies that are used to

distribute work-units (WUs) in VC environments are
based on simple heuristics. In this paper we compare
two different policies: the First-Come-First-Serve
(FCFS) policy commonly used in BOINC projects and
a threshold-based policy. Both policies use
Homogeneous Redundancy (HR) for the distribution of
multiple work-unit instances (WUIs), HR distributes
instances of the same WU to workers that are
computationally equivalent, meaning that they have the
same operating system and processor vendor (e.g., Intel

Technical Report UTEP-CS-06-30, July 2006

 4

or AMD) This yields bit-identical successful results,
even for chaotic applications [7, 10].
4.1 First-Come-First-Serve Policy

This policy also is called bag of tasks [11, 12]. It
consists of assigning the first available WUI to the first
requesting worker that matches the HR criteria. That is,
the WUIs are assigned to the workers as if they were in
a queue; when a worker requests a new task it receives
the oldest WUIs in the queue. This policy has the
disadvantage of assigning tasks even to workers that in
the past have been shown to lack in reliability of their
results or in availability for the project.
4.2 Threshold-based Policy

This policy establishes two thresholds, one for worker
availability (thresholdavailability) and one for worker
reliability (thresholdreliability) and uses these thresholds
to determine the distribution of WUIs to workers; it
does not distribute WUIs to workers with availability
and reliability ratings that are below the defined
threshold values. These thresholds range between zero
and one and are not necessarily equal. For threshold
levels of 0 for both availability and reliability, this
scheduling policy degrades to the First-Come-First-
Serve policy presented in Section 4.1. Worker
availability and reliability thresholds could be fixed or
could change during a project to better meet the
performance goals of the project.

When a worker requests a new bundle of WUIs, the
master computes the worker’s availability and
reliability ratings based on the worker’s performance
history. If both ratings are above the predefined
thresholds then the worker is assigned a bundle of
WUIs. Otherwise, the worker is not assigned work. That
is, workeri(t) receives WUIs, if and only if,

availabilityi(t) ≥ thresholdavailability

and

reliabilityi(t) ≥ thresholdreliability

This policy has the disadvantage of starving workers
that are considered to be unsuitable to perform the work
at hand and, thus, virtually removes these workers from
a project. To alleviate this situation, the policy could
allow workers to improve their ratings. But this can
only be achieved by assigning WUIs to these
“unsuitable” workers and, thus, permitting them to
demonstrate that they are more available or reliable
then indicated by their histories. During simulations we
observed that the availability and reliability ratings of
workers change slowly, therefore continuing to assign
WUI bundles to a worker for a time after which the
worker is first deemed unsuitable seems to be a
reasonable strategy, one with which we currently are
experimenting.

5. SimBA
We use SimBA to study the effectiveness of the two

scheduling policies presented in Section 4. SimBA
(Simulator of BOINC Applications) is a discrete event
simulator written in Python, that models the behavior of
a BOINC project. A discrete event simulator comprises:
events, entities, and one or more monitors [13-15]. An
event is a condition that occurs at a certain point in the
time and causes changes in the state of the simulator.
The main events in SimBA are: (a) generate work-unit,
(b) generate worker, (c) request instances, (d) generate
instances, (e) determine instance output and (f) check if
the simulation is over. The event “determine instance
output” determines if an instance was returned
successfully or not and, if returned successfully, if it is
valid or not. This process follows the same rules as in
BOINC.

An entity is an object able to generate events. In
SimBA the entities are: (1) work-unit generator, (2)
worker generator, (3) worker, (4) work-unit, and (5)
work-unit instance. A monitor collects statistics; the
monitor in SimBA is called sampler (S) and it controls
the status of the simulator, i.e., in-progress or
terminated. In Table 1 we show how the events (letters)
are triggered by the entities (numbers) in SimBA. The
letters and numbers refer to the events and entities
described above. Curly braces indicate more entities
generated from an event.

To generate a worker and characterize it, SimBA uses
traces from BOINC projects. For each worker, trace
information includes: creation time, OS, vendor, life
span, average flops, average computation time for an
instance, and several rates: unsuccessful rate, valid rate,
and timeout rate. The traces used for this paper were
collected from the database of P@H during two weeks
of execution. Even if traces are used for the generation
of the workers, SimBA reproduces the unpredictable
behavior of VC environments through some
randomness. In particular SimBA uses random
distributions for two purposes:
• To determine the final status of an instance: SimBA

uses a standard uniform distribution to assign the
final status of an instance.

• To simulate the non-dedicated nature of a worker in
VC: SimBA uses a Gaussian distribution to emulate
delays in the instance executions due to user
interruptions.

These random mechanisms are driven by a random seed
and enable SimBA to behave in a non-deterministic
way.

1 → a → 4 3→ c →{5},3 5 → e→ 5 OR no entity

2 → b →3 4 → d → {5} S→f→S

Table 1: Sequences of events (letters) and entities
(numbers) in SimBA

Technical Report UTEP-CS-06-30, July 2006

 5

To simulate the assignment of instances to a worker
when it requests tasks (i.e., request result event),
SimBA models the following scheduling policies: HR,
FCFS, and threshold-based. To run a simulation,
SimBA needs the following input parameters: worker
availability threshold and worker reliability threshold
(if these are set to 0, the modeled scheduling policy is
FCFS); total length of simulated time in hours
(SIM_DURATION); temporal resolution of the event
queue (SAMPLE_INTERVAL); number of WUs
generated before the first worker is generated
(WU_INITIAL_POOL_SIZE); number of WUs
generated per hour (WUS_PER_HOUR); upper limit to
the number of instances that can be assigned to a bundle
(MAX_TASK_PER_WORKER); and time that the
master will wait for a result to return
(TASK_DEADLINE).

The output of the simulator includes the following
data: total number of generated and distributed WUIs,
total number of workers, total number of workers that
disconnected from a project during the simulation, and
the percentage of successful WUs. The output shows
how many of the distributed WUIs were valid, invalid,
in error, timed out, and successful. Among the
successful ones the output shows how many were valid
and invalid as well as how many were in progress when
the simulation ended.

To audit SimBA, we traced its outputs to ensure that
no events were lost, events were executed in the correct
order, and the number of results is consistent with the
number of generated workers and WUs. We also
compared the output results of six simulator runs (each
with different random-number generator seeds) with
real P@H output results and observed that, on average,
they differ 5%.

6. Evaluation of Simulated Results
We used SimBA to compare the performance of the

two scheduling policies described in Section 4, i.e.,
First-Come-First-Serve (FCFS) and our threshold-based
policy, and to understand the behavior, in particular, of
the latter. In this section we describe the experimental
environment and then present and analyze the
simulation results.

SimBA Parameter Value
SIM_DURATION (hours) 340
SAMPLE_INTERVAL (hours) 1
WU_INITIAL_POOL_SIZE 800
WUS_PER_HOUR 400
MAX_TASK_PER_WORKER 12
TASK_DEADLINE (hours) 48

Table 2: SimBA setup.
6.1 SimBA Setup

For all the simulation experiments SimBA parameters
were set to the values indicated in Table 2. The selected
values are based on the actual configuration of the

P@H project. As described in the next section, each
experiment had different worker availability and
reliability thresholds. SIM_DURATION was set to 340
hours (about two weeks) because our P@H traces cover
this interval of time.
6.2 Experiments

We ran three sets of experiments for each of the two
application traces, i.e., an MFold trace and a
CHARMM trace, both taken from the P@H project. For
each set of experiments we fixed the random-number
generator seed at the beginning of the simulation,
making sure that all the simulations are repeatable. A
set of experiments consists of 25 simulations, each of
which is driven by one of the two application traces.
Every experiment in a set is unique in terms of the
worker availability and reliability threshold tuple used
in the experiment. The value of any of the two
thresholds is: 0, 0.25, 0.5, 0.75, or 0.95. The selection
of these values was chosen to uniformly sample the
tuple search space. For each experiment, we measured
the total number of generated, distributed, successful,
and unsuccessful results, as well as the total number of
valid and invalid results. The results for the simulations
driven by the MFold and CHARMM traces are shown
in Figures 1 and 2, respectively. Each figure has the
same x- and y-axes, which represent the availability and
reliability thresholds, respectively. The z-axis indicates
our simulation results. Note that for clarity the first two
pictures in Figures 1 and 2 have different orientations.
6.3 Result Analysis

To facilitate the analysis of the results presented in
Figures 1 and 2, we cut them transversely along the
main diagonal and we present these results in Table 3.
Although the results along the diagonal are not always
the best achieved, they show the general tendency that
is shown in more detail in Figures 1 and 2. For
analytical purposes, in Table 3 we also include the best
and the worst results of each experiment. Note that at
the end of the 340-hour simulations, besides successful
and unsuccessful results, there are WUIs still in
progress on workers (this explains why the sum of the
percentage of successful and unsuccessful results is not
100%). Moreover, we decompose the percentage of
successful results into valid and invalid results (note
that the sum of valid and invalid values gives the
percentage of successful results).

Values in the table and the two figures are normalized
with respect to the total number of generated WUIs.
This normalization permits us to make a fair
comparison of the results across all simulations. This is
necessary because the incidence of unsuccessful or
invalid results causes the master to generate additional
instances of related WUs.

Comparing only the values on the main diagonals,
Table 3 shows that for both the MFold and CHARMM
trace-driven simulations the threshold-based policy

Technical Report UTEP-CS-06-30, July 2006

 6

with the worker availability and reliability thresholds
both set to 0, which is equivalent to the FCFS policy,
has the worst behavior. Taking into account all the
results from Figures 1 and 2 we observe that, although
FCFS does not always have the worst performance, the
worst performance is always associated with a
simulation that has one of the thresholds set to 0. This
finding reinforces the importance of using the tuple of
thresholds.

Availability/
Reliability
Thresholds

Successful
Results
 (%)

Unsuccessful
Results
(%)

Valid
Results
(%)

Invalid
Results
(%)

MFold

0.95/0.95 83.59 6.65 81.94 1.64

0.75/0.75 85.58 5.40 83.71 1.88

0.50/0.50 85.47 5.96 83.18 2.29

0.25/0.25 85.64 6.52 83.21 2.43

0/0 (FCFS) 80.54 13.79 76.68 3.86

Best 86.83 4.52 84.4 1.52

Worst 77.31 15.91 75.65 4.24

CHARMM

0.95/0.95 80.79 8.40 77.01 3.78

0.75/0.75 82.49 6.51 77.75 4.74

0.50/0.50 82.23 7.39 76.56 5.67

0.25/0.25 81.65 8.83 75.28 6.37

0/0 (FCFS) 72.19 22.21 61.26 10.93

Best 85.02 4.54 78.03 3.40

Worst 66.56 27.73 61.25 12.44

Table 3. Results along the main diagonals in Figures
1 and 2, and worst and best results

Referring to Figures 1 and 2, for both applications,
there is a direct correlation between the availability
threshold and the number of successful/unsuccessful
results. In particular, refer to Figures 1.c and 1.d for
MFold and Figures 2.c and 2.d for CHARMM). As can
be seen in these figures, the number of successfully
returned results increases as the availability threshold
increases (ranging from 77% to 86% for MFold in
Figure 1.c and from 66% to 85% for CHARMM in
Figure 2.c), while the number of unsuccessful results
decreases (ranging from 15% to 4% for MFold in
Figure 1.d and from 27% to 4% for CHARMM in
Figure 2.d). We find a similar relationship between the
reliability threshold and the number of valid/invalid
results. Referring to Figures 1.e and 2.3, the number of
valid results increases with the reliability threshold
(ranging from 75% to 84% for MFold and from 61% to
78% for CHARMM), while, as shown in Figures 1.f
and 2.f, the number of invalid results decreases (ranging
from 4% to 1% for MFold and from 12% to 3% for
CHARMM). This shows that by using a threshold-

based scheduling policy it is possible to change the
number of validated simulation results that can be
delivered within a defined interval of time, in our case
340 hours.

In Figures 1.e for MFold and 2.e for CHARMM, we
can identify a “sweet spot” where the number of valid
results that we can return to the scientists reaches
higher values and their differences are within 1%. This
spot is delimited by the values of 0.50 and 0.75 for both
the availability and reliability thresholds. This shows
that when the availability and reliability thresholds are
selected properly, the number of trusted results
delivered in a given amount of time increases.
In contrast, if we select thresholds at either end of the
spectrum (i.e., 0 or 0.95) the simulation results are poor.
More specifically, as shown in Figures 1.d and 2.d, if we
consider an availability threshold of 0 and a reliability
threshold that ranges from 0 to 0.95, we have a very
high number of unsuccessful results. As shown in
Figures 1.f and 2.f, for an availability threshold that
ranges from 0 to 0.95 and a reliability threshold of 0, we
have a very high number of invalid results. In both
cases, the load on the master is higher because the
master reacts to the high number of unsuccessful and
invalid results by generating and distributing more
instances (Figures 1.a and 1.b for MFold and Figures 2.a
and 2.b for CHARMM). For the threshold tuple of
0.95/0.95, the number of trusted results is less than that
achieved at the “sweet spot” but higher than that
achieved by the other two edge-cases mentioned above.
However, as expected, the master reacts to decreasing
number of workers with availability and reliability
ratings higher than .95 by generating and distributing
less WUIs. Accordingly, the search space of the BOINC
application reduces and thus the probability of finding
promising results, i.e., close to results in Nature.

This confirms our initial claim that when the worker
availability and reliability thresholds are both on either
end of the spectrum, the performance of the system is
poor (i.e., fewer results are delivered in the given
amount of time and less sampling is performed).

7. Related Work
VC must not be confused with grid computing, which

generally means the sharing of computing resources
within and between organizations such as universities,
research labs, and companies. Differences in the two
computing environments result in different scheduling
approaches and simulator modeling.
7.1 Scheduling Approaches

Adaptive scheduling in large-scale computing
environments is discussed in [16-18]. These studies
primarily target grid environments. However, aspects
such as reliability of resources and trustworthiness of
application results, which are important when scientific
phenomena are simulated on VC environments, are not
considered in these papers. Dongarra et al. [19] have

Technical Report UTEP-CS-06-30, July 2006

 7

MFold Application CHARMM Application

Figure 1: SimBA results for MFold Figure 2: SimBA results for CHARMM

done significant work on adaptive grid computing and,
in particular, have introduced adaptation on GrADS
systems. GrADS systems, though, are grid
environments that have different features than VC
environments. Wolski and others [20, 21] studied the
effectiveness of statistical models for predicting
machine failure/availability distributions. Statistical
models such as exponential, hyper exponential, Pareto,
and Weibull distributions were investigated using
historical availability, where availability means time
during which the machine is powered on. These
sophisticated statistical models are not particularly
suitable for VC environments because of server load
concerns: the time required by the VC master for
accurate predictions of worker availability may be too
high.

7.2 Simulators
There are several grid simulators (e.g., SimGrid [22],

GridSim [23], Bricks [24], HyperSim [25], and
ChicSim [26]) that have been used to implement and
evaluate scheduling techniques on grid computing
environments. The performance of grid applications
also has been studied in the past using a grid emulator
such as the MicroGrid [27]. In contrast to SimBA, these
simulators and emulators do not capture the

characteristics of VC since they have not been tailored
for this kind of environment.

To our knowledge, little work has been done in the
past to address scheduling strategies on VC
environments. Probably the closest to the work
presented in this paper is the work of Kondo [28].
Kondo built traces using synthetic applications with
short task turnaround times (in the order of minutes or
seconds). In contrast, our work is based on real traces
from an existing BOINC project: P@H. Different
expectations and models led Kondo to different
conclusions than in our work. He claimed in [28] that
the history of nodes does not affect the turnaround time
if machines are prioritized and used according to their
speed. In contrast, we show in this paper that in a
dynamic environment such as the Internet, the VC
environment does not allow an a priori determination
of worker priority and the history of the
workers/machines in terms of availability and reliability
plays a key role in determining turnaround time. Also
Kondo's definition of availability is different from ours.
He considers availability to be the time the machine is
“on” and the concept of reliability of results, i.e.,
trustworthiness, is not addressed in his work while for
us reliability is a key component.

Technical Report UTEP-CS-06-30, July 2006

 8

8. Conclusions and Future Work
In this paper we demonstrated that by using the

proposed availability and reliability metrics to classify
workers in a VC environment and adopting a
scheduling policy that uses these metrics to determine
the distribution of tasks among volunteers’ computers,
the number of trusted results that can be delivered to
scientists can be increased significantly. In particular,
for two BOINC applications, MFold and CHARMM,
we showed that when using our threshold-based
scheduling policy, there are sweet spots, in terms of
worker throughput. These sweet spots are associated
with availability and reliability thresholds in the range
0.50 to 0.75. When tasks are assigned only to workers
that have an availability rating within this range, then
an average increase of successful results of 14% is
attained with a peak of 18% for CHARMM; this is in
comparison to the performance of the FCFS scheduling
policy. When tasks are assigned only to workers that
have a reliability rating within this sweet spot, then an
average increase of valid results of 13% is attained with
a peak of 17% for CHARMM; again this is in
comparison to the performance of FCFS.

Using fixed thresholds permanently excludes workers
that temporarily fall below the defined thresholds from
participating in a BOINC project. Our future work will
solve this problem by dynamically changing thresholds,
which will take into account the fluctuation of the
availability and reliability of the whole population of
workers. Moreover, the slight differences between the
sweet spots of the two applications encourage us to
further study the sweet spots of a wider range of
applications and analyze the correlations between sweet
spots and application characteristics.

Acknowledgments

Financial support through the National Science Foundation, grant #
SCI-0506429, DAPLDS - a Dynamically Adaptive Protein-Ligand
Docking System based on multi-scale modeling is acknowledged.

References

[1] DP Anderson: BOINC: A System for Public-Resource Computing
and Storage. In Proc. of the 5th IEEE/ACM Int. Workshop on Grid
Computing (Grid’04), 2004.
[2] M Taufer, PJ Teller, DP Anderson, and CL Brooks III: Metrics for
Effective Resource Management in Global Computing Environments.
In Proc. of the 1st IEEE Conference on e-Science and Grid
Technologies (eScience’05), 2005.
[3] M Taufer, C An, A Kerstens, and CL Brooks III:
Predictor@Home: A "Protein Structure Prediction Supercomputer"
Based on Public-Resource Computing. IEEE Transactions on
Parallel and Distributed Systems. In Press, 2005.
[4] C Christensen, T Aina, and D Stainforth: The Challenge of
Volunteer Computing With Lengthy Climate Model Simulations. In
Proc. of the 1st IEEE Conference on e-Science and Grid
Technologies (eScience’05), 2005.
[5] V Pande et al.: Atomistic Protein Folding Simulations on the
Submillisecond Time Scale Using World Wide Distributed
Computing. Biopolymers, 2003, 68:91–109.
[6] DP Anderson, and G Fedak: The Computational and Storage
Potential of Volunteer Computing. In Proc. of IEEE/ACM Symposium
on Cluster Computing and the Grid (CCGrid’06), 2006.

[7] M Taufer, D Anderson, P Cicotti, and CL Brooks III:
Homogeneous Redundancy: a Technique to Ensure Integrity of
Molecular Simulation Results Using Public Computing. In Proc. of
the 14th Heterogeneous Computing Workshop (HCW’05), 2005.
[8] A Kolinski and J Skolnick: Assembly of Protein Structure from
Sparse Experimental Data: An Efficient Monte Carlo Model.
Proteins: Structure, Function, and Genetics, 1998, 32:475—494.
[9] BR Brooks et al.: CHARMM: A Program for Macromolecular
Energy Minimization, and Dynamics Calculations. J Comp Chem,
1983, 4:187—217.
[10] M Braxenthaler, R Unger, D Auerbach, JA Given, and J Moult,
Chaos in Protein Dynamics. Proteins, 1997, 9(4):417-25.
[11] D Anderson, E Corpela, and R Walton: High-performance task
distribution for volunteer computing. In Proc. of the 1st IEEE
Conference on eScience and Grid Technologies (eScience’05), 2005.
[12] LB Costa et al.: MyGrid: A complete solution for running bag-
of-tasks applications. In Proc. of the Simposio Brasileiro de Redes de
Computadores (SBRC’04) 2004.
[13] TJ Schriber and DT Brunner: Inside Discrete-Event Simulation
Software: How it Works and Why it Matters. In Proc. of the 2003
Winter Simulation Conference, 2003.
[14] FO Gathmann: Python as a Discrete Event Simulation
Environment. In Proc. of 7th International Python Conference, 1998.
[15] RG Ingalls: Introduction to Simulation. In Proc. of the 2002
Winter Simulation Conference, 2002.
[16] G Shao, F. Berman, and R. Wolski: Master/Slave Computing on
the Grid, In Proc. of the 9th Heterogeneous Computing Workshop
(HCW’00), 2000.
[17] F Berman, et al.: Adaptive Computing on the Grid using
AppLeS. IEEE Trans. on Parallel and Distributed Systems (TPDS),
2003, 14(4):369-382.
[18] E Heymann, MA Senar, E Luque, and M Livny: Adaptive
Scheduling for Master-Worker Applications on the Computational
Grid. In Proc. of the 1st IEEE/ACM Conference on Grid Computing
(GRID’00), 2000.
[19] SS Vadhiyar and JJ Dongarra: Self Adaptivity in Grid
Computing. J of Concurrency Computation: Pract. Exper. 2004.
[20] J Brevik, D Nurmi, and R Wolski: Automatic Methods for
Predicting Machine Availability in Desktop Grid and Peer-to-Peer
Systems. In Proc. of the IEEE Symposium on Cluster Computing and
the Grid (CCGrid’04), 2004
[21] D Kondo, AA Chien, and H Casanova: Resource Management
for Rapid Application Turnaround on Enterprise Desktop Grids. In
Proc. of the ACM Conference on High Performance Computing and
Networking (SC’04), 2004.
[22] H Casanova. Simgrid: A Toolkit for the Simulation of
Application Scheduling. In Proc. of the 1st Symposium on Cluster
Computing and the Grid (Grid’01), 2001.
[23] A Sulistio, G Poduvaly, R Buyya, and C-K Tham: Constructing
A Grid Simulation with Differentiated Network Service Using
GridSim. In Proc. of the 6th Int. Conference on Internet Computing
(ICOMP'05), 2005.
[24] K Aida er al.: Performance Evaluation Model for Scheduling in a
Global Computing System. Int. J of High Performance Computing
Applications, 2000, 14(3).
[24] S Phatanapherom, P Uthayopas, V Kachitvichyanukul: Fast
Simulation Model for Grid Scheduling Using HyperSim. In Proc. of
the 2003 Winter Simulation Conference, 2003.
[26] K Ranganathan and I Foster: Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Appplications. In Proc. of
the 11th IEEE Symposium on High Performance Distributed
Computing (HPDC 2002), 2002.
[27] H Xia, H Dail, H Casanova and A Chien: The MicroGrid: Using
Emulation to Predict Application Performance in Diverse Grid
Network Environments. In Proc. of the Workshop on Challenges of
Large Applications in Distributed Environments (CLADE'04), 2004.
[28] D Kondo: Scheduling Task Parallel Applications For Rapid
Turnaround on Enterprise Desktop Grids. PhD Dissertation, UCSD,
July 2004.

	The Effectiveness of Threshold-Based Scheduling Policies on BOINC Projects
	Recommended Citation
	Authors

	Microsoft Word - UTEP-CS-06-29_TEstrada.doc

