
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

7-2006 

The Effectiveness of Threshold-Based Scheduling Policies on The Effectiveness of Threshold-Based Scheduling Policies on 

BOINC Projects BOINC Projects 

Trilce Estrada 

David A. Flores 

Michela Taufer 

Patricia J. Teller 
The University of Texas at El Paso, pteller@utep.edu 

Andre Kerstens 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Engineering Commons 

Comments: 

UTEP-CS-06-30 

Recommended Citation Recommended Citation 
Estrada, Trilce; Flores, David A.; Taufer, Michela; Teller, Patricia J.; Kerstens, Andre; and Anderson, David P., 
"The Effectiveness of Threshold-Based Scheduling Policies on BOINC Projects" (2006). Departmental 
Technical Reports (CS). 192. 
https://scholarworks.utep.edu/cs_techrep/192 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/192?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Authors Authors 
Trilce Estrada, David A. Flores, Michela Taufer, Patricia J. Teller, Andre Kerstens, and David P. Anderson 

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/192 

https://scholarworks.utep.edu/cs_techrep/192


Technical Report UTEP-CS-06-30, July 2006 
 

 1 

The Effectiveness of Threshold-based Scheduling Policies 
in BOINC Projects 

 

Trilce Estrada 1, David A. Flores 1, Michela Taufer 1, Patricia J. Teller 1, Andre Kerstens 1,  
David P. Anderson 2 

 
1 Computer Science Department 
University of Texas at El Paso 

El Paso, Texas, 79968 

2 Space Sciences Lab 
University of California at Berkeley 

Berkeley, California, 94720 
{tpestrada, daflores, mtaufer, pteller, akerstens} @utep.edu                            daves@ssl.berkeley.edu 

 
 

Abstract 
Several scientific projects use BOINC (Berkeley Open 

Infrastructure for Network Computing) to perform large-
scale simulations using volunteers’ computers (workers) 
across the Internet. In general, the scheduling of tasks in 
BOINC uses a First-Come-First-Serve policy and no 
attention is paid to workers’ past performance, such as 
whether they have tended to perform tasks promptly and 
correctly. 

In this paper we use SimBA, a discrete-event 
simulator of BOINC applications, to study new 
threshold-based scheduling strategies for BOINC 
projects that use availability and reliability metrics to 
classify workers and distribute tasks according to this 
classification. We show that if availability and 
reliability thresholds are selected properly, then the 
workers’ throughput of valid results increases 
significantly in BOINC projects. 

 

1. Introduction 
BOINC (Berkeley Open Infrastructure for Network 

Computing) is a software system for distributed 
computing using Internet-connected PCs owned by the 
general public [1]. Several scientific projects use 
BOINC to do large-scale simulations. In general, the 
scheduling of tasks in BOINC uses a First-Come-First-
Serve (FCFS) policy: a server generates a large number 
of independent tasks and distributes them to workers in 
the order in which they were created.  No attention is 
paid to the worker’s past performance, such as whether 
it has tended to perform tasks promptly and correctly. 

Our goal is to enhance BOINC scheduling to take into 
account these worker characteristics. Such new 
scheduling policies can increase the number of valid 
results delivered by specified deadlines, while at the 
same time not increasing the load on the master.  

In previous work [2] we proposed the introduction of 
availability and reliability metrics for the classification 
of workers in BOINC projects. In this paper we extend 
this previous work by using these metrics as a part of 

new scheduling policies that allow us to deliver larger 
numbers of valid results in shorter amounts of time, as 
compared to the scheduling policy used in current 
BOINC projects. The major contributions of this paper 
are the following: 
1. We show that through the use of scheduling policies 

based on worker availability and reliability 
thresholds, the workers’ throughput of valid results 
can be changed. Such thresholds can play a key role 
in assigning tasks only to workers that are likely to 
deliver valid results by specified deadlines. 

2. We show that if worker availability and reliability 
thresholds are both on either end of the spectrum 
(i.e., close to 0 or 1), performance is unacceptable 
(i.e., fewer results are delivered in a given amount 
of time). 

3. We show that BOINC applications have “sweet 
spots”, i.e., worker availability and reliability 
thresholds that when used to make scheduling 
decisions deliver the largest number of valid results 
in a given amount of time.  

These conclusions are based on the results of trace-
driven simulations. Currently, a simulation environment 
is the best way to evaluate the effectiveness of BOINC 
scheduling policies. Changing the policy within a 
running project would involve the large population of 
BOINC volunteers and could cause them some 
inconvenience.  

Our simulator is called SimBA, Simulator of BOINC 
Applications. SimBA models the behavior of a BOINC 
master, including its different scheduling strategies for 
the distribution of tasks. The simulator is driven by real 
traces from in-production BOINC projects such as 
Predictor@Home (P@H) [3] to model the behavior of 
workers that join, participate in, and leave a project. 

The remainder of the paper is organized as follows. 
Section 2 briefly discusses background concepts, i.e., 
Volunteer Computing (VC) environments, BOINC as a 
representative VC environment, and P@H as a 
representative BOINC project. Section 3 summarizes 
the taxonomy of a BOINC project and worker 
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classifications in terms of worker availability and 
reliability. Section 4 introduces two scheduling policies 
for BOINC projects, one of which is a prototype for a 
new scheduling paradigm. SimBA, the Simulator of 
BOINC Applications, which is used in this paper to 
evaluate the effectiveness of scheduling policies, is 
described in Section 5. Results of the evaluation of the 
performance of the new scheduling paradigm in 
comparison to the one currently used in BOINC are 
presented in Section 6. In Section 7 we present related 
work and in Section 8 we conclude and introduce some 
future work. 

2. Background 
In this section we briefly describe Volunteer 

Computing (VC) environments, the Berkeley Open 
Infrastructure for Network Computing (BOINC) as a 
well-known representative of these environments, and 
Predictor@Home (P@H), a BOINC project; P@H 
traces were used to drive the simulations discussed in 
this paper. 
2.1. Volunteer Computing 

Volunteer Computing (VC) uses computing resources 
(e.g., desktops, notebooks, and servers) connected 
through the Internet and owned by the public 
(volunteers) to address fundamental problems in 
science. VC projects typically are simulations of 
phenomena in Nature. Some examples of VC projects 
are: climateprediction.net [4], which explores how the 
Earth’s climate may change in the next century under a 
wide range of different scenarios; Predictor@Home [3], 
which predicts protein structures; and Folding@Home 
[5], which explores the physical processes of protein 
folding. The VC paradigm emerged in the mid-1990s 
with two projects, GIMPS and Distributed.net. 
SETI@Home, which was launched in 1999, was the 
first project with appeal that extended beyond 
hobbyists.  

VC environments provide higher throughput than 
traditional computing systems, such as clusters and 
supercomputers, at a lower cost in terms of installation, 
maintenance, power, and infrastructure. However, these 
environments are particularly challenging because of 
the nature of their resources: they are volatile, error 
prone, and heterogeneous. 
2.2. BOINC 

BOINC (Berkeley Open Infrastructure for Network 
Computing) is a well-known representative of VC 
environments. It is an open-source system that 
harnesses the computing power and storage capacity of 
thousands or millions of personal computers (PCs) 
owned by the general public for large-scale scientific 
simulations. 

The computing resources available to a BOINC 
project are highly diverse: the hosts differ by orders of 
magnitude in their processor speed, available RAM, 

disk space, and network connection speed. Some hosts 
connect to the Internet by modem only every few days, 
while others are permanently connected.  Computations 
may have varying bounds on completion time, and in 
some cases computations can be aborted. Nevertheless, 
BOINC projects are very attractive for large-scale 
simulations because they can potentially sustain a very 
high processing rate (tens or hundreds of TeraFLOPS). 
For example, SETI@Home now runs on approximately 
one million computers, providing a sustained 
processing rate of about 250 TeraFLOPS [6]. 

BOINC is based on a master-worker paradigm. A 
master distributes tasks among volunteer computers, or 
workers. Workers request tasks from the master and 
send back the computed results when the tasks are 
completed. BOINC provides the user with the ability to 
attach and donate resources to several projects at the 
same time. The user can specify the amount of time that 
he or she wants to dedicate to each of the projects (e.g., 
70% of the resources are dedicated to SETI@Home, 
while the remaining 30% are dedicated to P@H). When 
a worker successfully sends back a result, it is rewarded 
with credit (so-called Cobblestones) once the result has 
passed certain validation checks that aim to determine 
whether the result is valid or invalid, e.g., affected by 
malicious attacks or invalidated by hardware 
malfunctions [7]. 
2.3. Predictor@Home 

Predictor@Home, or P@H, is a BOINC project for 
large-scale protein structure prediction. Predicting the 
structure of an unknown protein is a critical problem in 
enabling structure-based drug design to treat new and 
existing diseases.  

From a sequence of amino acids P@H attempts to 
predict the folded, functioning form of the protein 
either a priori, i.e., in the absence of detailed structural 
knowledge, or by homology with other known, but not 
identical, proteins. In the case of a priori folding or 
“new fold” prediction, no homology information is 
available and a blind search based on the sequence of 
amino acids alone is performed. In contrast, homology 
modeling first identifies other proteins of known 
structure with some level of sequence similarity to the 
unknown structure, and then constructs a prediction for 
the unknown protein by homology. In both cases the 
choice of a putative candidate is based on energy 
values; moreover, both approaches may utilize multi-
scale optimization techniques to identify the most 
favorable structural models, e.g., force fields and 
solvent representations. The protein structure prediction 
algorithm in P@H is a multi-step pipeline that consists 
of (a) a sequence analysis and identification of 
secondary structures as well as potential homology 
modeling templates using web-based servers such as 
BLAST, SAM-T02, and PSIPRED; (b) a 
conformational search using a Monte Carlo simulated 
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annealing approach using MFold [8]; and (c) protein 
refinement, scoring, and clustering using the 
CHARMM Molecular Dynamics simulation package 
[9].  

3. Characterization of a BOINC Project 
This section briefly presents the taxonomy of tasks in 

a BOINC project and introduces two metrics for the 
classification of workers in terms of their availability to 
compute tasks and reliability to compute trusted results. 
3.1 Taxonomy of Tasks 

Since VC environments are error-prone, BOINC 
projects use redundant computing to capture possible 
discrepancies in results due to factors such as malicious 
attacks or hardware malfunctions. Computation 
instances of the same task or work-unit  (WUs) are 
performed on different PCs and returned results are 
compared. A BOINC project consists of a set of N 
work-unit instances (WUIs): 

BOINC project = { WUIk  |  k=0,…,N >> 1}, 

where N is on the order of thousands or millions.  
When workers request computation by contacting the 

master, the master generates WUs and distributes their 
WUIs to the workers in bundles. Pending WUIs, i.e., 
WUIs that have been distributed to VC workers but for 
which results have not yet been returned, may be 
completed successfully or unsuccessfully. Failures to 
complete successfully may be the result of upload 
errors, download errors, computation errors, or time-
outs (i.e., results are returned to the master with 
significant delay). The WUIs that are associated with 
one WU and have completed successfully are valid if 
they “agree”; otherwise they are invalid. Because of the 
volatility of VC environments, it is unlikely that all 
distributed WUIs complete successfully. Moreover, it is 
unlikely that all successfully returned results are also 
valid.  
3.2 Worker Availability  

 In VC environments in general and in BOINC 
environments in particular, an available worker is not 
“on” all the time as is the case in cluster or Grid 
computing. Instead, an available worker is one that is 
productive, i.e., it returns a number of results over a 
certain interval of time. Indeed the worker can be “on” 
but because of volunteer-imposed restrictions, such as 
exclusive CPU use by other applications, it may not be 
dedicated to BOINC projects. Consequently, the 
availability of a workeri at time t is defined as: 

availability i (t) = WUIcompleted  i (t) / WUIdistributed  i (t), 

where WUIcompleted is the number of work-unit instances 
completed successfully (and, therefore sent to the 
master), and WUIdistributed is the number of work-unit 
instances that were assigned to workeri. A worker may 
not return all its assigned WUIs successfully because of 
errors or timeouts. 

3.3 Worker Reliability 
An available worker is not necessarily a reliable 

worker: returned results may be affected by hardware 
malfunctions, incorrect software modifications, or 
malicious attacks. For example, participants in BOINC 
projects might increase their CPU frequency to gain 
more credits. This “overclocking” can cause hardware 
bit errors (hardware malfunctions) and these errors 
can affect floating-point calculations but do not crash 
the computer and might occur sporadically, for example 
because of fluctuations in ambient temperature. Such 
errors can be detected by comparing the results of 
multiple instances of the same WUs. In particular, in 
BOINC these checks are performed on multiple 
instances of the same WU and for projects such as P@H 
are based on strict equality comparison combined with 
Homogeneous Redundancy (HR) [7]. The reliability of 
a workeri at time t expresses the level of trust in terms 
of returned results and is defined as: 

reliability i (t)  = WUIvalidated i (t)  /  WUIcompleted i (t), 

where WUIvalidated is the number of valid results 
(instances that have passed the validity check) over the 
total number of completed instances. 

Availability and reliability are not directly correlated: 
an available worker is not necessarily reliable. A certain 
level of availability and reliability characterizes each 
workeri at time t: 

workeri (t) ⇒  {availabilityi(t), reliabilityi(t)} 

Our new approach to scheduling in a BOINC project 
proposes to associate a rating of availability and 
reliability to each worker updating its ratings each time 
it returns results. The scheduling policy described in the 
Section 4.2 takes into account a worker classification in 
terms of availability and reliability ratings when 
assigning a new bundle of WUIs to workers: workers 
that request computation tasks, because of their often 
discontinuous network connection, are assigned a 
bundle of WUIs and return a bundle of results. The 
number of instances in the bundle is determined by 
dividing the total number of floating-point operations 
that the worker is willing to commit to the project over 
the floating-point operations per instance waiting to be 
distributed.  

4. Scheduling Policies 
Most existing scheduling policies that are used to 

distribute work-units (WUs) in VC environments are 
based on simple heuristics. In this paper we compare 
two different policies: the First-Come-First-Serve 
(FCFS) policy commonly used in BOINC projects and 
a threshold-based policy. Both policies use 
Homogeneous Redundancy (HR) for the distribution of 
multiple work-unit instances (WUIs), HR distributes 
instances of the same WU to workers that are 
computationally equivalent, meaning that they have the 
same operating system and processor vendor (e.g., Intel 
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or AMD) This yields bit-identical successful results, 
even for chaotic applications [7, 10]. 
4.1 First-Come-First-Serve Policy 

This policy also is called bag of tasks [11, 12]. It 
consists of assigning the first available WUI to the first 
requesting worker that matches the HR criteria. That is, 
the WUIs are assigned to the workers as if they were in 
a queue; when a worker requests a new task it receives 
the oldest WUIs in the queue. This policy has the 
disadvantage of assigning tasks even to workers that in 
the past have been shown to lack in reliability of their 
results or in availability for the project.  
4.2 Threshold-based Policy 

This policy establishes two thresholds, one for worker 
availability (thresholdavailability) and one for worker 
reliability (thresholdreliability) and uses these thresholds 
to determine the distribution of WUIs to workers; it 
does not distribute WUIs to workers with availability 
and reliability ratings that are below the defined 
threshold values. These thresholds range between zero 
and one and are not necessarily equal. For threshold 
levels of 0 for both availability and reliability, this 
scheduling policy degrades to the First-Come-First-
Serve policy presented in Section 4.1. Worker 
availability and reliability thresholds could be fixed or 
could change during a project to better meet the 
performance goals of the project. 

When a worker requests a new bundle of WUIs, the 
master computes the worker’s availability and 
reliability ratings based on the worker’s performance 
history. If both ratings are above the predefined 
thresholds then the worker is assigned a bundle of 
WUIs. Otherwise, the worker is not assigned work. That 
is, workeri(t) receives WUIs, if and only if,  

availabilityi(t) ≥ thresholdavailability  

and  

reliabilityi(t) ≥ thresholdreliability  

This policy has the disadvantage of starving workers 
that are considered to be unsuitable to perform the work 
at hand and, thus, virtually removes these workers from 
a project. To alleviate this situation, the policy could 
allow workers to improve their ratings. But this can 
only be achieved by assigning WUIs to these 
“unsuitable” workers and, thus, permitting them to 
demonstrate that they are more available or reliable 
then indicated by their histories. During simulations we 
observed that the availability and reliability ratings of 
workers change slowly, therefore continuing to assign 
WUI bundles to a worker for a time after which the 
worker is first deemed unsuitable seems to be a 
reasonable strategy, one with which we currently are 
experimenting.  

5. SimBA 
We use SimBA to study the effectiveness of the two 

scheduling policies presented in Section 4. SimBA 
(Simulator of BOINC Applications) is a discrete event 
simulator written in Python, that models the behavior of 
a BOINC project. A discrete event simulator comprises: 
events, entities, and one or more monitors [13-15]. An 
event is a condition that occurs at a certain point in the 
time and causes changes in the state of the simulator. 
The main events in SimBA are: (a) generate work-unit, 
(b) generate worker, (c) request instances, (d) generate 
instances, (e) determine instance output and (f) check if 
the simulation is over. The event “determine instance 
output” determines if an instance was returned 
successfully or not and, if returned successfully, if it is 
valid or not. This process follows the same rules as in 
BOINC. 

An entity is an object able to generate events. In 
SimBA the entities are: (1) work-unit generator, (2) 
worker generator, (3) worker, (4) work-unit, and  (5) 
work-unit instance. A monitor collects statistics; the 
monitor in SimBA is called sampler (S) and it controls 
the status of the simulator, i.e., in-progress or 
terminated. In Table 1 we show how the events (letters) 
are triggered by the entities (numbers) in SimBA. The 
letters and numbers refer to the events and entities 
described above. Curly braces indicate more entities 
generated from an event. 

To generate a worker and characterize it, SimBA uses 
traces from BOINC projects. For each worker, trace 
information includes: creation time, OS, vendor, life 
span, average flops, average computation time for an 
instance, and several rates: unsuccessful rate, valid rate, 
and timeout rate. The traces used for this paper were 
collected from the database of P@H during two weeks 
of execution. Even if traces are used for the generation 
of the workers, SimBA reproduces the unpredictable 
behavior of VC environments through some 
randomness. In particular SimBA uses random 
distributions for two purposes:  
• To determine the final status of an instance: SimBA 

uses a standard uniform distribution to assign the 
final status of an instance. 

• To simulate the non-dedicated nature of a worker in 
VC: SimBA uses a Gaussian distribution to emulate 
delays in the instance executions due to user 
interruptions. 

These random mechanisms are driven by a random seed 
and enable SimBA to behave in a non-deterministic 
way. 

1 → a → 4 3→ c →{5},3 5 → e→ 5 OR no entity 

2 → b →3 4 → d → {5} S→f→S 

Table 1: Sequences of events (letters) and entities 
(numbers) in SimBA 
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To simulate the assignment of instances to a worker 
when it requests tasks (i.e., request result event), 
SimBA models the following scheduling policies: HR, 
FCFS, and threshold-based. To run a simulation, 
SimBA needs the following input parameters: worker 
availability threshold and worker reliability threshold 
(if these are set to 0, the modeled scheduling policy is 
FCFS); total length of simulated time in hours 
(SIM_DURATION); temporal resolution of the event 
queue (SAMPLE_INTERVAL); number of WUs 
generated before the first worker is generated 
(WU_INITIAL_POOL_SIZE); number of WUs 
generated per hour (WUS_PER_HOUR); upper limit to 
the number of instances that can be assigned to a bundle  
(MAX_TASK_PER_WORKER); and time that the 
master will wait for a result to return 
(TASK_DEADLINE). 

The output of the simulator includes the following 
data: total number of generated and distributed WUIs, 
total number of workers, total number of workers that 
disconnected from a project during the simulation, and 
the percentage of successful WUs. The output shows 
how many of the distributed WUIs were valid, invalid, 
in error, timed out, and successful. Among the 
successful ones the output shows how many were valid 
and invalid as well as how many were in progress when 
the simulation ended.  

To audit SimBA, we traced its outputs to ensure that 
no events were lost, events were executed in the correct 
order, and the number of results is consistent with the 
number of generated workers and WUs. We also 
compared the output results of six simulator runs (each 
with different random-number generator seeds) with 
real P@H output results and observed that, on average, 
they differ 5%. 

6. Evaluation of Simulated Results 
We used SimBA to compare the performance of the 

two scheduling policies described in Section 4, i.e., 
First-Come-First-Serve (FCFS) and our threshold-based 
policy, and to understand the behavior, in particular, of 
the latter. In this section we describe the experimental 
environment and then present and analyze the 
simulation results. 

SimBA Parameter Value 
SIM_DURATION  (hours) 340 
SAMPLE_INTERVAL (hours) 1 
WU_INITIAL_POOL_SIZE 800 
WUS_PER_HOUR 400 
MAX_TASK_PER_WORKER 12 
TASK_DEADLINE  (hours) 48 

Table 2: SimBA setup. 
6.1 SimBA Setup 

For all the simulation experiments SimBA parameters 
were set to the values indicated in Table 2. The selected 
values are based on the actual configuration of the 

P@H project. As described in the next section, each 
experiment had different worker availability and 
reliability thresholds. SIM_DURATION was set to 340 
hours (about two weeks) because our P@H traces cover 
this interval of time.  
6.2 Experiments 

We ran three sets of experiments for each of the two 
application traces, i.e., an MFold trace and a 
CHARMM trace, both taken from the P@H project. For 
each set of experiments we fixed the random-number 
generator seed at the beginning of the simulation, 
making sure that all the simulations are repeatable. A 
set of experiments consists of 25 simulations, each of 
which is driven by one of the two application traces. 
Every experiment in a set is unique in terms of the 
worker availability and reliability threshold tuple used 
in the experiment. The value of any of the two 
thresholds is: 0, 0.25, 0.5, 0.75, or 0.95. The selection 
of these values was chosen to uniformly sample the 
tuple search space. For each experiment, we measured 
the total number of generated, distributed, successful, 
and unsuccessful results, as well as the total number of 
valid and invalid results. The results for the simulations 
driven by the MFold and CHARMM traces are shown 
in Figures 1 and 2, respectively. Each figure has the 
same x- and y-axes, which represent the availability and 
reliability thresholds, respectively. The z-axis indicates 
our simulation results. Note that for clarity the first two 
pictures in Figures 1 and 2 have different orientations. 
6.3 Result Analysis 

To facilitate the analysis of the results presented in 
Figures 1 and 2, we cut them transversely along the 
main diagonal and we present these results in Table 3. 
Although the results along the diagonal are not always 
the best achieved, they show the general tendency that 
is shown in more detail in Figures 1 and 2. For 
analytical purposes, in Table 3 we also include the best 
and the worst results of each experiment. Note that at 
the end of the 340-hour simulations, besides successful 
and unsuccessful results, there are WUIs still in 
progress on workers (this explains why the sum of the 
percentage of successful and unsuccessful results is not 
100%). Moreover, we decompose the percentage of 
successful results into valid and invalid results (note 
that the sum of valid and invalid values gives the 
percentage of successful results). 

Values in the table and the two figures are normalized 
with respect to the total number of generated WUIs. 
This normalization permits us to make a fair 
comparison of the results across all simulations. This is 
necessary because the incidence of unsuccessful or 
invalid results causes the master to generate additional 
instances of related WUs.   

Comparing only the values on the main diagonals, 
Table 3 shows that for both the MFold and CHARMM 
trace-driven simulations the threshold-based policy 
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with the worker availability and reliability thresholds 
both set to 0, which is equivalent to the FCFS policy, 
has the worst behavior. Taking into account all the 
results from Figures 1 and 2 we observe that, although 
FCFS does not always have the worst performance, the 
worst performance is always associated with a 
simulation that has one of the thresholds set to 0. This 
finding reinforces the importance of using the tuple of 
thresholds. 

Availability/
Reliability 
Thresholds 

Successful 
Results 
 (%) 

Unsuccessful 
Results 
(%) 

Valid  
Results 
(%) 

Invalid  
Results 
(%) 

MFold 

0.95/0.95 83.59 6.65 81.94 1.64 

0.75/0.75 85.58 5.40 83.71 1.88 

0.50/0.50 85.47 5.96 83.18 2.29 

0.25/0.25 85.64 6.52 83.21 2.43 

0/0 (FCFS) 80.54 13.79 76.68 3.86 

Best 86.83 4.52 84.4 1.52 

Worst 77.31 15.91 75.65 4.24 

CHARMM 

0.95/0.95 80.79 8.40 77.01 3.78 

0.75/0.75 82.49 6.51 77.75 4.74 

0.50/0.50 82.23 7.39 76.56 5.67 

0.25/0.25 81.65 8.83 75.28 6.37 

0/0 (FCFS) 72.19 22.21 61.26 10.93 

Best 85.02 4.54 78.03 3.40 

Worst 66.56 27.73 61.25 12.44 

Table 3. Results along the main diagonals in Figures 
1 and 2, and worst and best results 

Referring to Figures 1 and 2, for both applications, 
there is a direct correlation between the availability 
threshold and the number of successful/unsuccessful 
results. In particular, refer to Figures 1.c and 1.d for 
MFold and Figures 2.c and 2.d for CHARMM). As can 
be seen in these figures, the number of successfully 
returned results increases as the availability threshold 
increases (ranging from 77% to 86% for MFold in 
Figure 1.c and from 66% to 85% for CHARMM in 
Figure 2.c), while the number of unsuccessful results 
decreases (ranging from 15% to 4% for MFold in 
Figure 1.d and from 27% to 4% for CHARMM in 
Figure 2.d). We find a similar relationship between the 
reliability threshold and the number of valid/invalid 
results. Referring to Figures 1.e and 2.3, the number of 
valid results increases with the reliability threshold 
(ranging from 75% to 84% for MFold and from 61% to 
78% for CHARMM), while, as shown in Figures 1.f 
and 2.f, the number of invalid results decreases (ranging 
from 4% to 1% for MFold and from 12% to 3% for 
CHARMM). This shows that by using a threshold-

based scheduling policy it is possible to change the 
number of validated simulation results that can be 
delivered within a defined interval of time, in our case 
340 hours.  

In Figures 1.e for MFold and 2.e for CHARMM, we 
can identify a “sweet spot” where the number of valid 
results that we can return to the scientists reaches 
higher values and their differences are within 1%. This 
spot is delimited by the values of 0.50 and 0.75 for both 
the availability and reliability thresholds.  This shows 
that when the availability and reliability thresholds are 
selected properly, the number of trusted results 
delivered in a given amount of time increases. 
In contrast, if we select thresholds at either end of the 
spectrum (i.e., 0 or 0.95) the simulation results are poor. 
More specifically, as shown in Figures 1.d and 2.d, if we 
consider an availability threshold of 0 and a reliability 
threshold that ranges from 0 to 0.95, we have a very 
high number of unsuccessful results. As shown in 
Figures 1.f and 2.f, for an availability threshold that 
ranges from 0 to 0.95 and a reliability threshold of 0, we 
have a very high number of invalid results. In both 
cases, the load on the master is higher because the 
master reacts to the high number of unsuccessful and 
invalid results by generating and distributing more 
instances (Figures 1.a and 1.b for MFold and Figures 2.a 
and 2.b for CHARMM). For the threshold tuple of 
0.95/0.95, the number of trusted results is less than that 
achieved at the “sweet spot” but higher than that 
achieved by the other two edge-cases mentioned above. 
However, as expected, the master reacts to decreasing 
number of workers with availability and reliability 
ratings higher than .95 by generating and distributing 
less WUIs. Accordingly, the search space of the BOINC 
application reduces and thus the probability of finding 
promising results, i.e., close to results in Nature. 

This confirms our initial claim that when the worker 
availability and reliability thresholds are both on either 
end of the spectrum, the performance of the system is 
poor (i.e., fewer results are delivered in the given 
amount of time and less sampling is performed). 

7. Related Work 
VC must not be confused with grid computing, which 

generally means the sharing of computing resources 
within and between organizations such as universities, 
research labs, and companies. Differences in the two 
computing environments result in different scheduling 
approaches and simulator modeling. 
7.1 Scheduling Approaches 

Adaptive scheduling in large-scale computing 
environments is discussed in [16-18]. These studies 
primarily target grid environments. However, aspects 
such as reliability of resources and trustworthiness of 
application results, which are important when scientific 
phenomena are simulated on VC environments, are not 
considered in these papers. Dongarra et al. [19] have  
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MFold Application CHARMM Application 

  
Figure 1: SimBA results for MFold Figure 2: SimBA results for CHARMM 

done significant work on adaptive grid computing and, 
in particular, have introduced adaptation on GrADS 
systems. GrADS systems, though, are grid 
environments that have different features than VC 
environments. Wolski and others [20, 21] studied the 
effectiveness of statistical models for predicting 
machine failure/availability distributions. Statistical 
models such as exponential, hyper exponential, Pareto, 
and Weibull distributions were investigated using 
historical availability, where availability means time 
during which the machine is powered on. These 
sophisticated statistical models are not particularly 
suitable for VC environments because of server load 
concerns: the time required by the VC master for 
accurate predictions of worker availability may be too 
high. 

7.2 Simulators 
There are several grid simulators (e.g., SimGrid [22], 

GridSim [23], Bricks [24], HyperSim [25], and 
ChicSim [26]) that have been used to implement and 
evaluate scheduling techniques on grid computing 
environments. The performance of grid applications 
also has been studied in the past using a grid emulator 
such as the MicroGrid [27]. In contrast to SimBA, these 
simulators and emulators do not capture the 

characteristics of VC since they have not been tailored 
for this kind of environment.  

To our knowledge, little work has been done in the 
past to address scheduling strategies on VC 
environments. Probably the closest to the work 
presented in this paper is the work of Kondo [28]. 
Kondo built traces using synthetic applications with 
short task turnaround times (in the order of minutes or 
seconds). In contrast, our work is based on real traces 
from an existing BOINC project: P@H. Different 
expectations and models led Kondo to different 
conclusions than in our work. He claimed in [28] that 
the history of nodes does not affect the turnaround time 
if machines are prioritized and used according to their 
speed. In contrast, we show in this paper that in a 
dynamic environment such as the Internet, the VC 
environment does not allow an a priori determination 
of worker priority and the history of the 
workers/machines in terms of availability and reliability 
plays a key role in determining turnaround time. Also 
Kondo's definition of availability is different from ours. 
He considers availability to be the time the machine is 
“on” and the concept of reliability of results, i.e., 
trustworthiness, is not addressed in his work while for 
us reliability is a key component.   
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8. Conclusions and Future Work 
In this paper we demonstrated that by using the 

proposed availability and reliability metrics to classify 
workers in a VC environment and adopting a 
scheduling policy that uses these metrics to determine 
the distribution of tasks among volunteers’ computers, 
the number of trusted results that can be delivered to 
scientists can be increased significantly.  In particular, 
for two BOINC applications, MFold and CHARMM, 
we showed that when using our threshold-based 
scheduling policy, there are sweet spots, in terms of 
worker throughput. These sweet spots are associated 
with availability and reliability thresholds in the range 
0.50 to 0.75. When tasks are assigned only to workers 
that have an availability rating within this range, then 
an average increase of successful results of 14% is 
attained with a peak of 18% for CHARMM; this is in 
comparison to the performance of the FCFS scheduling 
policy. When tasks are assigned only to workers that 
have a reliability rating within this sweet spot, then an 
average increase of valid results of 13% is attained with 
a peak of 17% for CHARMM; again this is in 
comparison to the performance of FCFS. 

Using fixed thresholds permanently excludes workers 
that temporarily fall below the defined thresholds from 
participating in a BOINC project. Our future work will 
solve this problem by dynamically changing thresholds, 
which will take into account the fluctuation of the 
availability and reliability of the whole population of 
workers. Moreover, the slight differences between the 
sweet spots of the two applications encourage us to 
further study the sweet spots of a wider range of 
applications and analyze the correlations between sweet 
spots and application characteristics. 
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