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S U M M A R Y  
A finite element method based o n  a primitive variables formulation is used to  model 
both steady-state and time-dependent mantle convection with a composite New- 
tonian and non-Newtonian (power-law) rheology. The  rheological model employs 
the transition stress as a means of partitioning the relative importance of the two 
rheologies. Results show that there is no direct correlation between viscosity and 
temperature anomalies. Fluctuations of the velocity fields are much greater and 
faster than for Newtonian flows. Fluctuations with amplitudes several times the 
background velocity a re  quite common. Intermittency effects with quiescent periods 
punctuated by chaotic bursts are observed. From scaling arguments temporal 
fluctuations of the volume-averaged viscosity are comparable in magnitude to  the 
variations in the surface heat flow for the non-Newtonian flows, but are smaller than 
the variations in the velocity field. At larger transition stress the Newtonian 
behaviour becomes dominant and the temporal variations of the viscosity diminish. 
Both steady-state and time-dependent results show that for a given transition stress 
the non-Newtonian behaviour prevails to  a greater extent with increasing Rayleigh 
number. Implications of this non-Newtonian tendency for Archaean tectonics are 
discussed. 

Key words: mantle convection, rheology, viscosity. 

1 INTRODUCTION 

Mantle convection has been studied for Newtonian 
rheological (McKenzie, Roberts & Weiss 1974; Hansen & 
Ebel 1988; Hansen, Yuen & Kroening 1990) and 
non-Newtonian models (Parmentier, Turcotte & Torrance 
1976; Cserepes 1982; Christensen 1984; Christensen & Yuen 
1989; King & Hager 1990; Weinstein 1991; Malevsky & 
Yuen 1992). With the increasing availability of supercompu- 
ters, investigation of computationally intensive time- 
dependent non-Newtonian convection has now become 
feasible. Improved graphics facilities have increased the 
capabilities to capture interesting phenomena inherent in 
time-dependent non-Newtonian convection. Recent ex- 
perimental work (Karat0 & Li 1992) has shown that both 
linear and non-linear creep mechanisms may be significant 
in mantle flow processes. In this work we investigate the 
time-dependent mantle dynamics of a model from 
combining both Newtonian and non-Newtonian rheologies, 
as this aspect has not been studied before. We study the 

influences from varying the relative contribution of the two 
creep mechanisms on the convective style of the mantle at 
various levels of convective vigor. 

In Section 2 we describe the rheological model and the 
governing equations to be solved in the numerical 
modelling. In Section 3 we present the modelling results for 
steady-state and time-dependent models separately. In 
Section 4 we give the concluding remarks. Appendices A 
and B provide both the more detailed technical aspects and 
benchmark results. 

2 MODEL PRESENTATION A N D  
MATHEMATICAL FORMULATION 

2.1 Rheological models 

Most previous work on mantle convection with non- 
Newtonian fluids (Parmentier 1978; Cserepes 1982; Chris- 
tensen 1984; Christensen & Yuen 1989) dealt with the 
power-law or Ostwald de Waele rheological models (Bird, 
Stewart & Lightfoot 1960; Schowalter 1978; Bird, 
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Mantle convection 63 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Armstrong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hassager 1987, Ranalli 1987). This steady- 
state creep model is defined by the constitutive equation in 
dimensional form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t,/. (1) e,/ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ’ r”- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

The strain-rate tensor e,, in (1) IS defined in terms of the 
velocity field u, as 

e,/ = a,ul + a p , .  (2) 

The scalar stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is defined as the second invariant of the 
deviatoric stress tensor r!, 

t = [1/2t,t,l]”2. ( 3 )  

The power-law index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is greater than one in shear-thinning, 
pseudo-plastic fluids. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA typical value of n = 3 is used in 
geophysical models (e.g. Parmentier, Turcotte & Torrance 
1976). A form of (1) more convenient for computational 
purposes is obtained by inversion of (1); 

(4) 
t,/ = g l l t ~ ~ ( l - n ) / n  

ell 

where the scalar strain-rate e is defined to be the second 
invariant of the strain-rate tensor 

A generalized Newtonian viscosity model can be given as 

In the following we will neglect the temperature and 
pressure dependence of the viscosity r ]  because we wish to 
focus only on the interaction between the non-linear and 
linear aspects of mantle rheology. Otherwise the parameter 
space would be greatly expanded. From the definitions given 
above we have for the effective viscosity in the power-law 
model 

For n > 1-relevant in geophysical applications-this defini- 
tion corresponds to a ‘pseudo-plastic’ material (Schowalter 
1978) with a shear-thinning behaviour, i.e. the viscosity 
decreases with increasing strain rate. In the case of pure 
power-law rheology the viscosity is unbounded in the 
limiting case of vanishing strain rate. Thus stagnation points 
with very large viscosity values may occur in a power-law 
fluid. Experimental results show that the viscosity will be 
bounded because different flow processes will take over at  
low strain rates. Karato & Li (1992) found from experiments 
on perovskite analogues that diffusion creep with linear 
stress-strain-rate relation (for constant grain size) takes 
over from dislocation climb/glide mechanisms, which 
correspond to the power-law behaviour. Several viscosity 
models are used in the literature on fluid dynamics which 
include a Newtonian viscosity-independent of the strain 
rate at low stress levels and power-law viscosity at  higher 
stress values. A composite stress-dependent rheology with 
Newtonian and power-law end members has been used in 
the context of plate tectonic models (Turcotte & Oxburgh 
1972; Meisner & Vetter 1976). We will follow (Parmentier et 

a!. 1976) and use the Ellis model (Bird, Stewart & Lightfoot 
1960; Bird, Armstrong & Hassager 1987), introduced by 
Parmentier et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1976) in the context of mantle convection 
as a ‘transition-stress’ model. Another more recent model 

with similar asymptotic behaviour at low strain rate is the 
Careau-Yasuda model (Bird et al. 1987). 

The transition stress model can be interpreted in a 
straightforward way in terms of two simultaneous creep 
deformation mechanisms which dominate at low- and 
high-stress respectively. The two simultaneous deformation 
processes can be assumed to be cumulative. 

where the asterisk denotes the diffusion creep mechanism 
and the superscript ( p )  refers to the dislocation creep 
mechanisms. We note that (8) includes also the temperature 
and pressure dependence of the individual flow mechanisms. 
The activation energy for dislocation creep is much higher 
than that for the diffusion mechanism, at least for olivine 
(e.g. Ranalli 1987, 1991). This difference in the activation 
energies can have important geodynamical implications 
regarding the dominating style of creep in mantle 
convection. From (7) and (8) the generalized effective 
viscosity is 

r ] ( t )  = ;+ B-lr”-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-’. I 
a ( e )  = <+ ~ - - l l n ~ ( n - l ) l n  I-’. [ r]I 

(9) 

The scalar stress invariant t in (9) can be expressed in terms 
of the strain rate as 

(10) 

We note here that (10) is an approximation to (9) as 
discussed by Parmentier et al. (1976). This equation is valid 
for both the Newtonian and non-Newtonian end-members 
but is only of an approximate nature near the transition 
stress (see Fig. 1). This expression is equivalent with the 

5 

Figure 1. Dimensional viscosity versus scalar stress t (mks units) 
for parameter values given in Table 1. @ = 0 (inclined straight line): 
power-law case. Horizontal lines for @ = 10, 100 and 1OOO denote a 
constant diffusion-creep viscosity component. Solid curved lines 
display the effective stress-dependent visocosity computed from (9), 
approaching the Newtonian and power-law limits for low and 
high-stress values respectively. Dashed lines show the effective 
viscosity calculated from (10) using strain-rate values based on (9). 
Vertical lines denote the tT values given in Table 1 .  
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64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. van den Berg, P .  E. van Keken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand D. A .  Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ellis model as described in Bird et al. (1960). The effective 
viscosity is the geometric meiln of a Newtonian viscosity and 
a strain-rate dependent, non-Newtonian, power-law 
viscosity. 

This composite rheology has also been employed in 
postglacial rebound studies (Gasperini, Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sabadini 
1992). For non-dimensionalizing the equations for numerical 
modelling we will use the scaling applied in (Christensen & 
Yuen 1989) for a power-law fluid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x = x,;X = hx, (11) 

where h is the depth of the rectangular domain, K the 
thermal diffusivity. We will consider fluids with depth- 
dependent rheological parameters, in particular, horizon- 
tally layered media. Henceforth, the two rheologies are 
assumed to be not thermally activated [ v (  T ,  p )  not 
assumed]. As in van den Berg et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1991), we will use 
B = B ( z )  and define the pre-factor scale value as the value 
in the bottom (Nth) layer of the model (lower mantle), 

t = tof = h2K-?, e = e,,Z = K ~ - ~ E  

B(2)  = B(,B(Z) = B,B(z ) .  (12) 

The viscosity scale factor is defined as 

77,J= B(ll”ej,l-”’/” = B(l:”tj;’-l)/rl = B:,l”(K-lh2)(tl-I)/”. (13) 

In the following we will use the simplified notation for the 
dimensional pre-factor 

A ( z )  = Bl/”(z) ,  A,, = B,‘,l”. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) 

The transition value of the scalar stress, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr7 is defined as the 
stress level where we have an equi-partitioning between the 
Newtonian and non-Newtonian components of the strain 
rate. Its value follows from (9) as 

, t7. = [B/77*]-’). (15) 
77*-1 = B-IT”,1 

In the following we will make use of the non-dimensional 
Newtonian viscosity. We define its inverse as a new 
parameter, 

The relation between p and r7 follows from the definition of 
77,) (13) and the transition stress (15) 

p = vO/q*  = goB-‘t“,’ .  (17) 

There are no parameter values available from direct 
measurements of power-law creep in mantle silicates under 
lower mantle conditions. Assuming a power-law index 
n = 3, a strain rate e = s- ’  and a power-law viscosity 
value v c p )  = lo2’ Pa s is consistent with a pre-factor value 
B = Pa’s. Table 1 presents values of v *  and T.,. for a 
number of values of the parameter p controlling the 
Newtonian component of the viscosity. 

In Fig. 1 the stress dependence of the effective viscosity is 
plotted for the parameter combinations given in Table 1. 
Diffusional creep in silicates is strongly dependent on the 
grain size. The corresponding viscosity increases with the 
grain size d (Karat0 & Li 1992). Parmentier et al. (1976) 
report transition-stress values for olivine with a grain size 
d = 1 mm, 0.03 MPa < T, < 0.1 MPa. Recent experimental 
work by Katato & Li (1992) on perovskite analogue shows 
the transition stress to be much higher. For grain size 1 to 

Table 1. Transition stress. 

Model parameters (MKS units): n = 3, B = 
K = 10-6,h = 1 . 8 ~ 1 0 ~ 3  no = 0 . 2 1 9 ~ 1 0 ~ ~ .  

P q* Pas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZT MPa 
0 co 0 
10 0 . 2 ~  0.214 
100 0.2x1022 0.676 
1000 0.2X1O21 2.14 

10mm they report values of z7. of approximately 10MPa 
and 2 MPa respectively. As a consequence the influence of 
diffusional creep in lower mantle flow can be expected to be 
significant. 

Applying the scaling defined in (13), (14) to (7), the 
dimensionless power-law component of the viscosity is 
obtained 

For the non-dimensional transition stress viscosity we find 
from applying the same scaling to (lo), that 

In the following we will drop the overbar for the 
non-dimensional quantities. 

The formal Rayleigh number derived from the physical 
parameters used is (Christensen & Yuen 1989; van den 
Berg, Yuen & Van Keken 1991) 

where LY is the thermal expansivity, po is the density, g is the 
gravitational acceleration and AT is the difference between 
the uniform top and bottom temperature. The viscosity 
pre-factor scale A,,, defined as the lower mantle value, is 
contained in the viscosity scale factor 17,) in the definition of 
the Rayleigh number. Besides the formal Rayleigh number 
Ra, we also use an effective Rayleigh number Ra, defined 
by replacing the viscosity scale parameter in (20) by the 
volume averaged viscosity ( v ) ,  Ra, = (v)-IRa (Malevsky 
& Yuen 1992). 

We will consider layered media with depth-dependent 
values of the parameters A and p. In the general case of 
finite contribution of diffusion creep an extra parameter, the 
dimensionless, constant linear viscosity T j * ,  appears in the 
non-dimensional equations through the depth distribution of 
the non-dimensional parameter p. Similarly for models with 
a depth-dependent pre-factor, the depth distribution A(z )  
defines an extra set of control parameters. The set of 
control parameters for Rayleigh-Benard convection with 
infinite Prandtl number for the transition-stress rheology 
model and layered models of A and p is 
{Ra,  n,  A(z) ,  &), A}, where A is the aspect ratio. 

2.2 Governing equations and numerical method 

We consider Rayleigh-Benard convection without internal 
heating for infinite Prandtl number in an incompressible 
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Mantle convection 65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Broussinesq) fluid. The 2-D domain is a rectangular box ot 
height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and aspect ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2.5. We apply the 
transition-stress rheological model defined in the previous 
section. The governing non-dimensional time-dependent 
equations in primitive variable ( u , p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7') form are 

aT 
-+u.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV T  -V*T = O  
at 

El, = q ( 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 3  e)e, (23) 

where Ra is the Rayleigh number defined in (18), p the 
dynamical pressure, ~ ( n ,  @, e )  the transition stress viscosity, 
n the power-law index, e the strain rate parameter. t is time, 
T is the temperature perturbation with respect to the 
background reference temperature. 

The coordinates are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and z with the gravity 
vector aligned with the z axis. Constant temperature 
boundary conditions are applied at  the top and bottom 
boundaries. Along the lateral boundaries the zero heat-flux 
symmetry condition is applied. We impose free-slip, 
non-permeable mechanical conditions on all sides of the 
domain. 

We solve (21) and (22) using a penalty-function finite 
element method (Cuvelier, Segal & van Steenhoven 1986; 
Hughes 1987), with a penalty-function parameter value L of 
10'. Within the framework of the penalty function approach 
the pressure p is set to t V  7 u, with L the penalty function 
parameter. 

The computer codes used were developed using the finite 
element tool-kit package SEPRAN (Segal & Praagman 
1984). We use nested grids of triangular elements for the 
velocity and temperature fields. A description of the mesh 
and element definition used is provided in Appendix A. We 
have used a Bubnov-Galerkin formulation without using 
upwinding techniques to solve the energy equation. Instead 
we used the appearance of oscillatory temperature solutions 
as an indicator for insufficient grid points. 

We have applied the finite element method to discretize 
both eqs (21) and (22), using quadratic triangular elements 
for the Stokes eq. (21) and linear triangular elements of 
smaller size (see above) for the temperature eq. (22). This 
yields the coupled system of equations (Cuvelier et a[. 1986; 
Hughes 1987) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(U)U = F(T) (24) 

d 

dt 
-T = -M-'A[U(T)]T 

where U and T are the vectors of nodal point values of the 
velocity and temperature fields. Since we use the same nodal 
points for both fields, U has twice as many vector elements 
as T in the 2-D case. The vector F(T) is derived from the 
right-hand side of (21). Through this dependence of the 
temperature-solution vector T, the Stokes equation is 
coupled to the energy equation. S(U) is the stiffness matrix 
which depends on the viscosity q (Cuvelier et a f .  1986). In 
the non-Newtonian model this makes the matrix coefficients 
depend on the velocity-solution vector, turning (24) into a 
non-linear equation. M is a diagonal-lumped mass matrix, A 
is the sum of two matrices, derived from the advection and 
Laplacian terms in (22). (25) is a non-linear equation 

through the implicit temperature dependence of the 
advective velocity. The coupled set of equations therefore 
contains two different non-linearities: first, the material 
non-linearity introduced through the transition-stress vis- 
cosity and second, the non-linearity introduced by the 
temperature dependence of the advective velocity. 

The time-dependent system (24) and (25) is integrated 
from the initial condition using a predictor-corrector scheme 
which combines an implicit Euler predictor step and a 
Crank-Nicolson corrector step (Hansen & Ebel 1988). The 
initial condition is defined as a solution of the steady-state 
problem for the same Rayleigh number, with a perturbation 
6T added to the temperature field only, 

6T(x ,  2) = E sin ( n z )  cos (nx /A)  (26) 

where 1 = 2.5 is the aspect ratio of the domain and E = 0.01. 
A detailed description of the algorithm used is presented in 
Appendix A. We have benchmarked this non-Newtonian 
code for both the steady-state and time-dependent versions. 
The results for the time-dependent code can be found in 
Appendix B. 

3 NUMERICAL RESULTS 

3.1 Steady-state models 

To obtain physical insight in the behaviour of simple 
convection models for a range of transition stress viscosity 
parameter values, we will first show results for a number of 
steady-state convection models, as they can lend physical 
insight into the problem at a very low computational cost. 
Stationary solutions were computed by solving eqs (21) and 
(22) with the time derivative dropped. The equations are 
solved iteratively, using successive substitution as in (van 
den Berg et af. 1991)-see also Appendix A. Starting 
solution vectors (U, T) f i x  the interation were obtained 
either as the result of a previous case in a running 
computation by varying a single parameter, or  from a 
Newtonian model computation with comparable Nusselt 
number and rms (root mean squared) velocity (Vrms), as 
expected for the non-Newtonian case (Christensen & Yuen 
1989). 

Results were computed on a mesh of N columns and M 
rows of rectangular primary cells (see Appendix A). Mesh 
refinement has been applied at  the horizontal boundaries to 
resolve the boundary layers. 

The effect of varying the relative contribution of the linear 
diffusion creep mechanism is illustrated in Fig. 2, for 
Rayleigh number 1000 and 2000 and power-law index n = 3. 
Results were computed on  a mesh of 4 8 x 2 0  cells (3977 
nodal points). Each symbol represents the result of a 
stationary convection model computation, characterized by 
the Rayleigh number Ra and the transition stress parameter 
p. The left-hand frame shows the volume average of the 
effective viscosity versus the transition stress parameter p. 
For small values of p the fluid is predominantly 
non-Newtonian. In the power-law limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 =0) we find 
values 1.41 X lo-' (Ra = 2000), and 2.04 X lop2 (Ra = 
1000). q* = 1/p (upper straight line) is the upper limit of the 
effective viscosity corresponding to a stagnation point 
(e = 0). q T  = 1/(2/3) (lower straight line) corresponds to an 
equi-partitioning between linear and non-linear creep in the 
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1 oo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lo-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
F 
V 

1 o.2 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 3  

10.' loo 10' lo2 lo3 
P 

Yuen lool 

1000 
2000 

1 o3 d O2 
10' 

Figure 2. Results of two series of steady-state models for Rayleigh number Ra = 1000 and Ra = 2000 for varying values of /3. Left: 
dimensionless volume-averaged viscosities. The straight lines denote the diffusive viscosity q* = 1//3 (upper) and the viscosity value at the 
transition-stress value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtiT = q ( t T ) ,  qT = q * / 2 .  Right: fractional area of the domain where the fluid is effectively Newtonian: q > q p  

effective strain rate. For high values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp the linear 
diffusional creep dominates and the fluid becomes 
increasingly more Newtonian, as the curves approach the 
limiting value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 + 11 *. 

For the same models, the right-hand frame represents the 
fraction of the area where the fluid is predomiantly 
Newtonian, i.e. the effective viscosity is larger than the 
transition value, ~ ( x )  > r/.,.. The transition to Newtonian 
average viscosity for increasing values of p is more gradual 
for the higher Rayleigh number. The p value of the 50 per 
cent fractional area in the right-hand frame coincides 
approximately with the transition points 11 = rp,. in the 
left-hand frame. This results suggests that at high Ra 

non-Newtonian behaviour is retained to a greater degree. 
Figure 2(a) illustrates the fact that at a fixed value of 

the formal Rayleigh number Ra, the average viscosity is 
reduced by an increase of the Newtonian creep component 
in the strain rate. This suggests the use of an effective 
Rayleigh number Ra, based on the volume average of the 
effective viscosity as defined in Section 2.1 to characterize 
the vigour of convection (Parmentier et a/ .  1976; Malevsky & 
Yuen 1992). The effective Rayleigh number depends on the 
actual flow field through the effective viscosity and has to be 
calculated a posteriori for a given model. In particular Ra, 

will be time dependent for time-dependent flows. Fig. 3(a) 
shows the relation between the effective and formal 
Rayleigh number for several values of the rheological 
control parameter p and for aspect ratio ,I = 2.5. The filled 
symbols with error bars for p = 0, 10, 100 correspond to 

time-averaged values and rms fluctuation about the mean 
for the time-dependent models discussed in Section 2.2. Fig. 
3(b) shows the Nusselt number versus effective Rayleigh 
number for the same models of Fig. 3(a). Disconnected 
symbols correspond to time-dependent models treated in 
Section 2.2. For higher values of /3 the curves merge, 
illustrating the approach to an effective Newtonian flow. For 
large values of p the average viscosity of the flow 
approaches 1/p and we have for the effective Rayleigh 
number Ra, = pRa illustrated by the parallel curves in Fig. 

The models discussed up to now have been limited to 
constant values of the power-law index n = 3 and transition 
stress parameter p. However, recent experimental work 
(Karato & Li 1992) has established evidence for a vertical 
layering in the rheological parameter n ( z ) .  Van den Berg 
et a / .  (1991) have investigated in particular the generation 
of pronounced plate-like behaviour in numerical modelling 
results by the introduction of layered models with a 
non-Newtonian power-law upper mantle on top of a 
Newtonian lower mantle. Within the framework of the 
composite rheology discussed here this type of layering can 
be represented by the introduction of a step-function 
distribution p = (P I ,  p2) with the top-layer value p,  set to 
zero and p2 a finite value representing a finite transition 
stress in accordance with the rheology found by Karato & Li 
(1992) for a perovskite analogoue. 

Figure 4 displays the results of a layered model with a 
rheological interface at depth z = 0.23. The parameters for 

3(a). 
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p = 0  

1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo3 
Ra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1 o4 1 o5 
Ra* 
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Figure 3. Left (a): effective Rayleigh number based on the volume-average viscosity versus formal Rayleigh number (20) for six values of /?. 
Connected (open) symbols corresponds to steady-state models. Disconnected (filled) symbols with error bars represent time-averaged values of 
time-dependent models. The error bars denote the rms fluctuation. [Same symbol convention in (b)]. Right (b): Nusselt number versus 
effective Rayleigh number for several values of /?. The lower curve represents the limiting purely Newtonian case. 

the two layes are n = (3, 3), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = (0, 200) and A = (1/30, 1). 
Grid refinement near the interface has been applied in order 
to accommodate the large contrast in the rheological 
parameters at  the interface. Refinement is also necessary at 
the lateral boundaries to capture the jet-like structure of the 
solution at the lateral boundaries in the upper mantle. The 
upper layer in this model is highly mobile and exhibits 
pronouned plate-like behaviour illustrated most clearly by 
the concentration of streamlines near top boundary. 

The interaction between the two layers is characterized by 
two narrow jets at both ends of the interface between the 
layers displayed in the temperature field in the middle 
panel. A tongue of hot fluid is drawn out from the left-hand 
jet by the high horizontal velocity in the upper layer. The 
top panel displays the resulting effective viscosity field. The 
lower layer is effectively Newtonian, as shown by the largely 
uniform viscosity values. Low viscosity values are found in 
the upper layer in regions with high strain rate near the jets 
at both ends of the layer, and in a narrow shear zone 
between the mobile upper layer and the high-viscosity lower 
layer. A further enhancement of plate-like behaviour can be 
obtained by the introduction of a thin layer with a higher 
power-law index to mimic a strong lithospheric plate on top 
of an upper mantle with smaller power-law index and a 
purely Newtonian lower mantle. Values n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and n = 3 
were used for lithosphere and upper mantle respectively in 
van der Berg et al. (1991). Other types of physical 
parameterization can also lead to plate-like behaviour at the 
top boundary layer (Kopitzke 1979; Schmeling & Jacoby 
1981; Jacoby & Schmeling 1982; King & Hager 1990; King, 
Gable & Weinstein 1992; Weinstein 1991; Weinstein & 
Olson 1992). Using the shallow-water approximation. 

Weinstein (1991) and Weinstein & Olson (1992) found 
plate-like behaviour with a thin power-law layer on top of a 
fully Newtonian mantle by requiring n to be at least 6 .  

3.2 Time-dependent simulations 

We have investigated the influences of varying the amount 
of diffusional creep in the creep law on time-dependent 
mantle convection. For Rayleigh numbers Ra = 1000 and 
Ra = 2000 we investigated models for values of p: 0, 10 and 
100. We consider the same aspect ratio 2.5 domain as 
before. The mesh for all cases with Ra = 1000 is 
characterized by: N = 4 8 ,  M =20 and number of nodal 
points N P  = 3977 (see Appendix A). For the more vigorous 
convection cases with Ra = 2000 we used N = 70, M = 30, 
( N P = 8 6 0 1 ) .  The six models presented here are charac- 
terized by different values of control parameters Ra and p. 
In order to put the results into context with Newtonian 
studies we have computed the time-dependent effective 
Rayleigh number Ra,( t )  for each of the models. The 
effective Rayleigh number is calculated as a derived quantity 
in a post-processing step from the time-dependent viscosity 
field derived from the velocity results. The velocity field is 
obtained from the integration of the system of eqs (24) and 
(25) (see Appendix A.2). The time-averaged effective 
Rayleigh number p(Ra , )  and the rms fluctuation about the 
mean a(Ra , )  for the different models are listed in Table 2. 

The effective Rayleigh numbers in Table 2 are also 
plotted as disconnected filled symbols in Fig. 3(a) where the 
error bars denote the rms fluctuation. The time-averaged 
effective Rayleigh numbers are, in general, close to the 
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loa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TemDerature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 

Figure 4. Results for a layered rheology of a non-Newtonian 
uppermantle on top of an effectively Newtonian lower mantle. The 
Rayleigh number is 500. The depth-dependent rheological 
parameters are defined as /3 = (0, 200), and A = (1/30, 1).  The 
Nusselt number and rms velocity are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu = 11.84, Vrms = 519.4. 
The ratio of the layer averaged voscosities ~,,,,,,/qUpper is 11.4. 

Table 2. Nusselt number and effective Rayleigh number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ru = 1oM) Ro = Zoo0 

B ~ ( R r r , )  o(Ra.1 W u )  d N u )  $(Roe) o(Ro.)  NU) d N u )  
0 3 08x10' 1 . 3 1 ~ 1 0 '  6.9 1.5 1.14~10 '  1.61~10' 13.6 1.4 
10 6.13~10'  1.48~10" 7.7 1.4 1.79xId 4.18~10' 125 2.7 
100 1 9 7 ~ 1 0 ~  1 .25~10 '  11.6 1.5 474x10' 5 . 4 6 ~ 1 0 '  14.3 2. 

Yuen 

values for the corresponding steady-state model charac- 
terized by the same control parameters. Clearly the relative 
rms fluctuation decreases for increasing values of p as the 
viscosity approaches a uniform Newtonian limit. Time- 
averaged Nusselt numbers and rms fluctuation from Table 2 
are displayed in Fig. 3(b). The average values are higher 
than the corresponding steady-state cases. This can be 
explained by the fact that the steady-state data represent 
single-cell, aspect ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 2.5 flow fields, whereas in the 
time dependent cases the single-cell pattern is disturbed and 
often close to a two-cell flow field with a correspondingly 
higher Nusselt number (Hansen, Yuen & Malevsky 1992). 

In Fig. 5 snapshots are given for the temperature, stream 
function and viscosity fields for three instants of time for 
Ra = 1000 and p =O. Time increases in the upward 
direction. The left-hand (temperature) column shows the 
evolution of a rising hot plume, colliding into the left-hand 
boundary. It also shows the development of a cold 
downwelling descending from the top and cutting through 
the remains of the hot plume (top panel). In the middle 
column the stream function for the same time instants is 
displayed. The bottom panel shows the large velocity 
amplitude generated near the left-hand boundary when the 
hot plume impinges on the vertical boundary. In the next 
snapshot the velocity amplitude has already been reduced 
considerably. This phenomenon shows that strong plume- 
plume collisions at the left-hand boundary dominate the 
dynamics of the solution. The rms velocity shows a sharp, 
large amplitude peak during the collision (see Fig. 10). The 
increased upward flow of hot material at the time of 
collision also causes a spike in the Nusselt number time 
series. The spikes in the Nusselt number time series are, 
however, less sharp than their rms velocity counterparts. 
This is due to the fact that hot patches of fluid are injected 
into the top layer in short bursts from the plume collision, 
resulting in a sharp increase in the local heat flow and the 
Nusselt number (van Keken, Yuen & van den Berg 1992). 
After the burst, the influx of hot material into the top 
boundary layer diminishes. The hot remnant of the injection 
is entrained in the large-scale flow while the peak 
temperature decays with time and its contribution to the 
surface heat flow is integrated into the Nusselt number for a 
period of time that is of the order of one overturn period of 
the large-scale flow. The right-hand column of Fig. 5 shows 
the viscosity. For this pure power-law case the viscosity 
variations are strong and concentrated near the stagnation 
area ( e  = 0) of the flow. Viscosity minima coincide with the 
area of high shear rate in the corners of the domain and 
along the boundary layers of the rapidly evolving plumes. 

Figure 6 displays the results for a model with an in- 
creased contribution of the diffusional creep strain rate for 
the same Rayleigh number, Ra = 1000, /3 = 100. The vigour of 
convection has increased compared with the previous case, 
due to the decrease in average viscosity. The rate at  which 
boundary-layer instabilites are generated has increased and 
the hot plumes rise quicker with their heads effectively 
detaching before reaching the surface. This change in the 
dynamics also results in a smaller number of plume-plume 
collisions and the attendant reduced level of fluctuation of 
the time series of the rrns velocity (see Fig. 12). The 
right-hand column of logarithmic viscosity snapshots 
illustrates a general reduction in the viscosity. The 
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Mantle convection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ra=1000 p = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t=O. 164 

t=0.163 

t=O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA162 

0 L- I -  1 

Temperature Streamfunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASnapshots zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof time-dependent fields for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 1000, 8 = 0 for 3 instants of time. Left column: temperature, displayed between 0.0 and 
1.0. Gray-scale interval 0.1. Middle column: stream function, contour interval A ~ I  = 20, heavy contours at -200 and -100. Right column: log 
viscosity. Grey-scale contour boundaries are at 2.6, -2.3, -2.0, -1.6, -1.3, -1.0,. . . ,0.3,0.6. Contours are drawn at the same boundaries. 
We note 0.001 in f corresponds to 100 Ma for the parameters given in Table 1. 

logarithmic viscosity values in the dark pattern area lie 
within the range (-2.6, -2.0) where the fluid is 
predominantly Newtonian. From the viscosity time series 
plot (Fig. 12, top panel) we see that the volume average of 
the viscosity is near the transition value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq7- = 1/200. 

In Figs 7 to 9 results are shown for higher Rayleigh 
number Ra = 2000 for the same values of p. Fig. 7 illustrates 
the pure power-law case Ra = 2000, @ = 0. The temperature 
field and stream-function plot reveal a two-cell counter- 
rotating flow pattern, with a cold downwelling in the middle. 
The logarithmic power-law viscosity reaches values up to 0.0 
in the stagnant area near the centre of the middle panel. 
The time dependence of the maximum viscosity value is 
illustrated i n  Fig. 13. Fig. 8 shows results for Ra = 2000, 
6 = 10. The snapshots show solution fields that have not yet 
lost the symmetry from the initial condition. The 
temperature plots illustrate the evolution of a colliding, 
symmetric couple of a hot plume and cold downwelling. The 
stream function and viscosity plot (middle panels) clearly 
illustrate a narrow high-shear zone were the logarithmic 
viscosity drops below -3.0. Maximum viscosity values are 

reached in small areas with predominantly Newtonian 
viscosity. The fractional area of these regions is only a few 
per cent-a characteristic for this low value of p. The time 
series of the volume-averaged viscosity illustrates the same 
phenomenon (Fig. 14, top panel). In Fig. 9 we show results 
for Ra = 2000, p = 100. The maximum viscosity is reduced 
below -2.0. The dark pattern areas of the viscosity plots 
represent viscosities above the transition value q,,. = 1/200. 
The fractional area of predominantly Newtonian fluid is 
smaller-for the time instants shown-than in the case of 
Ra = 1000, p = 100. The viscosity shows a more granular 
structure than in the previous cases. A similar trend towards 
small-scale granular viscosity distribution was found by 
Malevsky & Yuen (1992) for higher Rayleigh number for 
power-law fluids. 

From the snapshots of viscosity and temperature fields 
shown in Figs 5 to 9 we conclude a clear absence of direct 
correlation between variations in temperature and viscosity. 
Viscosity maxima are found in hot rising plume heads and 
viscosity minima exist in cold downwellings. Although we 
did not use a temperature-dependent rheology in our 
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t=0.163 

t=0.162 

t=O. 161 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 

Tem peratu re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Same as in Fig 5, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 1000, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 100 

t=O. 105 

k0.095 . .__ 

bQ.085 . 

1 

Temperature 
Figure 7. Same as in Fig. 5 ,  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 200, p = 0. 

Streamfunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

Ra=2000 p = O  
vmln = -53 wmax =135 AV = 20 

vmln = -124 yrm, -140 Ayr = 20 $1 
Streamfunction w 
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Ra=2000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ = I 0  
t=0.0235 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k0.0225 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t=0.0215 

0 1 

Temperature 

yrmin = 0 ymax =-i i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT nyr = 20 
v 

w,,,,~ = -1  88 v,,,~~ =82 AW = 20 

Wmln = -a4 Vmax =i2 AY = 20 

Streamfunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Same as in previous figure, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARR = 2000, @ = 10. 

Ra = 2000 p = 100 
1-0.021 

t-0.0205 

t=O 02 

1 

Tem peratu re 

wmln = -301 w ~ . ~  =O AW = 20 

Streamfunction y~ 

Figure 9. Same as in previous figure, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARu = 2(HK), @ = 100. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
5
/1

/6
2
/6

0
4
1
7
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  P.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan den Berg, P.  E. van Keken and D.  A .  Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1000 

800 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ra=1000 0 = 0  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 on 

10' 

1000 t -1 

800 t 

0.05 0.10 0.15 0.20 0.25 
time 

0 05 0 10 0.15 0.20 0.25 
time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. Time series of integral quantities for Ra = 1O00, /3 = 0. 
Bottom: Nusselt number. Middle: rms velocity. Top: maximum 
viscosity (top trace), volume-averaged viscosity (middle trace), 
minimum viscosity (bottom trace). 

models, the results clearly indicate that direct correlation 
caused by such temperature dependence will be strongly 
reduced by the strain-rate dependence. This effect will 
contaminate any interpretation of seismic anomalies 
deduced from tomography in terms of viscosity fluctuations. 

In Figs 10 to 15 we show the time series of integrated 
quantities for the time-dependent models corresponding to 
Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 to 9. Here we used different lengths for the displayed 
time windows, resulting in different time scales on the plot. 
Fig. 10 represents results for Ra = 1000, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = O  (purely 
power law). The bottom panel shows the Nusselt number 
versus integration time. The middle panel displays the rms 
velocity Vrms. Both time series show the same characteris- 
tics, a build-up in amplitude between t=0.0 and t =0.8 
which is followed by a series of co-eval spikes in amplitude 
at irregular intervals. The spikes in the rms velocity (Vrms) 
time series imply that large amplitude, rapid fluctuations in 
the surface viscosity occur. This behaviour would facilitate 
frequent and fast plate re-organizations in non-Newtonian 
models of mantle dynamics. The spikes in the Nusselt 
number are less sharp than their counterparts in the Vrms 
for reasons mentioned in the discussion of Fig. 5. The top 
panel displays time series of maximum and minimum value 
of the logarithmic viscosity (top and bottom trace 
respectively) and of its volume average (middle trace). The 

Ra=1000 g = 1 0  
1 

10' 1 
0 05 0 10 0 15 0 20 0 25 

time 

1000 1 - 1  

i 
0 05 0 10 0 15 0 20 0 25 

time 
I 

15 

0 05 0 10 0 15 0 20 0 25 
time 

Figure 11. Time series as in Fig. 10, for Ra = IOOO, /? = 10. 

Ra = 1000 f3 = 100 
1 

0 I 
01 02  0.3 0 4  05 

time 

0 

01 02  03 0 4  05 
time 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. Time series as in Fig. 10, for Ra = 1000, /? = 100. 
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Mantle convection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 0.5 0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.7 

time 
0 02 OM 0% 

time 

1500 I !  , 
ul 

1000 
> 

500 

I 
0 1  0 2  0 3  0 4  0 5  06 0 7  

time 

20 I1  

I I 

time 
0 1  0 2  03 0 4  0 5  0 6  0 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 13. Time series as in Fig. 10, for Ra = 2000, /? = 0. 

Ra = 2000 p = 10 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 05 0 I0 0 15 
time 

t 

c 
0 05 0 10 0 15 

time 

t I 

0 05 0 10 0 15 
time 

Figure 14. Time series as in Fig. 10, for Ra = 2000, p = 10. 

0 02 0.04 
time 

0.06 

0 02 OM 0 06 
time 

Figure 15. Time series in Fig. 10, for Ra = 2000, /? = 1 0 .  

time series of Nusselt number and Vrms were sampled at 
every integration time step. The viscosity time series have 
been calculated as a post-processing step from the field 
solutions, which were output from the program with a 
constant time interval. As a result, the viscosities are 
sampled at a lower rate. In this power-law case the viscosity 
becomes large in stagnant parts, the maxima display 
fluctuations of almost two orders of magnitude. Fluctuations 
of the volume average and minimum values are small than 
for the maxima. Spikes in the Vrms line-up with the 
minimum values in the viscosity traces, illustrating the 
shear-thinning behaviour of the fluid with power-law index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = 3. Fig. 11 shows the same quantities as in the previous 
figure for Ra = 1000, j3 = 10. The introduction of a finite 
diffusional creep contribution has truncated the viscosity to 
values below v *  = 1/10 increasing the mobility of the fluid. 
As a consequence, the average value of the Nusselt number 
and Vrms are slightly increased. The viscosity time series 
clearly show the truncation effect in the maximum values to 
1/10. The level of fluctuation in the maxima has decreased 
drastically compared with the previous case. The volume 
average of the viscosity is clearly below 0.05, corresponding 
to the transition viscosity q7.. The fluid behaves 
predominantly in a non-Newtonian manner. 

Figure 12 shows a similar result for parameter values 
Ra = 1000, p = 100. The amplitude level of the Nusselt 
number has increased from approximately 8 to 11. Similarly 
Vrms increases from approximately 200 to 300. The flow 
field is chaotic in the first interval up to about r = 0 . 2 ,  
characterized by a large-scale single cell consistent 
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convection pattern with intermittent boundary layer 
instabilities causing spikes in the time series (see Fig. 6). 
The quiescent interval corresponds to a nearly stationary 
two-cell flow pattern, gradually decaying into a single-cell 
pattern again shortly before zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.4. The viscosity traces 
show a further decrease in the maximum values, with 
q* = 1/100. The minimum has been reduced to a lesser 
extent, resulting in a drop of the spatial variation of the 
viscosity to within one order of magnitude. The volume 
average is close to the value of the transition viscosity 
q7. = 1/200. Fig. 13 shows the same time series as before for 
Ra = 2000, /3 = 0. The flow field corresponds to single-cell 
convection with intermittent boundary layer instabilities up 
to approximately t = 0.15, (see Fig. 7). After this time a 
quiescent period with a two-cell pattern prevails up to 
t = 0.55. Such a behaviour is typical of intermittency in 
turbulent flows (e.g. Grossmann & Lohse 1992). The 
occurrence of intermittency in which the timescale of 
intermittency is longer than the overturn timescale is a new 
type of time-dependent behaviour in mantle convection. 
Later on the flow becomes periodic; the downwelling limb 
dividing the two counter-rotating cells oscillates and a regular 
pattern of Nusselt number and Vrms develops. The Nusselt 
number and Vrms have increased to approximately 13 and 
400 respectively. Fig. 14 shows similar results for Ra = 2000, 
@ = 10. The time window is shorter than the previous case. 
The overall characteristics are similar to the first chaotic 
time interval of the previous case (Fig. 13). This is also 
illustrated by the snapshots of the solution at t = 0.215 (Fig. 
8). Fig. 15 displays the same time series in a short time 
window for the case Ra = 2000, @ = 100. The level of 
Nusselt number and Vrms have increased further to about 
15 and 500 respectively. A comparison with Fig. 12 shows 
that the increase of Ra has delayed the transition to 
Newtonian behaviour. 

From boundary-layer scaling arguments applied to the 
dependence of the Nusselt number on the Rayleigh number, 
the following scaling relation for the fluctuations in the 
average viscosity ( q )  can be derived: 

d 1% ( N u )  - pd 1% (( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 (27) 

where p is the exponent in the scaling relation for the 
Nusselt number. A rough estimate of the exponent is 
determined from our stationary convection results to be 
p = 0.25. The results show that the level of fluctuation in the 
volume-averaged viscosity is of the same magnitude as the 
fluctuations in the Nusselt number for the pure power-law 
case. This is a result which is consistent with the above 
scaling relation. However, we found that the scaling 
relationship between Vrms and ( q )  does not hold. This can 
be explained by the larger dominance of the large amplitude 
spikes in the Vrms time series, due to the presence of 
plume-plume collisions. For increasing values of @, the 
temporal variations of the viscosity decrease, as the fluid 
becomes more Newtonian like. 

4 CONCLUSIONS 

In this work we have presented a numerical method for 
modelling thermal convection in both stationary and 
time-dependent models with a hybrid rheology including 
Newtonian and power-law non-Newtonian as end-member 

cases. The computer codes used were developed using the 
general-purpose finite element tool-kit package SEPRAN, 
(Segal & Praagman 1984) which makes adaptations for 
various rheologies relatively easy through implemenation of 
new finite elements. The steady-state results show a gradual 
transition from, non-Newtonian (power-law) to linear 
Newtonian behaviour as a function of increasing @. The 
transition is effectively delayed for higher Rayleigh number 
values. 

Our results display strong spatial variations-especially 
for short wavelengths-in the non-Newtonian viscosity. We 
found that there is no direct correlation between the 
viscosity and temperature fields. Strong plates of highly 
viscous material coexist in both hot and cold boundary 
layers. Weak-high shear zones can coexist in hot upwelling 
and cold downwelling limbs of the convection cells. The 
presence of non-Newtonian rheology will contaminate 
purely temperature-dependent viscosity estimates (Colin & 
Fleitout 1992) calculated from a direct relationship between 
thermal anomalies and long (Tanimoto 1990; Zhang & 
Tanimoto 1992) and short (Zhang & Tanimoto 1992; van 
der Hilst et al. 1991) wavelength seismic anomalies. 

These time-dependent results generally show a chaotic 
flow pattern of large-scale single-cell convection with 
intermittent boundary-layer instabilites, resulting in strong 
temporal fluctuations of global quantities such as the Nusselt 
number and Vrms. This result is in agreement with the work 
of Christensen & Yuen (1989) and of Malevsky & Yuen 
(1992). The fluctuations in the Nusselt number are smaller 
than those in Vrms. Variations in the local surface heat 
flow, however, can exceed the surface average considerably 
(van Keken et al. 1992) indicating intermittency in the flow 
behaviour. The intermittency time scale found in the model 
is longer than the overturn timescale. This represents a new 
type of time-dependent behaviour in mantle convection. 
The high-amplitude spikes in the time series of Vrms 
illustrate the tendency towards greater spatial temporal- 
velocity fluctuations for a non-Newtonian upper mantle, 
allowing for rapid changes in plate velocities and facilitating 
plate re-organizations. This is an important feature required 
of dynamical models describing the earth's mantle. With 
respect to the correlation of the viscosity and temperature 
fields, similar remarks can be made for our time-dependent 
solutions as for the steady-state results. The heterogeneity 
of the viscosity field increases with the complexity of the 
flow field. Low-viscosity values are not directly correlated to 
high-temperature regions: viscosity minima are found in 
cold downwellings. 

For pure power-law rheology the temporal fluctuations in 
the volume-averaged viscosity are comparable in magnitude 
to the fluctuations in the Nusselt number and smaller than 
the fluctuations in rms velocity. The effect of increasing /3 
results in smaller fluctuations in the volume-averaged 
viscosities, as the fluid becomes more Newtonian. 

The transition from power-law rheology to Newtonian 
rheology is delayed by an increasing Rayleigh number. Here 
we conjecture that in the early Archaean, when the 
Rayleigh number and the temperature were higher than at  
present, mantle rheology might have been predominantly 
non-Newtonian because of the compensating effect due to a 
larger activation energy in dislocation creep (Ranalli 1991). 
The dominance of non-Newtonian flow will ensure a more 
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chaotic time-dependent convection regime than otherwise 
expected using just a Newtonian temperature-dependent 
rheology. This again may explain the rapid cooling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the  
mantle in the Archaean, resulting in different styles of 
differentiation in the upper mantle a t  the end of the  
Archaean and the beginning of plate tectonics (Vlaar 1985, 
1986; Vlaar & van den Berg 1991). 
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APPENDIX A 

A.l Mesh definition 

For solving the coupled set of equations-Stokes 
momentum-and energy eqs (21) and ( 2 2 t w e  have used 
separate, interleaved finite element meshes defined on a 
single set of nodal points. The 2-D rectangular domain is 
divided into N columns and M rows of rectangular cells. A 
gradual mesh refinement towards the horizontal boundaries 
is applied. Each rectangular cell is divided into two 
quadratic triangular six-node elements for the velocity. 
Each velocity triangle is further divided by its midpoints into 
four triangular three-node elements for the temperature. 
The subdivision of a single rectangular mesh cell into two 
velocity and eight temperature elements is displayed in Fig. 
A l .  The two velocity elements are spanned by the primary 
nodal points P I ,  P2, P4 and P2, f , ,  P4 respectively. The sets 
of nodal points of the two interleaved meshes are identical. 
The number of nodal points is N P  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2N + 1) X (2M + 1). 
The degrees of freedom of the problem are the nodal-point 
values of velocity and temperature. The number of degrees 
of freedom is 2 X N P  for the Stokes equation and N P  for the 
energy equation. This mesh definition has the advantage 
that the degrees of freedom are related to a single set of 
nodal points, thus facilitating the transport of nodal-point 
field values from one equation of the coupled set to the 
other. On the other hand, the choice of linear elements of 
reduced element size for the energy equation provides a 
greater stability of the solution. This last feature is 
important, since we have used a Bubnov-Galerkin 
formulation without using upwinding techniques. Instead we 
used the appearance of oscillatory tempeature solutions as 
an indicator for insufficient grid density. In developing the 
codes we have used the general purpose finite element 
took-kit SEPRAN (Segal & Praagman 1984). This finite 
element tool-kit offers a great flexibility in developing 
computer codes for a wide range of problems by simply 
adding new element routines to a library of available 
standard elements. Furthermore it relieves the researcher 
from much of the task of software engineering connected 
with the development of a special purpose code from 
scratch. 

A.2 Algorithms used to solve the convection equations 

For the solution of the steady-state models we used the 
following Picard-type (successive substitution) iterative 
scheme to solve the system of non-linear equations. 

From given starting vectors for both the temperature and 
the velocity U(, and T,,: 
(a) solve the Stokes equation for the velocity field Uk+, 

S(Uk)Uk+l = W , ) .  

p4 

p2  
Figure Al. Rectangular primary cell of the finite element mesh, 
spanned by the primary nodal points f,, . . . , f4. Each rectangular 
cell is divided in two six-node triangles for the velocity and eight 
three-node triangles for the temperature. 

(b) Solve the steady-state energy equation for the 
temperature field Tk + 

A(Uk)Tk+l= G .  

(c) Repeat (a) and (b) until both fields have converged 
sufficiently i.e. until, 

max [ E , ,  &-,.I < E 

where 

where the vector norm used is the maximum norm, i.e. the 
maximum of the absolute value of the vector elements. No 
subiterations are performed for the solution of the 
non-linear Stokes equation. The convergence criterion was 
typically set to E = 0.001. 

To solve the time-dependent problem we used a 
predictor-corrector algorithm expressed in the following 
scheme: for each time step do  steps (a) to (d) 

(a) predictor-energy equation (implicit Euler) 

MAt-'[T*(n+ 1) - + A[U(")]T*("+l) = 0 

(b) Predictor-Stokes equation 

~u*(n+I) = F[T*(~+I)], 
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(c) Corrector+nergy equation (Crank-Nicolson) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MAt- l [T(f lC1) -T(")] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ iA[U*("+I)]T("+I) 

+ iA[U'"']T'"' = 0. 

(d) Corrector-Stokes equation 

SU'"+ I )  = F[T'" + "1, 
The non-linear Stokes equation is solved in each step by 
Picard iteration. 

S(U)U = F 

iterate until convergence: 

The superscripts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n )  and ( n  + 1) denote time indices. The 
asterisk denotes the outcome of the predictor step, At 
denotes the time-step value. The value of the convergence 
criterion was typically E" = 0.01, resulting in two iterations 
on the Stokes momentum equation in most cases, only when 
the flow field changes rapidly in time more iterations-up to 
four were needed. We used an adaptive time step, half the 
value of the time step based on the Courant-Friedrichs- 
Levy creterion Atcp We define, 

A[<,, = min [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , :], 
h,, h, are the dimensions of the rectangular mesh cells and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u,, u,  the magnitudes of the velocity components. This 
value of the time step was verified to be a conservative 
choice. Test runs showed that the results showed little 
difference with results obtained with a larger fraction (up to 
1.0) of the Courant time step. 

The linear equations in the above scheme were solved 
using a sparse matrix solver based on a direct method of LU 
decomposition. Some benchmark results of the algorithm 
are given in Appendix B. 

A.2 Linearization of the viscous stress term in the Stokes 
momentum equation 

Linearization of the expression for the viscous stress in the 
Stokes equation can be based on a Taylor expansion of the 
stress in terms of the strain rate (Damsteegt, Segal & van 
der Zanden 1986). For a given non-linear function of y ,  f (y)  
we have 

f (y)  =f[y'")] + [y - y""] aflay I + O(y -y("))2 
" = " ( " I  

The viscous stress term qJ = qe,/ can be interpreted as a 
non-linear (tensor) function of e,]. Applying the expansion 
formula above we have 

The derivative of the vicosity gives 

In the Taylor expansion (1) this gives 

The first two terms represent an (approximate) linear 
relationship in e,J. Further specialization follows through a 
specification of q(e,/). For a power-law fluid we get 

q(e,) = Ae(Ip")'" 

and 

Substitution in the linearized stress term results in 

qJ = q(")e,J + [e,, - ej;"'](l/n - 1)q'"' 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( " ) { ( ~  - l /n)ej;") + ( l / n ) e , , } .  ('4.2) 

For a Newtonian fluid with power-law index n = 1 this 
expression gives the correct result. Note that the first term 
in the linearized expression contains the result of the 
(previous) nth iteration for the strain-rate tensor. This 
known term will result in a contribution to the right-hand 
side of the finite element equations to be solved. In practice 
it appears that the Newton-Raphson-type linearization 
scheme (A.2) does not converge properly for powerlaw 
index n > 1 (Crochet, Davies & Walters 1984). Instead of 
(A.2), we have used the zeroth-order term of the Taylor 
expansion, 

This iteration formula suggests a 'successive substitution' 
method also known as Picard iteration. 

In calculating the stiffness matrix for the Stokes equation 
we use a seven-point Gauss integration scheme (Cuvelier et 
af. 1986). Interpolation for the Gauss-point values is applied 
to the scalar strain rate e and the viscosity is expressed 
analytically in terms of e. Newton-Cotes integration 
schemes for the stiffness matrix (Cuvelier et al. 1986) involve 
quadratic interpolation of the viscosity itself. Care has to be 
taken to avoid negative viscosity values in areas of large 
gradients that may cause instability of the finite elements 
equation, (Christensen 1984; Malevsky & Yuen 1992). We 
have compared the Gauss integration scheme with a 
Newton-Cotes scheme that employed linear-viscosity 
interpolation (avoiding negative viscosity values). The 
seven-point Gauss scheme proved to be stable and display 
faster convergence for increasing grid density--consistent 
with the higher-order accuracy of the Gauss scheme. 

APPENDIX B 

B. l  Time-dependent benchmark results 

In order to validate the code for time-dependent models, we 
have performed a bench-mark calculation for a time- 
dependent convection problem and compared the results 
with those reported in (Malevsky & Yuen 1992). In the 
bench mark the time-dependent equations for Rayleigh- 
Benard convection-with a pure power-law (0 = 0) fluid 
with power-law index n = 3, are solved for a box of aspect 
ration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 1. The Rayleigh number as defined in (22) was 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1. Benchmark results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 1  
12 
13 
14 r 15 

__ 
Mesh 
10x10 
l0xlO 
lox10 
10x10 
20x20 
20x20 
20x20 
20x20 
30x30 
30x30 
30x30 
30x30 
32x32 
32x32 
30x30 

__ 

-- 

__ 

__ 

- 

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

~ 

5 I20 
5 120 
5 120 
5 180 
5 175 
5 175 
5 175 
5 235 
5 183 
5 183 
5 183 
5 243 

__ 

~ 

~ 

~- 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vrmr 

11.70 
11.70 
11.70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 83 
11.82 
I 1  82 
11.82 
I 1  96 
11 843 
1 1  843 
11.843 
I 1  98 

__ 
__ 

~ 

~ 

~ 

I = 0.002 

45.40 

%+% 2093 47 88 

2102 I 4810 

2-”3  X 500 = 396.85. This value of the Rayleigh number was 
chosen in order to match the bench-mark computation 
reported by Malevsky & Yuen (1992) who used a slightly 
different definition of the Rayleigh number. The same 
boundary conditions are applied as in the rest of this paper, 
i.e. free slip and impermeable mechanical conditions, fixed 
temperature 0 and 1 at the top and bottom boundaries and 
insulating (VT . n = 0) conditions at the vertical boundaries. 
The initial temperature is defined as a perturbed conductive 
field, 

T ( x ,  z )  = z + 0.1 x sin ( n z )  cos ( n x )  

where z measure the depth below the top boundary. Instead 
of defining a zero-velocity starting vector, we specify the 
viscosity to be uniform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 = 1.0, for the first Picard iteration 
in the solution of the Stokes equation at  time t = 0. In this 
way we avoid the singularity in the power-law viscosity in 
regions with negligible strain rates. In subsequent Picard 
iterations the viscosity is computed from the velocity 
outcome from the previous iteration. In Table B1 we 
present Vrms and the maximum value of the stream 
function v,,,:,~ at time t =0 ,  and t =0.002 which is close to 
the first maximum of the time series VL,,..(t). 

The result of case (13), (14) and (15) of Table B1 are 
taken from (Malevsky & Yuen 1992). Results (13) through 
(15) were obtained using independent stream-function codes 
by Malevsky & Yuen (1992), Christensen & Yuen (1989) 
and van Keken (1993). The integration time step At was 
either taken as a fraction of the Courant time step (At,) or 
as a fixed value. Different convergence criteria for the 
Picard iteration for the Stokes equation ( E ~ )  have been 
applied-see Appendix A2. The mesh-size in the second 
column of Table B1 refers to the number of rectangular 
( N  X M )  mesh cells discussed in Appendix A l .  Taking case 
(12) as a reference, we see that convergence occurs when 
using a denser mesh or when either the integration time step 
or the Picard convergence criterion is reduced. The results 
of the three different methods agree to within a few per cent. 
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