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Aerobic activity is a powerful stimulus for improving mental health and for generating struc-
tural changes in the brain. We review the literature documenting these structural changes
and explore exactly where in the brain these changes occur as well as the underlying sub-
strates of the changes including neural, glial, and vasculature components. Aerobic activity
has been shown to produce different types of changes in the brain. The presence of novel
experiences or learning is an especially important component in how these changes are
manifest. We also discuss the distinct time courses of structural brain changes with both
aerobic activity and learning as well as how these effects might differ in diseased and
elderly groups.
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INTRODUCTION
The benefits of exercise and physical fitness on mental health and
cognitive performance are well documented (for reviews see Cot-
man and Berchtold, 2002; Colcombe and Kramer, 2003; Vaynman
and Gomez-Pinilla, 2005; Cotman et al., 2007; Kramer and Erick-
son, 2007; Chaddock et al., 2010). There is also a rich literature
dating back at least 70 years from animal studies documenting the
profound structural changes in the brain produced by complex or
enriched environments. These structural changes include, but are
not limited to, synaptic size and density, complexity and extent
of dendritic arbors, size and number of glial processes, vascular
density, and rate of neurogenesis (for reviews see Markham and
Greenough, 2004; Pearson-Fuhrhop et al., 2009). Animal studies
have also demonstrated that exercise or physical activity produces
very specific changes in the brain that are distinct from those
produced by learning or novel experiences (Black et al., 1990).

Recently, studies have been carried out in humans using non-
invasive brain imaging techniques to investigate exercise-related
changes in brain structure (Erickson et al., 2009, 2011; Chaddock
et al., 2010). Such studies provide compelling evidence for the
powerful effects of exercise on the brain, but also raise several
questions. For example, do structural changes occur throughout
the brain or are they limited to specific brain regions? What aspects
of brain architecture are specifically modified by physical activity?
On what time scale do these changes occur, and how persistent are
they when exercise is discontinued? Do specific preconditions such
as aging, disease, or genetic phenotypes make individuals more or
less susceptible to activity-based brain changes? This review will
explore these questions as well as future directions in the study of
the effects of physical activity on the brain.

Several different methodologies have been employed to investi-
gate these questions. Many studies have been conducted on rodents
using histological techniques. These studies provide an extremely
detailed picture of the kinds of brain changes that occur with
exercise. However, they are limited in that they require researchers

to pre-select a specific region of the brain for slicing and staining.
They also do not afford the ability to utilize a truly longitudinal
design, as the measurements require the animals to be sacrificed.
A second body of literature has used neuroimaging techniques to
investigate exercise-related changes in human participants. While
these studies provide less direct measurements of the underly-
ing changes in neural tissues, they have the advantage of allowing
researchers to look for changes throughout the brain. These studies
are also amenable to longitudinal designs, which can more clearly
establish causality of structural changes.

WHAT IS “PHYSICAL ACTIVITY”?
Physical activity is defined as bodily activity that results in energy
expenditure above resting levels (US Department of Health and
Human Services, Centers for Disease Control and Prevention,
National Center for Chronic Disease Prevention and Fitness, Presi-
dent’s Council on Physical Fitness,1998). Exercise refers to physical
activity that is structured to meet specific fitness gains (Caspersen
et al., 1985). Maintaining a physically active lifestyle has been
associated with a vast range of positive health outcomes that
include benefits to cognitive function (Cancela Carral and Ayán
Pérez, 2007; Cassilhas et al., 2007; Kramer and Erickson, 2007;
Smiley-Oyen et al., 2008; Smith et al., 2010; Ruscheweyh et al.,
2011). The American College of Sports Medicine recommends
that most adults engage in a regular exercise regime in order
to maintain health and wellbeing, suggesting that higher activ-
ity levels are associated with greater health outcomes (Haskell
et al., 2007). The current guidelines for optimal health and fit-
ness recommend that adults engage in moderate-intensity exercise
training for ≥30 min per day on ≥5 days a week, or vigorous-
intensity training for ≥20 min a day on ≥3 days a week, or a
combination of moderate- and vigorous-intensity exercise. In
addition, it is also recommended that individuals devote 2–3 days
per week to resistance exercises for each of the major mus-
cle groups, as well as neuro-motor exercises (balance, agility,
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and coordination) and flexibility exercises for each the major
muscle–tendon groups.

Moderate-intensity exercise refers to exercising at sub-maximal
workloads, during which energy is supplied by the aerobic energy
system. Exercising within this zone results in a host of physiologi-
cal responses to the increased metabolic demand for oxygen by the
skeletal muscle, skin, and brain. Prolonged training at moderate
aerobic intensities results in physiological adaptations, including
increased blood volume, capillary density, mitochondrial size and
density, improved fat mobilization, and thermoregulation. Col-
lectively these adaptations represent improved cardio-respiratory
fitness. This fitness can be quantified by measuring the maxi-
mum rate at which an individual can take up and utilize oxygen,
known as the “V̇O2 max” (Åstrand et al., 2003). V̇O2 max can be
increased with aerobic training, but this effect is modulated by
several factors, including the age, the initial level of aerobic fit-
ness, and the intensity, frequency, and duration of training. The
greatest increases in V̇O2 max are generally observed in previ-
ously sedentary individuals. Aerobic training for improved cardio-
respiratory fitness is typically performed between 65 and 85% of
an individual’s V̇O2 max.

Vigorous-intensity exercise involves training above 85% of
V̇O2 max, during which energy is supplied by the anaerobic energy
system. Such high-intensity exercise requires rapid re-synthesis of
ATP to provide energy for muscular contraction. The demand
for this energy exceeds the rate at which oxygen delivery and
consumption can support it. As a result, this type of exercise is
limited by a finite capacity for energy production. Once this limit
is reached, fatigue results and the exercise must either cease or be
reduced in intensity. Training at this intensity, as with resistance
training, results mainly in peripheral adaptations to the muscles
being stressed as well as a strengthening of the neuromuscular
mechanisms for movement.

The effects of anaerobic (Winter et al., 2007), resistance (Lach-
man et al., 2006; Cassilhas et al., 2007; Busse et al., 2008), and
flexibility training (Erickson et al., 2011) on brain structure have
been explored, yet the results remain equivocal. The majority
of studies on the effects of physical activity on brain structure
have focused on aerobic or moderate-intensity exercise (Colcombe
et al., 2006;Voss et al., 2010). The frequency and the duration of the
training intervention required for brain plasticity remains vague.
Similarly, it is not clear whether an increase in aerobic fitness (as
indicated by increased V̇O2 max) is necessary to effect changes to
the brain’s morphology or cognitive processes. For example, it may
be possible that the simple stimulus of increased cerebral blood
volume (CBV) during exercise is enough to drive the changes.

WHERE IN THE BRAIN DO STRUCTURAL CHANGES OCCUR?
Environmental enrichment in rodents has been shown to pro-
duce structural changes in several distinct regions of cerebellar
and cerebral cortex (Markham and Greenough, 2004). To date,
however, these methods have only demonstrated exercise-related
structural change in motor areas, such as the cerebellum and
motor cortex, and in specific regions within the hippocampus,
which plays a prominent role in learning, memory, and naviga-
tion. Human imaging studies have at times complemented these
findings in specific regions, while in other cases they have found
global changes in brain structure.

CEREBELLUM AND MOTOR CORTEX
In a rodent study, Black et al. (1990) contrasted effects of aerobic
exercise and motor learning. Specifically, while 30 days of wheel
running produced an increase in capillary density, 30 days of tra-
versing an acrobatic maze produced an increase in the number of
synapses per purkinje cell (the large, primary nerve cell in the cere-
bellum). Subsequent studies have demonstrated similar changes in
blood vessel density in motor cortex using both histological (Kleim
et al., 2002b) and magnetic resonance imaging (MRI) techniques
(Swain et al., 2003).

HIPPOCAMPUS
Some of the most compelling evidence of exercise-mediated brain
changes has been found in the hippocampus, a brain structure
involved with memory as well as stress regulation (Kim and Dia-
mond, 2002; Small et al., 2011). As early as 1999 it was demon-
strated that wheel running dramatically increased the number
of new neurons in the hippocampus of mice (van Praag et al.,
1999a). Pereira et al. (2007) replicated this finding and went
on to demonstrate that the number of new neurons correlated
with increases in CBV, measured using contrast-enhanced MRI.
The same paper showed a similar increase in CBV in a small
group of middle-aged human subjects after 12 weeks of exercise
training.

Chaddock et al. (2010) showed that preadolescent children with
higher V̇O2 max scores had larger hippocampal volumes (as deter-
mined by MRI scans) than those with lower V̇O2 max scores.
Erickson et al. (2009) showed a correlation between the volume
of the hippocampus and cardiovascular fitness (peak V̇O2) in a
cohort of 165 older adults. A follow-up study by the same authors
(Erickson et al., 2011) demonstrated that 1 year of aerobic exer-
cise increased the volume of hippocampus by 2% in elderly adults,
while controls who underwent 1 year of stretching exercises exhib-
ited a 1.4% decrease in hippocampal volume. Similarly, Pajonk
et al. (2010) reported a 12–16% increase in hippocampal size in
a small group of exercising schizophrenic patients as well as in
matched controls.

In summary, aerobic activity reliably induces structural change
in hippocampal volume and vasculature. This high degree of plas-
ticity is perhaps not surprising given the hippocampus’ purported
role in the rapid encoding of episodic memory (McClelland et al.,
1995). It is also notable that the hippocampus displays dramatic
volume changes in disease states such as Alzheimer’s disease and
depression (Steffens et al., 2000; Butters et al., 2008).

GLOBAL EFFECTS?
All of the afore-mentioned studies, including the neuroimaging
studies, limited their investigations to specific regions of interest.
However, it is possible that some effects of aerobic exercise on
brain structure occur via a diffuse mechanism (such as globally
altered blood volume) that would not produce localized effects.
Some whole-brain,voxel-based morphometry (VBM) studies have
reported an association between physical activity levels (Flöel et al.,
2010) or an exercise intervention (Colcombe et al., 2006) and large
clusters of increased gray matter density in frontal, temporal, and
cingulate areas of the brain. Another recent study has shown that
aerobic activity levels in elderly human subjects correlate with
both the number and tortuosity of blood vessels throughout the
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brain using the relatively novel technique of magnetic resonance
angiography (Bullitt et al., 2009). These studies suggest that while
some regions of the brain may show localized volume changes
in response to aerobic exercise, there may also be more global
changes.

WHAT IS CHANGING? COMPONENTS OF PLASTICITY
GRAY MATTER
The study of structural brain change in humans is currently limited
to the relatively macroscopic measurements that are possible using
neuroimaging techniques. This contrasts sharply with histological
studies in animals that can measure cell number, density of den-
drites, or even the size and shape of dendritic spines (See Figure 1).
Many neuroimaging studies report changes in “gray matter den-
sity” or the overall volume of a given structure. These measures
are commonly derived from segmenting T1-weighted MR images
using the relative intensities of different voxels. Although these
image intensities depend on the underlying tissue structure, they
do not relate in a straightforward way to specific tissue components
(e.g., cell density). The magnitude of these changes are typically
in the range of 1–8% (Draganski et al., 2004; Scholz et al., 2009;
Erickson et al., 2011), but it is not possible to draw conclusions on
which microscopic structures within gray matter are exhibiting an
increase in volume.

Some insight into this question can be gleaned from animal
studies. Figure 2 provides an approximate breakdown of the
components of cerebral gray matter by volume based on several
histologic studies (Cherniak, 1990; Syková, 1997; Braitenberg and
Schüz, 1998; Chklovskii et al., 2002; Kleim et al., 2007). Note that
these ratios should be taken only as a rough guide. The compo-
sition of cortical gray matter varies considerably between brain
areas (Chklovskii et al., 2002) and species (Herculano-Houzel
et al., 2006; Sarko et al., 2009). However, it has been consis-
tently shown that well over 50% of gray matter is composed of
the tangle of axonal, dendritic, and glial processes known as the
neuropil, while vasculature accounts for no more than 5% of gray
matter volume. Cell bodies account for less than 20% and the

interstitial space between cells, synapses, and vessels accounts for
over 20%.

These ratios give us some feel for the magnitude each com-
partment would need to change to produce the volume changes
reported in recent imaging. For example a 20% increase in the neu-
ropil volume would be sufficient to produce the 8% global gray
matter changes that have been reported. However if the change
were limited to vasculature, a near doubling would be required to
produce an 8% change in gray matter volume.

VASCULATURE
Angiogenesis in response to exercise is well-studied in muscle tis-
sue (Prior et al., 2004). Angiogenesis can occur via a splitting
process known as intussusception or a sprouting process in which
a new branch sprouts from one capillary and merges onto another
(Makanya et al., 2009). Studies on changes in the capillary density
in rats were some of the first to distinguish between the effects
of exercise versus learning or exposure to complex environments
(Black et al., 1990). A replication and elaboration is provided in
a follow-up study that dissociates increases in capillary number
from increases in capillary density (Isaacs et al., 1992). Exposure
to a complex environment produces an expansion of the volume
of the molecular layer in the cerebellum, while the density of blood
vessels remains constant. This necessarily involves an increase in
the number of capillaries. However, the voluntary exercise con-
dition results in an increase in the density of capillaries, while
the volume of the molecular layer remains constant. Thus the
ratio of blood vessel volume to other components of the layer has
increased.

This dissociation between the effects of exercise and enrich-
ment on angiogenesis was subsequently replicated in the rat motor
cortex (Kleim et al., 1996, 2002a). The basic result of increased
vasculature with exercise has also been replicated many times in
motor cortex as well as striatum with both histological and imag-
ing techniques (Swain et al., 2003; Ding et al., 2005, 2006). The
magnitude of increased blood vessel density reported in the orig-
inal Black et al. (1990) study was approximately 20%, but the

FIGURE 1 | Illustration of different spatial scales provided by different techniques (Pictures reproduced with permission. Credits:Wikimedia

Commons, Arnold and Rioux, 2001; Chen et al., 2011).
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FIGURE 2 | Approximate percentage of the components of cerebral

gray matter by volume, based on estimates from several histological

studies. The three green wedges are all components of the neuropil
(Cherniak, 1990; Syková, 1997; Braitenberg and Schüz, 1998; Chklovskii
et al., 2002; Kleim et al., 2007).

subsequent studies using different quantification methods have
reported increases from 50% to over 1000%. If these measures are
accurate they could account for the gray matter changes discussed
above entirely within the vascular compartment.

A recent study using a small sample of macaques replicated
the increase in vascular volume fraction in motor cortex with
5 months of daily treadmill exercise. Interestingly, this effect was
found only in older animals (15–17 years old) while middle-aged
animals (10–12 years old) showed no change in vascular volume
fraction (Rhyu et al., 2010).

The mechanism by which aerobic exercise results in increased
angiogenesis in the brain is not fully understood. It is believed that
mechanical sheer stress on the walls of the capillaries as well as a
reduction in the degree of blood oxygenation (hypoxia) may play
a role (Makanya et al., 2009). Independent of exercise, hypoxia
itself is a potent stimulus of angiogenesis in the brain. Patt et al.
(1997) demonstrated that rats exposed to progressive amounts of
hypoxia over 130 days showed angiogenesis in a wide variety of
brain areas including cerebral cortex, striatum, and hippocampus.
Differences in capillary density in cerebellum and the medulla
oblongata failed to reach significance due to the high variability
in baseline vascular density in control animals. Contrary to Isaacs
et al. (1992), Patt and colleagues also found increases in capillary
diameter in cerebral cortex and cerebellum. Such changes could
potentially also occur in association with the mild hypoxia that
can occur during aerobic activity. Differences in vessel diameter
associated with aerobic activity have also been shown in a mag-
netic resonance angiography study of elderly human individuals
(Bullitt et al., 2009).

A considerable amount of work has looked at angiogenesis in
the hippocampus; however, these studies have focused on the tight
relationship between angiogenesis and the growth of new neurons.
This work will be discussed in more detail below.

GLIA
As revealed in the graph above, astrocytes and other glial cells
consume a significant proportion of neuropil volume. While
glial cells are similar to the vasculature compartment in that
they play an important role in the metabolic support of neu-
rons, they also have an active role in regulating the efficacy of
synapses and even directly communicating with neurons via cal-
cium signaling (see Zhang and Haydon, 2005 for a review). Given
these dual roles, we might expect astrocytes to behave like neural
processes and expand their volume only in response to learn-
ing. Alternatively, we might expect them to behave more like
vasculature and respond to both exercise and learning. Ander-
son et al. (1994) addressed this question in rat cerebellar cortex
by measuring the volume of astrocytes after a period of motor
learning or voluntary exercise. The study showed that while the
overall density of glial processes did not differ between groups,
the glial volume per purkinje cell in rats in the motor learning
condition was significantly greater than that of rats exposed to
voluntary exercise alone. The motor learning group also showed
an overall increase in the volume of the molecular layer. This
suggests that the astroglia are more similar to the synaptic and
neural structure than they are to vasculature in their pattern of
growth.

NEUROGENESIS
New neurons are generated in the vertebrate brain throughout
the life span. (See Colucci-D’Amato and di Porzio, 2008 for an
account of the rise and fall of the “no new neurons” dogma over
the course of the twentieth century). There is general agreement
that neurogenesis occurs in two areas of the mammalian brain:
the sub-granular zone of the dentate gyrus within the hippocam-
pus and the subventricular zone located in the lateral ventricles.
Neurogenesis in the hippocampus, like angiogenesis, has been
shown to increase with physical activity (van Praag et al., 1999a),
but the creation of new neurons in the hippocampus is a del-
icate process. A large fraction of the new neurons created do
not survive (Kempermann et al., 2010). Kronenberg et al. (2003)
showed that while exercise increases the rate of neurogenesis, envi-
ronmental enrichment increases the ratio of new neurons that
survive and get incorporated into the lattice of the existing neural
network.

Some studies have suggested that both new neural cells and
new endothelial cells (used to build new capillaries) derive from
the same pool of stem cells (Palmer et al., 2000). Pereira et al.
(2007) demonstrated a correlation between the number of new
neurons generated in mouse dentate gyrus and the degree of
increase in regional CBV as measured by contrast-enhanced MRI.
In a small sample of human subjects, they demonstrated a sig-
nificant increase in regional cerebral blood volume (rCBV) after
3 months of aerobic exercise. Changes in rCBV were shown to
correlate with increases in V̇O2 max scores as well as post-exercise
performance on a verbal learning task. The authors argue that
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these data suggest that rCBV can be used as a proxy for mea-
suring neurogenesis in mice as well as humans. This exciting
possibility must be reconciled with the fact that there are sev-
eral regions of the brain in which angiogenesis has been observed,
such as the cerebral cortex and cerebellum, which most researchers
believe are not capable of neurogenesis. Some authors have argued
that neurogenesis does occur in the cerebral cortex (Gould et al.,
1999) and in the cerebellum (Carletti and Rossi, 2008). This
would provide a possible resolution to this apparent contra-
diction in Pereira and colleagues’ theory. But the idea of neu-
rogenesis outside of the hippocampus and the subventricular
zone remains very controversial (Rakic, 2002; Ming and Song,
2005).

WHITE MATTER AND CONNECTIVITY
The majority of the literature on structural change with aero-
bic activity has focused on the region of the brain that contains
the majority of cell bodies, synaptic connections and vasculature,
i.e., the “gray matter.” The effects of exercise on “white matter,”
the large mass of mostly myelinated axons near the center of the
brain, have been overlooked until very recently. An early attempt
to look at white matter volume was conducted by Colcombe
et al. (2004) using VBM techniques on segmented white mat-
ter images. They reported an anterior cluster of increased white
matter after 6 months of exercise in a group of elderly adults. How-
ever, the use and interpretation of VBM on white matter volumes
are somewhat controversial (Draganski et al., 2006; Smith et al.,
2006).

The past 5–10 years have witnessed significant advancements in
our ability to study the connectivity between brain areas embodied
by the white matter. The advent and popularization of diffusion
tensor imaging (DTI) have allowed researchers to study the struc-
tural integrity of white matter directly (see Johansen-Berg, 2010
for review). Concurrently, another area of study known as “func-
tional connectivity” has grown in popularity and sophistication.
This technique uses functional MRI data to explore temporal cor-
relations between brain areas (see Smith et al., 2011 for review).
The strength of these correlations is thought to provide a measure
of the degree to which different regions of the brain are working
in concert as a “functional network.”

DTI changes associated with aerobic activity have recently been
examined in a 1-year fitness training study on elderly adults.
Heo and Kramer (2010) show a correlation between white matter
integrity and changes in V̇O2 max scores in frontal and tempo-
ral white matter tracts. Interestingly, the change in white mat-
ter integrity for the aerobic training group did not significantly
differ from a control group that participated in 1 year of non-
aerobic exercise, suggesting that aspects other than aerobic exercise
contributed to the observed change. Differences in resting func-
tional connectivity associated with fitness level were reported
in a recent study by Voss et al. (2010). Aging has been previ-
ously shown to result in a decrease of functional connectivity
in the so-called “default mode network” (DMN, Andrews-Hanna
et al., 2007). The DMN is a well-studied set of brain regions that
show a decrease in activity when external processing demands are
increased. Voss and colleagues demonstrate that some of the func-
tional connections within the DMN (particularly the connection

between the posterior cingulate gyrus and the middle frontal
gyrus) exhibit a positive correlation with V̇O2 max score, con-
trolling for age. They also demonstrated several positive correla-
tions between functional connectivity and cognitive measures of
executive function and spatial memory.

BIOCHEMICAL MECHANISMS
Complex biochemical cascades are responsible for building new
vascular and neural structure in the brain. Detailed discus-
sion of these cascades is beyond the scope of this review (see
Olson et al., 2006; Zhao et al., 2008; Erickson et al., 2012),
however two important and well-studied growth factors bare
a brief discussion. Brain derived neurotrophic factor (BDNF)
and vascular endothelial growth factor (VEGF) are both are
up regulated with exercise. BDNF synthesis is triggered by a
local increase in neural activity while VEGF production is trig-
gered by hypoxia (Shweiki et al., 1992; Goodman et al., 1996).
BDNF triggers an intracellular biochemical cascade that expands
neural structures such as dendritic spines and axonal buttons
(McAllister et al., 1999). VEGF acts on the endothelial cells
lining the wall of the blood vessels triggering them to divide
and produce new blood vessels. (Bloor, 2005). Both BDNF
and VEGF play important but different roles in neurogenesis.
While VEGF promotes the proliferation of new neural progeni-
tor cells inside the neurogenic niche, BDNF promotes their sur-
vival and incorporation into the neural architecture. Both VEGF
and BDNF polymorphism are associated with depression (Neves-
Pereira et al., 2002; Sklar et al., 2002; Strauss et al., 2005; Viikki
et al., 2010). Antidepressant medications cause an increase in
BDNF expression, but their effects on VEGF have not yet been
clearly demonstrated (Martinowich and Lu, 2008; Ventriglia et al.,
2009).

TIME COURSE
Each of the components of brain plasticity has a unique function
and therefore also has a unique temporal profile with respect to the
onset and offset of increased aerobic activity. Studies have shown
that the primary component of change associated with exercise,
i.e., increased capillary density, has a very rapid time course. A
recent study in rat hippocampus demonstrates that an increase
in capillary density occurs within 3 days of the onset of increased
aerobic activity (Van der Borght et al., 2009). Perhaps even more
surprisingly, rats removed from the exercise condition returned
to baseline levels of capillary density after just 24 h of seden-
tary behavior. As discussed above, the creation of new neurons
seems to be tightly coupled with angiogenic growth and there-
fore also follows a time course that rapidly responds to changes
in aerobic activity. However, new neurons created over the course
of increases in aerobic activity will quickly die off if adequate
learning opportunities or novel experiences do not accompany
the increased aerobic activity (van Praag et al., 1999b; Kemper-
mann et al., 2010). Astrocytes are also sensitive to the presence of
environmental enrichment and will only exhibit volume increases
when these stimuli exist (Kleim et al., 2007). However they differ
from neurogenic growth in that they return to baseline volume as
soon as the animal is removed from the stimulating environment.
Synaptic growth in the neuropil is also dependent on learning
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FIGURE 3 | A schematic summary of the time courses of the different components of structural change associated with exercise and environmental

enrichment, based on several studies discussed in this review (Black et al., 1990; Kleim et al., 2007;Van der Borght et al., 2009; Kempermann et al.,

2010).

or novel experiences, but unlike astrocytes, increases in synaptic
density and neuropil volume are relatively persistent. Kleim et al.
(1997) demonstrated that increases in synaptic density in cerebel-
lum lasted for at least 4 weeks after animals were removed from an
enriched environment.

These studies provide us with a rough idea of the time course of
plasticity in the different component of brain architecture as well
as the necessary and sufficient conditions for plasticity in each
(Figure 3). Vasculature plasticity has a rapid onset, is reliable in
both exercise and enrichment conditions, and is quick to return
to baseline after the intervention. Neurogenesis is also present
across both exercise and enrichment paradigms, but long-lasting
only when learning is present. Both astrocyte and neuropil plastic-
ity are only responsive to enrichment, but only astrocyte volume
returns to baseline post-intervention.

GROUP SPECIFICITY AND CEILING EFFECTS
There is a long-standing debate in the literature regarding whether
environmental enrichment manipulations can be truly considered
“enrichment,” or whether they simply represent a modest reprieve
from the impoverished environment of a typical laboratory ani-
mal (Grossman et al., 2002). This raises the question as to whether
reported brain changes can be thought of as enhancements from a
typical baseline or a recovery from atrophy. In the human literature
the majority of the published work on the effects of exercise on
the brain is in participants who may have also experienced brain
atrophy due to either age (Erickson et al., 2011) or mental illness
(de Lange et al., 2008; Pajonk et al., 2010). Podewils et al. (2005)
provide a counter-example of one at-risk population that does not
seem to benefit from exercise. In a large epidemiological study of
older participants, they show that while level of fitness is protec-
tive against the onset of dementia and Alzheimer’s disease across

the entire population, carriers of the apolipoprotein E genotype
(APOE) e4 allele, which is associated with increased dementia risk,
show no association between fitness level and dementia risk. This
finding suggests that aerobic activity cannot rescue individuals
from the increased risk incurred by this genotype.

Although relatively few studies exist on the effects of aerobic
activity on the brain structure of healthy, younger individuals,
there is a wealth of data demonstrating the cognitive benefits of
frequent aerobic exercise throughout the lifespan – perhaps none
more convincing than a recent study of 1.2 million Swedish mil-
itary conscripts that showed a strong correlation between fitness
and intelligence (Aberg et al., 2009). Much work remains to be
done to determine what level of aerobic activity is required for
cognitive and brain health to be maximized, but it seems likely
this level is well above that of the average individual.

CONCLUSION
The study of the effects of exercise on brain structure and cogni-
tion is still in its infancy. The research reviewed here by and large
simply demonstrates that aerobic activity is indeed a powerful
modulator of structural brain plasticity. The precise components
and time course of exercise-mediated changes in brain structure
are beginning to be delineated, but many unanswered questions
remain. In particular, the key ingredients of an exercise interven-
tion for triggering specific aspects of structural brain changes are
yet to be determined. In addition, individual differences in lifestyle,
genetics, and physiology are likely to have significant influence on
exercise effects, but this influence is poorly understood as of yet.
Future studies may demonstrate the potential of exercise as a tool
to remediate a variety of debilitating diseases as well as to maxi-
mize cognitive potential in development or to lessen the burden
of cognitive decline associated with aging.
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