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Abstract

Long-term exposure to ambient air pollutant concentrations is known to cause chronic lung 

inflammation, a condition that may promote increased severity of COVID-19 syndrome 

caused by the novel coronavirus (SARS-CoV-2). In this paper, we empirically investigate 

the ecologic association between long-term concentrations of area-level fine particulate 

matter  (PM2.5) and excess deaths in the first quarter of 2020 in municipalities of Northern 

Italy. The study accounts for potentially spatial confounding factors related to urbanization 

that may have influenced the spreading of SARS-CoV-2 and related COVID-19 mortality. 

Our epidemiological analysis uses geographical information (e.g., municipalities) and neg-

ative binomial regression to assess whether both ambient  PM2.5 concentration and excess 

mortality have a similar spatial distribution. Our analysis suggests a positive association of 

ambient  PM2.5 concentration on excess mortality in Northern Italy related to the COVID-

19 epidemic. Our estimates suggest that a one-unit increase in  PM2.5 concentration (µg/m3) 

is associated with a 9% (95% confidence interval: 6–12%) increase in COVID-19 related 

mortality.
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1 Introduction

With more than twelve million confirmed COVID-19 cases and more than 550 thousand 

related deaths globally as of the beginning of July 2020,1 the novel coronavirus pandemic 

has unquestionably caused dramatic health and economic impacts. Despite the public 

health benefits of the consequent COVID-19 mitigation measures adopted by the central 

and the regional governments in Italy, one of the most heavily impacted countries, there 

are adverse socioeconomic effects of the lockdown on top of what are already dramatic 

public health impacts. Official morbidity statistics, although complicated by the public 

health interventions and the emergency status, reveal a strong spatial clustering phenom-

enon across administrative regions in Italy and provinces and municipalities within each 

region. Such a geographical concentration of both COVID-19 morbidity and mortality is 

most likely the result of the interaction of multiple factors, among which include the clus-

tering of initially infected individuals, different choices made about testing and contact 

tracing in order to identify community transmission, underlying population demographic 

and prevalence of health status, and the timely adoption of lockdown measures to control 

the COVID-19 epidemic (Ciminelli and Garcia-mandicó 2020). Beyond such proximal fac-

tors, however, additional contextual factors may have played an important role in the health 

impacts of COVID-19 in Italy.

The Northern Italian regions most affected by the spreading of coronavirus (Lombar-

dia, Veneto, Piemonte, Emilia Romagna) are also the most densely populated and heavily 

industrialized and thereby the most heavily polluted regions of Italy. These four regions 

together host 39% of the national population,2 and approximately one-half of the Ital-

ian GDP is produced there. Such a spatial concentration of economic activities involves 

the industrial manufacturing sectors to the largest extent, and the consequent high level 

of emissions is at least in part responsible for poor air quality in the region.3 In Brescia, 

among the most affected cities in Lombardy, the concentration of particulate matter (PM) 

and ozone exceeded the allowable threshold in 150 days in 2018, making it the most pol-

luted city in Italy. Lodi and Monza follow, with 149 and 140 exceedance days, respectively. 

Milan and Bergamo are sixth and ninth, respectively, with 135 and 127 days.4 Lombardy 

is also among the most polluted regions in all of Europe (European Environmental Agency 

2019). The relatively higher air pollutant concentrations in the Po Valley region of Italy 

contrasts sharply with neighbouring alpine regions and stems from the combination of two 

main factors (Carugno et al. 2016; Larsen et al. 2012; Pozzer et al. 2019). The first is the 

high concentration of urban areas with their congested roads and industrial belts. Source 

apportionment research from the Lombardy region (Pirovano et  al. 2015) indicates that 

the major sources of  PM2.5 include residential heating (e.g., fuel), transport, agriculture, 

background (including natural-source sand long-range transport), and other (including sta-

tionary industrial sources). The second is the location in the orographic “bowl” of the Po 

1 Data from Johns Hopkins coronavirus resource center, updated July 10.
2 At January 1st 2019, source: Italian Bureau of Statistics—ISTAT.
3 Different components of gas emissions (e.g. nitrogen dioxide, carbon monoxide), derive from many 

activities like traffic congestion, house heating, agricultural and husbandry practices, as well as industrial 

combustion. Concentrations are characterized by seasonality, with high levels in Winter, and weather condi-

tions, however the 2020 lockdown measures reduced substantially those derived from traffic but not those 

derived from agricultural activities (ARPA Lombardia 2020).
4 Data from the annual report on air quality in Italian cities by Legambiente, available at https ://www.

legam bient e.it/wp-conte nt/uploa ds/Malar ia201 9_dossi er.pdf.

https://www.legambiente.it/wp-content/uploads/Malaria2019_dossier.pdf
https://www.legambiente.it/wp-content/uploads/Malaria2019_dossier.pdf
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Valley, an extension of flat river lands enclosed between the Alps and Apennines moun-

tains, which causes the stagnation of pollutants due to low ventilation (Giulianelli et  al. 

2014).

These factors help to characterize the Po Valley’s peculiarity with respect to different 

European areas with comparable urban and industrial density levels (Eeftens et al. 2012). 

Moreover, in addition to the urbanized and industrial areas, the remainder of the valley 

presents an intensive agricultural activity. Local studies on emission sources highlight a 

varying composition of the final concentration values depending on the position of moni-

toring stations and with different sources acting as local or diffused ones (for instance hav-

ing high emissions from traffic close to cities, while having background biomass burning 

diffused in the whole region) (Bigi and Ghermandi 2016; Larsen et al. 2012). Indeed, given 

the EU Ambient Air Quality Directives that sets the Air quality standards for the protection 

of health at 25 μg/m3 for the averaging period of a calendar year, the Po valley shows val-

ues consistently near or above the threshold. These values often range in the 25–30 μg/m3 

interval with peaks of > 30 μg/m3, which in Europe are only matched in Southern Poland 

and other smaller Eastern European clusters (EEA 2019).

Compared to its overall representation in the population, Lombardy is disproportion-

ately impacted by COVID-19 related mortality, with approximately 53% of Italy’s COVID-

19 deaths as of April 15, 2020 (Odone et al. 2020). Lombardy is also the most impacted 

Italian region as far as the total number of deaths in excess in the first quarter of 2020 com-

pared to the same period of the previous years. Comparing the official COVID-19 death 

data with registry deaths, it emerges that the latter is almost 70% larger than the former 

in Lombardy, 27% larger in Emilia-Romagna and 18% and 16% in Veneto and Piemonte, 

respectively. It is, therefore, imperative to consider the role that PM may have played in 

such disproportionate COVID-19 deaths in Northern Italy.

There are a number of plausible pathways by which airborne PM may impact COVID-

19 related morbidity and mortality. Existing data already finds a strong positive correlation 

between viral respiratory infection incidence and ambient PM concentrations (Ciencewicki 

and Jaspers 2007; Sedlmaier et al. 2009). One plausible pathway for this phenomenon is 

the fate and transport of the virus itself within the environment. A recent position paper 

by the Italian Society of Environmental Medicine argues that PM may act as both a carrier 

and substrate of the virus and thus influence the virus’ fate and transport in the environ-

ment and reaching susceptible receptors (Setti et al. 2020). Another pathway is the increase 

in susceptibility to COVID-19 mortality caused by long term exposure to PM. Fine PM is 

already known to affect cardiovascular and respiratory morbidity and mortality (Cakmak 

et al. 2018; Jeong et al. 2017; McGuinn et al. 2017; Yin et  al. 2017). Moreover, among 

1596 Italian COVID-19 patients who died in the hospitals, and for whom it was possible to 

analyze clinic charts, data showed substantial comorbidities including ischemic heart dis-

ease (27.9%); atrial fibrillation (22.4%); heart failure (15.6%); stroke (10.9%); hypertension 

(70.6%), and chronic obstructive pulmonary disease (17.9%) (Istituto Superiore di Sanità 

2020). Biologically, long-term PM exposure may be responsible for a chronic inflamma-

tion status that causes the hyper-activation of the immune system and the life-threatening 

respiratory disorders caused by COVID-19 (Shi et al. 2020).

Some preliminary evidence is now emerging about COVID-19 that shows a positive 

relationship between air pollution and morbidity and mortality. Beyond qualitatively 

describing the European Air Quality Index for Northern Italy to argue the causal role of 

air pollution and the relatively high COVID-19 mortality observed in that region, Conti-

cini et al. (2020) review the most recent existing toxicological and epidemiological litera-

ture. Based on existing evidence from other empirical studies, they clarify the relationship 



614 E. S. Coker et al.

1 3

between air pollution, prolonged inflammation and immune system hyper-activation and 

immune suppression, and the link between the latter and acute respiratory distress syn-

drome, and respiratory mortality. Their paper is important in that it suggests a clinical and 

biologically plausible explanation to our analysis, but does not provide statistical evidence 

in support of the hypothesis. A separate empirical analysis by Becchetti et al. (2020) finds 

preliminary evidence that confirms such a positive effect of air pollution on mortality in 

Italy based on the analysis of death data at the province level. Similarly, Wu et al. (2020) 

show a positive association between long term PM exposure and COVID-19 related deaths 

in US counties. Ogen (2020) recently analysed data from 66 administrative regions in 

France, Spain, Italy, and Germany, and found that the highest COVID-19 deaths in these 

regions were associated with five regions of Northern Italy that also corresponded with the 

highest levels of atmospheric nitrogen dioxide  (NO2). Cole et al. (2020) estimate the same 

relationship using Netherlands municipality data and find  PM2.5 positively associated with 

COVID-19 cases, hospitalization, and deaths.

In this paper, we follow this emerging stream of the empirical literature and test the 

hypothesis that a higher average long-term exposure to  PM2.5 is positively associated with 

the current extraordinarily high death toll in Northern Italy. We decided to focus on  PM2.5 

because, given the complexity of air pollution, it is quite common in air pollution epide-

miology studies to focus the analysis on a single pollutant (Wu et al. 2020), although mul-

tipollutant analyses are certainly warranted. We selected  PM2.5 for a variety of important 

reasons, including policy implications and evidence in the literature in terms of chronic 

health effects. Regarding its policy implications, we selected  PM2.5 as opposed to  PM10 

because the former is more correlated with human activities than the latter, and it cor-

relates with stronger health effects than  PM10 does. With respect to respiratory mortality 

effects from the existing air pollution literature, the most robust evidence points to  PM2.5 as 

opposed to other gaseous air pollutants (Bowe et al. 2019).

Mortality data are collected at the municipality level for the period January-April 2020. 

Given that mortality data are not disaggregated by mortality cause, death counts are meas-

ured as the difference from the last five-years mean to reflect the abnormal number of 

deaths caused by the spreading of the pandemic. Since  PM2.5 can be associated to generic 

mortality even in the absence of the pandemic outbreak (Dominici et al. 2003; Katsouyanni 

et al. 2001; Samet et al. 2000), we also estimate the impact of  PM2.5 on the excess mortal-

ity in the sample using 2019 data, a time in which the coronavirus epidemic had presum-

ably not yet begun. Data on  PM2.5 concentration at the municipality level refer to the years 

prior 2020 to account for long-term population exposure. We assign municipality  PM2.5 

concentration by a set of different methods of spatial interpolation (kriging) of monitoring 

station data related to the years 2015–2019.

We estimate a negative binomial model of excessive deaths on historical  PM2.5 concen-

trations and a series of control variables that may plausibly affect both  PM2.5 concentra-

tion and mortality, including population density; the spatial concentration of the industrial 

manufacturing sites; climatic conditions observed during the first quarter of 2020; and the 

demographic composition of the municipal population among others. In addition, we con-

sider spatial heterogeneity in the distribution of the number of deaths related to regional 

and local unobservable factors. We account for region-specific effects because regions, in 

Italy, are the administrative units in charge of managing the health systems and the meas-

ures taken to trace and contrast the spreading of the pandemic varied greatly among even 

contiguous regions. We also account for local effects common to functionally linked clus-

ters of municipalities (the Local Labour Systems—LLS). We deem this part of the identi-

fication strategy crucial because the relationship between  PM2.5 and COVID-19 mortality 
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may be confounded by several other factors, some of which were not observable or measur-

able, but are nevertheless intrinsically related to the geographical location of the observed 

units.

The remainder of the paper is organized as follows. The next section introduces the 

empirical strategy and describes the dataset. The results are presented and discussed in sec-

tion three, considering the total number of (excess) deaths. Section four draws the conclu-

sions and highlights the limitation of the study and the indications for future research.

2  Empirical Strategy and Data

Our analysis is restricted to the study area of Northern Italy (Fig. 1), which encompasses 

the sub-regions of Valle D’Aosta, Piemonte, Liguria, Lombardia, Emilia-Romagna, Veneto, 

Friuli-Venezia Giulia and Trentino-Alto Adige/Südtirol. Official territorial data on COVID-

19 mortality in Italy are available at the rather aggregate regional or provincial level, cor-

responding to the levels 2 and 3, respectively of the European nomenclature units for ter-

ritorial statistics (NUTS).5 In addition, these official data refer to the deaths of patients 

tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) only 

and do not include (potential) patients without COVID-19 diagnosis because they were 

not tested and died at home or elsewhere. Hence, the officially reported deaths are likely 

underestimated. Because testing policies vary among regions in Italy, the induced measure-

ment error is also non-randomly distributed among the provinces. Ciminelli and Garcia-

mandicó (2020) compare the official COVID-19 fatality rates with historical death data and 

Fig. 1  Italian regions included in the study

5 https ://ec.europ a.eu/euros tat/web/nuts/backg round .

https://ec.europa.eu/eurostat/web/nuts/background
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report that deaths were higher than official fatalities throughout the period of COVID-19 

epidemic.

Working under the assumption that COVID-19 deaths are underestimated in Italy, the 

choice is made in this paper to use the total deaths from the official registries, accordingly, 

and to scale the analysis at the municipality level, the smallest administrative units, to have 

a more granular representation of the spatial dimension of the phenomenon. Since we are 

interested in excess deaths, we take the difference between the number of deaths in the 

period January 1—April 30, 2020, and the average number of deaths in the same period of 

the previous 5 years (ExDeaths) and use this metric as the dependent variable in our sta-

tistical model. Figure 2 displays the geographical distribution of the above-described data 

among the 4041 municipalities for which data is available.

The variable is assumed to follow a Negative Binomial distribution, a generalization of 

the Poisson distribution that avoids the restrictive mean–variance equality of the latter, and 

is modelled as follows:

where � is the overdispersion parameter to be estimated and �
i
 is the municipality-specific 

expectation conditional on the value of the covariates. Among the covariates, PM is the 

concentration of fine particulate matter in municipality i and � is the associated parameter, 

which we expect positive and statistically different from zero; X is a vector of control vari-

ables that adjusts for the potential confounding effects and includes the (log of) total popu-

lation as the offset while � is a normally-distributed error term.

Our main source of  PM2.5 data is the European Environmental Agency’s (EEA) air 

monitoring database, which is provided to EEA by the Institute for Environmental Pro-

tection and Research (ISPRA). ISPRA conducts ground-level air measurements of  PM2.5 

air concentrations (µg/m3) collected at 268 monitoring sites throughout Italy. Specifically, 

we use the EEA’s E1a and E2a datasets, which are primary validated assessment data and 

primary up-to-date assessment data reported by the European Member States, respectively. 

Although the measurements come both in hourly and daily averaging formats, we work 

(1)
ExDeaths

i
∼ NB

(

�
i
, �
)

log(�
i
) = � + �PM

i
+ ��X

i
+ �

i

Fig. 2  Spatial distribution of cumulative excess deaths in sample municipalities, Northern Italy, January 

1—April 30, 2020
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with daily values and use them to obtain yearly aggregates for the years 2015, 2016, 2017, 

2018, and 2019. However, because model (1) does not include a time component, we fur-

ther compute a six-year averaging time to obtain a metric of long-term (chronic)  PM2.5 

concentration levels throughout different spatial units of Northern Italy. The number of 

6 years for the reference period is sufficiently long to account for long-term exposure while 

being not too long to be affected by the mobility of people among municipalities, and it is 

in line with existing literature assessing long-term effects of PM exposure (Yorifuji et al. 

2019). Since the air monitoring stations provide only partial spatial coverage for munici-

pality-level  PM2.5 concentration data, we impute missing observations using a spatial inter-

polation model. Specifically, we fill in the gaps using a mean stationary Ordinary Kriging 

(see Bivand et al. 2013, p 209) defined through an exponential covariance function with 

nugget, partial sill and range parameters estimated through (restricted) maximum likeli-

hood methods. Figure 2 displays the resulting  PM2.5 concentration data.6

Comparing Figs.  2 and 3, it is possible to visually appreciate a spatial coincidence 

between higher levels of excess mortality and higher levels of  PM2.5, in particular in the 

Lombardia region which notably is the region with both the highest particulate concentra-

tion and the highest number of excess mortality.

The hypothesis that  PM2.5 concentration affected COVID deaths, that is �̂ > 0 , is tested 

among several possible specifications. In model (2) we include regional effects 
(

�j

)

 . These 

effects are expected to capture the aspects related to the management of the outbreak, 

which may have systematically influenced COVID-19 mortality and that are common to all 

the municipalities in the same region. Italy has a national health system that ensures equal 

access to healthcare to all citizens. The system is managed by regions at the local level, 

and, in the specific case of this pandemic, regions were responsible for defining the testing 

and contact-tracing protocols and implementing the necessary measures to contain the out-

break, among which the measure to protect healthcare workers. In model (3), we include 

Fig. 3  Spatial distribution of PM2.5 concentration levels in the sample municipalities, simple kriging of 

monitoring stations, average across years 2015–2019

6 We also replicate the analysis using other trend-stationary models (i.e. universal kriging) and different 

covariance functions; these extensions are discussed in the robustness check section.
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LLS-specific effects 
(

e
k

)

 . LLS are spatial clusters of contiguous municipalities related by 

commuting flows that share a common specialization in a specific sector of manufactur-

ing production and correspond to the conceptualization of Marshallian districts (Becat-

tini 2002). The number of LLS clusters per-region and the total number of municipalities 

belonging to clusters are reported in Table  1, along with the minimum, maximum, and 

average cluster size.

The use of LLS captures the interlinkages within neighbouring municipalities that may 

have favoured the geographical spreading of coronavirus around specific hotspots. Mortal-

ity data are then expected to vary among municipalities in different LLS, but differences 

are expected to be non-systematic in this case. In model (4) we include both the regional 

fixed effects and the LLS random effects.

Control variables to be included in the model were chosen to avoid any potential spatial 

confounding effect and considering as well the emerging literature on the impact of PM on 

COVID-19 related deaths (Cole et al. 2020; Wu et al. 2020). The population density and 

per-capita income account for urbanisation level. The most densely populated and wealthy 

municipalities are among the most polluted due to the spatial concentration of manufac-

turing and service activities but are also the places where the contagion could have been 

easier, with a potential impact on mortality. In addition to the density of population, the 

(2)
ExDeathsi ∼ NB

(

�ij, �
)

log(�ij) = � + �PMij + ��Xij + �j + �ij

(3)

ExDeaths
i
∼ NB

(

�
i
, �
)

log(�
ik
) = � + �PM

ik
+ ��X

ik
+ u

ik

u
ik
= �

ik
+ e

k

(4)

ExDeathsi ∼ NB
(

�ijk, �
)

log(�ijk) = � + �PMijk + ��Xijk + �j + uijk

uijk = �ijk + ek

Table 1  Number of LLS spatial clusters in each region

Region N. LLS N. of 

munici-

palities

Smallest LLS (N. 

of municipalities)

Largest LLS (N. 

of municipali-

ties)

Average number of 

municipalities by LLS

Emilia-Romagna 42 328 1 38 8

Friuli-Venezia Giulia 13 215 1 51 16

Liguria 17 234 1 26 12

Lombardia 57 1507 1 174 25

Piemonte 39 1181 1 104 26

Trentino-Alto Adige/

Südtirol

27 291 1 30 10

Valle d’Aosta 5 74 3 29 12

Veneto 49 563 1 52 11
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shares of municipality area occupied by industrial sites and the average size of manufac-

turing firms are included in the regression because they are related to pollutant concentra-

tion and possibly to mortality. National measures to stop the spreading of the viral infec-

tion (lockdown) involved the service sector to the largest extent while many manufacturing 

activities, being considered necessary, were left open and, in the absence of social distance 

and individual protection measures, the geographical concentration of these activities in a 

municipality with their complex logistics and transport interconnections, and the size of 

plants, may have influenced mortality. Average temperature, for which an association with 

COVID-19 deaths has also been found (Ma et  al. 2020), is also included in the regres-

sion.7 Moreover, COVID-19 incidence has proven to be higher among men than women 

and people aged 65 or more. Hence these two variables are considered in the model, even 

though these aspects are not necessarily connected with the average  PM2.5 exposure in 

a municipality. Underlying socioeconomic conditions can also play a role in COVID-19 

related mortality (Goutte et al. 2020). Brandt et al. (2020) and Mukherji (n.d.) have shown 

that, in the US, COVID-19 is more threatening for ethnic minorities, and we believe that 

the share of migrants, identified as non-EU citizens, can control for this aspect influencing 

the observed excess mortality. On the other hand, Mukherji (2020) and Goutte et al. (2020) 

also find that places with a higher share of the population with a low level of education 

have higher deaths. In our paper, given the lack of updated data on education at the munici-

pal level, we proxy it with the percentage of university students on the total population. 

The distance from the closest airport is a proxy for the functional and relational linkage 

between a municipality and a place of highly frequent national and international connec-

tions and potential sources of coronavirus spreading. Finally, we consider the number of 

hospital beds as a proxy for the supply of health services to account for the fact that many 

people died at home without being diagnosed for coronavirus due to the shortage of beds in 

public structures. The full details of the variables in the model, including sources and sum-

mary statistics, are presented in Table 2.

Having accounted for the confounding effect due to the omission of relevant informa-

tion from the empirical specification, we exclude any other potential source of endogeneity 

considered in similar papers. In particular, we exclude endogeneity due to measurement 

error in the outcome variable and the main independent variable. Concerning the outcome 

variable, the relationship between deaths and cases with fine PM could be spurious because 

more cases could be registered, and more individuals tested in highly polluted areas as 

people there are more likely to show COVID-19 symptoms due to the chronic inflamma-

tion induced by PM. The high toll of deaths of people diagnosed with COVID-19 would 

be a natural consequence of that. In contrast, the number of deaths in excess, used in this 

paper, is not affected by testing problems since it considers all the potential COVID-19 

deaths. Concerning the PM variable, measurement errors are likely to occur when using 

satellite data or modelled data. We preferred to use  PM2.5 levels observed from monitoring 

stations to avoid such a measurement error. Some caution is needed in the spatial inter-

polation because the method chosen to fill the missing data may underestimate the value 

in locations farther from the monitoring stations. With this concern in mind, we test the 

robustness of our results using  PM2.5 data obtained from different interpolation approaches.

7 We omit average humidity because the variable shows a too strong linear correlation (ρ= 0.98) with 

temperature in our sample observations, and its inclusion would cause severe imperfect collinearity in the 

model.
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3  Results

As indicated in Table  2, the overall average of PM2.5 for the study area between 2015 

and 2019 is roughly 20  µg/m3, as most municipalities in Norther Italian regions belong 

to industrial and agricultural intensive locations. The average mortality between 2015 and 

2019 for the period of interest (January 1—April 30) was 25 deaths, while it grew to 34 in 

2020. That results in an average excess death of 9, with standard deviation four times as 

larger (see Table 2).

Estimation results from the negative binomial models are summarised in Table 3 for the 

four different specifications of the model (1—no geographical effects; 2—regional fixed 

effects; 3—LLS random effects; 4—regional fixed effects and LLS random effects). In the 

lower part of the table, the estimated overdispersion parameter, the Akaike Information 

Criterion (AIC), and the Moran’s test for the null hypothesis of absence of spatial autocor-

relation8 in the residuals (Moran 1950) are reported.

The four specifications provide consistent results in terms of the direction and signifi-

cance of  PM2.5 coefficients. The overall effect of  PM2.5 on COVID-19-related excess mor-

tality is positive and statistically significant in all models. The estimated incidence rate 

ratios, reported in Table 4 with their confidence interval, for Model 1, 2, 3 and 4 are 13.7%, 

8.9%, 9.3%, and 9.3%, respectively.

In model 2, the regional fixed effects coefficients are statistically significant. They indi-

cate that other things being equal, the number of deaths in municipalities in Lombardy and 

Emilia Romagna has been systematically higher compared to base category9 and in munic-

ipalities in Veneto it has been systematically lower. The significance of the coefficient for 

Emilia Romagna, however, drops after including the random effects in the model. Since the 

first three models are nested into model 4 it is also possible to compare the models in terms 

of AIC. Model 4 performs substantially better than the other three. In general, the inclu-

sion of RE in models 3 and 4 leads to a decrease in the value of the AIC. In models 1 and 

2 the residuals appear spatially autocorrelated, as the null hypothesis of no spatial autocor-

relation is rejected in both cases (p < 0.001). The introduction of the LLS random effects 

appears to solve the issue of autocorrelation.

Based on the estimates of model 4, we compute the expected value of excess deaths 

conditional on covariates (taken at the average level) in the average city for varying levels 

of  PM2.5 and show how the expected number of deaths by region varies at different concen-

tration levels in Fig. 4. Notably, Emilia–Romagna and Liguria are the regions in which a a 

reduction of average fine PM from the highest level to the lowest would have benefited the 

most.

3.1  Robustness checks

For robustness check of the  PM2.5 metric used in our study, we explored the influence that 

other alternate  PM2.5 metrics may have on the direction and magnitude of the observed 

associations. Figure  5 depicts the point estimates and the 95% confidence interval for 

9 The remaining regions in the base category are Liguria, Valle d’Aosta, Trentino Alto Adige e Friuli-Ven-

ezia Giulia. We performed the analysis also including dummy variables for the remaining regions and the 

results do not change (the related coefficients are jointly insignificant). Results are available upon request.

8 The test is performed using queen-contiguity based spatial weights.
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Table 4  Marginal effects of an 

increase in PM2.5 concentration 

on excess deaths in Northern 

Italy during COVID-19 outbreak

Estimate 2.50% 97.50%

Model (1): No territorial effect 1.137 1.119 1.154

Model (2): Regional FE 1.089 1.069 1.109

Model (3): LLS RE 1.093 1.064 1.122

Model (4): Regional FE and LLS RE 1.093 1.063 1.123

Fig. 4  Expected excess deaths in the average municipality against the observed value of  PM2.5, by region

Fig. 5  Robustness check: estimated IRR (PM variable only) for models (1)–(4) using spatially interpolated 

data and four alternative satellite measures of particulate concentration
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the Incidence Rate Ratios (IRR).10 We find that while data from satellite elaborations 

(MODIS11 and DIMAQ12), and monitoring stations’ interpolation EEA13  PM2.5 models 

result in IRRs trending in the same direction, the point estimates for IRRs are lower than 

our primary analysis which was based on a combination of ground monitoring and kriging. 

The lower IRR point estimates are unsurprising because the underlying data for the alter-

nate  PM2.5 metrics do not have the same temporal coverage as the ground-level monitoring 

data (2015–2019). This lack of temporal coverage contributes to non-differential exposure 

misclassification, which, in turn, would lead to suppressing effect estimates towards the 

null. Despite this, it is encouraging to find that regardless of the  PM2.5 metric used, the 

direction of the observed associations remains, and so does statistical significance.

As previously anticipated, we re-estimate model (4) using different specifications of the 

Kriging interpolator. In particular, we first relax the mean-stationarity assumption of Ordi-

nary Kriging by modelling the mean function of the process through both a linear and a 

quadratic trend in latitude and longitude. Next, we replace the simple Exponential function 

with a Spherical model and a more flexible Matérn kernel with the characteristic parameter 

set at 3/2 (to preserve mean-square differentiability). All these specifications still assume 

covariance stationarity. Figure 6 and Table 5 in the Appendix report the estimated Inci-

dence Rate Ratios (IRR) regression coefficients for the PM variable in model (4) under 

these multiple setups: both point estimates and 95% confidence intervals indicate that there 

are no substantive differences between using different trend or covariance models, indicat-

ing that our result is robust to alternative specification of the interpolation method.

Fig. 6  Robustness Check: estimated IRR (PM variable only) for PM in Model 4 using three different covar-

iance functions and three alternative trend models

10 IRRs indicate the % change in Covid-related mortality for each one-unit increase in PM2.5 concentra-

tion.
11 van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. 

Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol 

Optical Depth (AOD) with GWR, 1998–2016. Palisades, NY: NASA Socioeconomic Data and Applications 

Center (SEDAC). https ://doi.org/10.7927/H4ZK5 DQS. Accessed 01 Mar 2020. See  van Donkelaar et  al. 

(2016) for further reference.
12 2016 Annual average concentration in μg/m3 of Pm 2.5 processed from the Data Integration Model for 

Air Quality (DIMAQ) (Shaddick et al. 2018) from the WHO website.
13 Monitoring Air quality data for PM2.5 annual average concentration for 2016 and 2017, interpolated in a 

‘regression-interpolation-merging mapping’ (Horálek et al. 2018).

https://doi.org/10.7927/H4ZK5DQS
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4  Discussion

In each of the four specifications presented, the coefficient related to  PM2.5 is always of the 

hypothesized direction and statistically different from zero. Precisely and consistently with pre-

vious results for the original SARS-Coronavirus during the 2003 outbreak (Cui et al. 2003), 

an increase in air pollution exposure is associated with increased mortality for COVID-19. 

The first panel in Fig. 4, as well as Table 4, suggests that, when using interpolated data from 

ISPRA monitoring stations, the increase in mortality rate due to a one-unit increase in  PM2.5 

concentration varies between 14% (model 1—highest rate) and nearly 9% (model 4—lowest 

rate). The 95% confidence interval for the point estimate in model 4 lies between roughly 6% 

and 12%. Our findings fall in line with both Wu et al. (2020) and Cole et al. (2020) papers. 

Specifically, both papers find a positive ecological relationship between PM2.5 and COVID-19 

mortality. In relation to a 1 µg/m3 increase in PM2.5, Wu et al. find 8% change in COVID-

19 mortality, Cole et al. find the same increase associated to additional 3 COVID-19 deaths 

(almost 17% if compared to their sample mean), and our paper finds 9% increase in COVID-19 

related excess mortality. Despite this similarity in results, the two key differences between our 

study and the others relate to the exposure assessment method and the outcome assessment 

method. In our study we use a spatial interpolation method (kriging) from ground-level moni-

toring data, whereas these other two studies utilize PM2.5 gridded surfaces such as chemical 

transport modelling in the case of Cole et al. and a hybrid approach using chemical transport, 

aerosol optical depth and land use regression modelling in the case of Wu et al. With respect 

to COVID-19 mortality data, Wu et al. use county-level data from the Johns Hopkins Univer-

sity, Center for Systems Science and Engineering Coronavirus Resource Center, which is com-

prised of COVID-19 deaths tabulated by the US Centers for Disease Control and Prevention 

and State health departments. In Cole et al., researchers obtained COVID-19 deaths by resi-

dential address and aggregated these to the municipality level. The obvious difference between 

their study and ours is that we used a surrogate excess mortality measure due to the issues of 

reliability for COVID-19 death data, as we have already discussed. The other relevant differ-

ence between our study and the Wu et al. and Cole et al. studies is that we subsample the total 

cohort of Italian municipalities to only regions with a very high mortality rate, which are also 

the regions most affected by the air quality problems. On the other hand, when satellite data are 

used, our estimate yields lower incidence ratios. Although ground-level concentration metrics 

come with fewer measurement errors, satellite data proves nevertheless useful in corroborating 

both the direction and the significance of the effect of interest. This redundancy is particularly 

relevant in light of the relatively few stations capable of detecting the finest particulate.

With reference to model (4) and the remaining covariates, we observe no effect related 

to population density or income or the extent of industrial areas in the municipality. Like-

wise, there is no evidence suggesting significant links between the share of non-EU resi-

dents, the female to male ratio (which disappears after we incorporate the random effects), 

and the level of education (proxy by the percentage of university students) on the dependent 

variable of interest. On the other hand, our results suggest a negative association between 

temperatures and mortality due to COVID-19. Finally, as expected, we find that munici-

palities with higher shares of the population aged 65 or more have been most affected. The 

distance from the closest airport, a measure of relational connectedness that also proxy for 

the exposure to the contagion process, deserves a last comment. We find that municipali-

ties closer to an airport experience a higher number of deaths in excess. We speculate that 



626 E. S. Coker et al.

1 3

the result could be related to a higher likelihood for these municipalities to become clusters 

of contagion in the initial phase of the pandemic, but a causal link cannot be inferred based 

on our result ad the topic needs more research to be addressed adequately.

We conclude our analysis by checking the consistency of our results to different choices of 

the dependent variable. Existing evidence (Dominici et al. 2003; Pascal et al. 2014; Samet et al. 

2000; Yin et al. 2017) associates fine PM to severe cardiovascular and respiratory diseases and 

mortality. In European cities, in particular, an estimated increase in the number of daily deaths 

of 0.7% is associated with an increase of 10 µg/m3 of  PM10 (Katsouyanni et al. 2001). This 

evidence suggests that long term PM exposure may have had an overall effect on deaths even 

before the outbreak in the sample municipalities, making it more difficult to isolate the real 

effect on COVID-19 deaths. We thus run model (4) using the total number of deaths in the 

same observation period of 2019 as the dependent variable to understand whether the effect of 

fine  PM2.5 on mortality has been more severe during the pandemic. We find no evidence of an 

effect of  PM2.5 on total deaths for 2019 in the sampled municipalities, suggesting that the effect 

of PM exposure on the mortality rate is closely connected to the novel coronavirus outbreak 

(see Table 6 in the Appendix). However, since the dependent variable in this “placebo” regres-

sion cannot be directly compared to the excess mortality, we repeat the test using total mortality 

for the year 2020. Although the latter includes both COVID-19 related and unrelated deaths, 

these two variables represent data generating processes of the same nature. As expected, both 

the regression coefficients and IRRs calculated regressing total deaths in 2020 suggest a posi-

tive and statistically significant effect of exposure to fine particulate on mortality, even though 

its magnitude is greatly reduced if compared to the estimates in Tables 3 and 4 (see Table 7 in 

the Appendix). Presumably, the effect of  PM2.5 concentration on COVID-19 related mortality 

becomes muted by the noise introduced when accounting for other causes of death. This would 

also explain the non-significant  PM2.5 coefficient in the first “placebo” regression.

5  Conclusion

Italy is among the countries most severely affected by the new coronavirus, with more than 

230 thousand confirmed cases and more than 30 thousand deaths as of the end of May. Yet, 

the spatial distribution of confirmed cases and deaths suggest that the effects of the viral 

infection spreading largely vary across the regions of the country but also within regions. 

In this work, we examined the role of ambient  PM2.5 in explaining the spatial variation in 

deaths that occurred throughout the most extreme time period of the epidemic. The results in 

the paper, that suggest a positive relationship between  PM2.5 concentration and COVID-19 

related excess mortality, are robust to different specifications  PM2.5 and estimation strategies, 

even after controlling for additional confounder factors. Coherently with previous findings in 

the literature, we highlight a strong positive correlation between viral respiratory infection 

incidence and ambient  PM2.5 concentrations and the increase in susceptibility to COVID-19 

mortality caused by long term exposure to  PM2.5, consistent with evidence for the original 

SARS-Coronavirus during the 2003 outbreak. In fact, fine PM is already known to affect car-

diovascular and respiratory morbidity and mortality.

However, we are aware that the phenomenon and the cause and effect relationships 

are very complex and that our work can only address part of the problem. The cross-sec-

tional nature of the dataset and the use of geographically aggregated information in the 
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epidemiological model does not allow concluding a causal effect exists. In our opinion, 

the robust evidence in the paper shows that the relationship between PM2.5 and COVID-

19 related excess deaths goes far beyond a simple geographical correlation, and further 

research is needed to explore the causal effect more in depth, when reliable time series data 

are available.

In fact, our paper does not deal with the spread of contagion and the dynamics linked to 

it, also because, as we underlined, such analysis would require time-series data, a different 

econometric methodology, and the identification of the exogenous Coronavirus insurgence 

in Northern Italy. To the latter purpose, the spread of the pandemic incorporates two dif-

ferent dynamics: (1) on the one hand, the dynamics of the spread of the contagion requires 

further information to be investigated such as its genesis, the type of virus, and setting of the 

first outbreak; (2) the effects of the lockdown changed (or partially blocked) the contagion 

in an asymmetric way. In addition to this, of course, there are other elements that should be 

investigated, such as additional variables about health data, mobility, and so forth.

Our results reinforce the need to adopt environmental policies that would not only reduce 

the impact of pollution on the health of citizens and workers but would contribute to smooth the 

negative effects of a (future) pandemics, avoiding collapses of health systems. Indeed, recent 

studies show that in addition to chronic lung inflammation, environmental air pollutant concen-

trations can exacerbate the effects of increasingly frequent one-shot systemic shocks, which in 

turn are also caused by environmental factors. In this regard, sustainable and decarbonization 

policies such as the Green New Deal, conceived as long-term policies, should be accelerated.
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Table 5  Estimated regression coefficient (PM variable only) for Model 4 using nine Kriging specifications: 

three different covariance functions (Exponential, Matérn and Spherical) time three alternative trend mod-

els (constant trend, linear trend and quadratic trend)

The table also includes the estimated regression parameters for Model (4) using Satellite and EEA data

Method Covariance Trend Estimate Std. Err. p value AIC

Kriging Exponential No Trend 0.089 0.014 < 0.001 20,296

Linear 0.091 0.014 < 0.001 20,295

Quadratic 0.09 0.014 < 0.001 20,295

Matern No Trend 0.082 0.014 < 0.001 20,300

Linear 0.085 0.013 < 0.001 20,296

Quadratic 0.085 0.013 < 0.001 20,295

Spherical No Trend 0.083 0.014 < 0.001 20,300

Linear 0.084 0.014 < 0.001 20,298

Quadratic 0.084 0.014 < 0.001 20,298

Satellite MODIS 2016 – 0.02 0.01 0.013 20,329

DIMAQ 2016 – 0.02 0.01 0.068 20,331

DIMAQ 2014–2016 – 0.02 0.013 0.148 20,333

EEA 2016–2017 – 0.026 0.01 0.003 20,326

Table 6  Estimation results for the placebo regression, dependent variable: total number of deaths during the 

period Jan1-April 30 2019, municipalities in Northern Italy

***p < 0.01, **p < 0.05, *p < 0.1

Model (1) Model (2) Model (3) Model (4)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept − 5.072*** (0.806) − 5.209*** (0.760) − 5.530*** (0.812) − 5.809*** (0.790)

PM2.5 0.044*** (0.003) 0.034*** (0.004) 0.033*** (0.005) 0.031*** (0.006)

Female/Male − 0.034 (0.202) 0.304 (0.193) 0.669*** (0.193) 0.642*** (0.191)

% Over 65 0.062*** (0.003) 0.061*** (0.003) 0.057*** (0.003) 0.057*** (0.003)

Temperature − 0.018*** (0.003) − 0.013*** (0.003) − 0.014** (0.004) − 0.010* (0.004)

Pop. Density − 0.010 (0.013) − 0.048*** (0.012) − 0.001 (0.012) − 0.008 (0.012)

% Ind. Land − 0.004 (0.003) − 0.004 (0.002) − 0.004 (0.002) − 0.004 (0.002)

% Samll Ent. − 0.003 (0.003) − 0.006 (0.003) − 0.002 (0.003) − 0.003 (0.003)

PC Income − 0.215** (0.073) − 0.201** (0.069) − 0.217** (0.076) − 0.177* (0.074)

% non-EU 0.006 (0.007) 0.009 (0.007) − 0.002 (0.007) 0.000 (0.007)

% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

PC Hospital Beds 0.723 (0.904) 0.231 (0.863) 0.364 (0.827) 0.223 (0.825)

Dist. Airport − 0.040** (0.012) − 0.014 (0.011) − 0.018 (0.016) − 0.007 (0.014)

Regional fixed effects

Lombardia 0.317*** (0.036) 0.289*** (0.055)

Emila-Romagna 0.118** (0.04) 0.072 (0.057)

Piemonte − 0.026 (0.035) − 0.023 (0.053)

Veneto − 0.283*** (0.041) − 0.274*** (0.057)

theta 3.29 3.92 4.87 4.89

Observations 4041 4041 4041 4041

AIC 28,517 28,119 27,971 27,869

log-Likelihood − 14,244 − 14,041 − 13,970 − 13,915

Appendix 2

See Table 6.
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Appendix 3

See Table 7.

Appendix 4

Data comparison from different official sources.

Table  8 reports the excess deaths data as reported by the Italian Bureau of Statistics 

(ISTAT) along with the official covid19 statistics as indicated by Protezione Civile Italiana 

(PC). ED-I stands for Excess deaths reported by ISTAT, calculated as the sum of deaths 

(from all causes) between January 1 and March 31 (column 1) or April 30. 2020 (column 

3) with respect to the average value in 2015–2019 (same months). The difference between 

column 1 and column 2 involves the sampling base. In fact, as long as ISTAT was upgrad-

ing the deaths data, it was both enlarging the sample of municipalities and correcting the 

past figures; see column 4 to 6: TD-I (a) stands for Total deaths reported by ISTAT as the 

sum of total deaths from January 1 to March 31, 2020 in the initial sample (column 4), 

Table 7  Estimation results for the placebo regression, dependent variable: total number of deaths during the 

period Jan1–April 30 2020, municipalities in Northern Italy

***p < 0.01, **p < 0.05, *p < 0.1

Model (1) Model (2) Model (3) Model (4)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept − 3.876*** (0.280) − 3.748*** (0.277) − 3.641*** (0.295) − 3.667*** (0.292)

PM2.5 − 0.001 (0.001) 0.000 (0.001) 0.000 (0.002) 0.002 (0.002)

Female/Male 0.313*** (0.077) 0.325*** (0.076) 0.357*** (0.079) 0.354*** (0.079)

% Over 65 0.056*** (0.001) 0.054*** (0.001) 0.053*** (0.001) 0.053*** (0.001)

Temperature 0.002 (0.001) 0.001 (0.001) 0.001 (0.001) 0.000 (0.001)

Pop. Density − 0.014*** (0.003) − 0.012*** (0.003) − 0.006 (0.003) − 0.006 (0.003)

% Ind. Land − 0.002* (0.001) − 0.002** (0.001) − 0.002** (0.001) − 0.002** (0.001)

% Samll Ent. 0.001 (0.001) 0.000 (0.001) 0.001 (0.001) 0.000 (0.001)

PC Income − 0.238*** (0.025) − 0.247*** (0.026) − 0.260*** (0.028) − 0.258*** (0.028)

% non-EU 0.000 (0.002) 0.002 (0.002) 0.002 (0.003) 0.002 (0.003)

% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

PC Hospital 

Beds

0.433 (0.365) 0.349 (0.362) 0.469 (0.354) 0.439 (0.355

Dist. Airport 0.016*** (0.004) 0.017*** (0.004) 0.017** (0.005) 0.017*** (0.005)

Regional fixed effects

Lombardia 0.013 (0.013) 0.002 (0.019)

Emila-Romagna 0.047*** (0.013) 0.028 (0.019)

Piemonte 0.076*** (0.013) 0.071*** (0.018)

Veneto − 0.035* (0.014) − 0.039* (0.02)

theta 3.29 3.92 4.87 4.89

Observations 4041 4041 4041 4041

AIC 27,432 27,327 27,269 27,238

log-Likelihood − 13,702 − 13,645 − 13,619 − 13,600
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TD-I (b) for the updated sample (column 5) and TD-I (c) for the latter release. It turned 

out that the number of ISTAT excess deaths increased by 97% with this revision (compare 

column 1 and column 2). It further increased by 52% on April 30 (compare column 2 and 

column 3) due to corrections, enlargement and new cases.

D-PC stands for number of deaths with or from Covid-19 reported by the national 

department Protezione Civile Italiana (Italian Civil Protection, which is a department of 

the Presidency of the Italian Council of Ministers) over January 1-March 31, 2020 (column 

7) and January 1-April 30, 2020 in column 8. The official D-PC data are available only at 

the regional level and they are officially released by the health departments of the Regional 

administrations. In the period March 31 and April 30, PC registered a 119% increase in 

Covid-19 deaths.

ISTAT and PC department therefore collect data independently. The key difference 

between ED-I and D-PC lies in how PC recognizes fatalities as Covid-19 related: only 

patients known to have tested positive to SARS-COV-2 got registered under this nomen-

clature. On the other hand, ED-I is just a mathematical construct that takes into account 

all deaths in a given municipality, regardless the cause. Due to difficulties in providing 

timely screenings and accurate testing during the peak of the pandemics, it is likely that 

official figures from PC might have been underestimated between early January and mid-

April. This is particularly true for the most affected areas. Consequently, the discrepancies 

between ED-I and D-PC can be either moderate or strong, as we observe for Lombardy 

(where ED-I is roughly 69% higher than D-PC) and Trentino Alto-Adige. Last, the unlikely 

event of ED-I lying below D-PC is due the fact that ISTAT initially collected figures for 

only a subsample of municipalities (i.e. those recording a percentage of excess deaths in 

2020 greater than 20%) leaving out quite a lot of statistical units (for example, Friuli-Vene-

zia Giulia, which had initially the biggest discrepancy (ratio 0,39) reported data for a very 

small number of municipalities to ISTAT). However, with some delay, ISTAT has been 

upgrading the sample, such that in June it covered about all municipalities.

In our paper, we use the updated data ED-I 1 J-30A (column 3), disaggregated at the 

municipality level. Column (9) shows that the ratio of total ED-I and D-PC is about 1.09, 

with mean ratio equal to 0.74 and standard deviation equal to 0.4. Underestimation of cases 

in the initial sampling base concerned all Northern Italian regions except Emilia Romagna, 

Lombardy and Veneto (the biggest regions in terms of population and Covid-19 cases).

The ratio of total ED-I (b) and D-PC (b) in column (10) is about 2.1, with a mean ratio 

equal to 1.89 and standard deviation 0.6. One month later, the total ratio decreases to 1.5—

column (11)—with mean ratio 1.24 and standard deviation 0.27. In the latter case, a slight 

underestimation of the registered cases concerns only FVG and Valle d’Aosta.

In any case, since Lombardy has the biggest discrepancy on April 30 (ratio 1,69) we 

also run our regressions excluding Lombardy (i.e. taking all Lombardy municipalities off) 

and the results are robust, reporting a significant higher-than-1 relative risk ratio for the 

exposure variable. The latter results are available upon request.
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