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ABSTRACT 

 

To comply with the increasingly stringent disinfection by-product (DBP) 

regulations in the United States, many water treatment plants have been switching from 

chlorination to chloramination in the last decade. Although chloramination reduces the 

formation of regulated DBPs such as trihalomethanes and haloacetic acids, it causes the 

formation of nitrosamines. Nitrosamines are a class of compounds that are probable 

human carcinogens, mutagens and teratogens at concentrations as low as 0.2 ng/L. In 

particular, N-nitrosodimethylamine (NDMA) is the most frequently detected nitrosamine 

in distribution systems in the United States. Although, nitrosamines are currently not 

regulated by the USEPA, they have been recently identified as a group of contaminants 

highlighted for possible regulatory action. 

Although several studies have investigated the formation mechanisms and 

important precursors for nitrosamines (especially NDMA), there is still much more to 

learn about their formation pathways. The main objective of this research was to 

systematically examine nitrosamines formation from amines to gain insight into the 

formation mechanisms of nitrosamines (especially NDMA) and examine the interactions 

of these precursors with different oxidants. Specifically, the research focused on: (i) the 

formation potential of nitrosamines from amino acids (AAs) under different disinfection 

conditions, (ii) the roles of tertiary structure on the formation of NDMA during 

chloramination, (iii) the importance of chloramine species in the NDMA formation, and 
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(iv) the interaction of various precursors with different oxidants (chlorine, chlorine 

dioxide and ozone) and their consequent effect on NDMA formation. 

The research approach consists of three phases. First phase consisted of 

identifying the important nitrosamine precursors and understanding the effect of 

precursor structure on the conversion yield. Primary and tertiary amines were selected as 

the target compounds and results are presented in Chapters V and VI. Then in the second 

phase the roles of chloramine species in NDMA formation was examined as presented in 

Chapter VII. Finally, controlling NDMA formation, practically as critical as 

understanding the fundamentals of those reactions, was investigated using different 

oxidants in Chapter VIII. 

AAs were selected initially as nitrosamine precursors since they are rich in 

nitrogen, reactive and shown to form of other classes of DBPs (trihalomethanes, 

halonitromethanes, etc.). Nine AAs (alanine, aspartic acid, cysteine, glutamic acid, 

glycine, lysine, histidine, proline and serine) were selected based on their structures (i.e., 

acidity vs. basic, polar vs. nonpolar, hydrophilic vs. hydrophobic), and tested under 

different oxidation conditions for their formation of nitrosamines. NDMA yields of all 

nine AAs during chloramination were below the minimum reporting levels. However, 

during ozonation alone and ozonation followed by chloramination, the formation of 

several nitrosamines (including N-nitrosopyrrolidine and N-nitroso-di-n-butylamine) at 

very low molar conversion yields (<0.1%) was found. Although AAs are known to form 

different nitrogenous DBPs (i.e., halonitromethanes, haloacetonitriles), they did not 

appear to be an important contributor to nitrosamines formation. 
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Due to very low conversion yields of nitrosamines, the research focus was 

directed towards tertiary amines which are more reactive nitrosamine precursors. Since, 

NDMA is the most frequently detected nitrosamine, potential NDMA precursors were 

selected for further investigation. The effect of tertiary amine structure and the 

influencing factors in NDMA formation were examined under chloramination conditions. 

Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were 

carefully examined based on their functional groups attached to the basic DMA structure. 

The results indicated a wide range (0.02% to 83.9%) of NDMA yields indicating the 

importance of the structure of tertiary amines, and both stability and electron distribution 

of the leaving group of tertiary amines on NDMA formation. DMA associated with 

branched alkyl groups or benzyl like structures having only one carbon between the ring 

and DMA structure consistently gave higher NDMA yields. Compounds with electron 

withdrawing groups (EWG) reacted preferentially with monochloramine, whereas 

compounds with electron donating groups (EDG) showed a tendency to react with 

dichloramine to form NDMA. When the selected amines were present in natural organic 

matter (NOM) solutions, NDMA formation increased for compounds with EWG while it 

decreased for compounds with EDG. This impact was attributed to the competitions 

between NOM and amines for chloramine species. 

After the identification of high yielding NDMA precursors, it was essential to 

understand the role of chloramine species in NDMA formation. The role of chloramine 

species in NDMA formation rate was evaluated for five amines carefully selected based 

on their chemical structures and exposed to varying levels of chloramine with different 
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ratios of mono/dichloramine. Amines (e.g., ranitidine) that prefer monochloramine 

reacted relatively fast to form NDMA and reached the maximum yield within 24 hours. 

On the other hand, the NDMA formation from amines (e.g., DMA) that prefer 

dichloramine was relatively slow. These reactions were limited to the decomposition of 

monochloramine to dichloramine. For dichloramine-sensitive amines, the presence of 

NOM decreased the NDMA formation rate due to competition with dichloramine; 

however, the NDMA formation rate increased in the presence of sulfate. In addition, pH 

played an important role in both chloramine and amine speciation. On the other hand, for 

ranitidine which is a monochloramine-sensitive amine, NOM, sulfate, and pH were less 

critical. In selected natural waters, dichloramine was the dominant species responsible for 

NDMA formation, while some NDMA formation by monochloramine was also observed.  

In the last section, pre-oxidation was investigated as a control technique to 

minimize NDMA formation. The interaction of NDMA precursors with different 

oxidants (chlorine, chlorine dioxide and ozone) prior to chloramination was investigated 

under typical conditions used in drinking water treatment plants. Fifteen model 

precursors with NDMA molar yields ranging from approximately 0.1% to 90% were 

examined. Pre-chlorination reduced NDMA formation from most precursors by 10% to 

50% except quaternary amine polymers. Pre-oxidation with chlorine dioxide and ozone 

achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while 

increasing NDMA formation for some other precursors (e.g., daminozid). The increases 

with chlorine dioxide exposure were attributed to the release of oxidation products with a 

DMA moiety, which may form more NDMA upon chloramination than the unoxidizied 
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parent compound. On the other hand, chlorine dioxide was effective, if a precursor’s 

NDMA yield were higher than DMA (i.e., without pre-oxidation). The ozone-triggered 

increases could be related to direct NDMA formation from DMA which was released by 

ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl 

radicals formed from the decomposition of ozone would be also involved in 

decomposition of formed NDMA, reducing the overall NDMA levels at longer contact 

times. pH conditions significantly influenced the effectiveness of deactivation of 

precursors depending on the type of precursors and oxidants. 

For practical applications, the key findings from this study are: (i) the structure of 

precursor’s have a drastic effect on the NDMA formation yield. DMA moieties 

associated with branched alkyls or benzyl like groups had very high NDMA formation 

yields (>25%). Especially, strategies for controlling the discharge of those types of 

contaminants would lead to decreases in NDMA precursor’s levels in source waters. (ii) 

The precursor’s structure also influences the chloramine species (mono- vs. di-) 

responsible for NDMA formation. The dominant chloramine species responsible for 

NDMA formation was found as dichloramine in selected natural waters. The utilities may 

opt to minimize the formation of dichloramine in their distribution systems (e.g., 

maintaining higher pH) to control NDMA formation. However, it should be noted that 

some NDMA formation may still be observed due to monochloramine. (iii) Pre-oxidation 

strategies can be an effective method for utilities to control NDMA formation as long as 

the formation of regulated DBPs (trihalomethanes, haloacetic acids, chlorite and bromate) 

are within the allowable limits. Chlorine has shown reduction in NDMA formation for 
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most of the precursors (except polymers). On the other hand, chlorine dioxide and ozone 

may lead to decreases or increases in NDMA formation depending on the characteristics 

of the precursors. Preliminary testing is suggested for utilities for selecting the 

appropriate oxidant type, to optimum dose and contact times for controlling NDMA 

formation. 
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CHAPTER ONE 

1. INTRODUCTION 

 

Chloramination is often used to replace chlorination in order to reduce the 

formation of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) 

and haloacetic acids (HAAs). Unfortunately, chloramination can lead to formation of 

nitrosamines (Table 1.1), a class of compounds which are probable human carcinogens, 

mutagens, and teratogens (USEPA, 1993). Although nitrosamines can pose important 

health risks even at ng/L concentrations (USEPA, 1993), they have not been regulated by 

the United States Environmental Protection Agency (USEPA). Nevertheless, five 

nitrosamines such as N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 

N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodi-n-

propylamine (NDPA), and N-nitrosodi-n-butylamine (NDBA) are covered by the 

Unregulated Contaminant Monitoring Rule 2 (UCMR 2) (USEPA, 2006), and NDMA, 

NDEA, NDPA, NPYR, and N-nitrosodiphenylamine (NDPhA) included in the 

Contaminant Candidate List 3 (CCL 3) (USEPA, 2009). The Department of Health 

Service in California and the Massachusetts Department of Environmental Protection has 

implemented an action level of 10 ng/L (MassDEP, 2004; OEHHA, 2006), and the 

Ontario Ministry of the Environment and Climate Change established a maximum 

allowable concentration of 9 ng/L for NDMA (MOE, 2003). Recently, USEPA has 

identified nitrosamines as one of three potential groups of contaminants highlighted for 
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possible regulatory action (Roberson, 2011). Therefore, new regulatory actions for 

nitrosamines are expected for drinking water utilities in the near future.  

 

Table 1.1. Structures of nitrosamines that can be analyzed by USEPA method 521.  

Nitrosamine Abbreviation Structure 

N-nitrosodimethylamine  NDMA 

 

N-nitrosomethylethylamine  NMEA 

 

N-nitrosodiethylamine NDEA 

 

N-nitroso-di-n-propylamine  NDPA 

 

N-nitroso-di-n-butylamine NDBA 

 

N-nitrosopiperidine NPIP 

 

N-nitrosopyrrolidine  NPYR 
 

N-nitrosomorpholine  NMOR 
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The analysis of nitrosamine data from samples collected under UCMR2 revealed 

that NDMA was detected in United States drinking waters at concentrations > 2 ng/L in 

10% of the samples surveyed, and 26% of systems detected NDMA in at least one sample 

(Russell et al., 2012). However, other nitrosamines (e.g., NDEA, NDBA, NPYR, and 

NMEA) were rarely detected at levels above their minimum reporting levels (MRLs) (2 

ng/L). Systems with NDMA concentrations below the MRL used oxidants other than 

chloramines as either a primary or a secondary disinfectant, and concentrations ranged 

from 4 to 15 ng/L (the maximum NDMA concentration measured was 630 ng/L) (Russell 

et al., 2012). Therefore, among nitrosamines, NDMA has drawn the most attention due to 

its frequent detection in distribution systems that use chloramine as a disinfectant 

(Russell et al., 2012). 

It can be anticipated that nitrogenous organic compounds play a key role in the 

formation of nitrosamines. Amines are a group of compounds present in natural, algae-

impacted and wastewater-impacted sources and rich in nitrogen content (Bornick and 

Schmidt, 2006; Dotson and Westerhoff, 2009). These hydrophilic precursors persist 

through conventional water treatment stages and are likely to be present prior to post-

oxidation. Amines are classified into four groups: primary, secondary, tertiary and 

quaternary (Figure 1.1). Primary amines have been found in fresh waters in a wide 

concentration range (5 to 2000 µg/L), in free amino acids (AAs), peptides, nucleic acids, 

purines, pyrimidines, and proteins (Rice and Gomez-Taylor, 1986). Secondary and 

tertiary amines are also found in water sources. Some of these are naturally occurring 

amines and found at very low concentrations (i.e., 0.1 µg/L of dimethylamine) (Bornick 
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and Schmidt, 2006). However, their concentrations can be much elevated depending on 

anthropogenic activities (i.e., 2.7 mg/L of dimethylamine [DMA]) (Bornick and Schmidt, 

2006). Some of the anthropogenic sources include agricultural run-off (fungicides, 

pesticides, and herbicides), industrial discharges (i.e., dyes, corrosion inhibitors, 

vulcanizing accelerators), wastewater effluents (i.e., extracellular organic matter from 

microbial activities, pharmaceuticals and personal care products [PPCPs]). Finally, 

quartenary amines are commonly used in water and wastewater treatment as polymers in 

high quantities (e.g., mg/L).  

 

 

Figure 1.1. Four classes of amines. The Rx in the molecular structure indicates a radical 

group (e.g., -CH3, -CH2CH3). 

 

To date, several nitrosamine formation mechanisms have been proposed 

especially for NDMA (Choi et al., 2002; Mitch and Sedlak, 2002; Schreiber and Mitch, 

2006; Bond et al., 2012; Le Roux et al., 2012b; Shah and Mitch, 2012). Generally, there 

are two main formation pathways. Firstly, the nitrosation reactions between amines and 

nitrosating agents (such as NO+, nitrous acid, and some reactive nitrogen oxide species) 

leads to formation of nitrosamines (Mirvish, 1975; Challis and Kyrtopoulus, 1979; 

Loeppky et al., 1983; Choi and Valentine, 2003; Lee and Yoon, 2007; Walse and Mitch, 



5 

2008; Lv et al., 2009; Sun et al., 2011). The classic nitrosation mechanism usually 

involves nitrite which participates in the formation of a nitrosating agent in acidic 

solution or in the presence of hypochlorite (HOCl), carbonyl compounds, or sunlight. The 

formation of nitrosamines during oxidation of amines mediated by ozone or potassium 

permanganate are other nitrosation pathways, in which the nitrosating agent is generated 

from the oxidation of amines (Andrzejewski and Nawrocki, 2007; Andrzejewski et al., 

2008; Yang et al., 2009; Padhye et al., 2011a). Secondly, an unsymmetrical 

dimethylhydrazine (UDMH) mechanism was proposed to explain NDMA formation 

during chloramination of DMA (Choi and Valentine, 2002; Mitch and Sedlak, 2002; 

Schreiber and Mitch, 2005, 2006). In this proposed mechanism, a nucleophilic 

substitution reaction between DMA and chloramine (NH2Cl or NHCl2) leads to formation 

of an UDMH or chlorinated UDMH intermediate (Cl-UDMH), and the intermediate is 

oxidized by dissolved oxygen to produce NDMA. However, further studies have shown 

that chloramination of UDMH yielded much less NDMA (<0.1%) than DMAs yield (1-

3%) (Mitch et al., 2009). In addition, the presence of dichloramine has been shown to 

enhance NDMA formation from DMA through the formation of a chlorinated UDMH 

(Mitch et al., 2009). Regardless of the intermediates, some tertiary amines (such as 

ranitidine and N,N-dimethylbenzylamine) have much higher NDMA yields (i.e., >60%) 

as compared to DMA or UDMH (i.e., <3%) (Mitch et al., 2009; Kemper et al., 2010; 

Shen and Andrews, 2011a,b; Le Roux et al., 2011, 2012b). To explain the high formation 

yield of NDMA from ranitidine during chloramination, Le Roux et al. (2012b) 

hypothesized that a methylfuran moiety of ranitidine undergoes decomposition to 
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generate a carbocation which they supported by identifying several intermediates using 

an HPLC-MS technique. However, so far the formation mechanism of NDMA from 

amines during chloramination has not been fully explained.  

Although, several studies investigated the formation mechanisms and important 

precursors for nitrosamines (especially NDMA), there is much more to learn about their 

formation pathways. Questions on what kind of amines lead to nitrosamine formation, 

what kind of relationship exists between the structure and reactivity of tertiary amines, 

why some tertiary amines have rather high NDMA yields, and what is the interaction of 

amines with different oxidants (including chloramine) have not been elucidated yet. The 

main objective of this study was to gain insight to the potential precursors’ formation 

mechanisms of nitrosamines, especially NDMA. Specifically, the research focused on: (i) 

the formation potential of nitrosamines from AAs under different disinfection conditions, 

(ii) the roles of tertiary structure on the formation of NDMA during chloramination, (iii) 

the importance of chloramine species in the conversion reactions, and (iv) the interaction 

of these precursors with different oxidants (chlorine, chlorine dioxide and ozone) and 

their consequent effect on NDMA formation. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

 

Occurrence of Nitrosamines 

NDMA, a species of nitrosamines, is a semi-volatile organic chemical. It is highly 

toxic and is an industrial by-product and a probable human carcinogen. NDMA is used as 

an industrial solvent, an anti-oxidant, a rubber accelerator and an initiator or plasticizer 

(ALS, 2012). In addition, the compound has been used in the production of rocket fuel, as 

biocide for nematodes and an intermediate for 1,1-dimethylhydrazine to inhibit 

nitrification of soils (ALS, 2012). NDMA is also present in a variety of foods: cured 

meats, fried bacon, marine products, flour and grain products, dairy and cheese products, 

and alcoholic beverages including beer and whiskey (Tricker and Preussmann, 1991).  

The occurrence of NDMA in drinking water was initially identified in the 1980s 

and 1990s in Ontario, Canada (Munoz and Sonntag, 2000). Possible sources of NDMA 

were thought to be anthropogenic contaminants mentioned above and microbiological 

transformation of those precursors or partial oxidation of hydrazines (Kim and Choi, 

2002). For instance, NDMA has been detected at very high concentrations (3,000 ng/L) 

in a ground water near rocket engine testing facilities in Sacramento, California, and also 

downgradient of drinking water wells, especially in locations where wastewater effluent 

was used for aquifer recharge (Mitch et al., 2003a,b, 2009). 
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A survey by the California Department of Health Services demonstrated that 

NDMA occurrence was not limited to regions proximal to facilities that used rocket 

engine sites or UDMH-based fuels (CDPH, 2013), but also found that NDMA formed as 

a by-product of chlorine or chloramine disinfection of water and wastewater. Especially 

in locations where chlorinated wastewater effluent was reused, NDMA was detected at 

elevated concentrations (i.e., >100 ng/L) (Mitch et al., 2003a,b). 

In 1996 the Safe Drinking Water Act (SDWA) amendment required that USEPA 

provide a new list of unregulated contaminants once every five years to be monitored in 

public water systems. Selected contaminants are known or anticipated to occur in public 

water systems, which may require regulation under the SDWA. The list includes, among 

others, pesticides, disinfection by-products, chemicals used in commerce, waterborne 

pathogens, pharmaceuticals, and biological toxins. This monitoring provides a basis for 

future regulatory actions to protect public health. Since 1999, three UCMR programs, in 

coordination with the CCL, have been issued (USEPA, 2006). Nitrosamines have been 

listed in CCL3 and monitored in UCMR2. 

The analysis of nitrosamine data from samples collected under the UCMR2 

revealed that NDMA was detected in United States drinking waters at concentrations > 2 

ng/L in 10% of the samples surveyed, and 26% of systems detected NDMA in at least 

one sample (Russell et al., 2012). However, other nitrosamines (e.g., NDEA, NDBA, 

NPYR, and NMEA) were rarely detected at levels above their MRLs. NDMA was 

primarily detected in systems using chloramines, and concentrations were higher in water 
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systems having long contact times with chloramines (ranging from 4 to 15 ng/L (the 

maximum NDMA measured was 630 ng/L)) (Russell et al., 2012). 

The same study also showed that systems using chloramine as disinfectant had 

35% of the samples above the MRL of NDMA, compared to 3% that used chlorine. The 

highest NDMA concentrations (i.e., > 50 ng/L) were observed in water systems located in 

California, Florida, Minnesota, Oklahoma, and Texas; and these states reported the 

highest percent of chloramines use (Russell et al., 2012). 

In another recent survey investigating the occurrence of nitrosamines in 16 

drinking water treatment plant samples, the maximum concentration of nitrosamines 

(including NDMA) was detected in ozonated water (28.6 ng/L). In particular, NDMA 

(range of: 10.1-11.5 ng/L), NMOR (range of: <MRL-9.2 ng/L), NPYR (range of: <MRL-

5.4 ng/L), NDPA (range of: <MRL-2.6 ng/L) and NPIP (range of: <MRL-1.3 ng/L) were 

detected in ozonated water followed by post-chlorination (Asami et al., 2009; Kosaka et 

al., 2009). Additionally, relatively high concentrations of NDMA (i.e., >10 ng/L) were 

reported at some ozonation plants in the western part of Japan for which the source water 

is the Yodo River (Oya et al., 2008; Kosaka et al., 2009).  
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Formation of Nitrosamines 

Several pathways have been proposed for the formation of nitrosamines during 

drinking water treatment. In drinking water, formation of nitrosamines during 

chloramination is likely to be the most important pathway. Early mechanistic studies 

conducted by Mitch et al. (2003a) suggested a nucleophilic substitution reaction between 

unprotonated secondary amines (i.e., DMA) and monochloramine initiated NDMA 

formation (Figure 2.1). The UDMH intermediate that was formed that can be later 

oxidized to NDMA. 

 

 

Figure 2.1. Initially proposed NDMA formation mechanism by Mitch et al. (2003a). 

 

In later studies, it has been shown that chloramination of UDMH yielded  much 

less NDMA (i.e., 0.1% molar conversion) than DMA (i.e., 1.5% molar conversion). 

Furthermore, it has been found that the presence of dichloramine was shown to enhance 

NDMA formation from DMA. Therefore, Schreiber and Mitch (2006) revised the 

proposed mechanism by Mitch and colleagues (2003a) and suggested the formation of a 

Cl-UDMH intermediate from a nucleophilic substitution reaction between DMA and 

dichloramine (Figure 2.2). During this reaction, the presence of dissolved oxygen played 

a key role. In this pathway, any quaternary or tertiary amine first reacts with chlorine or 
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chloramine to form DMA, and then DMA further reacts with dichloramine resulting in 

NDMA formation (Mitch et al., 2009). There have been several other studies that showed 

dichloramine could enhance NDMA formation. For instance, increased dichloramine 

concentrations increased NDMA formation from selected PPCPs (i.e., ranitidine 

[RNTD]) (Shen and Andrews, 2011a). However, recently a comprehensive study by Le 

Roux et al. (2012b) showed that monochloramine is responsible for NDMA formation 

from RNTD. 

 

 

Figure 2.2. Revised NDMA formation mechanism by Mitch et al. (2006). The Rx in the 

molecular structure of a tertiary amine indicates the radical group (e.g., -CH3, -CH2CH3). 

 

Some tertiary amines, where one of the alkyl substituents contained an aromatic 

group in the β-position to the nitrogen (e.g., a benzyl functional group), such as 

ranitidine, exhibited far higher yields of NDMA formation than DMA during 

chloramination (Le Roux et al., 2011; Shen and Andrews, 2011a,b). The NDMA 

formation yield of RNTD was reported as 60-90% (Le Roux et al., 2011; Shen and 

Andrews, 2011a,b). These high yields suggest that tertiary amines can form nitrosamines 
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without proceeding through a secondary amine intermediate, although the specific 

pathway is unclear. 

To explain the high formation yield of NDMA from ranitidine during 

chloramination, Le Roux et al. (2012b) hypothesized that a methylfuran moiety of 

ranitidine undergoes decomposition to generate a carbocation which has been supported 

by identifying several intermediates using HPLC-MS technique (Figure 2.3). This 

research provided new insight into the role of monochloramine species in the formation 

of NDMA from ranitidne, and highlighted that the structure of the tertiary amines is 

closely related with the reactivity of NDMA precursors and the preferred chloramine 

species. 
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Figure 2.3. NDMA formation pathway from ranitidine during chloramination (Le Roux 

et al., 2012b). 
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Chlorination of nitrite-containing waters is another pathway of NDMA formation 

(Choi and Valentine, 2003). Choi and Valentine (2003) noted that NDMA forms during 

chlorination of nitrite-containing waters. Formation has been attributed to a dinitrogen 

tetraoxide (N2O4) intermediate, which then forms •NO which can nitrosate amines 

(Figure 2.4). The reaction yields are much lower (≈two orders of magnitude) than for the 

chloramination pathway. Since, nitrite concentrations in surface water sources are very 

low, this pathway has been especially associated with NDMA formation during 

chlorination of wastewater effluents (Shah and Mitch, 2012; Walse and Mitch, 2008). 

Nitrite is more likely to be present in a wastewater effluent if there is partial nitrification 

occurring in the treatment plant. 

 

 

Figure 2.4. NDMA formation mechanism through nitrosation during chlorination in the 

presence of nitrite (pH≈3.4) (Choi and Valentine, 2003). 

 

Ozonation of DMA forms NDMA but yields generally are < 0.02% at neutral pH 

(Andrzejewski et al., 2008). Another study by Yang et al. (2009) showed that NDMA can 

be formed from DMA at pH 3.4, through the nitrosation pathway (Figure 2.5-A). They 

also found that NDMA can be formed during ozonation at pHs greater than 7 through an 
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unknown pathway (Figure 2.5-B). Further studies investigating NDMA formation during 

ozonation showed that UDMH, daminozide (DMNZD) and semicarbazide, which have 

UDMH-like functional groups, formed NDMA at yields > 50% (Schmidt et al., 2008; 

von Gunten et al., 2010) (Figure 2.6). Ozonation of N,N-dimethylsulfamide (DMS), a 

transformation product of the fungicide tolylfluanide, formed NDMA at 52% yield (von 

Gunten et al., 2010). Lastly, ozonation of PolyDADMAC, a polymer used in water 

treatment plants can also form NDMA (Padhye et al., 2011a) (Figure 2.7). Ozonation of 

PolyDADMAC could release the DMA moiety and form hydroxylamines at the same 

time. Simultaneous reaction of these two products could form UDMH. Once again the 

formed UDMHs would be converted to NDMA in the presence of ozone. 

 

 

Figure 2.5. NDMA formation (A) nitrosation during ozonation (pH≈3.4), and (B) 

unknown pathway (pH>7).  
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Figure 2.6. NDMA formation from (A) UDMH, and (B) UDMH-like functional groups 

during ozonation. 

 

 

Figure 2.7. NDMA formation from PolyDADMAC during ozonation (Padhye et al., 

2011a). 
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Nitrosamines can also be formed from catalytic transformation of secondary 

amines on activated carbon. Reported yields are lower than 0.3% (Padhye et al., 2010). 

This NDMA formation pathway involves a series of complex reactions. Reaction of 

oxygen with activated carbon could form reactive oxygen species, which could lead to 

formation of reactive nitrogen species. These reactive species can form hydroxylamines. 

Similar to the ozonation pathway, hydroxylamines can react with secondary amines and 

form NDMA. (Vorob’ev-Desyatovskii et al., 2006; Padhye et al., 2011b). Taking into 

consideration the yield and the occurrence of secondary amines in drinking water 

sources, this pathway is unlikely to be important (Krasner et al., 2013). 

Lastly, sunlight photolysis of nitrite at <400 nm could form reactive nitrogen 

species (Lee and Yoon, 2007) and those reactive species can react with secondary amines 

present in surface waters. NDMA formation yields were around 0.02% from selected 

secondary amines. Similar findings have also been reported by Soltermann et al. (2013). 

Ultraviolet (UV) treatment at 254 nm of chlorinated secondary amines in the presence of 

monochloramine increased nitrosamine concentrations in swimming pools (Soltermann et 

al., 2013). However, this NDMA formation mechanism is unlikely to be important for 

drinking waters due to the low prevalence of secondary amines. 

 

Factors Affecting Nitrosamine Formation 

Several factors affect the formation of NDMA during drinking water treatment. 

Among those, chloramine speciation is suspected to be the most important factor. 

Chlorine reacts rapidly with ammonia to form a mixture of inorganic chloramines that 
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may contain monochloramine, dichloramine, or trichloramine. Some additional 

information about the chloramine chemistry can be found in the Appendix A. 

The speciation of these compounds depend highly upon pH, chlorine to ammonia 

ratio, temperature, and contact time. At pH higher than 8, and 5:1 Cl2:N ratio 

monochloramine is the dominant species. On the other hand, dichloramine is favored as 

the pH decreases (4 to 5) and/or the Cl2:N ratio increases (5:1 to 7.9:1) (Diehl et al., 

2000). Further a decrease in pH (pH<2), or an increase in the chlorine to nitrogen ratio 

leads to formation of trichloramine. However, monochloramine generally is the dominant 

form in drinking water disinfection with some trace concentrations of dichloramine. 

As mentioned before, initial reports indicated a nucleophilic substitution reaction 

between monochloramine and unprotonated secondary amines formed NDMA (Mitch 

and Sedlak, 2002). Further research showed that dichloramine enhanced NDMA 

formation from DMA, some PPCPs and in few wastewater-impacted waters (Mitch et al., 

2009; Farre et al., 2010). Meanwhile studies with RNTD (Le Roux et al., 2012b) showed 

that monochloramine is responsible for NDMA formation from ranitidine. Overall, these 

results suggest that NDMA formation may not always be limited to only one chloramine 

species. 

The effect of pH on NDMA formation in drinking water has been found to 

increase with increasing pH levels (Mitch and Sedlak, 2002; Sacher et al., 2008; 

Schreiber and Mitch, 2005, 2006; Valentine et al., 2005). For example, Schreiber and 

Mitch (2006) found that DMAs yield was higher at pH 8–9, than at pH 6.9 that was 
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higher than 5.1 (Schreiber and Mitch, 2005). A similar trend was observed for natural 

waters (Krasner et al., 2012b). 

Experiments conducted in natural waters (Sacher et al., 2008) and wastewater 

effluents (Hatt et al., 2013) showed an increase in NDMA formation with increasing 

chloramine dose. Moreover, NDMA formation reactions during chloramination are much 

slower than chlorines. A few days (i.e., 3 days) of contact time is needed to plateau 

(Sacher et al., 2008). Also, UCMR2 data showed NDMA concentrations were usually 

higher in longer detention distribution systems (Russell et al., 2012). 

Lastly, the presence of bromide was shown to enhance NDMA formation. 

However, to have a distinct effect on overall NDMA formation, bromide levels should be 

higher than 500 µg/L (Shen and Andrews, 2011a; Shah et al., 2012; Le Roux et al., 

2012a). 

 

Precursors of Nitrosamines 

Although an organic nitrogen precursor is required for NDMA formation, there is 

no strong correlation between dissolved organic nitrogen concentrations and NDMA 

formation potentials in natural waters (Pehlivanoglu-Mantas and Sedlak, 2008; Dotson et 

al., 2009; Aydin et al., 2012). DMA is the most studied model precursor of NDMA 

(Andrzejewski et al., 2008; Choi and Valentine, 2003; Lv et al., 2009; Mitch and Sedlak, 

2002; Mitch et al., 2003a,b) and is ubiquitous in natural waters. However, some studies 

have shown that DMA concentrations present in surface waters (Gerecke and Sedlak, 

2003; Lee et al., 2007a) or secondary municipal wastewaters (Mitch and Sedlak, 2004) 
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are inadequate to explain the amount of NDMA formation. Other than DMA, some other 

NDMA precursors have been identified such as tertiary and quaternary amines with 

DMA functional groups (Lee et al., 2007; Park et al., 2007; Kemper et al., 2010; Shen 

and Andrews, 2011a,b), natural organic matter (NOM) and fractions of NOM (Gerecke 

and Sedlak, 2003; Mitch and Sedlak, 2004; Chen and Valentine, 2007; Dotson et al., 

2007; Krasner et al., 2008a), polyelectrolytes and ion-exchange resins (Gough et al., 

1977; Kimoto et al., 1980; Najm and Trussell, 2001; Kohut and Andrews, 2003; Wilczak 

et al., 2003; Mitch and Sedlak, 2004; Nawrocki and Andrzejewski, 2011), fungicides, 

pesticides, and herbicides (Graham et al., 1995; Chen and Young, 2008; Schmidt and 

Brauch, 2008), pharmaceuticals, cosmetics (Sacher et al., 2008; Shen and Andrews, 

2011a,b), and wastewater effluent/impacted waters (Krasner et al., 2004; Sedlak et al., 

2005; Krasner et al., 2009; Krauss et al., 2009; Shah et al., 2012; Gan et al., 2013a,b). 

Among these, wastewater-impacted waters are likely to have the highest NDMA 

formation and thus thought to be the most significant source of NDMA precursors 

(Schreiber and Mitch, 2006; Guo and Krasner, 2009; Krasner, 2009; Shah and Mitch, 

2012). As expected, wastewaters contain a range of precursors. Specific precursors in 

wastewater-impacted water supplies have not been characterized but are likely to include 

tertiary amine-based pharmaceuticals, quaternary amine-based constituents of shampoos, 

pharmaceuticals, and potentially pesticides, fungicides, herbicides, or insecticides. 

Other than the wastewater influence, some chemicals and resins used in drinking 

water treatment plants (DWTPs) are shown to increase NDMA formation. Cationic 

polymers (e.g., polyAMINE and polyDADMAC) used as coagulant or dewatering aids in 
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drinking water treatment can degrade to DMAs and consequently increase NDMA 

formation (Kohut and Andrews, 2003; Najm and Trussell, 2001; Wilczak et al., 2003). 

PolyAMINEs have been shown to produce more NDMA than polyDADMAC around pH 

8.0 during chloramination (Padhye et al., 2011a). Additionally, ozonation of 

polyDADMAC yielded NDMA without sequential chloramination (Padhye et al., 2011a). 

NDMA yield during ozonation from polyDADMAC was several times more than 

polyACRYL and polyAMINE (Padhye et al., 2011a). 

Similar to polymers, anion exchange units also have quaternary amine or tertiary 

amine based resins in their structures. Anion exchange resins (trimethylamine [TMA], 

dimethylethanolamine based) released NDMA likely due to shedding of manufacturing 

impurities (Kemper et al., 2009). Furthermore, these resins can also shed the precursors 

that can increase NDMA formation upon chloramination (Kemper et al., 2009; Nawrocki 

and Andrzejewski, 2011). Higher levels of nitrosamine precursors were observed after 

regeneration cycles (Singer and Flower, 2012). Similar findings have been reported for 

magnetic ion exchange resin (MIEX®) by Gan et al. (2013a,b). Use of MIEX® to treat 

wastewater effluents increased NDMA formation by at least 50% during chloramination. 

This increase was reported to be much less (i.e., 5%) if the wastewater impact was 

minimal (wastewater blended with a pristine water source, <10% by volume). Exposure 

of these resins to oxidants (i.e., chlorine, chloramine) produced NDMA in the effluents 

(Kimoto et al., 1980; Najm and Trussell, 2001; Kemper et al., 2009).  

DMA moieties of PPCPs has been shown to form NDMA during chloramination 

(Shen and Andrews, 2011a,b). In study conducted by Shen and Andrews (2011a), 20 
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PPCPs were investigated and NDMA molar yields higher than 1% were observed for 

eight pharmaceuticals (i.e., RNTD, sumatripan, tetracycline, doxylamine, 

chlorphenamine, nizatidine, diltiazem, and carbinoxamine). Although, these precursors 

have the potential to form NDMA, their trace levels in the environment suggest (i.e., 

ng/L) that they may not account for the majority of the NDMA formation during the 

disinfection process. Among the tested pharmaceuticals, RNTD, which draws the most 

attention, showed the highest molar conversion (60-90%) to NDMA caused by the benzyl 

functional group (Le Roux et al., 2011; Shen and Andrews, 2011a,b). These higher yields 

suggest that these tertiary amines can form nitrosamines without proceeding through a 

secondary amine intermediate, although the specific pathway is unclear. 

Some herbicides, pesticides, insecticides and fungicides used in agricultural 

applications are also shown to be NDMA precursors. These amides yielded much lower 

molar NDMA conversions - probably caused by the carbonyl groups - than secondary, 

tertiary and quaternary amines. However, ozonation of amides have been shown to form 

NDMA without sequential chloramination. NDMA formation from amides are rapid (<1 

h) and the molar yields could be more than 50% (Kosaka et al., 2009; Schmidt and 

Brauch, 2008; Shen and Andrews, 2011a; von Gunten et al., 2010). Occurrence of trace 

amounts of DMS, a degradation product of the fungicide tolylfluanide, in several German 

drinking water treatment plants (Schmidt and Brauch, 2008) and similarly, anti-yellowing 

agents near Tokyo, Japan, resulted in NDMA formations exceeding 10 ng/L after 

ozonation (Kosaka et al., 2009). 
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Certain distribution system piping materials such as rubber seals and gaskets 

leached NDMA and its precursors in oxidant-free water and formed more NDMA after 

chloramination (Morran et al., 2011; Teefy et al., 2011). Increasing contact times (i.e., 

stagnation period) with these materials resulted in further increases in NDMA levels. 

NDMA levels resulting from leaching pipe materials were within the range of 10-25 ng/L 

(Morran et al., 2011). 

Algal blooms can generate metabolites and increase DBP formation during those 

periods. Algae have been identified as a source of carbonaceous DBP (C-DBP) precursor 

(Hoehn et al., 1980) and nitrogenous-DBP (N-DBP) precursor (Bond et al., 2011, 2012). 

NDMA formation has been reported from algae-derived and -impacted sources upon 

chlorination or chloramination (Mitch et al., 2009; Zamyadi et al., 2010; Fang et al., 

2010; Li et al., 2012). Mitch et al. (2009) reported NDMA formation within the range of 

12-261 ng/L from algae-impacted source waters (algae counts ranged from 300 to 

22700/mL). Further studies with laboratory cultured algae (i.e., M. aeruginosa) solutions 

had NDMA formation of 9 to 20 ng/mg C (Zamyadi et al., 2010; Fang et al., 2010; Li et 

al., 2012). These findings indicate that algal activity can contribute to NDMA formation; 

however, these values (i.e., 12-261 ng/L NDMA formation from algae-impacted sources) 

are much lower than the yields observed for other NDMA precursors (i.e., wastewater).  

Lastly, NOM and its fractions are also shown to form NDMA during 

chloramination (Chen and Valentine, 2007; Dotson et al., 2007; Gerecke and Sedlak, 

2003; Mitch and Sedlak, 2004). However, NDMA yields from NOM are much lower than 

wastewater-impacted waters, polymers, ion-exchange resins and PPCPs. 
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Removal of Nitrosamines and Their Precursors 

Nitrosamine can be removed by activated carbon adsorption or by UV photolysis. 

Since nitrosamine formation kinetics are slow, nitrosamines continue to form within the 

distribution system unless the precursors are removed. Therefore, this section focuses on 

precursor removal. 

Coagulation with alum or ferric chloride has limited removal efficiency for 

nitrosamine precursors (i.e., <10%) (Krasner et al., 2008a; Sacher et al., 2008). Similar 

results have been reported during the lime softening process (Mitch et al., 2009). It has 

been shown that the majority of NDMA precursors are associated with low molecular 

weight hydrophilic compounds, and these types of organics is poorly removed by 

coagulation (Lee and Westerhoff, 2006; Xu et al., 2011). One study involving three 

treatment plants found that polymers (i.e., PolyDADMAC) used during coagulation 

process led to an increase in NDMA formation by 43-82% (Krasner et al., 2012b) 

probably caused by the residual polymer in the effluent (Novak and Montgomery, 1975; 

Novak and Langford, 1977). Therefore, reduction in polymer dosage can reduce, but not 

eliminate NDMA formation. Unfortunately, almost all cationic polymers currently in use 

will contribute to NDMA formation because they are amine-based, but using alternate 

polymers can help with its management. NDMA yields from selected polymers are in the 

decreasing order of: PolyAMINE (DMA-based) > PolyAMINE (TMA-based) ≥ 

PolyDADMAC > PolyACRYL (Park et al., 2007). 
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Powdered activated carbons (PAC) and to lesser extent granular activated carbons 

(GAC) are commonly used in DWTPs in the United States to minimize taste- and odor-

causing compounds. They have been shown to be effective for removal of NOM and 

consequently controlling the formation of C-DBPs. Initial experiments investigating 

removal of NDMA precursors demonstrated NDMA formation potential (FP) reduction 

of more than 73% in wastewater with 50 mg/L of PAC after seven days contact time 

(Krasner et al., 2008b). Experiments in surface waters and wastewater-impacted sources 

with the same contact time exposed to 5 mg/L of PAC showed 50% NDMA FP 

reduction, and 90% or greater with 20 mg/L (Sacher et al., 2008). Recently, Hanigan et 

al. (2012) reported 37% NDMA FP in a secondary wastewater effluent at 3 mg/L of PAC 

dose and 4 h contact time. A dose of 75 mg/L of PAC had approximately 90% removal in 

secondary wastewater-effluents (Hanigan et al., 2012). Similarly, studies with GACs 

demonstrated 60-80% reduction in NDMA FP in surface waters (Hanigan et al., 2012). 

Research has demonstrated that the use of pre-oxidation such as chlorine, ozone, 

chlorine dioxide, permanganate, ferrate, hydrogen peroxide, UV and even sunlight can 

affect NDMA formation subsequent to chloramination (Charrois and Hrudey, 2007; Chen 

and Valentine, 2008; Lee et al., 2007a, 2008; Shah et al., 2012). Recent research by Shah 

et al. (2012) evaluated the reduction in NDMA formation with pre-oxidants (chlorine, 

ozone, chlorine dioxide, and low or medium pressure UV) applied at exposures relevant 

to 99.9% removal of Giardia with post-chloramination conducted under conditions 

relevant to drinking water distribution. Ozone was deemed to be the most effective pre-

oxidants by achieving 50% reduction in NDMA with exposures ≤0.4 mg×min/L. 
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Chlorine was able to achieve similar results at exposures around 70 mg×min/L. In a few 

sources, it promoted NDMA formation at low exposures, but formation declined again at 

higher exposures which was attributed to the presence of nitrite-causing nitrosation. 

Chlorine dioxide and UV treatment were relatively ineffective over exposures relevant to 

disinfection. In some cases, chlorine dioxide promoted NDMA across the range of 

exposures. 

There are only a few studies focusing on pre-oxidation of model compounds. 

Some amides (Schmidt and Brauch, 2008; von Gunten et al., 2010), anti-yellowing agents 

(Kosaka et al., 2009), and polymers (Padhye et al., 2011a) have been recognized to form 

NDMA during ozonation without sequential chloramination. Occurrence of these 

precursors in natural waters during ozonation actually led to the formation of NDMA 

(Asami et al., 2009; von Gunten et al., 2010). In another study, Lee et al. (2007) has 

shown that the use of ozone, and to a lesser extent, chlorine dioxide, has reduced NDMA 

formation from seven tertiary amines; however, this was only achieved with substantially 

high doses of oxidants compared to those used for drinking water treatment. Lastly, Shen 

and Andrews (2013b) have used chlorine as a pre-oxidant to control NDMA formation 

originating from selected pharmaceuticals. This pre-chlorination reduced NDMA 

formation from RNTD, nizatidine, and tetracycline by 50%, with a relatively low 

concentration×time (CT) (i.e., 10 mg×min/L). In the same study sumatripan conversely 

almost doubled its NDMA formation, while other pharmaceuticals had no noticeable 

change during pre-chlorination. 
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Biofiltration can partially remove NDMA precursors (Farre et al., 2011). Farre´ et 

al. (2011) reported about 80% reduction in NDMA FP (250 to 50 ng/L) using pilot-scale 

biologically active carbon columns at a wastewater reuse facility. However, some of this 

removal may be due to adsorption of NDMA precursors to carbons. Furthermore, it has 

been also shown to increase NDMA formation by transforming some precursors into 

more potent forms (Krasner et al., 2012a). The presence of ammonia in the influent led to 

higher concentrations of nitrite in the effluent. Thus, increasing nitrite concentrations at 

the biofilters effluent can increase NDMA FP triggered by the nitrosation pathway 

(Krasner et al., 2012a).  

Riverbank filtration has been shown in Europe to remove nitrosamine precursors 

via biodegradation and/or adsorption (Sacher et al., 2008). Recently, riverbank filtration 

was shown to be effective at a site in the U.S. with approximately 64% reduction in 

NDMA FP (Krasner et al., 2012c). 

Since NDMA precursors are associated with low molecular weight compounds, 

ultrafiltration displayed negligible reduction in NDMA FP (Pehlivanoglu-Mantas and 

Sedlak, 2008). For selected nitrosamine precursors such as DMA, methylethylamine, 

diethylamine, and dipropylamine, rejections of more than 98.5% have been reported 

(Miyashita et al., 2009). Furthermore, reverse osmosis demonstrated complete removal at 

selected wastewater treatment plants (WWTPs) in California (Mitch and Sedlak, 2004).  
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CHAPTER THREE 

3. OBJECTIVES, APPROACHES, AND EXPERIMENTAL DESIGN 

 

Objectives 

Despite the significant efforts devoted to minimizing nitrosamine formation in 

drinking water treatment, the formation of nitrosamines is poorly understood. In this 

research, the main objective was to systematically examine nitrosamine formation from 

amines to gain insight about the formation mechanisms of nitrosamines (especially 

NDMA) and examine the interactions of these precursors with different oxidants. This is 

especially important considering the potential health effects and future regulations of 

nitrosamines in drinking water. Specifically, this research was carried out in the 

following areas:  

1. To examine the formation potential of nitrosamines from selected AAs under 

different oxidation conditions. 

2. To investigate the effect of tertiary amine structure and the influencing factors 

in ultimate NDMA formation. 

3. To determine the factors that influence NDMA formation as a function of 

time. 

4. To evaluate the reactivity of different oxidation techniques with NDMA 

precursors and the effects on NDMA conversion. 
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Approaches and Experimental Designs 

 Objective 1: Examine the formation potential of nitrosamines from selected amino 

acids under different oxidation conditions. 

Approach: Nine AAs (alanine, aspartic acid, cysteine, glutamic acid, glycine, 

lysine, histidine, proline and serine) were selected based on charge, polarity and 

hydrophobicity. Ten mg/L of individual AA solutions were exposed to different 

oxidation conditions (i.e., chloramination, and ozonation-chloramination) and 

their FPs were examined for nitrosamines that can be analyzed by method USEPA 

521 (Figure 3.1). 

 

 

Figure 3.1. Experiments conducted for Objective 1. 

 

 Objective 2: Investigate (i) the effect of tertiary amine structure, (ii) the effect of 

background NOM, and (iii) the roles of mono- vs. dichloramine species on NDMA 

formation. 
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Approach: To explore the effect of tertiary amine structure, DMA and 20 

different tertiary aliphatic and aromatic amines were carefully selected based on 

the functional groups attached to the basic DMA structure (Figure 3.2). Selected 

precursors were chloraminated individually and tested for their NDMA FP. The 

NOM effect was initially investigated by spiking the selected amines in solution 

prepared with two different NOM fractions (transphilic [TPH] and hydrophobic 

[HPO]) alone to eliminate the confounding effects that may come from the other 

constituents in the background matrices of natural waters. Finally, the selectivity 

and sensitivity of amine precursors to monochloramine and dichloramine species 

were examined for eight selected compounds by suppressing dichloramine in the 

presence of excess ammonia. 

 

 

Figure 3.2. Experiments conducted for Objective 2. 
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 Objective 3: Examine (i) the role of chloramine species in the formation of NDMA 

from DMA and selected tertiary amines; (ii) the factors that influence chloramine 

decomposition (i.e., pH, sulfate and NOM) during NDMA formation from these 

model precursors; and (iii) the role of chloramine species in selected natural 

waters. 

Approach: To explore objective i, DMA and four tertiary amines were carefully 

selected based on their structures. NDMA formation rates were monitored from 

these five model compounds in three parallel experiments with varying amounts 

of dichloramine. Based on the results, two amines were selected due to their 

extreme sensitivity to specific chloramine species and the effect of pH, sulfate and 

NOM were further examined to reach the second objective. A simplified diagram 

of the experimental design is given in Figure 3.3. Since chloramine speciation 

could also be an important factor in natural samples, the objective iii was to 

evaluate the impact of chloramine species in a selected drinking water treatment 

plant and a watershed.  

 



32 

 

Figure 3.3. Experiments conducted for Objective 3. 

 

 Objective 4: Examine (i) the commonly used pre-oxidants (i.e., chlorine, chlorine 

dioxide and ozone) in water treatment; (ii) CT values, and (iii) pre-oxidation pH 

effects on NDMA formation from selected precursors. 

Approach: A total of 15 precursors with a DMA moiety in their structures were 

carefully selected and exposed to different oxidants (chlorine, chlorine dioxide 

and ozone) (Figure 3.4). Selected precursors included tertiary aliphatic and 

aromatic amines, polymers, amides, hydrazines, and a secondary amines that can 

be encountered during drinking water treatment. CT curves for chlorine, chlorine 

dioxide and ozone were generated for each compound relevant to Giardia and 

virus removal at room temperature. Then, residual oxidants were quenched and 

chloraminated immediately to determine the effect on NDMA conversion. 

Finally, from each group of precursors, a representative sub-set was chosen to 



33 

further evaluate the effect of pre-oxidation pH ranging from 5.5 to 9.5. The pH 

experiments were conducted for one fixed CT for each oxidant. 

 

 

Figure 3.4. Experiments conducted for Objective 4. 

 

The following chapter describes the details of the materials and methods used 

throughout this research. Chapters five, six, seven and eight present results that address 

objectives 1, 2, 3 and 4, respectively. Chapter nine provides a comprehensive set of 

conclusions and recommendations. 
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CHAPTER FOUR 

4. MATERIALS AND METHODS 

 

In this chapter, an overall description of experimental materials and methods used 

in this research will be provided. Since different samples and methods were involved in 

different phases of the study, in each chapter there will be a short experimental materials 

and methods section to list the precursors used and the experimental matrix conducted for 

a particular chapter. 

 

Glassware, Reagent Water, & Chemical Reagents  

Glassware was scrupulously cleaned by tap water and a detergent, rinsed with 

distilled water five times and finally five times with distilled deionized water (DDW). 

The glassware was dried at a temperature of least 105 ºC inside an oven to avoid any 

contamination and dust. 

Reagent water used in the experiments was DDW produced by a Millipore water 

purification system. The DDW was Type I water with a resistivity of 18 MΩ-cm. 

All chemicals used were purchased from certified vendors. All chemicals, except 

precursors, were American Chemical Society reagent grade. Solvents used in the 

extraction were high purity. All stock solutions and buffers were prepared at the use time; 

otherwise they were stored in amber borosilicate glass bottles at 4°C for up to a week. 
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Model Precursors 

A range of nitrogenous precursors were selected for their nitrosamines formation. 

All precursors were purchased from certified vendors (Sigma-Aldrich, TCI, Matrix 

Scientific, and Santa Cruz Biotechnology) at purities ranging from 98.0% to 99.5% and 

used without further purification. Furthermore, some precursors were purchased as a 

solution (i.e., 20.0% to 45.0%). All amines were chosen based on their structure to 

examine the effects of several parameters, such as chain length, acidity, polarity and 

functional groups. A stock solution for each precursor was prepared in methanol or DDW 

and stored in 65 mL or 1 L amber glass bottles at 4ºC until use. Since, different 

precursors were used in each objective, the structures of precursors are given in each 

section of results and discussion. 

 

Natural Water Samples Collection and Preservation 

Most of the model precursor’s DBP formations were investigated in DDW; 

however, selected experiments were also conducted in the presence of background NOM. 

To investigate the role of NOM in these reactions, 20 to 40 L of water samples were 

collected from selected water sources or DWTPs (Myrtle Beach [M-B] and Charleston 

[CH]) in South Carolina. If water was to be collected from a treatment plant, samples 

were collected as raw (influent to the plant) and treated [after conventional treatment 

processes (coagulation, flocculation, and sedimentation)]. Collected samples were 

transported to the lab and immediately filtered using pre-washed 0.2 or 0.45 µm Supor® 

membrane, and stored in a cold dark room at 4°C until experiments that were usually 
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performed within a week of collection. In selected experiments only isolated NOM 

fractions were used which were available in the lab from previous studies. 

 

Formation Potential Tests 

FP tests, designed to determine DBP precursors in a water sample, were 

conducted in the presence of an excess of disinfectant. Chloramines were used as the 

primary oxidant to investigate the formation of nitrosamines; however, ozonation, and 

ozonation followed by chloramination were also investigated in selected experiments. 

FP tests for nitrosamine formation were performed using either 500 or 1000 mL 

amber bottles. Each bottle received a stir bar and was initially filled halfway with DDW 

or background solutions (i.e., natural waters, and NOM isolates). Model compounds were 

spiked in the bottle and 50 mL of fresh monochloramine stock solution was added. The 

remaining volume was filled with the same solutions leaving a headspace free bottle. The 

initial chloramine dose in the bottles was 100 mg/L. The bottles were capped and stirred 

on a stir plate for a couple of minutes and then stored at room temperature (21-23°C). 

Nitrosamine extractions were performed after five days. 

For the reactors involving ozonation-chloramination, a pre-calculated volume of 

the test water was removed from each bottle, the volume removed being equal to the 

volume of the ozone stock solution to be subsequently added for ozonation. The ozone 

dose was variable for each objective. Ozone stock solution was directly added from a gas 

wash bottle to the top of the solution while minimizing the transfer time to avoid 
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volatilization loss. Then, samples were mixed on a stir plate for 5 min before 

chloramination.  

 

Chlorine and Chloramine Production 

The fresh chlorine stocks were prepared by diluting sodium hypochlorite (5-6% 

available free chlorine) before the experiment each time. Chlorine stock solutions were 

prepared to give a chlorine concentration of ≈2500 mg/L. A fresh monochloramine stock 

solution was prepared by mixing sodium hypochlorite (5-6% available free chlorine) and 

ammonium sulfate solutions at a Cl2:N mass ratio of 3.5:1 or 4.0:1 at pH 9. Chloramine 

stock solutions were prepared to give a chlorine concentration of ≈1000 mg/L.  

 

Ozone Production 

For the experiments involving ozonation of water samples, ozonation was carried 

out by adding ozone stock solution to the samples. A gas washing bottle (1 or 2 L) 

containing DDW with minimal headspace was placed in an ice bath, and the solution was 

ozonated with a GTC-1B Griffin ozone generator fed with ultra-high purity oxygen gas. 

To minimize the fluctuation of ozone output of the ozonator, a glass damper was placed 

between the ozonator and the gas washing bottle. In a typical ozone stock preparation, 

approximately 30 min ozonation would saturate the solution, yielding 28-32 mg O3/L. 

The ozonated samples were mixed on a stir plate for 5 min before chlorination or 

chloramination. 
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Chlorine Dioxide Production 

A fresh chlorine dioxide stock was prepared via the slow acidification of NaClO2 

solution with H2SO4 (Jones et al., 2012). Chlorine dioxide stock solutions were prepared 

to give a chlorine dioxide concentration of ≈1500 mg/L. 

 

Analytical Methods 

A summary of the parameters, analytical methods, instruments and MRL are 

presented in Table 4.1. These methods were developed following either Standard 

Methods (SMs) or USEPA Methods. All experiments were conducted for two 

independent samples and the results presented in the tables and figures represent the 

averages of the duplicates. 
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Table 4.1. Analytical methods and minimum reporting levels. 

Parameter Unit 
Measurement 

Method 
Equipment 

Minimum 

Reporting Levels 

DOCa (mg/L) 
SMb 5310B 

High 

Temperature 

Combustion 

TOC-VCSH, Shimadzu 

Corp., Japan 
0.10c 

DNd (mg/L) 
TNM-1, Shimadzu 

Corp., Japan 
0.10c 

UV 

Absorbancee1 
(abs) SM 5910 

Cary 50, Varian Inc., 

USA 
0.003e2 

Br−, 

NO3
−, 

NO2
−, 

SO4
−2 

(μg/L) USEPA Method 

300 

ICS-2100, Dionex 

Corp. 

Br−=10 

NO3
−=15 

NO2
−=20 

SO4
−2=25 

Chlorine 

Dioxide 
(mg/L) 

SM 4500-ClO2 E NA 0.10 

DPD Method HACH Test Kit 0.04 

Ozone (mg/L) SM 4500-O3 HACH Test Kit 0.02 

Ammonia (mg/L) 
Salicylate 

Method 
HACH Test Kit 0.02 

pH  SM 4500-H+ 
420A, Orion Corp., 

USA 
0.01f 

Nitrosamines (ng/L) 
USEPA Method 

521 
Varian GC/MS/MS 3.0 

Residual 

free/combined 

Chlorine 

(mg/L) SM 4500-Cl F NA 0.05-0.15 

a: Reagent grade potassium hydrogen phthalate was used to prepare external standards.  
b: SM: Standard Methods.  
c: As reported by the manufacturer. 
d: Reagent grade potassium nitrate was used to prepare external standards. 

 e1: Measured at wavelength of 254 using a 1-cm cell. 

 e2: Photometric accuracy (absorbance units). 

 f: Accuracy (pH units).  

NA: Not Applicable  
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Oxidant Concentration Measurements 

Free and combined chlorine concentrations were measured using an N,N-diethyl-

p-phenylenediamine (DPD) method (SM 4500-Cl F). Chlorine samples were diluted 

based on their expected residual chlorine concentration to the range of 0 to 5 mg/L as Cl2. 

The sample was then poured into a flask containing 5 mL of DPD indicator solution and 

5 mL of phosphate buffer. After mixing, the sample was titrated using a ferrous 

ammonium sulfate (FAS) solution to the end-point and titrant volumes were used to 

calculate chlorine concentrations. The DPD indicator solution and FAS solution were 

made according to SM 4500-Cl F. 

The concentrations of the chlorine dioxide were measured with one of two 

methods. Mainly, chlorine dioxide concentrations were measured using 4500-Cl F (DPD 

Method) method with HACH kits. A few drops of glycine were added to a 10 mL sample, 

and after few seconds, DPD reagent was added. Chlorine dioxide concentrations were 

immediately measured with a HACH DR/820 colorimeter. SM 4500-ClO2 E was also 

used to determine chlorine dioxide concentrations. One mL of phosphate buffer was 

added to 200 mL samples and 1 g of potassium iodide was added as indicator. The 

sample was titrated with a sodium thiosulfate until the end point and titrant volume was 

recorded as “A”. To this solution, 20 mL of hydrochloric acid was added, titrated until 

the end point and titrant volume was recorded as “B”. The pH of another 200 mL sample 

was adjusted with phosphate buffer once again. This solution was purged for 5 minutes. 

One gram of potassium iodide was added as indicator, titrated until the end point and 

titrant volume was recorded as “C”. To this solution, 20 mL of hydrochloric acid was 
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added, titrated until the end point and titrant volume was recorded as “D”. A, B, C, and D 

values were used to calculate Cl2, ClO2, and ClO2
− concentrations. The necessary 

solutions were prepared according to SM 4500-ClO2 E. 

Ozone concentration was measured using the indigo method. Approximately 40 

mL of sample was transferred in a plastic beaker and a HACH ozone reagent ampul 

(Accuvac) containing indigo reagent was filled with the sample. The indigo reagent 

immediately reacted with ozone and the blue color of indigo was bleached in proportion 

to the amount of ozone present in the sample. Ozone in the sample was colorimetrically 

measured with a HACH DR/820 colorimeter. 

 

Nitrosamine Measurements 

EPA 521 nitrosamine mix (2000 µg/mL of each component, 98.6-99.9%) in 

methanol, nitrosamine calibration mix of N-nitrosodimethylamine-d6 (NDMA-d6, 98%) 

as a surrogate and N-nitrosodi-n-propylamine-d14 (NDPA-d14, 99%) as an internal 

standard (1000 µg/mL of each in dichloromethane [DCM]) were purchased from Sigma-

Aldrich and Restek, respectively. Nitrosamine mix (2000 µg/ml of mix) and nitrosamine 

calibration mix (1000 µg/ml of NDMA-d6 and NDPA-d14) solutions served as the 

master stock solutions. Primary diluted stock (PDS) of each stock (~500 µg/L) was 

prepared by diluting them in DCM for further use in calibration curve or extractions. 

NDMA and seven nitrosamine species (NPYR, NDEA, NMEA, NDPA, NDBA, 

NPYR, and NMOR) were analyzed following USEPA Method 521. Calibration solutions 

were prepared from a stock of mixed nitrosamines. Typical calibration curves were 
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generated from at least six standard points. For the sample analysis, 500 mL of 

chloraminated solutions were quenched with sodium thiosulfate. NDMA-d6 was added to 

the samples as a surrogate before solid phase extraction (SPE). Samples were passed 

through cartridges pre-packed with 2 g of coconut charcoal purchased from UCT. Prior to 

sample extraction, cartridges were pre-conditioned with DCM, methanol, and DDW. 

After SPE, cartridges were dried with air, and then eluted with DCM. Eluted samples 

were passed through a column pre-packed with 6 g of sodium sulfate and concentrated to 

1 mL under high purity nitrogen gas. The extracts were spiked with NDPA-d14 as an 

internal standard, and analyzed using a Varian GC 3800-MS/MS 4000 equipped with 

RTX-5MS (Restek 30m × 0.25mm × 0.25μm) MS using an 8 µL injection volume and 

chemical ionization (CI) with methanol. The temperature program is as follows: injection 

temperature was 35 °C holding for 0.8 minute, and then increased to 260 °C at 200 

°C/min and held for 2.08 minutes. The column temperature program was as follows: 35 

°C for 5 minutes, increased to 70 °C at 5 °C/min, then to 87 °C at 3 °C/min, then to 120 

°C at 5 °C/min, and then to 250 °C at 40/min holding for 2.48 minutes. Nitrosamines are 

sufficiently thermally stable and volatile for direct analysis by gas chromatography (GC). 

Reference and quantifications ions of each nitrosamine and their retention times are given 

in Table 4.2. All samples and blanks were prepared and extracted in duplicates, and then 

each extract was analyzed on a GC equipped with a mass spectrometer (MS).  
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Table 4.2. Detection information of nitrosamines on GC-MS/MS. 

Nitrosamine 
Molecular 

Weight 

Quantification 

Ion 
Confirmation Ion 

Retention 

Time (min) 

NDMA 74 75.0 43.3, 47.3 6.0 

NDMA-d6 80 81.1 50.3, 49.3 6.0 

NMEA 88 89.0 61.1, 43.2 8.5 

NDEA 102 103.1 103.9, 75.0 10.5 

NPYR 100 101.1 55.1, 102.1 16.3 

NDPA-d14 144 145.2 97.2, 146.3 16.3 

NDPA 130 131.2 89.1, 132.1 16.6 

NMOR 116 117.2 101.2, 87.0 16.5 

NPIP 114 115.1 69.1, 116.2 17.9 

NDBA 158 159.1 160.2, 103.1 23.4 

 

The detection limits (DL) were estimated for all nitrosamine species by eight 

consecutive analyses (i.e., one injection per vial for the eight vials prepared) of mixture 

solutions, which contained approximately 5 ng/L of each nitrosamine compound. The 

following equation was used to calculate DL: 

 DL = S × t(n-1, 1-α) Equation 4.1 

where, S = standard deviation of the replicate analyses, t (n-1, 1-α) = student-t 

value for the 1-α with n-1 degrees of freedom (e.g., t(7, 0.99) = 2.998 for eight replicates 

at the 99% confidence level), n = number of replicates, and α = 0.01 (i.e., confidence 

level 1-α = 0.99). The MRL was established at a concentration that is three times the DL. 

In practice, this is the lowest point on the calibration curve that can be quantified. The DL 

and MRL of nitrosamines determined are presented in Table 4.3. 
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Table 4.3. DLs and MRLs of nitrosamines established at 5 ppt in DDW. 

Nitrosamine 
Mean Measured 

(ng/L) 

RSD 

(%) 

DL 

(ng/L) 

MRL 

(ng/L) 

NDMA 4.8 5.2 0.7 2.2 

NMEA 5.1 5.7 0.9 2.6 

NDEA 5.0 4.4 0.7 2.0 

NPYR 5.2 4.9 0.8 2.3 

NDPA 5.5 5.6 0.9 2.8 

NMOR 5.0 6.7 1.0 3.0 

NPIP 4.5 6.1 0.8 2.4 

NDBA 4.5 6.7 0.9 2.7 

 

Spike recovery experiments were also performed to verify that the employed 

analytical method would be applicable to other water matrices. This was examined by 

analyzing spike recoveries of nitrosamine species in two source waters with high 

SUVA254 (3.6 L/mg-m) and low SUVA254 (2.3 L/mg-m). Samples were spiked from the 

mix solution containing 10 ng/L of each nitrosamine species before extraction and 

analysis. The results are shown in Table 4.4. Relative standard deviation in these tests 

and analyzed samples were less than 20%. 

 

Table 4.4. Spike recoveries of nitrosamines in high and low SUVA background 

solutions. 

 Low SUVA High SUVA 

Nitrosamine 
Fortified 

(ng/L) 

Mean 

Measured 

(ng/L) 

RSD 

(%) 

Mean 

Recovery 

(%) 

Mean 

Measured 

(ng/L) 

RSD 

(%) 

Mean 

Recovery 

(%) 

NDMA 10 8.85 3.5 87 9.52 5.6 93 

NMEA 10 9.10 5.6 89 10.61 4.6 104 

NDEA 10 9.01 7.9 89 10.88 6.6 107 

NPYR 10 9.40 4.6 93 11.31 3.0 112 

NDPA 10 8.64 10.8 85 9.57 10.3 95 

NMOR 10 8.52 8.8 84 11.42 15.7 113 

NPIP 10 7.59 8.4 75 8.11 10.9 80 

NDBA 10 6.34 12.9 63 8.28 12.8 82 
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Dissolved Organic Carbon and Dissolved Nitrogen Measurement 

Dissolved organic carbon (DOC) and dissolved nitrogen (DN) were measured 

using a Shimadzu TOC-VCHS or TOC-LCHS high temperature combustion analyzer 

equipped with a TN module. TOC standards were prepared by diluting 1000 mg C/L 

potassium hydrogen phthalate solution in the range of 0.2-15 mg C/L. TN standards were 

prepared by diluting 1000 mg N/L potassium nitrate solution in the range of 0.2-5 mg 

N/L. The MRLs for these measurements were determined to be 0.15 mg/L and 0.1 mg/L 

for DOC and DN, respectively. 

 

Ammonia Measurement 

Ammonia concentrations were measured using salicylate method with HACH 

kits. Salicylate reagent was added to a 10 mL sample, and after 3 min, cyanurate reagent 

was added. After 15 min reaction, ammonia in the sample was colorimetrically measured 

with a HACH DR/820 colorimeter. 

 

UV254 Absorbance 

UV absorbance at 254nm wavelength (UV254) was measured using a Cary 50 UV-

Vis spectrophotometer (Varian). Samples were placed in a 1 cm quartz cuvette and 

measured at a wavelength of 254 nm. The spectrophotometer was zeroed by measuring 

the absorbance of DDW after several rinses. The instrument was zeroed every ten 

samples, and method performance was monitored using DOC standards made with 

potassium hydrogen phthalate. 
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pH 

The pH values for samples were measured using a SM 4500-H+ pH electrode with 

a VWR Symphony pH meter (VWR). The pH meter and electrode were calibrated using 

standard pH 2, 4, 7 and pH 10 buffer solutions before use. 

 

Bromide, Nitrite, Nitrate and Sulfate Measurements 

Bromide, nitrite, nitrate, and sulfate were measured using an ion chromatography 

system. A Dionex ICS-2100 equipped with an AAES suppressor was used to determine 

these anions present in natural samples used for background NOM experiments. The 

mobile phase was 9 mM Na2CO3. A Dionex AS-HC9 column coupled with an AG-HC9 

guard column was used to separate samples. The injection volume was 250 µL. A 

calibration curve was obtained by a series of standard concentrations (at a low range of 

10-1000 µg/L) using NaBr (> 99.9%, Sigma), NaNO2 (> 99.9%, Sigma), NaNO3 (> 

99.9%, Sigma), and Na2SO4 (> 99.0%, EMD) and their corresponding MRLs were 10, 

20, 15, and 25 µg/L, respectively. 

 

Dissolved Organic Nitrogen Determination 

In this study, dissolved organic nitrogen (DON) concentrations were determined 

through subtraction as given in Equation 4.2. 

 DON = DN – NO3-N – NO2-N – NH4
+ Equation 4.2 
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CHAPTER FIVE 

5. NITROSAMINES FORMATION FROM AMINOACIDS 

 

Introduction and Objective 

Recent research has shown that emerging N-DBPs exhibit orders of magnitude 

higher cyto- and geno-toxicity than any of the regulated C-DBPs (Plewa et al., 2008). 

Therefore, it should not be surprising to see additional DBP regulations including N-

DBPs in the near future. Recent research has shown that nitrogen-rich organic materials 

in natural waters play an important role in the formation of N-DBPs (Dotson et al, 2009; 

Hu et al, 2010; Mitch et al, 2009). However, the important precursors and the formation 

mechanisms of N-DPBs, especially NDMA, still remain largely unknown.  

AAs have been found in fresh waters in a wide concentration range, 5 to 2000 

µg/L, either in free or combined as peptides, nucleic acids, purines, pyrimidines, and 

proteins (Rice and Taylor, 1986). Thurman (Thurman, 1985) reported that total AAs, sum 

of the free and combined AAs, accounted for 2.6% of the dissolved organic carbon 

(DOC) and 35% of the DON in some lakes. Hagedorn et al. (2000) observed in 

catchment runoff that the total AAs accounted for 20% to greater than 75% of the DON. 

Elevated amino acid levels were also found during the occurrence of algae blooms (Meon 

and Kirchman, 2001; Sellner and Nealley, 1997). In addition, degradation of algal cells 

during the die-off phase can be a major contributor of dissolved AAs in natural waters 

(Thurman, 1985; Jørgensen 1987). In a recent survey of sixteen water treatment plants in 
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the United States, the average total AAs constituted 15% of DON in the source waters 

(Dotson and Westerhoff, 2009). The principal AAs identified in natural waters included 

glycine, glutamic acid, alanine, aspartic acid, leucine, proline and serine (Thurman, 1985; 

Münster, 1999; Chinn and Barrett, 2000; Dotson et al, 2009). 

The presence of AAs in raw and treated waters exerts high chlorine demand 

(Trehy et al, 1986; Hureiki et al, 1994). The relative chlorine reactivity of AAs depends 

on the side chain groups attached to the α-carbon. Studies conducted on the reactions of 

AAs with chlorine have shown the formation of various classes of DBPs including 

haloacetaldehydes, haloacetonitriles (HANs), cyanogen chloride, THMs and HAAs 

(Hureiki et al, 1994; Na and Olson, 2006; Hong et al, 2009; Hu et al., 2010). As 

compared to C-DBPs, there is much less information on the formation of N-DBPs from 

amino acids, especially for nitrosamines. NDMA can form especially in drinking waters 

and wastewater effluents under chloramination conditions (Sacher et al, 2008). NDMA 

has been classified as a probable human carcinogen by USEPA (Richardson et al, 2007), 

and can pose important health risk even at ng/L concentrations. As a result, the Ontario 

Ministry of the Environment and Climate Change established a maximum allowable 

concentration of 9 ng/L for NDMA, and the California Department of Health Service set 

an interim action level of 10 ng/L. Though nitrosamines are not currently regulated at a 

federal level in the United States, NDMA and four other nitrosamines (NDEA, NDPA, 

NDPhA, and NPYR) are on the USEPA’s CCL3, and have been monitored under the 

UCMR2 (USEPA, 2006, 2009). 
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Since AAs constitute an important fraction of the organic nitrogen pool in natural 

waters, the objective of this study was to investigate the formation potential of 

nitrosamines from AAs under different oxidation conditions. As reviewed in this section, 

previous studies have mainly focused on the formation regulated C-DBPs (e.g., THM 

and/or HAA) from AAs, while significantly less attention has been placed on the 

nitrosamines.  

 

Materials and Methods 

Amino Acids 

AAs can be classified into four categories depending upon their acidity and 

polarity: acidic, basic, polar, and nonpolar. For this study, nine AAs (alanine, aspartic 

acid, cysteine, glutamic acid, glycine, lysine, histidine, proline and serine) were selected 

based on charge, polarity and hydropobicity. The physicochemical characteristics and 

structures of the selected AAs are listed in Table 5.1.  
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Table 5.1. AAs selected for this study  and their properties (Lide, 1991). 

Type 
Amino 

acid 
R group pK1 pK2 pK3 

Isoelectric 

point 

Hydrophobicity 

Designation* 

ac
id

ic
 

Aspartic 

acid 
-CH2COO- 2.0 10.0 4.04 2.77 W 

Glutamic 

acid 
-CH2CH2COO- 2.2 9.7 4.39 3.22 W 

b
as

ic
 

Lysine 
-

CH2CH2CH2CH2NH3
+ 

2.2 9.2 11.1 9.74 W 

n
o
n
p
o
la

r 

Glycine 

Alanine 

Proline 

-H 

-CH3 
COO

CH



|

2 2
| |

2 2

H N CH

H C CH



  

2.4 

2.3 

2.0 

9.8 

9.9 

10.6 

- 

- 

- 

5.97 

6.01 

6.48 

W 

N 

W 

p
o
la

r 

Serine -CH2OH 2.1 9.2 - 5.68 W 

Cysteine -CH2SH 1.8 10.8 8.6 5.07 L 

Histidine  2CH C





CH NH

N CH  

1.8 9.2 6.8 7.59 N 

* Hydrophobic = L, Hydrophilic = W, Neutral = N 

 

A stock solution (500 mg/L) of each amino acid (Sigma-Aldrich) was prepared in 

DDW. The stock solutions were buffered at pH 8 using 4 mM sodium bicarbonate and 

1M HCl or NaOH solutions. For the formation potential tests, typical occurrence 

concentration of 1 mg/L was used initially which were then increased to 10 mg/L. 

Although these AA concentrations are higher than their typical occurrence levels in fresh 

waters, they were intentionally selected at these high levels to magnify and better 

examine the DBP formation; an approach that has been used in previous studies (Berger 

et al, 1999; Mitch et al, 2009). AA sample solutions were prepared with dilution from the 
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main stock, and the concentrations were confirmed using a TOC analyzer (Shimadzu 

Corp., USA).  

Formation Potential Tests 

The oxidation conditions that favor the formation of certain classes of DBPs were 

used in the FP tests. Chloramination, ozonation and ozonation-chloramination were 

applied for the nitrosamines FP tests. Each FP test was conducted in duplicates.  

Monochloramine stock solution was prepared by mixing sodium hypochlorite (5-

6% available free chlorine) and ammonium sulfate solutions at a Cl2:N mass ratio of 4:1 

(0.8:1 molar ratio) and pH 9. The dosage of chloramine was determined using the 

formula approach developed by Krasner et al. (2009) (NH2Cl [mg/L] = 3 × DOC 

[mg/L]). The concentrations of the free chlorine and monochloramine were measured 

with SM 4500-Cl F (DPD Ferrous Titrimetric Method).  

Ozonation was conducted by adding ozone stock solution to the samples. To 

prepare the ozone stock solution, a 1 L gas washing bottle containing DDW with minimal 

headspace was placed in an ice bath, and the solution was ozonated with an ozone 

generator (Model GTC-1B, Griffin Technics Incorporated, NJ) fed with ultra-high purity 

oxygen gas. In a typical ozone stock preparation, about 30 mg O3/L stock solution was 

obtained within 30 min. Precalculated volumes of AA solutions were removed from the 

125mL or 1L amber glass bottles used for the FP tests and replaced with the freshly 

prepared ozone stock solution. Ozone concentration in the bottles at the beginning of the 

experiments was approximately 4 mg/L that assured that ozone was not a limiting factor 

during ozonation period. After ozone addition, the samples were mixed on a stir plate for 
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five minutes. The residual ozone concentrations were measured before chlorine or 

chloramines addition to assure that there was ozone residual by the end of the ozonation 

period. For chloramination samples without pre-ozonation, the same volume of solutions 

was removed as for the ozonated samples and replaced with DDW to have the same 

sample composition (e.g. for DOC, DON) as the pre-ozonated samples.  

Experiments for nitrosamine FP test, were conducted in the 1L amber glass 

bottles without headspace at room temperature (~22 oC) in the dark for five days. 

Analytical Methods 

N-nitrosamine samples were concentrated 500 times by SPE using 6-mL cartridge 

prepacked with 2g of coconut charcoal (UCT). The extracts were analyzed with a Varian 

GC-MS/MS 4000 under CI mode, using an RTX-5MS (Restek 30m × 0.25mm × 0.25μm) 

column, for eight N-nitrosamines including NDMA, NDEA, NMEA, NMOR, NDPA, 

NPYR, NPIP and NDBA. The MRL for each nitrosamine was 3 ng/L. DOC and DN were 

measured using a Shimadzu TOC-VCHS high temperature combustion analyzer equipped 

with a total nitrogen module (TNM-1). The MRLs for DOC and DN were 0.1 mg/L. 

DON concentrations were equal to DN concentrations of AAs, since there was no 

inorganic nitrogen in the stock solutions. All analytical methods and their minimum 

reporting levels are given in Table 4.1. 
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Results and Discussion 

Nitrosamines Formation from AAs 

Initial nitrosamines FP test for three of the selected amino acids at 1 mg/L 

concentration did not produce measurable nitrosamines. To further confirm the results, it 

was decided to magnify the initial concentration of amino acids during the experiments 

by increasing to 10 mg/L, and three different oxidation scenarios, monochloramination, 

ozonation and ozonation-chloramination were tested for all nine AAs. Ozonation alone 

was also examined because NDMA formation has recently been reported after ozonation 

in laboratory studies (Andrzejewski et al, 2008; Yang et al, 2009) and in full scale 

ozonation plants (Planas et al, 2008; Asami et al, 2009). 

Despite increasing the amino acids concentrations to 10 mg/L, in most of the 

cases, NDMA and NDBA FP concentrations were very low, such as 5 ng/L NDBA from 

lysine after chloramination (Table 5.2). Mitch and co-workers reported non-detectable 

nitrosamine (NDMA, NMEA and NDEA) formation from aspartic acid, proline and 

histidine during chloramination (Mitch and Sedlak, 2002); and NDMA formation of 

<2ng/L from glycine and tyrosine during chloramination (Mitch et al, 2006). 
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Table 5.2. Nitrosamine FPs of AAs tested in this study. 

AA 
DOC 

(mg C/L) 

DON 

(mg N/L) 

Chloramine Ozone-Chloramine Ozone 

NDBA 

(ng/L) 

NDBA 

(ng/L) 

NPYR 

(ng/L) 

NPYR 

(ng/L) 

Alanine 4.0 1.6 <MRL <MRL <MRL <MRL 

Aspartic 

Acid 
3.6 1.1 <MRL <MRL <MRL <MRL 

Cysteine 3.0 1.2 <MRL <MRL <MRL <MRL 

Glutamic 

Acid 
4.1 1.0 <MRL <MRL <MRL <MRL 

Glycine 3.2 1.9 <MRL <MRL <MRL <MRL 

Histidine 4.6 2.7 <MRL <MRL <MRL <MRL 

Lysine 4.9 1.9 5 9 <MRL <MRL 

Proline 5.2 1.2 <MRL 3 4 4 

Serine 3.4 1.3 <MRL 3 <MRL <MRL 

Reported values are average of two measurements (n=2). 

 

During ozonation-chloramination, NDBA formation of 9, 3 and 3 ng/L from 

lysine, proline and serine was observed, respectively. Proline also led to formation of 4 

ng/L NPYR during both ozonation and ozonation-chloramination conditions. Other 

nitrosamines were not detectable. The formation of NPYR from proline is quite straight 

forward based on its structure. Once ozonation leads to the decarboxylation of proline 

followed by nitrosation, NPYR will be formed directly (Figure 5.1). It is very likely that 

the nitrogen of the nitrosating agent was sourced from the oxidation of the nitrogen atom. 

Overall, the nitrosamine yields of AAs during the FP tests were very low. Considering 

the occurrence concentrations of total AAs in natural waters, it is unlikely that AAs play 
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a role in the formation of NDMA and other nitrosamines during chloramination, 

ozonation, and ozonation followed by chloramination. 

 

 

Figure 5.1. NPYR formation from proline. 

 

Conclusions 

Although the total AA concentrations in natural waters are, in general, low, their 

elevated concentrations during some seasonal events (e.g., algae blooms, algae die-off, 

run off) can result in some contributions to certain nitrosamines depending on the 

oxidation conditions. Only NDBA and NPYR formation was observed from the selected 

AAs. Since other nitrosamine formation yields of AAs were very low, the results 

obtained in this study suggest that AAs are not likely to contribute to nitrosamines 

formation. 
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CHAPTER SIX 

6. THE ROLES OF TERTIARY AMINE STRUCTURE, BACKGROUND ORGANIC 

MATTER AND CHLORAMINE SPECIES ON NDMA FORMATION 

 

Introduction and Objective 

Nitrosamines are a group of compounds classified as probable human carcinogens 

in water at concentrations as low as 0.2 ng/L associated with a 10–6 lifetime cancer risk 

(USEPA, 1993). They form as DBPs in chloraminated and chlorinated drinking waters 

and wastewaters (Choi and Valentine, 2002a,b; Choi et al., 2002; Mitch and Sedlak, 

2002, 2004). NDMA is the most commonly detected and reported nitrosamine in drinking 

water. Although there are currently no federal regulations for nitrosamines in drinking 

water in the United States, the USEPA has recently identified nitrosamines as one of 

three potential groups of contaminants highlighted for possible regulatory action in the 

near future (Roberson, 2011). 

Although an organic nitrogen precursor is required for NDMA formation, there is 

no strong correlation between dissolved organic nitrogen concentrations and NDMA 

formation potentials in natural waters (Pehlivanoglu-Mantas and Sedlak, 2008; Dotson et 

al., 2009; Aydin et al., 2012). Research evaluating the NDMA formation potential of 

several compounds has encompassed DMA (Mitch et al., 2003a,b), tertiary and 

quaternary amines with DMA functional groups (Lee et al., 2007; Kemper et al., 2010; 

Shen and Andrews, 2011a,b), NOM and fractions of NOM (Gerecke and Sedlak, 2003; 



57 

Mitch and Sedlak, 2004; Chen and Valentine, 2007; Dotson et al., 2007; Krasner et al., 

2008a), polyelectrolytes and ion-exchange resins (Gough et al., 1977; Kimoto et al., 

1980; Najm and Trussell, 2001; Kohut and Andrews, 2003; Wilczak et al., 2003; Mitch 

and Sedlak, 2004; Nawrocki and Andrzejewski, 2011), fungicides, pesticides, and 

herbicides (Graham et al., 1995; Chen and Young, 2008; Schmidt and Brauch, 2008), 

pharmaceuticals, cosmetics (Sacher et al., 2008; Shen and Andrews, 2011a,b), and 

wastewater effluent/impacted waters (Krasner et al., 2004; Sedlak et al., 2005; Krasner et 

al., 2009; Krauss et al., 2009; Shah et al., 2012). 

Different mechanisms have been proposed for NDMA formation with different 

oxidants (e.g., chlorine, chloramines and ozone), as reviewed in detail elsewhere (Bond et 

al., 2011; Shah and Mitch, 2012). For chloramination, NDMA formation was initially 

attributed to a nucleophilic substitution reaction between monochloramine and 

unprotonated secondary amines (e.g., DMA) to form UDMH intermediates (Mitch and 

Sedlak, 2002; Choi and Valentine, 2002a,b). However, further studies have shown that 

chloramination of UDMH yielded much less NDMA than DMA (Mitch et al., 2009). 

Moreover, dichloramine has been shown to enhance NDMA formation from DMA 

through the formation of a Cl-UDMH (Mitch et al., 2009). In the same study, Mitch and 

colleagues proposed that NDMA formation from quaternary or tertiary amines includes 

liberation of the DMA moiety via reaction of chlorine or monochloramine and released 

the DMA group further reacts with dichloramine resulting in NDMA formation. After 

testing of several compounds in recent years as listed above, there are some limitations to 

explain the formation of NDMA from different precursors using only this pathway during 
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chloramination. For example, (i) the reported NDMA conversion rates from DMA were 

at most 3.0% and usually 1-2% (Choi and Valentine, 2002a,b; Choi et al., 2002; Mitch 

and Sedlak, 2002; Schreiber and Mitch, 2005, 2006; Lee et al., 2007a; Le Roux et al., 

2012a). However, some model compounds (e.g., RNTD, sumatripan) have resulted in 

significantly higher NDMA yields (>>5%) than DMA (Mitch et al., 2009; Le Roux et al., 

2011a; Shen and Andrews, 2011a). (ii) Although the proposed pathway emphasizes the 

significance of dichloramine in NDMA formation, higher NDMA concentrations were 

observed at pH 8.8 than both pH 6.9 and 5.1 during chloramination of DMA (Schreiber 

and Mitch, 2005) and a similar trend was observed for natural waters (Krasner et al., 

2012a). Monochloramine becomes more stable with increasing pH, and significantly less 

dichloramine is produced. Le Roux et al. (2011a) reported a decrease in NDMA 

formation from ranitidine when they switched from monochloramine to dichloramine 

(i.e., yield decreased from 80.2 to 46.8%). Therefore, the major NDMA formation 

pathway may not always be limited to dichloramine as the only chloramine species. (iii) 

The formation of NDMA may also be influenced from the components in the background 

water matrices (e.g., NOM, bromide, other ions) (Le Roux et al., 2011b; Shen and 

Andrews, 2011a,b; Le Roux et al., 2012a; Luh and Marinas, 2012; Shah et al., 2012). (iv) 

DMA concentrations detected in surface waters (Gerecke and Sedlak, 2003; Lee et al., 

2007a) or secondary municipal wastewaters (Mitch and Sedlak, 2004) did not explain the 

observed levels of NDMA formation. 

It is evident that there is still much more to learn about the formation of NDMA in 

natural waters. For example, the structural characteristics of quaternary or tertiary amines 
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with a DMA group are of importance (Shah and Mitch, 2012). The main objectives of 

this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) 

the effect of background NOM, and (iii) the roles of mono vs. dichloramine species on 

the NDMA formation. To explore the effect of tertiary amine structure, DMA and 20 

different tertiary aliphatic and aromatic amines were carefully selected based on their 

functional groups attached to the basic DMA structure. The NOM effect was initially 

investigated by spiking the selected amines in a solution prepared with one of two NOM 

fractions individually to eliminate the confounding effects that may come from the other 

constituents in the background matrices of natural waters. Experiments were also 

conducted with Myrtle Beach, SC, raw and treated (i.e., after conventional clarification 

processes) waters with negligible bromide concentrations. Finally, the selectivity and 

sensitivity of amine precursors to monochloramine and dichloramine species were 

examined for selected compounds.  

 

Materials and Methods 

Amines 

DMA and 20 tertiary amines were tested for nitrosamine formation. Chemical 

structures and abbreviations of selected amines are given in Figure 6.1. All compounds 

were purchased from certified vendors (Sigma-Aldrich, TCI, Matrix Scientific, and Santa 

Cruz Biotechnology) and used without further purification. Tertiary aliphatic amines 

were chosen based on their chain length and functional groups attached to DMA 
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structure. Tertiary aromatic amines were also selected with variable functional groups 

and different heteroatoms present in the ring structures. 

 

 

Figure 6.1. Molecular structures of selected amines 
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Experimental Procedure 

FP tests were conducted in DDW with or without NOM. The NOM solutions 

were prepared using (i) two NOM fractions, M-B TPH or M-B HPO, that were available 

in our laboratory from a previous study (Hong et al., 2007; Karanfil et al., 2007), and (ii) 

water samples, source water (M-B Raw) and after conventional clarification processes 

before filtration (M-B Treated), were also collected from M-B in South Carolina. DOC 

levels of all NOM solutions were adjusted to 3 mg C/L by diluting them with DDW. 

NDMA levels in DDW were below 2 ng/L. NOM solutions were filtered with pre-washed 

0.2 µm polyethersulfone filters prior to FP tests. The selected characteristics of NOM 

solutions are shown in Table 6.1. 

 

Table 6.1. Selected characteristics of solutions used for NOM experiments 

 
DOC 

(mg C/L) 

SUVA254 

(L/mg.m) 

DN 

(mg N/L) 

NH3 

(mg/L) 

NO2
- 

(mg/L) 

NO3
- 

(mg/L) 

Br- 

(mg/L) 

M-B TPH 3.0 2.0 0.2 <MRL <MRL <MRL <MRL 

M-B HPO 3.0 4.2 0.1 <MRL <MRL <MRL <MRL 

M-B Treated 3.0 1.7 0.2 <MRL <MRL 0.16 <MRL 

M-B Raw 3.0 3.8 0.1 <MRL <MRL 0.09 <MRL 
Reported values are average of two measurements (n=2). 

 

A stock solution (4 mM) for each amine was prepared in methanol and stored in 

the 65 mL amber glass bottles at 4ºC until use. Each model compound was diluted to 200 

nM in DDW or in NOM solution in 1-L amber bottles capped with Teflon lined PTFE 

caps. The monochloramine stock solution was prepared by mixing diluted sodium 

hypochlorite and ammonium sulfate solutions at Cl:N mass ratio of 4:1 at pH 9. An initial 

chloramine concentration of approximately 1 mM (100 mg/L) was used at pH 7.5 in the 
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presence of 10 mM phosphate buffer which was prepared by mixing sodium phosphate 

monobasic and sodium phosphate dibasic. For the NOM experiments, a solution of TPH 

or HPO was prepared by adding each fraction in DDW with buffer prior to the addition of 

the target compound; and it was chloraminated under the same conditions used for the 

DDW experiments. For the experiments with the M-B raw and treated waters, the target 

amine (200 nM) was spiked directly in the waters. 

The roles of monochloramine and dichloramine on NDMA formation were 

assessed by conducting FP test using a lower dose of chloramine (5 mg/L as Cl2) with 

and without ammonia in DDW. The presence of ammonia suppresses the decomposition 

of monochloramine to dichloramine during FP tests (Hong et al., 2007). Some additional 

information about the chloramine chemistry can be found in the Appendix A. Therefore, 

two parallel FP tests were conducted: (i) Cl:N ratio of 4:1 without ammonia addition (i.e., 

having both mono- and dichloramine present with a maximum of 5% dichloramine 

content), and (ii) Cl:N ratio of 4:1 in the presence of 100 mg/L ammonia (i.e., only 

monochloramine in the bottles and the concentration of dichloramine was below its 

detection limit of 0.05 mg/L). These experiments were conducted with an initial 

monochloramine concentration of 5 mg/L as Cl2 to control chloramine speciation at pH 

7.5 using 4 mM carbonate buffer. The initial chloramine concentrations (i.e., either 5 or 

100 mg/L) were enough to provide excess amount of chloramine for all FP tests. All the 

nitrosamine FP tests in this study were carried out in 1-L amber glass bottles without 

headspace in the dark at 22ºC and for five days of contact time. 
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Analytical methods 

NDMA was analyzed following USEPA method 521 (USEPA, 2004). Calibration 

solutions were prepared from an NDMA stock. Typical calibration curves were generated 

from at least six standard points and the minimum reporting level was 3 ng/L. For the 

sample analysis, 500 mL of chloraminated amine solutions were taken and quenched with 

100 mg of sodium thiosulfate. N-nitrosodimethylamine-d6 (NDMA-d6) was added to the 

samples as a surrogate before SPE. Samples were passed through cartridges pre-packed 

with 2 g of coconut charcoal. Prior to sample extraction, cartridges were preconditioned 

with DCM, methanol, and DDW. After SPE, cartridges were dried with air, and then 

eluted with dichloromethane. Eluted samples were passed through cartridges pre-packed 

with 6 g of sodium sulfate and concentrated to 1 mL under high purity nitrogen gas. The 

extracts were spiked with N-nitrosodi-n-propylamine-d14 (NDPA-d14) as an internal 

standard, and analyzed using a Varian GC-MS/MS 4000 equipped with RTX-5MS 

(Restek 30m × 0.25mm × 0.25μm) column and under the CI mode. Measured NDMA 

concentrations were used to calculate percent molar yield for each amine using Equation 

6.1 (Appendix B).  

 NDMA Yield (%)= ([NDMA] (nM) [Amine]0 (nM)⁄ ) ×100 Equation 6.1 

DOC and DN were determined using a Shimadzu TOC-VCSH instrument 

equipped with a Total Nitrogen module (TNM-1). UV254 absorbance of NOM samples 

was measured using a Varian Cary-50 spectrophotometer, and used to calculate SUVA254 

values (Karanfil et al., 2002). Ammonia concentrations were measured with a HACH 

spectrophotometer. Nitrite, nitrate, and bromide were measured using an ion 
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chromatograph (Dionex, ICS 2100). Concentrations of free chlorine, and mono- and 

dichloramine as free chlorine were determined following SM 4500-Cl F 

(APHA/AWWA/WEF, 2005). All analytical methods and their MRLs are given in Table 

4.1. All samples and blanks were prepared and extracted in duplicates, and then each 

extract was analyzed on GC-MS/MS as described in Chapter Four. Error bars in all the 

graphs show the variability due to multiple extraction and analysis (n=4) under the same 

conditions. 

 

Results and Discussion 

Effect of Amine Structure on NDMA Formation 

Table 6.2 shows the NDMA yields observed from the chloramination of 21 

selected amines (10 aliphatic and 11 aromatic) during the FP tests along with the yields 

reported in the literature for the purpose of comparison. The yields obtained for DMA 

and RNTD in this study agree well with those reported in the literature (Lee et al., 2007a; 

Mitch et al., 2009; Shen and Andrews, 2011a,b; Le Roux et al., 2012a) despite some 

differences in the experimental conditions of FP tests (e.g., contact time, buffer type, and 

pH) (Table 6.3). 
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Table 6.2. Molar yields of NDMA from selected compounds in this study and in selected 

studies. 

Compound 
This Studya Studies Reported in DDW 

Molar Yield (%b) Yield (%b) Referencec 

DMA 1.2 (0.12)d 

3.0 Lee et al., 2007a 

0.082 Mitch et al., 2009 

1.2 Le Roux et al., 2011b 

2.3 Le Roux et al., 2012a 

TMA 1.9 (0.16) 
1.2 Lee et al., 2007a 

0.017 Mitch et al., 2009 

DMEA 0.5 (0.09) NA NA 

DMBA 0.3 (0.05) NA NA 

DMiPA 83.9 (0.67) NA NA 

DMtBA 6.2 (0.03) NA NA 

DMAAcCN 2.4 (0.28) NA NA 

DMEtOH 0.3 (0.14) 0.5 Lee et al., 2007a 

DMEDA 0.8 (0.08) NA NA 

DMEtSH 0.8 (0.01) NA NA 

DMAN 0.2 (0.03) 1.2 Lee et al., 2007a 

4-DMAP 0.06 (0.02) NA NA 

2-DMAP 0.09 (0.01) 0.37 Le Roux et al., 2012a 

2-Cl-DMAN 0.02 (0.02) NA NA 

DMAPhOH 1.0 (0.05) 1.0 Le Roux et al., 2012a 

DMPhA 0.4 (0.06) NA NA 

DMBzA 83.8 (0.99) 19.63 Mitch et al., 2009 

RNTD 80.5 (2.85) 

80.2 Le Roux et al., 2011a 

89.9 Shen and Andrews, 2011a 

82.7 Shen and Andrews, 2011b 

DMAFuOH 81.8 (1.58) 74.9 Le Roux et al., 2012a 

DMPMA 25.0 (1.97) NA NA 

DMTMA 77.6 (1.99) NA NA 

a: Experimental conditions include compound dose of 200 nM, 100 mg/L chloramine (as Cl2), contact time 

of 5 days, pH 7.5 adjusted with 10 mM phosphate buffer. 

b: NDMA molar conversions calculated by Error! Reference source not found.. 

c: Experimental conditions of studies reported in literature are summarized in Table 6.3. 

d: Error Bars represent data range for duplicate samples. 

NA: Not Applicable  
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Table 6.3. Experimental conditions of used in this study and the literature. 

Reference 
pH 

(Buffer) 

Chloramine 

Dose 

(mM as Cl2) 

Cl:N 

(mol/mol) 

Contact 

Time 

(day) 

Background 

This study 
7.5 (10 mM 

Phosp.) 
2.0 0.80:1 5 

DDW, 

NOM, RW 

Lee et al. 2007a 
7.0 (10 mM 

Phosp.) 
2.0 - 10 DDW 

Mitch et al. 2009 8.0 (Phosp.) 0.26 0.80:1 3 DDW 

Le Roux et al. 

2012a 

8.0 (10 mM 

Phosp.) 
2.5 0.83:1 1 DDW 

Le Roux et al. 

2011a 

8.0 (10 mM 

Phosp.) 
2.5 0.83:1 1 DDW 

Shen and 

Andrews, 2011a 

7.0 (2 mM 

Phosp.) 
0.55 0.84:1 1 DDW, TW 

Shen and 

Andrews, 2011b 
7.0 0.05 0.84:1 1 

DDW, TW, 

LW, RW 
TW: Tap/drinking water 

LW: Lake water 

RW: River water 

 

The chain length of the alkyl group next to the nitrogen atom of DMA moiety did 

not significantly affect the NDMA yield (Figure 6.2). DMA and TMA exhibited about 

1% and 2% of NDMA yields, respectively, and the yield decreased slightly as the number 

of carbon chain increased from –CH3 (i.e., TMA) to –CH2CH2CH2CH3 (i.e., DMBA). 

These relatively low yields suggest that NDMA formation is not likely to be either 

enhanced or reduced by a long alkyl chain of tertiary amines. However, higher NDMA 

yields were observed for both DMiPA (84%) and DMtBA (6%) which have branched 

alkyl groups (i.e., isopropyl and tertiary butyl) next to the nitrogen atom of DMA (Figure 

6.3). Such high NDMA yields have not been previously reported for any aliphatic amine 

precursor. Assuming that the nucleophilic substitution between chloramine species and 
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tertiary amine is the initial step of the NDMA formation, the stability of the leaving group 

may play a key role in the reactivity of precursor compounds. In other words, branched 

alkyl groups become carbocations such as (CH3)2CH+ and (CH3)3C
+, which are more 

stable than unbranched ones such as CH3
+ and CH3CH2

+ when the N-C bond is broken in 

aqueous solutions (Streitwieser et al., 1992). Thus, DMiPA and DMtBA, which also have 

a good leaving group, formed more NDMA than DMA, TMA, DMEA, and DMBA. 

Steric hindrance, because of a bulk tertiary butyl leaving group, may account for the 

lower NDMA formation from DMtBA (6%) than DMiPA (84%). The yield of NDMA 

from DMtBA was still significantly higher than those from unbranched aliphatic amines. 

 

 
Figure 6.2. The effect of chain length (attached to DMA moiety) on NDMA formation. 

Error bars represent data range for duplicate samples. 
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Figure 6.3. The effect of branched groups (attached to DMA moiety) on NDMA 

formation. Error bars represent data range for duplicate samples. 

 

DMEA formed both NDMA and NMEA (data not shown in the graph) through N-

C bond cleavage in N-CH2CH3 or N-CH3, and their yields were 0.5% and 1%, 

respectively. Since DMEA has one N-CH2CH3 and two N-CH3 in its molecular structure, 

it seems that there was no difference in N-C bond breaking tendency between N-CH2CH3 

and N-CH3. Variable functional groups such as CN, OH, NH2, and SH located at C-1 and 

C-2 positions in the alkyl group attached to the DMA moiety (e.g., DMAAcCN, 

DMAEtOH, DMEDA, and DMAEtSH) were also investigated, and no changes in NDMA 

yields were observed compared to those of TMA and DMEA (Figure 6.4). Although 

very low NDMA yields were obtained for some compounds, the NDMA levels measured 

in extracts were always above the minimum reporting limit. Therefore, only aliphatic 
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tertiary amines with branched alkyl groups attached to N(CH3)2 showed a high yield of 

NDMA, possibly due to the stability of their leaving groups. 

 

 
Figure 6.4. NDMA formation from DMEA and TMA and their derivatives. Error bars 

represent data range for duplicate samples. 

 

Unlike aliphatic amine precursors, relatively high NDMA yields have been 

reported from chloramination of tertiary amines, where DMA structure is associated with 

benzyl-like functional groups (Lee et al., 2007a; Sacher et al., 2008; Shen and Andrews, 

2011a,b). However, what causes such higher NDMA yields than DMA still remains 

unknown. In this study, DMBzA (84%), RTND (81%), DMAFuOH (82%), DMPMA 

(25%), and DMTMA (78%), which have only one carbon between the ring and the DMA 

structure, formed high levels of NDMA compared to the other compounds with two 

carbons (i.e., DMPhA) or no carbon (i.e., DMAN, 4-DMAP, 2-DMAP, DMAPhOH, and 
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2-Cl-DMAN) between them (Figure 6.5). The leaving groups from the former 

compounds (one carbon distance) are carbocations which can be greatly stabilized by 

resonance, whether heteroatoms (e.g., O, N, and S) are present or not in their rings. 

However, the latter group of compounds (zero or two carbon distance) which formed low 

NDMA do not have such advantages to stabilize carbocation intermediates. Thus, again, 

the stability of the leaving groups may be a critical factor controlling the reactivity of 

precursors towards NDMA formation. However, neither the assistance of an electron 

donating heteroatom nor the order of reactivity among N, S, and O was not observed in 

our experiments. Although, Sacher et al. (2008) conducted experiments under different 

conditions, their findings also showed that precursors with one carbon between the ring 

and the DMA structure had consistently high NDMA conversions (≥50%). On the other 

hand, compounds with DMA groups directly attached to a benzene ring gave NDMA 

yields lower than 10%. 
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Figure 6.5. The effect of distance of the benzene ring (attached to DMA moiety) on 

NDMA formation. Error bars represent data range for duplicate samples. 

 

 
Figure 6.6. The effect of heteroatom in the benzyl group (attached to DMA moiety) on 

NDMA formation. Error bars represent data range for duplicate samples. 
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Figure 6.7. NDMA formation from DMAN and its derivatives. Error bars represent data 

range for duplicate samples. 

 

The nitrogen atom in 5- (e.g., DMPMA) and 6-membered (e.g., 2- and 4-DMAP) 

ring structures is likely to reduce the electronegativity of aromatic rings, and 

consequently the NDMA yields decreased compared to their corresponding compounds 

(i.e., RNTD and DMAN). It was also observed that NDMA formation from DMAPhOH 

was higher than that of 2-Cl-DMAN. 

In NDMA formation, the pKa of precursors can be a factor for overall conversion. 

Deprotonated amines are expected to be more prone to reactions than protonated amines. 

However, the experimental results did not support this expectation. NDMA yields of 

TMA (pKa of 9.8) and DMAAcCN (pKa of 4.2) were very similar with NDMA yields of 

1.9 and 2.4%, respectively. Similarly, DMAN, 4-DMAP, and DMAPhOH with pKa of 
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5.1, 9.5, and 10.2, respectively, all showed NDMA yields lower than 1%. Although pKa 

of the tertiary amine can have a role in NDMA formation, the stability of the structure 

appeared to govern the overall NDMA formation for the compounds examined in this 

study. Since the design (experiments were conducted at pH 7.5) and compound selection 

for this study were intended to examine mainly the structure effect, further research is 

warranted to examine the effect of pKa. 

Overall, these results suggest that the stability of leaving groups of both aliphatic 

and aromatic tertiary amines may play an important role in NDMA formation, which will 

allow us to understand the high yields of NDMA from certain precursor compounds 

based on information from their chemical structure. The NDMA formation yields 

determined for many compounds in this study (DMEA, DMBA, DMiPA, DMtBA, 

DMAAcCN, DMEDA, DMAEtSH, 4-DMAP, 2-Cl-DMAN, DMPhA, DMPMA, and 

DMTMA) are reported for the first time. 

The Effect of NOM on NDMA formation 

For practical applications in water and wastewater treatment, it is important to 

understand the interactions of the background matrix with NDMA precursors and their 

roles in NDMA formation. To test the NOM effect, two fractions of NOM were used 

which were available in our laboratory. HPO fraction of NOM contains organics high in 

aromaticity which are hydrophobic. TPH fraction of NOM contains organics low in 

aromaticity which transphilic. HPO fraction was used as a representative of the raw 

water; whereas, TPH fraction was used as a representative for the water after 

conventional treatment (i.e., coagulation/flocculation/sedimentation). The NDMA yields 
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for selected precursors in TPH and HPO solutions are given in Figure 6.8 and Figure 

6.9. NDMA formation in TPH (29 ng/L) was higher than in the HPO (7 ng/L) fraction 

which was consistent with the literature (Chen and Valentine, 2007; Dotson et al., 2009). 

These values were taken into account during calculation of NDMA yields of model 

compounds in NOM solutions. NDMA conversion from DMA and selected aliphatic 

tertiary amines showed a decrease in the presence of NOM. However, there was no 

significant change in NDMA yields for DMEA, DMBA and DMAEtOH (Figure 6.8-A 

and -B). The impact of NOM was higher in derivatives of DMEA and TMA (i.e., 

DMEDA, DMAEtSH, DMAAcCN) than other aliphatic compounds (Figure 6.8-B). In 

most cases, the least NDMA formation was observed in the presence of the TPH fraction. 

Unlike aliphatic compounds, NDMA formation from aromatic tertiary amines generally 

increased in the presence of both NOM fractions with the exception of DMPMA, 

DMTMA, and DMAPhOH (Figure 6.9-A and -B). Among aromatic tertiary amines that 

showed an increase, NDMA formation was higher in the presence of HPO than TPH 

fraction with the only exception of DMBzA which formed higher NDMA in TPH than in 

HPO solution. Although DMAN and its derivatives had no significant difference between 

the background of DDW and TPH solutions, NDMA yields from some of these 

compounds in HPO solution increased up to five times. Only DMAPhOH among DMAN 

derivatives showed lower NDMA yields in both NOM solutions than in DDW. 

To date, the NOM effect on NDMA formation has not been systematically 

investigated except for RNTD. Shen and Andrews (2011a) have reported that NDMA 

yields from RNTD were 89.9% and 94.2% in DDW and tap water, respectively. These 
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results are consistent with the NDMA yields observed in this study, which were higher in 

the presence of NOM (89.1% in TPH and 91.7% in HPO) than in DDW (80.5%) (Figure 

6.9-A). In another study by Shen and Andrews (2011b), the presence of NOM decreased 

formation of NDMA reaction rate within a 24 hour incubation period and the yield in 

NOM was lower than in DDW. The decrease in the reaction rate and NDMA yields in 

NOM background was attributed to a temporary reversible covalent bond formation 

between aromatic amines and functional groups of NOM (such as, carbonyls and 

quinones). Moreover, the researchers stated that NDMA conversion could still reach 

maximum levels, if enough reaction time was provided. 
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Figure 6.8. NDMA FPs for DMA and tertiary amines in DDW, M-B TPH and M-B HPO 

solutions. (A) Aliphatic amines with different chain lengths and branches. (B) DMEA 

and its derivatives and TMA and its derivative. Error bars represent data range for 

duplicate samples.  

(A) 

(B) 
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Figure 6.9. NDMA FPs for DMA and tertiary amines in DDW, M-B TPH and M-B HPO 

solutions. (A) Aromatic amines for comparison of distance of carbon ring and presence of 

heteroatom in carbon ring. (B) DMAN and its derivatives. Error bars represent data range 

for duplicate samples.  

(A) 

(B) 
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For selected compounds (i.e., DMA, TMA, DMiPA, DMBzA, and RNTD), the 

NOM effect was also tested in natural waters (M-B Raw and M-B Treated water), and the 

results are provided in Figure 6.10. Highest NDMA yields from DMA, TMA, and 

DTMiPA were observed in M-B Raw water, while DMBzA and RNTD formed the 

highest NDMA in M-B treated water, which was in good agreement with the results of 

the HPO/TPH experiments. Therefore, the effect of inorganic components in M-B water 

on NDMA formation appear to be negligible. 

 

 

 

Figure 6.10. NDMA molar conversion of selected amines in DDW, M-B Treated and M-

B Raw background solutions. Error bars represent data range for duplicate samples. 
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RNTD and other aromatic compounds which have electron-withdrawing groups 

(EWGs) such as methyl furan and benzyl exhibited higher NDMA yields in the presence 

of NOM. On the contrary, DMPMA and aliphatic tertiary amine compounds with 

electron-donating groups (EDGs) such as methyl pyrrole and alkyl formed less NDMA in 

the presence of NOM. This is probably because of competition between precursors and 

negatively charged NOM in the reaction matrixes for chloramine species. However, the 

NOM effect was not obvious in the case of DMTMA which has a methyl thiophene (an 

EWG). NDMA formation from DMTMA increased in TPH and decreased in HPO 

solution. Therefore, the interactions between NDMA precursors and NOM need to be 

considered as an important factor affecting NDMA formation in natural waters. 

Both mono- and dichloramine have been shown to react with different compounds 

(phenols, organophosphates, etc.) at different rates (Heasley et al., 2004; USEPA, 2008). 

Therefore, different chloramine reactivity with different moieties can create competition 

in the presence of amines. In our experiments, dichloramine was always detected (2-3 

mg/L) due to decomposition of monochloramine at pH 7.5 in DDW control bottles. The 

observation of lower dichloramine levels in TPH and HPO waters as compared to DDW 

can be attributed to the reactions of dichloramine with NOM. Since the reaction of DMA 

with dichloramine has been known as a major pathway to form NDMA (Schreiber and 

Mitch, 2005, 2006; Mitch et al., 2009), a competition for dichloramine in the presence of 

NOM could account for the differences observed in overall NDMA conversions. 
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The Effect of Chloramine Species on NDMA Formation 

Although monochloramine is dominant at pH 7.5, trace level of dichloramine is 

also present and NDMA formation may be affected by the reaction of dichloramine with 

DMA. To further investigate the effect of chloramine species on the formation of 

NDMA, an excess amount of ammonia was used to minimize the formation of 

dichloramine according to Equation 6.2. 

 2 NH2Cl + H+ ↔ NHCl2 + NH4
+ Equation 6.2 

In the samples spiked with ammonia, dichloramine was not observed during five 

days of contact time as shown in Figures C.1-C.3, thus NDMA formation in these 

samples were mainly attributed to monochloramine. Eight tertiary amines (TMA, 

DMiPA, DMtBA, DMBzA, RNTD, DMAFuOH, DMPMA, and DMTMA) were selected 

and FP tests were conducted with and without ammonia addition. The effects of 

chloramine speciation on NDMA conversion from these compounds are presented in 

Figure 6.11. By addition of ammonia, the NDMA yield from DMA decreased from 1.7% 

to 0.97% which indicates the importance of dichloramine but also involvement of 

monochloramine in NDMA formation. The change in NDMA FP in the presence of 

background ammonia was drastic for TMA, DMiPA and DMtBA as their yields 

decreased from 0.43% to 0.03%, 61.2% to 5.8% and 1.84% to 0.07%, respectively, 

indicating that dichloramine was more important species than monochloramine to form 

NDMA. However, for DMBzA, DMAFuOH, and DMTMA which are aromatic tertiary 

amines producing high yields (>90%) of NDMA, the effects of dichloramine on NDMA 

yields were less than the aliphatic precursors. Therefore, DMBzA, DMAFuOH, and 
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DMTMA reacted with both mono- and dichloramine, but mostly with monochloramine to 

form NDMA. Interestingly, RNTD showed an insignificant change in NDMA formation 

with and without ammonia addition probably because of its high monochloramine-

reactive nature. This observation is also consistent with study by Le Roux et al. (2011, 

2012b) that showed monochloramine was responsible for NDMA formation from RNTD. 

DMA, TMA, DMiPA, and DMtBA which were sensitive to dichloramine have EDGs in 

their structures, whereas DMBzA, RNTD, DMAFuOH, and DMTMA which have EWGs 

attached to the DMA moiety were sensitive to monochloramine. The results support the 

hypothesis that the reactivity of tertiary amines with chloramines (mono- and di-) toward 

NDMA formation is dependent on the electron distribution of precursors. 

 

 

Figure 6.11. NDMA formations from selected compounds reacted with monochloramine 

in the presence of excess ammonia and with mixture of mono- and dichloramine under 

regular chloramination conditions. Error bars represent data range for duplicate samples. 
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Considering the observation that tertiary amine precursor compounds react with 

both mono- and dichloramine to form NDMA, and the preference of chloramine species 

depends on the structure of the leaving group attached to the nitrogen atom of the DMA 

moiety, we postulate that the initial step of NDMA formation is nucleophilic attack of 

amines on chloramines and the preference of the chloramine species depends on the 

electron densities of the precursors and oxidants (Figure 6.12). Electron poor nitrogen of 

tertiary amines with EWG reacts with monochloramine which has electron rich nitrogen 

to form the N-N bond. Likewise, electron rich nitrogen of tertiary amines reacts with 

dichloramine with electron poor nitrogen to form the N-N bond. The reaction proceeds 

with the release of the leaving group forming a carbocation which was reported for the 

NDMA formation from RNTD by Le Roux et al. (2012b). Hence, a stable leaving group 

would facilitate these reactions towards NDMA formation. Both electronegativity and 

stability of the leaving group in tertiary amines are closely related with the reactivity of 

NDMA precursors and the preferred chloramine species involved in the NDMA 

formation reactions. 

 

 

Figure 6.12. Schematic diagram depicting interaction of tertiary amine with chloramine 

followed by end products such as carbocation and NDMA. 
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Conclusions 

A fairly wide range (0.02% to 83.9%) of NDMA formation from 21 selected 

amines indicated the importance of the structure of tertiary amines on NDMA formation. 

The results showed that both stability and electron distribution of the leaving group of the 

tertiary amines have an important role in NDMA formation. The DMA moiety associated 

with branched alkyl groups or benzyl like structures, which have only one carbon 

between the ring and DMA structure, consistently gave high yields of NDMA formation 

(>25%). Compounds with EWG reacted preferentially with monochloramine, whereas 

compounds with EDG showed a tendency to react with dichloramine to form NDMA. 

These findings indicated that characteristics of tertiary amines would determine the 

responsible chloramine species for NDMA formation. Tertiary amines can form NDMA 

with or without degradation to DMA, and the overall yield depends on the stability of the 

leaving group. When the amines were present along with NOM in solution, NDMA 

formation increased for compounds with EWG while it decreased for compounds with 

EDG. This impact was attributed to the competition between NOM and amines for 

chloramine species. 
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CHAPTER SEVEN 

7. THE ROLE OF CHLORAMINE SPECIES IN NDMA FORMATION 

 

Introduction and Objective 

Nitrosamines are considered as an emerging DBP in drinking water, as they are 

classified as probable human carcinogens associated with a 10–6 lifetime cancer risk at 

concentrations as low as 0.2 ng/L (USEPA, 1993). Nitrosamine formation is commonly 

associated with water distribution systems that apply chloramine as the post-oxidant 

(Choi and Valentine, 2002a,b; Choi et al., 2002; Mitch et al., 2003a,b; Russell et al., 

2012), and among the nitrosamines, NDMA has drawn the most attention due to its 

frequent detection and elevated concentrations (Russell et al., 2012). Although there are 

currently no federal regulations for nitrosamines in drinking water in the United States, 

widespread detection of NDMA in drinking water distribution systems has prompted the 

California Department of Health Services and the Massachusetts Department of 

Environmental Protection to implement a maximum level of 10 ng/L for NDMA in 

drinking water (MassDEP, 2004; OEHHA, 2006). Furthermore, USEPA has recently 

identified nitrosamines as one of three potential groups of contaminants highlighted for 

possible regulatory action in the near future (Roberson, 2011). 

DMA has been the most commonly studied model precursor of NDMA (Mitch et 

al., 2003a; Bond and Templeton, 2011) and frequently detected in natural waters. 

However, several studies have shown that DMA concentrations in surface waters 
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(Gerecke and Sedlak, 2003; Lee et al., 2007a) or secondary municipal wastewaters 

(Mitch and Sedlak, 2004) were inadequate to explain the observed levels of NDMA. 

Rather than DMA, tertiary or quaternary amines with the DMA moiety (Lee et al., 2007a; 

Kemper et al., 2010; Shen and Andrews, 2011a), NOM (Gerecke and Sedlak, 2003; 

Mitch and Sedlak, 2004; Chen and Valentine, 2007; Dotson et al., 2007; Krasner et al., 

2008a), and anthropogenic organic materials have been shown to form NDMA. Potential 

anthropogenic sources of NDMA precursors include polyelectrolytes and ion-exchange 

resins (Gough et al., 1977; Kimoto et al., 1980; Najm and Trussell, 2001; Kohut and 

Andrews, 2003; Wilczak et al., 2003; Mitch and Sedlak, 2004; Nawrocki and 

Andrzejewski, 2011; Gan et al, 2013a,b), fungicides, pesticides, and herbicides (Graham 

et al., 1995; Chen and Young, 2008; Schmidt and Brauch, 2008), pharmaceuticals, 

personal care products, and cosmetics (Sacher et al., 2008; Shen and Andrews, 2011a), 

and wastewater effluent impacted waters (Sedlak et al., 2005; Krauss et al., 2009; Shah et 

al., 2012; Gan et al, 2013a,b). 

Understanding formation kinetics is essential to develop strategies for controlling 

NDMA and other nitrosamines in drinking water distribution systems. It has been 

reported that NDMA formation in natural and wastewater impacted waters was relatively 

slow, and further NDMA could continue to form in distribution systems as water age 

increased (i.e., a plateau was reached after 150-200 hours of chloramine contact time) 

(Barrett et al., 2003; Charrois and Hrudey, 2007, Sacher et al., 2008; Krasner et al., 2010; 

Russell et al., 2012). Since various precursors with different reactivity are present in 

source waters, it is not simple to explain what causes this slow NDMA formation. Only a 
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few studies, focusing on specific model compounds, have investigated the following 

factors which may control the NDMA formation rate: (i) the effect of temperature and pH 

on RNTD (Krasner et al., 2010); and (ii) the effect of NOM and pH on selected 

pharmaceuticals including RNTD (Shen and Andrews, 2011b, 2013a). Although, these 

factors had some influence on the NDMA formation rate, the NDMA formation reached 

its maximum yield within a relatively short time (i.e., plateau reached after 24 hours with 

RNTD). Thus, findings from selected model precursor compounds so far are insufficient 

to explain the observed trends in natural water samples. Overall, data regarding the 

NDMA formation rate both in real water samples, and from model compounds are largely 

lacking. 

The main objective of this study was to investigate: (i) the role of chloramine 

species (i.e., mono- and dichloramine) in the formation of NDMA from DMA and 

selected tertiary amine precursors; (ii) the factors that may influence dichloramine levels 

(i.e., pH, sulfate and NOM); and (iii) the role of mono- and dichloramine during NDMA 

formation in selected natural waters. Four tertiary amines were selected based on their 

structures. NDMA formation rates (i.e., time to reach the plateau) were monitored from 

selected model compounds in three parallel experiments with varying amounts of 

dichloramine. Based on the results, two amines were selected due to their extreme 

sensitivity to specific chloramine speciation and the effects of pH, sulfate and NOM were 

further examined. Since chloramine speciation could also be an important factor in 

natural samples; the impact of chloramine species was examined in water from a 

watershed, and in water from a drinking water treatment plant. 
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Materials and Methods 

Amines 

DMA and four tertiary amines were selected as model precursors based on their 

electron distribution and sensitivity to chloramine species as demonstrated in the previous 

chapter. Chemical structures and abbreviations of selected amines are given in Figure 

7.1. All compounds were purchased from Sigma-Aldrich, and TCI and used without 

further purification. 

 

 

Figure 7.1. Molecular structures of selected amines. 

  



88 

Experimental Procedure 

A stock solution (4 mM) for each amine was prepared in methanol and stored in a 

65 mL amber glass bottle at 4ºC until use. Each model compound was diluted to 200 nM 

in DDW. The role of chloramine species was investigated by conducting three parallel 

experiments under the following conditions: (i) FP experiments with an initial chloramine 

dose of 100 mg/L, (ii) simulated distribution system (SDS) experiments with an initial 

dose of 3 mg/L chloramine, and (iii) SDS experiments with an initial dose of 3 mg/L in 

the presence of 100 mg/L ammonia to suppress the formation of monochloramine to 

dichloramine (Equation 6.2) (Some additional information about the chloramine 

chemistry can be found in the Appendix A). In these experiments to keep the pH 

constant at 7.5, 10 mM phosphate buffer was used in FP experiments and 4 mM 

carbonate buffer was used in SDS experiments. The preformed chloramine stock solution 

was prepared by mixing diluted sodium hypochlorite and ammonium sulfate solutions at 

Cl:N mass ratio of 4:1 at pH 9 and spiked to the samples. After the injection of 

chloramine solution into eight identical amber bottles, bottles were opened at 3, 6, 12, 24, 

48, 72, and 120 hours to measure NDMA formation and residual chloramine. 

The factors that may influence chloramine decomposition and speciation were 

assessed under SDS conditions for two amines (DMiPA and RNTD). First, the effect of 

NOM was investigated in background solutions that were prepared using raw water, and 

treated water collected after coagulation/flocculation/sedimentation processes before 

filtration from the Charleston (CH) DWTP in South Carolina. Water samples were 

filtered immediately with pre-washed 0.2 µm polyethersulfone filters. DOC levels of all 
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NOM solutions were adjusted to 1.5, 3.0 and 6.0 mg C/L by diluting with DDW. The 

selected characteristics of NOM solutions are shown in Table 7.1. Second, the pH effect 

was investigated by adjusting the pH of DDW to 6.5 and 8.5. And lastly, the effect of 

sulfate was investigated in DDW by spiking sodium sulfate to achieve 10, 25 and 50 

mg/L sulfate concentrations.  

 

Table 7.1. Selected water quality parameters of the natural water samples. 

 

DOC 

(mg 

C/L) 

SUVA254 

(L/mg.m) 

DN 

(mg 

N/L) 

NH3 

(mg/L) 

NO2
- 

(mg/L) 

NO3
- 

(mg/L) 

SO4
-2 

(mg/L) 

Br- 

(µg/L) 

CH Rawa 6.3 3.3 0.3 <MRL <MRL 0.35 6.3 75 

CH Treatedb 2.8 1.7 0.2 <MRL <MRL 0.28 36.8 75 

Upstream 1.5 3.0 0.6 <MRL <MRL 2.25 1.2 19 

WW 

Effluent 
7.8 1.9 18.2 <MRL 0.195 73.50 52.0 162 

Downstream 2.0 2.8 2.7 <MRL <MRL 11.19 6.1 33 
a: In background NOM experiments this water was diluted to DOC of 1.0, 2.5, & 5.0 mg C/L using DDW. 

b: In background NOM experiments this water was diluted to DOC of 1.0, & 2.5 mg C/L using DDW. 

Reported values are average of two measurements (n=2). 

 

CH Raw and CH Treated were used without any dilution. For a case study, a 

wastewater-impacted creek was selected and samples were collected at three different 

positions (i.e., upstream of a WWTP, WWTP effluent, and 8.4 km downstream from the 

WW discharge point). Further details of the watershed can be found elsewhere (Gan et 

al., 2013b). Selected characteristics of natural water samples are also given in Table 7.1. 

The initial chloramine concentrations (i.e., either 3 or 100 mg/L) were enough to provide 

an excess amount of chloramine for all tests (i.e., DDW or natural samples) during the 5 

day reaction time. All of the NDMA formation tests in this study were conducted in 1-L 

amber glass bottles without headspace in the dark at ~22oC. 
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Analytical methods 

NDMA was analyzed following USEPA method 521 (USEPA, 2004), consisting 

of SPE using coconut charcoal followed by GC-MS/MS analysis. Analytical details can 

be found in the previous section and a brief summary follows. For the sample analysis, 

500 mL of chloraminated amine solutions were quenched with sodium thiosulfate and 

NDMA-d6 was added as a surrogate before SPE. Samples were passed through coconut 

charcoal cartridges preconditioned with DCM, methanol, and DDW. The cartridges were 

dried with air, and then eluted with DCM. Eluents were passed through sodium sulfate 

columns to remove residual moisture, then concentrated to 1 mL under a gentle stream of 

high purity nitrogen gas. The extracts were spiked with NDPA-d14 as an internal 

standard, and analyzed using a Varian GC-MS/MS 4000 under the CI mode. Percent 

molar yield of each amine was calculated using Equation 6.1 (Appendix B). 

DOC and DN were determined using a Shimadzu TOC-VCSH instrument equipped 

with a Total Nitrogen module (TNM-1). UV254 absorbance of NOM samples was 

measured using a Varian Cary-50 spectrophotometer, and used to calculate SUVA254 

values. Ammonia concentrations were measured with a HACH spectrophotometer. 

Nitrite, nitrate, bromide, and sulfate were measured using ion chromatography (Dionex, 

ICS 2100). Concentrations of free chlorine, and mono- and dichloramine as free chlorine 

were determined following SM 4500-Cl F (APHA/AWWA/WEF, 2005). All analytical 

methods and their MRLs are given in Table 4.1. All samples and blanks were prepared, 

extracted and analyzed in duplicates. Error bars in all the graphs show the variability due 

to multiple analysis (n=2). 
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Results and Discussion 

NDMA Conversion from Selected Model Compounds 

Figures 7.2 through 7.6 shows the NDMA molar conversion from DMA and four 

tertiary amines over reaction time under three different chloramination conditions: FP, 

SDS, and SDS in the presence of excess ammonia. Residual chloramine concentrations 

are given Appendix D. In FP tests, an excessive dose of chloramine (i.e., 100 mg/L) was 

used to produce both monochloramine (~95%) and dichloramine (~5%) at a given pH and 

each chloramine species was enough to form NDMA from selected amines. Thus, under 

FP test conditions, the NDMA conversion rates from all model compounds were 

relatively fast. The maximum NDMA formation was achieved within 24 hours of 

chloramination and no additional formation was observed. The NDMA yields obtained at 

120 hours from these precursors were in a good agreement with  those reported by other 

research groups (Lee et al., 2007a; Sacher et al., 2008; Mitch et al., 2009; Shen and 

Andrews, 2011a,b; Le Roux et al., 2012b) despite some differences in experimental 

conditions (Table 6.3). 

For DMA, NDMA conversion yields under SDS conditions did not decrease 

significantly compared to FP tests (Figure 7.2). However, overall NDMA yield after 120 

hours of reaction time decreased from 1.1% in FP test to 0.8% under SDS conditions. 

Even though the difference is trivial, this change could be caused by the limited 

availability of the dichloramine. Further decreases in dichloramine concentration in the 

presence of excess ammonia resulted in only 0.2% NDMA molar conversion after 120 
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hours. Although the reaction with dichloramine via the Cl-UDMH pathway is the most 

commonly accepted pathway for the NDMA formation from DMA, the observed slow 

and low NDMA conversion yields in the presence of ammonia indicate the NDMA 

formation via nucleophilic substitution reactions between monochloramine and DMA via 

UDMH intermediates could be an alternative pathway to form NDMA (Mitch and 

Sedlak, 2002; Choi and Valentine, 2002a,b; Mitch et al., 2009). 

 

 

Figure 7.2. NDMA formation from DMA tested under three chloramination conditions: 

FP, SDS, and SDS in the presence of excess ammonia. Error bars represent data range for 

duplicate samples.  
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The NDMA formation rates from DMiPA and TMA both decreased significantly 

under SDS chloramination conditions compared to FP tests (Figure 7.3 and 7.4). Methyl 

or isopropyl functional group is likely to donate electrons to the nitrogen atom. 

Therefore, the electron-rich nitrogen atoms in DMiPA and TMA tend to react with 

dichloramine species where the electron density of nitrogen is reduced by two chlorine 

atoms rather than monochloramine which has only one chlorine to withdraw electrons. 

Consequently, NDMA formation from both amines is expected to be limited by the 

availability of dichloramine species. Since dichloramine concentration was much lower 

in the SDS test than FP, the transformation of monochloramine to dichloramine would be 

a limiting factor for NDMA formation. Conversion of monochloramine to dichloramine 

is a reversible reaction. However, the forward reaction from monochloramine to 

dichlroamine can be suppressed by an excess amount of ammonia. In the presence of 

excess ammonia under SDS conditions, the NDMA conversion yields from DMiPA and 

TMA were 0.3 and 0.1% at 120 hours, respectively, indicating that dichloramine is the 

dominant species in the NDMA formation from these two amines. 
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Figure 7.3. NDMA formation from TMA tested under three chloramination conditions: 

FP, SDS, and SDS in the presence of excess ammonia. Error bars represent data range for 

duplicate samples. 

 
Figure 7.4. NDMA formation from DMiPA tested under three chloramination 

conditions: FP, SDS, and SDS in the presence of excess ammonia. Error bars represent 

data range for duplicate samples.  



95 

 

Under FP or SDS conditions, the NDMA conversion yield from DMBzA reached 

at its maximum (~80%) within 24 hour of chloramination (Figure 7.5). However, the 

NDMA yield reduced to 36.2% at 120 hours under SDS conditions in the presence of 

excess ammonia. During nucleophilic substitution reactions, benzyl group (C6H5CH2-) of 

DMBzA could be a good leaving group resulting in high NDMA formation yields. The 

decrease in the NDMA conversion yields in the presence of excess ammonia indicates 

that dichloramine was a more important species than monochloramine toward NDMA 

formation from DMBzA. 

 

 

Figure 7.5. NDMA formation from DMBzA tested under three chloramination 

conditions: FP, SDS, and SDS in the presence of excess ammonia. Error bars represent 

data range for duplicate samples.  
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The furan ring next to the DMA moiety of RNTD is also a good leaving group, 

and thus RNTD is likely to react with monochloramine having electron-rich nitrogen 

rather than dichloramine as indicated in the previous section. It has been reported that 

RNTD formed NDMA via nucleophilic substitution by monochloramine (Le Roux et al., 

2012b). The NDMA conversion yield under both FP and SDS conditions reached its 

maximum (~80%) within 24 hours and remained until 120 hours (Figure 7.6). Since 

monochloramine is the dominant chloramine species under SDS conditions at the given 

pH, there was no distinguished change observed in the NDMA conversion yields from 

RNTD between FP and SDS conditions. Therefore, further changes in the NDMA 

formation by suppression of dichloramine with excess ammonia were not expected and 

overall yields under three different chloramination conditions were almost same. 

However, the NDMA conversion yield within initial 24 hours of chloramination with 

ammonia was only 62.9% and it took longer time to reach its maximum. The results 

indicate that monochloramine, a dominant species, is more important to form NDMA 

than dichloramine, but dichloramine may also make contribution to NDMA formation 

from RNTD to some extent. This is consistent with findings from an ongoing project that 

the activation energy of the reaction of monochloramine with RNTD is more favorable 

than with dichloramine but dichloramine is still capable of reacting with RNTD to form 

NDMA (Liu et al., 2014). 
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Figure 7.6. NDMA formation from RNTD tested under three chloramination conditions: 

FP, SDS, and SDS in the presence of excess ammonia. Error bars represent data range for 

duplicate samples. 

 

Overall, the results suggest that the NDMA formation from the reaction of amine 

compounds with chloramines is dependent on the electron distribution of the leaving 

group of amines. Based on the structure, the theoretical electron densities of leaving 

groups in the selected amines is expected to follow the order of 

DMiPA>TMA>DMA>DMBzA>RNTD. This trend was also reflected in the sensitivity 

to chloramine species, which will allow us to understand the NDMA conversion yields 

from certain precursor compounds based on their chemical structure information. 
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Factors that Influence the NDMA Conversion over Time 

NOM Effect: To investigate the NOM effect on the NDMA formation, water 

samples collected from CH DWTP were used as background matrix. It is well known that 

HPO is a major fraction of NOM in raw waters, while NOM in treated waters (i.e., after 

coagulation/flocculation/sedimentation) contains mostly TPH and hydrophilic fractions 

(Croue et al., 1993; Kim and Yu, 2005; Karanfil et al., 2007). Thus, selected amines 

spiked in raw and treated waters could interact with NOM fractions (i.e., HPO and TPH) 

toward NDMA formation. It is crucial to understand possible interactions of background 

NOM with NDMA precursor compounds, because various characteristics of NOM may 

play an important role in either enhancement or reduction of NDMA formation in natural 

water systems. The NDMA molar conversion yields from RNTD and DMiPA over 

reaction time at different DOC levels of CH raw and treated waters are given in Figure 

7.7 and 7.8. 

In the case of RNTD, it has been known that, monochloramine is the dominant 

chloramine species responsible for NDMA formation (Le Roux et al, 2012b). At the 

DOC levels of 1.0 and 2.5 mg C/L of CH treated water, there were no significant changes 

in NDMA conversion yields indicating that TPH-dominated NOM did not compete with 

RNTD for monochloramine (Figure 7.7-A). On the other hand, the NDMA conversion 

yields from DMiPA were reduced drastically in the presence of TPH-dominated NOM 

(Figure 7.7-B). The NDMA yields at 120 hours decreased from 56.9% in DDW to 32.0 

and 9.1% in the presence of 1.0 and 2.5 mg C/L DOC, respectively. These decreases 
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resulted probably from the competition of NOM with DMiPA for dichloramine. Similar 

NOM effects have been observed even under FP conditions (i.e., chloramine dose of 100 

mg/L) in the previous section. NOM can facilitate monochloramine consumption 

(Vikesland et al., 1998). Since the electron density on the nitrogen atom of dichloramine 

is less than on the monochloramine’s nitrogen, dichloramine could be the preferential 

species to react with negatively charged NOM. Thus, the interaction between 

dichloramines and NOM could reduce available dichloramine to react with amines to 

form NDMA. 
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Figure 7.7. The effect of NOM in NDMA formation from RNTD under SDS conditions. 

Background solutions for (A) were obtained by diluting CH treated water to DOC levels 

of 1.0 and 2.5 mg C/L. Background solutions for (B) were obtained by diluting CH raw 

water to DOC levels of 1.0, 2.5, and 5.0 mg C/L. Error bars represent data range for 

duplicate samples.  

(A) 

(B) 
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When CH raw water containing HPO-dominated NOM was used as the 

background matrix, the NDMA conversion yield from RNTD decreased as DOC levels 

increased (Figure 7.8-A). The NDMA conversion yield from RNTD without NOM 

reached the maximum (~85%) within 24 hours, while slightly slower conversion was 

observed at 1.0 mg C/L of DOC. When the DOC concentration increased to 2.5 mg C/L, 

the maximum yield (~71%) of NDMA did not reach the level (~85%) observed in DDW 

after 120 hours of reaction time. At 5.0 mg C/L of DOC, however, the NDMA 

conversion was significantly suppressed and its maximum was only 7.4% after 120 hours 

of chloramination. The results show that the NDMA conversion yield from RNTD was 

consistent and independent of NOM in treated water, but NOM in raw water caused 

decreases in the NDMA conversion yield, indicating that NOM characteristics in natural 

water may either increase or decrease the NDMA formation from a certain type of 

precursor compound. CH raw water has a higher content of aromatic components than 

CH treated water according to their SUVA254 values (3.3 and 1.7 L/mg.m, respectively). 

Therefore, the concentration of aromatic compounds in natural water may influence the 

NDMA formation during chloramination of amines. Shen and Andrews (2011b) reported 

similar decreases in the NDMA formation rate when river water with 6.2 mg C/L of DOC 

and 2.3 L/mg.m of SUVA254 was used. However, the changes of the NDMA conversion 

rates in their study were not as drastic as the results in this study, which may be due to the 

difference in the SUVA254 values of NOM. As for the importance of SUVA254 in the 

NDMA formation, it has been found that aromatic amines can undergo reversible 
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covalent bonding with carbonyls and quinones which are present in NOM (Parris, 1980; 

Thorn et al., 1996; Weber et al., 1996; Chen, 2007), and consequently their initial contact 

with chloramine species can be hindered (Shen and Andrews, 2011b). Some additional 

information about the quinone-tertiary amine chemistry can be found in the Appendix E. 

The NDMA molar conversion of DMiPA (Figure 7.8-B) showed slightly higher 

inhibition in the presence of CH raw water than CH treated water. The NDMA yields at 

120 hours decreased from 56.9 % in DDW to 21.8, 3.7, and 0.3% in the presence of 1.0, 

2.5, and 5.0 mg C/L DOC, respectively. These trends were very similar to the results in 

CH treated, which is probably because of less interaction between DMiPA, an aliphatic 

amine, and HPO fraction of the NOM than between RNTD, an aromatic amine, and HPO. 

However, the NOM effects on the NDMA conversion and the interaction of NOM 

fractions with both aliphatic and aromatic amines need to be further verified with various 

precursors in different water matrices a to understand the NDMA formation mechanism 

in natural water systems. 

  



103 

 

 

Figure 7.8. The effect of NOM in NDMA formation from DMiPA under SDS conditions. 

Background solutions for (A) were obtained by diluting CH treated water to DOC levels 

of 1.0 and 2.5 mg C/L. Background solutions for (B) were obtained by diluting CH raw 

water to DOC levels of 1.0, 2.5, and 5.0 mg C/L. Error bars represent data range for 

duplicate samples. 

(A) 

(B) 
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Overall, these results suggest that the presence of NOM would be beneficial in the 

control of NDMA in distribution systems when precursors such as RNTD and DMiPA 

are present. Rather than TPH, HPO fraction of NOM could have benefits in the reduction 

of NDMA formation probably due to its covalent binding capability with aromatic 

amines. Although the majority of the HPO fraction can be removed during 

coagulation/flocculation/sedimentation processes, the remaining TPH fraction of NOM 

may also decrease the NDMA formation from non-aromatic amine precursors by 

competing for the reaction with dichloramine. For both NOM fractions, higher DOC 

levels would be more beneficial –resulting in more competition for dichloramine leading 

to reducing NDMA formation as long as the formation of C-DBPs (i.e., THMs and 

HAAs) are maintained under the regulated limits if free chlorine is applied prior to 

ammonia addition. 

 

pH Effect: The effect of pH (6.5-8.5) on the NDMA conversion from RNTD and 

DMiPA was investigated and the results are given in Figure 7.9. The NDMA formation 

from RNTD was not affected by pH, while DMiPA showed noticeable changes in the 

NDMA formation rate and yields after 120 hours of chloramination. For the pH range of 

6.5-8.5, Shen and Andrews (2013a) reported minor pH effects on the NDMA formation 

rate from RNTD. However, the NDMA conversion yields from DMiPA at 120 hours 

decreased as pH decreased from 8.5 to 6.5 in this study. NDMA yields at 120 hours were 

7.6, 56.9, and 35.4% for pH 6.5, 7.5, and 8.5, respectively. Assuming that NDMA forms 
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via nucleophilic substitution of dichloramine with deprotonated amines (i.e., DMiPA) 

(Schreiber and Mitch, 2006; Mitch et al., 2009), the highest NDMA yield is expected to 

be observed at an optimum pH where both dichloramine and deprotonated amine species 

may coexist, and consequently enhancing the reaction kinetics toward the NDMA 

formation (Shen and Andrews, 2011b, 2013a). The mid-point of both reactants’ pKa 

values (~4.0 for dichloramine and ~10.3 for deprotonated DMiPA) is slightly above pH 

7. Therefore, the highest yield of NDMA from DMiPA was observed at pH 7.5, which 

corresponds to the optimal condition for the maximum coexistence of dichloramine and 

deprotonated DMiPA. However, this trend was not observed for RNTD since the NDMA 

conversion from RNTD was from the reaction with monochloramine which is the 

dominant chloramine species at pH 6.5-8.5. Moreover, RNTD’s pKa (8.2) is lower than 

DMiPA’s, which leads to more deprotonated amines at the given pH range. 
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Figure 7.9. The effect of pH in NDMA formation from (A) RNTD and (B) DMiPA 

under SDS conditions. Error bars represent data range for duplicate samples. 

  

(A) 

(B) 
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Sulfate Effect: It has been known that sulfate, bicarbonate, and phosphate can 

facilitate decomposition of monochloramine (Valentine and Jafvert, 1988; Vikesland et 

al., 2001). The presence of those ions would increase dichloramine concentrations, and 

consequently the NDMA conversion from some amine precursors, which prefer 

dichloramine to form NDMA, would be affected. To investigate the anion effect on the 

NDMA formation, sulfate was selected and SDS tests were performed in the presence of 

sulfate at three different concentrations (i.e., 10, 25, and 50 mg/L) for both RNTD and 

DMiPA (Figure 7.10). The results showed that sulfate did not affect the NDMA 

formation from RNTD, because RNTD would react with monochloramine, the dominant 

species to form NDMA rather than dichloramine and consequently, the chloramine 

decomposition caused by sulfate would not influence overall NDMA molar conversion. 

On the contrary, dichloramine is more important than monochloramine in the formation 

of NDMA from DMiPA and consequently, increasing sulfate would lead to more 

dichloramine by the chloramine decomposition and increase the NDMA formation from 

DMiPA (Figure 7.10-B). NDMA formation from DMiPA increased with increasing 

sulfate concentration. Similar patterns of conversion curves at different sulfate 

concentrations indicate that the NDMA formation from DMiPA is still limited by 

dichloramine concentration. Furthermore, overall NDMA yield at 120 hours increased 

from 56.9% to 70.6, 71.7, and 79.4% when sulfate was added at 10, 25, and 50 mg/L, 

respectively. Although the initial chloramine dose in the SDS tests was much lower than 

the FP experiments, the NDMA conversion yield from DMiPA after 120 hours in the 
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presence of 50 mg/L sulfate reached ~80% which is the maximum level observed from 

the FP test. These results indicate that introducing sulfate during coagulation, or 

phosphate during pH adjustment or bicarbonate during recarbonation may increase the 

chloramine decomposition (Valentine and Jafvert, 1988; Vikesland et al., 2001) and the 

NDMA formation may increase or decrease depending on precursors’ properties. Even 

though no additional precursors are introduced during water treatment processes, the 

NDMA formation may increase in distribution systems due to anion effects and long 

detention times. Therefore, such processes must be optimized to reduce possible 

chloramine decomposition in distribution systems. 
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Figure 7.10. The effect of sulfate in NDMA formation from (A) RNTD and (B) DMiPA 

under SDS conditions. Error bars represent data range for duplicate samples. 

  

(A) 

(B) 
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Case Studies 

CH Drinking Water Treatment Plant: As a case study, the NDMA formation rate 

was examined with CH raw and treated water under three different chloramination 

conditions (i.e., FP, SDS, and SDS in the presence of excess ammonia) and the results are 

given in Table 7.2. In the FP experiment with both waters, the NDMA formation yield 

reached its maximum within the initial 24 hours of chloramination. The NDMA 

formation rate decreased gradually for the next 48 hours. And at last, the NDMA 

formation reached the plateau after 72 hours of chloramination yielding 59 and 45 ng/L 

of NDMA at 120 hours from CH raw and treated, respectively. The difference in NDMA 

FP values of CH raw and CH treated waters corresponds to a ~24% reduction in NDMA 

precursors. This was found consistent with the ongoing project for three DWTPs, where 

coagulation/flocculation/sedimentation (without any polymer influence) resulted in 9-

23% reduction in NDMA FP (Uzun et al., 2012). 

The NDMA formation in CH raw water under SDS conditions was below MRL. 

However, NDMA formation was observed in CH treated water reaching up to 9 ng/L at 

120 hours of chloramination. Since DOC of the raw water decreased from 6.3 mg C/L to 

2.8 mg C/L after coagulation/flocculation/sedimentation, the competition between NOM 

and amines for dichloramine decreased and consequently, dichloramine could be more 

available for reactions with amines leading to higher NDMA formation. In addition, since 

alum was used in this DWTP as the coagulant, sulfate concentration increased from 6.3 to 

36.8 mg/L. This increase in the sulfate level could also contribute to dichloramine levels 
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leading to higher NDMA formation under SDS conditions. To confirm this alum effect 

on the NDMA formation, CH raw water was spiked with 50 mg/L of sulfate and was 

subjected to the SDS test. In the presence of sulfate, however, the NDMA formation was 

still below MRL; indicating that introduction of sulfate in the coagulation process did not 

affect the NDMA formation. This suggests that only DOC removal could be the reason 

for the NDMA formation observed in CH treated water. The importance of DOC and the 

NDMA formation curve over the reaction time under SDS conditions indicate that: (i) the 

formation is limited by the transformation of monochloramine to dichloramine; and (ii) 

NDMA can continue to form as long as there is residual chloramine present. In both 

samples, the NDMA levels were below MRL under SDS conditions in the presence of 

excess ammonia. Thus, precursors which are sensitive to monochloramine must have 

been negligible in this water source. If a water source has negligible amounts of 

precursors which are sensitive to monochloramine, the dichloramine would be the key 

player for NDMA formation. 
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Table 7.2. NDMA formation (ng/L) over time from selected DWTP. 

  Time (hours) 

  3 6 12 24 48 72 120 

CH Raw 

FP 7 14 22 38 46 55 59 

SDS <3 <3 <3 <3 <3 <3 <3 

SDS + 

Ammonia 
<3 <3 <3 <3 <3 <3 <3 

CH Treated 

FP 8 12 21 26 33 42 45 

SDS <3 <3 <3 4 6 7 9 

SDS + 

Ammonia 
<3 <3 <3 <3 <3 <3 <3 

Reported values are average of two measurements (n=2). 

 

Wastewater-Impacted Watershed: The NDMA formation rates of the samples 

collected from the watershed are given in Table 7.3 and the yields obtained at 120 hours 

for these three locations in this study agree well with the previous study conducted by 

Gan et al. (2013b). The sample collected from the upstream of the discharge location 

represented a pristine source with minimal anthropogenic impact. The NDMA FP at this 

location was 23 ng/L after 120 hours. Under SDS conditions, 5 ng/L of NDMA formed 

within the first 3 hours and slowly increased to 7 ng/L after 120 hours. In the presence of 

excess ammonia, 5 ng/L of NMDA formed within the first 3 hours, but remained constant 

afterwards. This indicates that monochloramine could be more important for the NDMA 

formation in this type of source water than dichloramine. 
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Table 7.3. NDMA formation (ng/L) over time from selected watershed. 

  Time (hours) 

  3 6 12 24 48 72 120 

Upstream 

FP 7 10 12 15 21 21 23 

SDS 5 5 5 5 7 7 7 

SDS + 

Ammonia 
5 5 5 6 5 5 5 

Wastewater 

Effluent 

FP 1316 1365 1532 1567 1641 1654 1659 

SDS 5 5 8 11 11 14 16 

SDS + 

Ammonia 
7 5 7 8 6 8 7 

Downstream 

FP 94 108 114 127 126 139 149 

SDS 5 5 15 33 74 87 102 

SDS + 

Ammonia 
4 5 5 5 5 4 6 

Reported values are average of two measurements (n=2). 

 

The NDMA FP at the wastewater discharge point was 1567 ng/L within the initial 

24 hours of chloramination. Further chloramination for another 24 hours resulted in 

additional of NDMA formation (i.e., 74 ng/L) and NDMA FP remained constant 

afterwards. Under SDS conditions, only 5 ng/L of NDMA formed within the first 3 hours 

and NDMA formation slowly increased to 16 ng/L after 120 hours. This yield was much 

lower than expected and in attempting to explain this anomaly the WW was diluted with 

DDW and examined under SDS conditions. The results showed that with the increasing 

number of dilutions, NDMA yields of SDS experiments got closer to FP tests (Figure 

7.11). These dilutions watered down the background organic matter (i.e., DOC) and since 

initial chloramine dose was constant the competition for dichloramine species decreased. 
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Thus, dichloramine was more available to react with NDMA precursors. The NDMA 

formation by monochloramine was fast and yielded 7 ng/L within 24 hours. These 

findings indicate that dichloramine was the key player for NDMA formation from this 

wastewater. 

 

 

Figure 7.11. NDMA formation from wastewater under different dilution ratios. Error 

bars represent data range for duplicate samples. 

 

At the downstream location NDMA FP was 127 ng/L within 24 hours of 

chloramination and additional NDMA formed with further exposure to chloramine. For 

this location, monochloramine seemed more important for the NDMA formation due to 

the results from SDS test in the presence of excess ammonia. However, NDMA formed 

constantly under SDS test conditions without ammonia reaching 102 ng/L after 120 
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hours. This observed difference in NDMA formation indicated that NDMA formation 

was probably limited to the presence of available dichloramine. It should be noted that 

the NMDA concentrations of FP and SDS are somewhat comparable. Once again, this is 

probably caused by the dilution of organic matter (i.e., DOC) reducing the competition 

for dichloramine, highlighting its importance for NDMA formation. With samples 

collected at this location, the factors (e.g., sulfate, and pH) that might influence 

chloramine decomposition and speciation were investigated under SDS conditions. 

Increasing concentrations of sulfate increased NDMA formation slightly (Figure 7.12), 

but the yield after 120 hours remained the same. On the other hand, there was a distinct 

pH effect (Figure 7.13). Lowest NDMA formation rate and overall yield were observed 

at pH 8.5 where a minimum amount of dichloramine was present. There was no distinct 

difference in formation rate and overall yield between pH 6.5 and 7.5. Since dichloramine 

could be a key player in NDMA formation at this location, within this pH range the trade-

off between chloramine speciation and amine’s proton state might be comparable. This 

indicates that pH can be an effective for controlling NDMA formation in distribution 

systems. 
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Figure 7.12. The effect of sulfate in NDMA formation under SDS conditions from 

downstream sample collected from the wastewater impacted watershed. Error bars 

represent data range for duplicate samples. 

 
Figure 7.13. The effect of pH in NDMA formation under SDS conditions from 

downstream sample collected from the wastewater impacted watershed. Error bars 

represent data range for duplicate samples. 
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Conclusions 

NDMA formation rate from DMA and four tertiary amines was determined under 

three chloramination conditions (i.e., FP, SDS, and SDS in the presence of excess 

ammonia). The results showed that the electron distribution of the tertiary amine 

determines the reactive chloramine species. Compounds with EWG (i.e., RNTD) reacted 

preferentially with monochloramine, whereas compounds with EDG (i.e., DMiPA) 

reacted preferentially with dichloramine to form NDMA. Since monochloramine is the 

abundant species at pH 7.5, NDMA formation rate from amines with EWGs were 

relatively fast and reached a plateau approximately within 24 hours of chloramine 

application in all three test conditions. On the other hand, the NDMA formation rate from 

compounds with EDG was highly dependent on the dichloramine concentration. In the 

NDMA FP tests, compounds with EDG also had a relatively fast reaction and reached a 

plateau approximately within 24 hours of chloramination. However, the NDMA 

formation rate from those was limited by the transformation of monochloramine to 

dichloramine under SDS conditions and had a relatively low rate. Further suppression of 

dichloramine - in the SDS tests by spiking excess ammonia - resulted in negligible 

NDMA formation from these compounds.  

The presence of NOM decreased the NDMA formation rate and overall 

conversion due to competition for dichloramine and consequently, drastic decreases were 

noticed for DMiPA. Only the HPO fraction of the NOM was found to decrease the 

NDMA formation from RNTD which could be caused by its aromatic structure leading to 
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a binding with NOM. In NDMA formation, pH plays a key role as it influences both 

chloramine speciation and protonation state of the amine. Thus, the more profound effect 

was observed on the dichloramine sensitive DMiPA, whereas RNTD did not show a 

distinct difference. Lastly, the presence of sulfate that can increase the chloramine 

decomposition was found to increase NDMA formation from DMiPA, but had no effect 

on RNTD. 

Investigating two case studies showed that some NDMA can be formed by 

monochloramine; however, dichloramine was observed to be the dominant species 

responsible for NDMA formation in both systems. The NDMA formation was found to 

be limited by the transformation of monochloramine to dichloramine, and thus relatively 

slow NDMA formation rates were observed under SDS conditions. It is likely that the 

presence of high levels of NOM could be beneficial to reduce the NDMA formation rate 

due to competition for the dichloramine species. However, it should be noted that it is not 

desirable to have high levels of NOM in the distribution system as it can lead several 

issues (i.e., formation of THMs and HAAs during pre-chlorination, increased microbial 

activity in the distribution system). While NOM may hinder NDMA formation, presence 

of chloramine decomposing ions (i.e., sulfate, phosphate, bicarbonate) may work against 

this effect. Also, since dichloramine is the key player for NDMA formation, pH can be an 

effective tool to control NDMA formation as it influences both chloramine speciation and 

protonation state of the amine. 
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CHAPTER EIGHT 

8. THE EFFECT OF PRE-OXIDATION ON OVERALL NDMA FORMATION, AND 

THE INFLUENCE OF PH 

 

Introduction and Objective 

Chloramination has become increasingly used among drinking water utilities in 

the US to comply with DBP regulations, such as THMs and HAAs. Unfortunately, 

chloramination can lead to the formation of nitrosamines (Choi and Valentine, 2002a,b; 

Choi et al., 2002; Mitch et al., 2003a,b), which are probable carcinogens, mutagens, and 

teratogens (USEPA, 1993). Among nitrosamines, NDMA has drawn the most attention 

due to its frequent detection in drinking water systems and high lifetime cancer risk level 

(USEPA, 1993). Although there are currently no federal regulations concerning 

nitrosamines in drinking water in the United States, the USEPA has listed nitrosamines as 

one of three potential groups of contaminants highlighted for possible regulation in the 

near future (Roberson, 2011). 

NDMA preferentially forms upon chloramination via a nucleophilic substitution 

reaction between chloramine (mono- or di-) and amines (Schreiber and Mitch, 2006; 

Mitch et al., 2009; Le Roux et al, 2012b). NDMA can also form during chlorination in 

the presence of nitrite, especially under acidic conditions (Choi and Valentine, 2003) and 

during ozonation (Andrzejewski et al., 2008; Oya et al., 2008; Schmidt and Brauch, 

2008). The precursors that have been reported to form NDMA upon oxidation include, 

but are not limited to, DMA, and tertiary and quaternary amines with a DMA moiety in 
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their molecular structures (Lee et al., 2007a; Kemper et al., 2010; Shen and Andrews, 

2011a,b), such as fungicides, pesticides, herbicides (Graham et al., 1995; Chen and 

Young, 2008; Schmidt and Brauch, 2008), pharmaceuticals, cosmetics (Sacher et al., 

2008; Shen and Andrews, 2011a), wastewater effluent organic matter (Sedlak et al., 

2005; Krauss et al., 2009; Shah et al., 2012; Gan et al, 2013a,b), and NOM (Gerecke and 

Sedlak, 2003; Mitch and Sedlak, 2004; Chen and Valentine, 2007; Dotson et al., 2007; 

Krasner et al., 2008a). NDMA formation was also found to increase in the presence of 

polymers and ion-exchange resins (Kimoto et al., 1980; Najm and Trussell, 2001; Kohut 

and Andrews, 2003; Wilczak et al., 2003; Mitch and Sedlak, 2004; Nawrocki and 

Andrzejewski, 2011; Gan et al, 2013a,b).  

The use of pre-oxidants for either transforming or eliminating NDMA precursors 

prior to chloramination can be a viable strategy for water utilities to control the NDMA 

levels. Chlorine is the most commonly applied pre-oxidant in water treatment; however, 

due to the formation of regulated C-DBPs from chlorine (i.e., THMs and HAAs), the use 

of chlorine dioxide and ozone to control simultaneously both regulated C-DBPs and 

nitrosamines has received attention within the last decade (Shah et al., 2012). 

Previous studies with chlorine, chlorine dioxide, and ozone have provided some 

promising results to reduce NDMA formation, despite some observations that the same 

pre-oxidants enhanced NDMA formation in some cases (Charrois and Hrudrey, 2007; 

Lee et al., 2007a; Chen and Valentine, 2008; Krasner et al, 2012a; Shah et al., 2012; Shen 

and Andrews, 2013b). In general, the research indicated that ozone and chlorine are 

effective oxidants for controlling NDMA precursors, likely due to their high reaction rate 
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constants with amines, especially in their deprotonated forms (von Gunten, 2003; Ternes 

and Joss, 2006; Lee and von Gunten, 2010; Krasner et al., 2012a). For example, ozone 

reduced NDMA formation by over 50% within a very short contact time (i.e., CT ≤0.5 

mg×min/L) (Lee et al., 2007a; Chen and Valentine, 2008; Shah et al., 2012), and only in 

a few cases did ozonation actually lead to the formation of NDMA (Asami et al., 2009; 

von Gunten et al., 2010). Chlorine was also able to achieve the same level of deactivation 

as ozone at longer contact times (i.e., CT ~50 mg×min/L), while increases in NDMA 

formation occurred at low exposure levels (i.e., CT ≤25 mg×min/L) in a few wastewater-

impacted sources, due to the nitrosation pathway facilitated by the presence of nitrite 

(Chen and Valentine, 2008; Shah et al., 2012). Although chlorine dioxide has the 

potential to control NDMA formation (Lee et al., 2007a), it may increase the overall 

NDMA formation like ozone (Shah et al., 2012).  

The effects of pre-oxidant on the reactivity of a few types of NDMA precursors 

have been investigated in a few studies: (i) some amides (Schmidt and Brauch, 2008; von 

Gunten et al., 2010), anti-yellowing agents (Kosaka et al., 2009), and polymers (Padhye 

et al., 2011a) were recognized to form NDMA during ozonation without chloramination; 

(ii) the use of ozone and chlorine dioxide reduced NDMA formation from seven tertiary 

amines; however, it is noted that substantially high doses of oxidants compared to typical 

doses for drinking water treatment were used (Lee et al., 2007a); and (iii) pre-

chlorination reduced NDMA formation from RNTD, nizatidine, and tetracycline by 50%, 

at a relatively low contact time (i.e., CT ~10 mg×min/L) (Shen and Andrews, 2013b).  
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The main objective of this study was to systematically investigate the impact of 

commonly-applied pre-oxidants on the formation of NDMA during chloramination from 

a suite of carefully selected NDMA precursor to: (i) investigate the effects of pre-

oxidants on NDMA formation (either by increasing, decreasing, or remaining constant); 

(ii) determine the optimum CT values to minimize the NDMA formation from each 

precursor, and (iii) examine the effect of pH. Fifteen precursors with a DMA moiety in 

their structures, such as secondary amine, tertiary aliphatic and aromatic amines, 

polymers, amides, and hydrazines, were selected. The CT curves for the effect of pre-

oxidation with chlorine, chlorine dioxide and ozone were obtained for each compound 

and an overall comparison was made. A representative compound was chosen from each 

group of precursors to further evaluate to the effect of pre-oxidation pH. 

 

Materials and Methods 

NDMA Precursors 

Selected amines, amides, and polymers were tested for NDMA formation to cover 

a wide range of precursors which might be encountered during drinking water treatment. 

Chemical structures and abbreviations of these compounds are given in Figure 8.1. All 

compounds were purchased from Sigma-Aldrich, SP2, and TCI, and used without further 

purification.  
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Figure 8.1. Molecular structures of selected precursors. 
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Experimental Methods 

A stock solution (4 mM) of each precursor, except the polymers, was prepared in 

methanol and stored in a 65 mL amber glass bottle at 4ºC until used. Each of these model 

compounds was diluted to 200 nM in DDW and buffered with 2 mM phosphate solution 

to adjust the pH at 7.5. A stock solution of 200 mg/L for each polymer was prepared in 

DDW and spiked at predetermined concentrations to buffered DDW to induce NDMA 

formation within the range of 100 to 150 ng/L (Figure 8.2). 

For pre-oxidation with chlorine, chlorine dioxide, and ozone, their doses were 

targeted to capture CT exposures ranging from zero to levels capable of Giardia cyst and 

virus removal at room temperature (USEPA, 1999). CT values were calculated by 

multiplying the residual oxidant concentrations by contact time. Initial oxidant 

concentrations for chlorine, chlorine dioxide, and ozone were 3.0 mg/L, 1.0 mg/L, and 

3.0 mg/L, respectively. Following injection of oxidants, bottles were periodically 

analyzed for residual oxidants at desired contact times ranging from a few minutes to 

maximums (TMax) of 60, 30, and 10 minutes, for chlorine, chlorine dioxide, and ozone, 

respectively (Table 8.1). Generally, chlorine dioxide residual is removed by purging the 

solution. However, since such strong oxidants have the potential to form volatile free 

DMA (Lee et al, 2007a; Mitch and Schreiber, 2008) and purging could cause 

unintentional loss of NDMA precursors (Figure 8.3), all residual oxidants were quenched 

by stoichiometric doses of sodium thiosulfate at the end of each pre-oxidation scenario. 
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Figure 8.2. NDMA formation from (A) PolyDADMAC, (B) PolyAMINE, and (C) 

PolyACRYL as a function of polymer dose.  

(A) 

(B) 

(C) 
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Table 8.1. Pre-oxidation contact times with Cl2, ClO2, and O3. 

Oxidant 

(Conc.) 

Cl2 

(3 mg/L) 

ClO2 

(1 mg/L) 

O3 

(3 mg/L) 
C

o
n

ta
ct

 T
im

e 
(m

in
) 

0 0 0 

5 5 1 

10 10 2 

15 15 3 

30 20 5 

45 30 10 

60   

TMax = 60 30 10 

 

 

 

Figure 8.3. Effect of 5 minute purging on selected amines and their consequent NDMA 

FPs. Reported values are average of two measurements (n=2). 
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To investigate the effect of pre-oxidation pH, precursor solutions diluted in DDW 

were buffered with 2 mM phosphate solution to adjust the pH at 5.5, 6.5, 7.5, 8.0, 8.5, 9.0 

and 9.5. Chlorine, chlorine dioxide, and ozone were injected at the same concentrations 

used to obtain the CT curves. At T/TMax of 0.2 for each oxidation scenario (i.e., 12 min 

for chlorine, 6 min for chlorine dioxide, and 2 min for ozone) oxidation of precursors 

were quenched with stoichiometric doses of sodium thiosulfate. 

Chloramine FP tests were conducted immediately after pre-oxidation experiments 

(quenched with stoichiometric doses of sodium thiosulfate) spiked with chloramine and a 

phosphate buffer. Residual concentrations of the pre-oxidants can be found in Figures 

F.1 through F.3. Chloramine stock solution was prepared by mixing diluted sodium 

hypochlorite and ammonium sulfate solutions at Cl:N mass ratio of 4:1 at pH 9. An initial 

chloramine concentration of 100 mg/L as Cl2 was used at pH 7.5 in the presence of the 10 

mM phosphate buffer, prepared by mixing sodium phosphate mono- and dibasic. NDMA 

FP tests were carried out in 1-L amber glass bottles without headspace, in the dark at 21-

23oC, for 5 days of contact time. Typical chloramine concentrations can be found Figure 

F.4. 

Analytical methods 

NDMA was analyzed following USEPA method 521 (USEPA, 2004), consisting 

of SPE using coconut charcoal followed by GC-MS/MS analysis. Analytical details can 

be found in the previous sections and a brief summary is as follows. For the sample 

analysis, 500 mL of chloraminated amine solutions were quenched with sodium 

thiosulfate and NDMA-d6 was added as a surrogate before SPE. Samples were passed 
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through coconut charcoal cartridges which were preconditioned with DCM, methanol, 

and DDW. The cartridges were dried with air, and then eluted with DCM. Eluents were 

passed through sodium sulfate columns to remove residual moisture, and then 

concentrated to 1 mL under a gentle stream of high purity nitrogen gas. The extracts were 

spiked with NDPA-d14 as an internal standard, and analyzed using a Varian GC-MS/MS 

4000 under the CI mode. Percent molar yield of each precursor was calculated, except 

polymers, using Equation 6.1 (Appendix B)Error! Reference source not found.. 

Ozone gas, generated by a GTC-1B Griffin ozone generator fed by ultra-high 

purity oxygen, was purged into DDW cooled to 4ºC to produce ozone stock solutions. 

Throughout the experiments, the ozone concentrations of stock solutions and samples 

were measured with the HACH spectrophotometer. Chlorine dioxide stock solutions were 

prepared via the slow acidification of NaClO2 solution with H2SO4 (Jones et al., 2012). 

Residual chlorine dioxide concentrations were monitored by the SM 4500-ClO2 E 

method (APHA/AWWA/WEF, 2005), as well as by the HACH spectrophotometer. 

Concentrations of free chlorine, and mono- and dichloramine reported as free chlorine, 

were determined following SM 4500-Cl F (APHA/AWWA/WEF, 2005). All analytical 

methods and their MRLs are given in Table 4.1. All samples and blanks were prepared, 

extracted and analyzed in duplicates. Error bars in all the graphs show the variability in 

duplicate analysis (n=2). 
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Results and Discussion 

Pre-oxidation with Chlorine 

The NDMA molar conversions from selected precursors during pre-chlorination 

are shown in Figure 8.4. The NDMA formation from DMA decreased from 1.6% to 

1.1% within 5 minutes (i.e., CT of 15 mg×min/L) of contact time with chlorine. It has 

been known that DMA has high reactivity with chlorine (kapp at pH 7 ≈ 104 M-1 s-1), 

rapidly forming chlorinated DMA (Cl-DMA) (Deborde and von Gunten, 2008; Lee and 

von Gunten, 2010; Solterman et al., 2013). However, increased chlorine contact time 

(i.e., CT of 180 mg×min/L) did not lead to further decreases in the NDMA formation 

from DMA. Therefore, formed Cl-DMA could remain in the solution and still form 

NDMA during sequential chloramination. It is noted that NDMA levels yielded from Cl-

DMA were approximately two thirds of DMA yields. Assuming that NDMA formation is 

initiated by nucleophilic substitution (Schreiber and Mitch, 2006; Le Roux et al., 2012b), 

the electron density on the nitrogen atom of precursors would significantly influence the 

overall NDMA yield. Forming a bond between chlorine and nitrogen of DMA would 

decrease the electron density on the nitrogen atom. As a result, during sequential 

chloramination the nucleophilic substitution to form NDMA would be less favorable. 

This phenomenon will also explain the results from chlorination of tertiary amines, 

leading to the formation of partial positive charge on the nitrogen atom of amine (Abia et 

al., 1998; Deborde and von Gunten, 2008). Pre-chlorination of TMA, DMiPA, DMBzA, 

RNTD, and DMAN led to reduction in NDMA molar conversions as expected by 

changes in charge density. Their NDMA yields decreased from 1.8, 74.2, 78.4, 87.6, and 
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0.3% to 1.2, 38.1, 30.0, 37.4, and 0.1%, respectively, within the CT of 180 mg×min/L. 

For DMAN, similar results were observed: reduction of NDMA formation was achieved 

within 5 minutes (15 mg×min/L) and further contact time (i.e. 180 mg×min/L) did not 

show any changes in the NDMA formation. On the other hand, gradual decreases in the 

NDMA formation from TMA, DMiPA, DMBzA and RNTD were observed as CT values 

increased. Relatively sharp decreases were observed especially within the initial 15 

minutes of contract time (i.e., CT of 0 to 45 mg×min/L). A similar trend was reported by 

Shen and Andrews (2013b) during pre-chlorination of RNTD in DDW. For MB and 

DMPhA, relatively constant NDMA yields were observed during pre-oxidation with 

chlorine regardless of changing CT values indicating that chlorine does not deactivate 

effectively such precursors. 

During pre-chlorination, the NDMA formation from hydrazine (UDMH), and 

amide (DMNZD) decreased from 0.30 and 0.14% to 0.12 and 0.03%, respectively. 

Decreases in the NDMA formation form UDMH happened within the initial 5 minutes 

(i.e., CT of 15 mg×min/L) of pre-chlorination, and no further decreases were observed 

for the rest of contact times (5 to 60 minutes). For DMNZD, relatively gradual decreases 

in NDMA formation were observed, which are similar to tertiary amines such as TMA, 

DMiPA, DMBzA, and RNTD. On the other hand, pre-chlorination showed almost no 

effect on the NDMA formation from DRN or led to a slight increase in NDMA formation 

from DMS. It is likely that neighboring carbonyl or sulfonyl groups can withdraw 

electrons and decrease the electron density of the nitrogen atom, thus nucleophilic 

substitution by chlorine may become less favorable.  For quaternary amine polymers such 
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as PolyDADMAC, PolyAMINE, and PolyACRYL, pre-chlorination showed almost no 

effect on overall NDMA formation (Figure 8.5-A). This is probably because nucleophilic 

substitution could be hindered by the positive charge on the nitrogen atoms of polymers 

(Krasner et al., 2013). Therefore, the reaction of chlorine with quaternary amines would 

be limited, and consequently the NDMA formation from polymers with such structures is 

expected to remain constant during pre-chlorination. 

Pre-chlorination’s efficiency for NDMA control on a wide array of precursors has 

not been reported in the literature before. These findings are important to identify the 

interactions between chlorine and precursor’s structure and the consequence on NDMA 

yield during sequential chloramination. Overall NDMA formation from selected 

polymers and compounds with either carbonyl or sulfonyl groups remained constant. For 

other precursors NDMA formation decreased to approximately half of the initial yield 

([NDMA FP]CT-0/[NDMA FP]CT-180) during pre-chlorination. Similar decreases have been 

reported in the pre-chlorination of natural waters (Chen and Valentine, 2008; Shah et al., 

2012), where NDMA formation reduced by half at CT of 50 mg×min/L (Shah et al., 

2012). In a few cases in the literature, increases in NDMA formation were reported in the 

presence of nitrite (Shah et al., 2012) through chlorine-triggered nitrosation pathway 

(Shah and Mitch, 2012). However, the effect of ions (i.e., nitrite) was not within the 

scope of this study, and was not further investigated. 
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Figure 8.5. NDMA formation from selected polymers upon pre-oxidation with (A) 

chlorine, (B) chlorine dioxide, and (C) ozone followed by chloramine disinfection for 

different pre-oxidation contact times. [PolyDADMAC]0 = 0.2 mg/L, [PolyAMINE]0 = 0.2 

mg/L, [PolyACRYL]0 = 1.0 mg/L. T/TMAX = 0 shows no pre-oxidation. Error bars 

represent data range for duplicate samples.  

(A) 

(C) 

(B) 
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Pre-oxidation with Chlorine Dioxide 

The molar conversions of NDMA from selective precursors exposed to chlorine 

dioxide as a pre-oxidant were plotted with different contact times in Figure 8.6. The 

NDMA yield from DMA (1.6%) did not change regardless of the contact time with 

chlorine dioxide. Lee et al. (2007a) reported that DMA, a secondary amine, has very low 

reactivity with chlorine dioxide (Lee and von Gunten, 2010). For DMiPA, RNTD, and 

DMBzA which showed relatively high NDMA formation (≈80%) during chloramination 

due to their stable intermediates as shown in the previous section, their NDMA molar 

conversions were reduced distinctively upon exposure to chlorine dioxide. At CT of 5 

mg×min/L, the NDMA molar conversion from each of them was around 15%, dropping 

to 4% at CT of 15 mg×min/L. When CT reached 30 mg×min/L, the NDMA molar 

conversions were 0.6, 2.3, and 1.4% for DMiPA, RNTD, and DMBzA, respectively. 

These drastic changes in NDMA formation after pre-oxidation with chlorine dioxide 

imply that chlorine dioxide can be effectively used to control NDMA formation from 

these types of precursors.  

On the contrary, for DMAN, MB, UDMH, and DMNZD which showed relatively 

low NDMA formation (<2%) during chloramination, their NDMA molar conversions 

increased after exposure to chlorine dioxide. At CT of 5 mg×min/L, overall NDMA 

formation from these precursors increased up to 2% not showing any significant changes 

afterwards.  
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However, TMA, DMPhA, DRN, and DMS did not show any noticeable change in 

NDMA conversions after pre-oxidation with chlorine dioxide. Likewise, all of the 

selected polymers (i.e., PolyDADMAC, PolyAMINE, and PolyACRYL) remained 

relatively constant in their NDMA formation after pre-oxidation with chlorine dioxide 

(Figure 8.5-B). As an electron acceptor, chlorine dioxide reacts mainly through an 

electron transfer reaction. Thus, it is likely that reactions with chlorine dioxide would be 

less favorable due to electron deficient nitrogen atom of quaternary amine polymers.  

Unlike pre-chlorination, pre-oxidation effects of chlorine dioxide on overall 

NDMA formation depended highly on precursors. The NDMA formation from high 

NDMA yielding compounds such as DMiPA, RNTD, and DMBzA drastically decreased 

upon contact with chlorine dioxide. On the other hand, low NDMA yielding compounds 

such as DMAN, MB, UDMH, and DMNZD showed increases in NDMA formation after 

pre-oxidation with chlorine dioxide. Interestingly, although these two trends seem 

contradictory, the NDMA conversion yields from the selective precursors which were 

oxidized with chlorine dioxide reached 1.5-2.0% at CT of 30 mg×min/L. Such conversion 

rates are very close to that of DMA which was constant for various contact times with 

chlorine dioxide. This pattern has not been previously reported in the literature for model 

compounds upon exposure to chlorine dioxide. 
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Lee et al. (2007a) reported that oxidation of tertiary amines with chlorine dioxide 

could release DMA or products with DMA moiety, but chlorine dioxide would not react 

further with such oxidation products with DMA moieties. According to their findings, 

oxidized amines with DMA moiety released by pre-oxidation with chlorine dioxide may 

further react with chloramine to produce NDMA. Therefore, both high and low NDMA 

yielding precursors could be decomposed to either DMA or oxidation products with 

DMA moiety by chlorine dioxide, and their final NDMA conversion rates become similar 

to that of DMA. Shah et al. (2012) have reported that the NDMA formation after pre-

oxidation with chlorine dioxide decreased or increased and the results depended on 

different types of precursors present in different water sources. However, based on the 

findings from our study, it is more likely that different deactivation efficiencies of 

precursors may be attributed to one single major product, namely DMA, during pre-

oxidation with chlorine dioxide. Consequently, the application of chlorine dioxide as a 

pre-oxidant to control NDMA formation could be effective in source waters containing 

high NDMA yielding precursors (i.e., >5%). The application would be redundant for 

source waters containing DMA or lower NDMA yielding precursors than DMA (i.e., 

<1%) as major precursors. 
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Pre-oxidation with Ozone 

The molar conversions of NDMA from selective precursors exposed to ozone as a 

pre-oxidant were plotted with different contact times in Figure 8.7. When DMA was pre-

oxidized with ozone, overall NDMA formation from DMA increased. This is consistent 

with the findings reported by Andrzejewski et al. (2008) and Yang et al. (2009). In the 

latter study, it was revealed that ozonation by itself can form NDMA from DMA through 

a nitrosation pathway at pH 3.4. They also noted that NDMA formation also occurred at 

pH 7.0 or greater via an unknown pathway (Yang et al., 2009). In our study, however, the 

highest NDMA formation (molar conversion of 2.3%) from DMA occurred within 1-2 

min of contact time with ozone, while further contact led to overall decreases (molar 

conversion of 1.8%).  

 



139 

  

F
ig

u
re

 8
.7

. 
N

D
M

A
 f

o
rm

at
io

n
 f

ro
m

 s
el

ec
te

d
 p

re
cu

rs
o
rs

 u
p
o
n
 p

re
-o

x
id

at
io

n
 w

it
h
 o

zo
n
e 

fo
ll

o
w

ed
 b

y
 c

h
lo

ra
m

in
e 

d
is

in
fe

ct
io

n
 

fo
r 

d
if

fe
re

n
t 

p
re

-o
x

id
at

io
n

 c
o
n
ta

ct
 t

im
es

. 
[P

re
cu

rs
o
r]

0
 
=

 1
6
0
 n

M
, 

[C
l 2

] 0
 =

 3
 m

g
/L

, 
p

H
P

re
-o

x
id

at
io

n
 =

 7
.5

 (
2
 m

M
 p

h
o
sp

h
at

e 

b
u
ff

er
),

 p
H

F
P
 =

 7
.5

 (
1
0
 m

M
 p

h
o
sp

h
at

e 
b
u
ff

er
).

 T
im

e 
=

 0
 m

in
 s

h
o
w

s 
n
o
 p

re
-o

x
id

at
io

n
. 

E
rr

o
r 

b
ar

s 
re

p
re

se
n
t 

d
at

a 
ra

n
g
e 

fo
r 

d
u
p
li

ca
te

 s
am

p
le

s.
 



140 

 

 

For DMAN, MB, and DMPhA, pre-oxidation with ozone also led to increases in 

NDMA formation. Like DMA, these compounds had the highest NDMA yields within 1-

2 min (i.e., T/TMax of 0.1 – 0.2), and overall NDMA formation decreased as CT values 

increased. Since tertiary amines may release DMA as an intermediate (Lee et al., 2007a) 

upon oxidation with ozone, released DMA which could produce more NDMA than the 

parent compounds (i.e., DMAN, MB, and DMPhA) may increase the NDMA formation 

observed during initial 1-2 min (T/TMax of 0.1 – 0.2) during chloramination. However, the 

subsequent decreases with the increasing CT have not been previously reported in the 

literature. One possible explanation is the hydroxyl radicals formed during ozonation 

contributing to the decomposition of formed NDMA. To investigate this hypothesis, an 

NDMA stock solution of 200 ng/L was prepared and ozonated with and without tert-

butyl alcohol (used as a hydroxyl radical scavenger) at pH 7.5 and 9.5 (Figure 8.8). In 

the presence of tert-butyl alcohol NDMA concentrations remained constant, while a 

sharp decrease in NDMA was observed without hydroxyl radical scavenger. As hydroxyl 

radical formation increased with increasing pH, more decreases in NDMA at pH 9.5 than 

at pH 7.5 were observed. This indicates that hydroxyl radicals released from ozonation 

would decompose NDMA. In a recent study conducted by Lv et al. (2013), similar 

findings have been reported. In that study it has been shown that hydroxyl radicals can 

decompose NDMA to DMA and some other nitrogenous compounds (i.e., methylamine, 

nitromethane and ammonia) which were identified and quantified by a GC/MS. Based on 
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the findings of our study and previous studies in the literature (Lee et al., 2007a; 

Andrzejewski et al., 2008; Yang et al., 2009; Padhye et al., 2011; Lv et al., 2013), ozone 

or hydroxyl radicals can react with the NDMA precursors and either destroy these 

precursors or release the DMA moiety or form NDMA. However, hydroxyl radicals can 

decompose DMAs and NDMAs. Consequently, NDMA formation may be not only 

enhanced by the reaction of DMA with ozone, but also reduced due to NDMA 

decomposition by hydroxyl radicals (Figure 8.9), which would explain the increasing, 

then decreasing NDMA conversion patterns observed during ozonation. 

 

 

Figure 8.8. Effect of ozone versus hydroxyl radicals on NDMA decomposition. 

[NDMA]0 = 200 ng/L, [O3]0 = 3 mg/L, [tBA] = 1 mM, phosphate buffer of 10 mM at pH 

7.5 or 9.5. Time = 0 min shows no pre-oxidation. Error bars represent data range for 

duplicate samples. 
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Figure 8.9. Reaction of tertiary amines with ozone and hydroxyl radicals. 

 

For TMA, pre-oxidation with ozone was able to reduce NDMA formation 

significantly (from 1.8% to 0.2% for 1 min contact time), which is in good agreement 

with the findings of Lee et al. (2007a). Ozonation was also effective to control NDMA 

formation from high NDMA yielding compounds such as DMiPA, RNTD, and DMBzA. 

Only 3 minutes of contact with ozone (i.e., CT ≈7.2 mg×min/L) reduced NDMA 

formation from these compounds to approximately 2%. 

For selected polymers, pre-ozonation led to increases in NDMA formations 

(Figure 8.5-C). For 3 minutes of exposure to ozone, NDMA formation from 

PolyDADMAC and PolyACRYL increased from 164 and 127 ng/L to 551 ng/L and 507 

ng/L, respectively. These changes were less drastic for PolyAMINE; NDMA formation 

increased from 97 to 169 ng/L after pre-oxidation with ozone. Under chloramination 

without any pre-oxidation, the NDMA formation from these polymers was very low 

(≈0.2%), due to hindrance of the nucleophilic substitution by positive charge on the 
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nitrogen atom (Krasner et al., 2013). It has been known that DMA could be released from 

PolyDADMAC by ozonation (Padhye et al., 2011a) with an approximate yield of 1.5-

2.0%. Therefore, sequential chloramination may enhance NDMA formation from 

PolyDADMAC. Without chloramination, NDMA can also be formed from 

PolyDADMAC (Padhye et al., 2011a) through the simultaneous formation and reaction 

of released hydroxylamine and DMA. The NDMA formation from the other two 

polymers could be explained in the same way, since similar trends in data were observed 

for PolyAMINE and PolyACRYL. Hydroxyl radicals formed by the decomposition of 

ozone may be the reason for decreases in NDMA levels after 3 minutes of contact time 

for these polymers.  

Compared to other precursors, amides and hydrazines (i.e., DMNZD and UDMH) 

yielded significant amounts of NDMA when pre-oxidized with ozone. At approximately 

3 mg×min/L of CT, NDMA yields jumped from 0.3 to 96.4% and 0.1 to 46.9% for 

UDMH and DMNZD, respectively. In another set of experiments where ozone was 

applied without subsequent chloramination, comparable NDMA was formed from these 

compounds, which is consistent with the study conducted by Schmidt and Brauch (2008). 

This suggests that only ozone accounted for the NDMA formation from these 

compounds. Like the compounds described above, the NDMA formation from these 

precursors also decreased with increasing contact time. Once again this can be attributed 

to ozone decomposition and formation of hydroxyl radicals, which can destroy NDMA 

after its initial formation. 
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On the other hand, DRN and DMS did not show any change in NDMA formation 

in spite of pre-ozonation. DRN remained relatively constant regardless of contact time. 

The NDMA formation from DMS under pre-ozonation was different from previous 

studies conducted by von Gunten et al. (2010). But the presence of bromide was shown to 

be an essential factor to form NDMA from DMS in their study. To verify bromide effect 

on NDMA formation from DMS, a pre-ozonation experiment was conducted with 200 

µg/L of background bromide, and the subsequent NDMA yield was found to be 56.7% 

(±2.3). This result was consistent with the findings of Schmidt and Brauch (2008) and 

von Gunten et al. (2010). However, since the effect of ions (i.e., bromide) was not within 

the scope of this study, further investigation was not made.  

Effect of pH on Pre-oxidation 

In water treatment process, the pH of water is subject to change after each stage. 

Since reactions between amines and oxidants have been observed to be pH dependent 

(von Gunten et al., 2010), the overall NDMA formation from amine precursors could be 

largely influenced by oxidation pH, which was not previously studied.  Different pH 

conditions during pre-oxidation were investigated with selected precursors to cover 

typical conditions of different stages for the water treatment process: (i) non-adjusted raw 

water pH, (ii) pH after the coagulation/flocculation process (pH ≈6.5), and (iii) pH after 

softening with lime/soda ash (pH ≈9.0). The NDMA FP results from the selected 

precursors after pre-oxidation at different pH conditions are given in Table 8.2. 

For chlorination, NDMA FPs of DMA and TMA showed slight decreases with 

increasing pre-oxidation pH. Increasing pH has been known to facilitate reaction kinetics 
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and achieve higher precursor deactivation (Lee and von Gunten, 2010). Pre-chlorination 

of DMiPA which is a high NDMA yielding precursor resulted in at least 10% reduction 

of NDMA conversion at pH 5.5-9.5. As pre-oxidation pH increased from 5.5 to 8.5, 

NDMA FP from DMiPA decreased from 74.7% to 54.4%. However, NDMA formation 

increased again to 67% at pH 9.0. The lowest NDMA FP was observed at pH 8.5, which 

is close to the mid-point (8.9) of the two reactants’ pKa (7.5 for chlorine and 10.3 for 

DMiPA). HOCl reacts with deprotonated amines; the mid-point of pKa of the two 

reactants will represent an optimum pH for the oxidation since both species may coexist 

at the highest concentrations, and thus enhance the reaction kinetics. Another high 

NDMA yielding precursor, RNTD was deactivated more by chlorine at lower pre-

oxidation pH. Unlike DMiPA, RNTD has two pKa values: 8.2 for the DMA moiety and 

2.7 for the diaminonitroethene group. At low pH, chlorine would attack the 

diaminonitroethene group rather than the DMA moiety of RNTD, which would lessen the 

stability of the leaving group, which would make NDMA formation unfavorable 

(previous chapter). In the case of DMNZD, increasing pre-chlorination pH slightly 

increased NDMA formation. Lastly, NDMA FP of PolyDADMAC remained relatively 

constant at varying pH values due to hindrance caused by the positive charge on the 

nitrogen atom (Krasner et al., 2013).  
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Table 8.2. Molar NDMA yields of selected precursors after pre-oxidation under different 

pH conditions (Pre-oxidant T/TMax = 0.2). 

Precursor 
(pKa) 

Oxidant 

NDMA Yields (%) 

Pre-oxidation pH 

5.5 6.5 7.5 8.0 8.5 9.0 9.5 

DMA 
(10.6) 

Cl2 1.3 1.0 1.0 0.8 0.7 0.6 0.5 

ClO2 1.0 1.0 1.1 1.1 1.0 1.1 1.2 

O3 0.9 1.1 1.4 1.3 1.4 1.9 1.5 

TMA 
(9.8) 

Cl2 1.5 1.5 1.8 1.5 1.5 1.0 0.9 

ClO2 1.8 1.4 1.2 1.3 1.5 1.2 1.1 

O3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

DMiPA 
(10.3) 

Cl2 74.7 66.4 61.8 59.4 54.4 58.8 67.0 

ClO2 56.2 40.8 14.7 3.7 0.3 0.2 0.2 

O3 18.7 10.0 7.3 4.9 6.2 6.6 5.9 

RNTD 
(2.7 & 8.2) 

Cl2 38.2 40.7 45.9 52.8 54.6 63.3 71.8 

ClO2 82.9 59.8 18.9 4.5 2.2 1.8 1.6 

O3 6.4 2.2 1.3 0.7 0.5 0.3 0.3 

DMNZD 
(4.7) 

Cl2 0.1 0.1 0.3 0.3 0.4 0.4 0.3 

ClO2 0.2 0.4 1.3 1.7 2.0 2.1 2.0 

O3 66.7 64.0 54.5 43.8 43.3 38.9 43.3 

PolyDADMAC* 
(NA) 

Cl2 114 134 128 119 113 107 124 

ClO2 136 116 137 112 114 111 110 

O3 402 382 499 519 530 476 480 

*: NDMA concentration (ng/L) formed from 0.2 mg/L of PolyDADMAC. 

Reported values are average of two measurements (n=2). 

NA: Not Available. 

 

Pre-oxidation with chlorine dioxide did not affect the NDMA formation from 

DMA, due to low reactivity between them (Lee and von Gunten, 2010). For TMA, slight 

decreases in NDMA FP were observed at increasing pre-oxidation pH. And once again, 

much more drastic decreases in NDMA FP were observed for high NDMA yielding 
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compounds (i.e., DMiPA and RNTD). For TMA, DMiPA and RNTD, as pre-oxidation 

pH increased and approached their pKa values, the reaction rate constants increased 

according to the findings of Lee and von Gunten (2010). Thus, within the same contact 

time (6 min) their NDMA FPs decreased more at higher pH. This is consistent with the 

results of Lee and von Gunten (2010) that chlorine dioxide reacted faster with 

deprotonated amines than protonated ones. However, further increases in pre-oxidation 

pH would not change the reaction rate constants, and thus the NDMA FP remained 

constant. These findings imply that chlorine dioxide would be more effective at higher 

pH, since amines generally have high pKa values. For DMNZD, increases in NDMA FP 

at higher pH were also observed. However, PolyDADMAC was not affected by various 

pre-oxidation pH conditions during pre-oxidation with chlorine dioxide.  

It has been known that ozone reacts faster with deprotonated amines (Lee and von 

Gunten, 2010), which means that the pKa values of amine precursors could play a key 

role in NDMA formation. Thus, higher reaction rate constants are expected under alkali 

conditions (Lee and von Gunten, 2010). As well, an unknown pathway has been reported 

for higher NDMA formation from DMA at pH higher than 7 during ozonation (Yang et 

al., 2009) within 2 minutes of contact time. On the contrary, the NDMA formation from 

high NDMA yielding compounds such as DMiPA and RNTD decreased as pH increased. 

However, TMA and DMNZD showed somewhat different behaviors from other 

precursors. TMA was not affected by pH during ozonation. For DMNZD, since its pKa is 

4.7, rapid reactions between ozone and DMNZD were expected. However, the formation 

of hydroxyl radicals has an adverse effect. Therefore, overall decreases of NDMA FP 
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were observed as pH increased. Finally, the NDMA formation from PolyDADMAC 

increased along with increasing pH, and showed a peak at pH 8.5, and then decreased 

again at higher pH. Selection of appropriate ranges of oxidation pH must be considered 

together with selection of proper oxidants for NDMA control in the presence of various 

types of precursors in water matrices. 

 

Conclusions 

A fairly wide range of different NDMA precursors has shown the importance of 

the effect of oxidants prior to chloramination on NDMA formation. For the 15 precursors 

tested in this study, the use of chlorine as a pre-oxidant led to the reduction of overall 

NDMA FP, except polymers. Therefore, chlorine can be used to effectively control 

NDMA formation during drinking water treatment, as long as the formation of 

carbonaceous-DBPs is under the regulated levels. Chlorine dioxide was also effective in 

reducing NDMA formation from high NDMA yielding precursors. However, for low 

NDMA yielding precursors, the NDMA formation may increase due to the release of 

DMA and subsequent reactions between DMA and chloramines. Similar to chlorine 

dioxide, the use of ozone as a pre-oxidant may result in contrasting effects on NDMA 

formation. While ozone may stimulate NDMA formation, simultaneously produced 

hydroxyl radicals may also work against this effect. Thus, neither chlorine dioxide nor 

ozone is an independently effective pre-oxidant for controlling NDMA (i.e, coumpounds 

with yields <1% or amides). Instead, the effectiveness of both is highly depending on the 

characteristics of the existing precursors in source waters. During pre-oxidation, pH is an 
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important factor in deactivating NDMA precursors. Since deprotonated amines are more 

susceptible to the reaction with oxidants, the pKa of both amines and oxidants are key 

players. In this way, optimized pH conditions for pre-chlorination must be determined for 

the best treatability. However, ozone and chlorine dioxide would reach and sustain their 

maximum effectiveness at a pH above the amines’ pKa values.  
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CHAPTER NINE 

9. CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

The important conclusions for each objective of this study are summarized below. 

Objective 1: Examine the formation potential of nitrosamines from selected amino 

acids under different oxidation conditions. 

 Even at 10 mg/L concentration, nitrosamine yields from all nine AAs during 

chloramination, ozonation and ozonation-chloramination conditions were very 

low (<10 ng/L) or below the minimum reporting levels.  

 Since nitrosamine formation yields of AAs were very low, AAs would not likely 

to be a contributor to nitrosamines formation. 

Objective 2: Investigate (i) the effect of tertiary amine structure, (ii) the effect of 

background NOM, and (iii) the roles of mono- vs. dichloramine species on the NDMA 

formation. 

 A fairly wide range (0.02% to 83.9%) of NDMA formation from the 21 selected 

amines indicates the importance of the structure of tertiary amines on NDMA 

formation. 

 The results showed that both stability and electron distribution of the leaving 

group of tertiary amines have an important role in NDMA formation. 
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 DMA associated with branched alkyl groups or benzyl like structures which have 

only one carbon between the ring and DMA structure consistently gave higher 

yields of NDMA formation. 

 Compounds with EWG reacted preferentially with monochloramine, whereas 

compounds with EDG showed a tendency to react with dichloramine to form 

NDMA.  

 When the amines were present along with NOM in solution, NDMA formation 

increased for compounds with EWG while it decreased for compounds with EDG. 

This impact was attributed to the competition between NOM and amines for 

chloramine species.  

Objective 3: Examine (i) the role of chloramine species in the formation of NDMA 

from DMA and selected tertiary amines; (ii) the factors that influence chloramine 

decomposition (i.e., pH, sulfate and NOM) during NDMA formation from these model 

precursors; and (iii) the role of chloramine species in selected natural waters. 

 The results showed that electron distribution of the tertiary amine determines the 

reactive chloramine species. Compounds with EWG (i.e., RNTD) reacted 

preferentially with monochloramine, whereas compounds with EDG (i.e., 

DMiPA) showed a tendency to react with dichloramine to form NDMA. 

 NOM would be beneficial in the control of NDMA in distribution systems. The 

presence of NOM decreased the NDMA formation from DMiPA (dichloramine 

sensitive precursor) due to competition created for dichloramine species. 

Furthermore, HPO fraction of NOM could also lead to some decreases in NDMA 
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formation probably due to its covalent binding capability with aromatic amines 

(i.e., RNTD). 

 In NDMA formation, pH plays a key role as it influences both chloramine 

speciation and protonation state of the amine. Highest NDMA yield is expected to 

be observed at an optimum pH (mid-point of both reactants’ pKa) where both 

dichloramine and deprotonated amine species may coexist. 

 The presence of chloramine decomposing components (sulfate, phosphate, 

carbonate, etc.) can increase the fraction of dichloramines and consequently lead 

to higher NDMA formation. 

 Investigating two case studies showed that dichloramine was observed to be the 

dominant species responsible for NDMA formation in both systems. The NDMA 

formation was found to be limited by the transformation of monochloramine to 

dichloramine, and thus relatively slow NDMA formation rates were observed. 

Objective 4: Examine (i) the commonly used pre-oxidants (i.e., chlorine, chlorine 

dioxide and ozone) in water treatment; (ii) CT values, and (iii) pre-oxidation pH’s 

effects on NDMA formation from selected precursors. 

 A fairly wide range of different NDMA precursors has shown the importance of 

the effect of oxidants prior to chloramination on NDMA formation. 

 Among the tested precursors, the use of chlorine as a pre-oxidant led to a 

reduction in overall NDMA FP, with the exception of polymers and tertiary 

amines with carbonyl or sulfonyl groups.  
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 The use of chlorine dioxide could also be effective in reducing NDMA formation 

for source waters that contain precursors with high NDMA yields (>5%). 

However, it can be detrimental, increasing NDMA formation if the precursor’s 

yield is less than <1.0%, due to the release of the DMA moiety. 

 Similar to chlorine dioxide, the use of ozone as a pre-oxidant has a potential for 

contrasting outcomes. While ozone may stimulate NDMA formation, the 

simultaneously produced hydroxyl radicals would work against this effect. 

 Chlorine can be used as an effective strategy in controlling NDMA formation 

during drinking water treatment, as long as C-DBP formation is within the 

regulated levels. On the other hand, the effectiveness of chlorine dioxide and 

ozone is determined by the characteristics of the existing precursors in source 

waters. 

 During pre-oxidation, pH is an important factor in deactivating NDMA 

precursors. Since deprotonated amines are more susceptible to the reaction with 

oxidants, the pKa of both amines and oxidants are key players. In this way, 

optimized pH conditions for pre-chlorination must be determined for the best 

treatability. 

 

Recommendations for Practical Applications 

 The structure of the NDMA precursor plays a critical role in NDMA formation. 

Strategies for controlling the discharge of DMA moieties associated with 

branched alkyls or benzyl like groups (i.e., pharmaceutical companies) would lead 
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to decreases in NDMA precursor’s levels. This would decrease the stress created 

in downstream DWTPs. 

 The dichloramine was the important chloramine species responsible for NDMA 

formation. The utilities can try to minimize the formation of dichloramine in their 

distribution systems (e.g., higher pH conditions) to control NDMA formation. 

However, it should be noted that there are some precursor that may form NDMA 

with monochloramine. Formation potential tests conducted with and without 

background ammonia, as performed in this study, can be used to determine mono 

or dichloramine sensitivity of NDMA precursor in a source water. 

 Pre-oxidation strategies can be an effective tool for utilities to control NDMA 

formation. Chlorine has shown reduction in NDMA formation for most of the 

precursors (except polymers). This indicates that chlorine could be useful as a 

pre-oxidant as long as C-DBP formation is within the regulated levels. On the 

other hand, chlorine dioxide and ozone may lead to decreases or increases in 

NDMA formation depending on the characteristics of the precursors. Preliminary 

testing is suggested for utilities determining the best oxidant type, dose and 

contact time for particular applications to control NDMA formation. Furthermore, 

the pre-oxidation reactions were found to be highly dependent on the pH. To 

maximize the removal of NDMA precursors within the same CT, bench-scale 

testing is recommended to determine the optimum pH.  
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Recommendations for Future Research 

 Different types of amines can be tested for their NDMA formation to develop 

correlations between NDMA yields and structural characteristics (i.e., linear free 

energy relationship). 

 Density functional theory models can be developed to assess the reactivity of 

NDMA precursors to minimize experimental testing. 

 Further research is needed to identify the intermediates that can be formed during 

the formation of NDMA from different types of precursors (e.g., amines, amides, 

hydrazines).  

 NOM was observed to have an important effect on NDMA formation. The 

interactions of NOM with amines and also chloramines species can be 

investigated to gain further insight. 

 Presence of ions (i.e., nitrite, bromide) is necessary to be investigated to evaluate 

the impacts on both NDMA formation and their interactions with pre-oxidants. 
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Appendix A 

 

Chloramines are disinfectants used to treat drinking water (Li, 2011). They are 

formed by mixing chlorine with ammonia. Although chloramine is a weaker disinfectant 

than chlorine, it is more stable and provides longer-lasting oxidant residual in the 

distribution system. Chloramines have been used by water utilities for almost 90 years, 

and their use is closely regulated (USEPA, 1999). Approximately 35% of the utilities 

implement chloramine as their disinfection method (Li, 2011). This corresponds to 

approximately a population of 68 million consuming chloraminated water (Li, 2011).  

When chlorine is dispersed in water, a rapid hydrolysis occurs. The equilibrium 

constant (Keq) at 25oC is 3.94×104 M-1 for this reaction (USEPA, 1999). Hypochlorous 

acid (HOCl) is a weak acid that dissociates to OCl- (USEPA, 1999). Simplified reactions 

are given below: 

Cl2 + H2O → HOCl + H+ + Cl2   (Hydrolysis of chlorine) 

HOCl → OCl- + H+     (Dissociation of chlorine) 

Relative proportions of HOCl and OCl- are dependent upon pH (pKa = 7.6). Both 

of the chlorine species in the above reaction are powerful oxidants, capable of reacting 

with many substances present in water (USEPA, 1999). In aqueous solutions with pH 7.0 

to 8.5, HOCl reacts rapidly with ammonia to form inorganic chloramines in a series of 

competing reactions. Chlorine and ammonias mixing may yield the formation of 

monochloramine (NH2Cl), dichloramine (NHCl2), or trichloramine (NCl3) (Valentine et 
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al., 1998; Karanfil et al., 2007). The simplified stoichiometry of chlorine-ammonia 

reactions are as follows: 

NH3 + HOCl → NH2Cl + H2O   (monochloramine) 

NH2Cl + HOCl → NHCl2 + H2O   (dichloramine) 

NHCl2 + HOCl → NCl3 + H2O   (trichloramine) 

These competing reactions, and several others, are highly dependent on pH and 

controlled to a large extent by the chlorine: nitrogen (Cl2:N) ratio (USEPA, 1999). 

Temperature and contact time also play a role. Figure A.1 shows the typical relationships 

between the chloramine species at various Cl2:N ratios for the neutral pH zone (6.5 to 

8.5) (USEPA, 1999). This figure depicts that monochloramine is the dominant species 

when the applied Cl2:N ratio is less than 5:1 by weight (1:1 molar ratio). As the applied 

Cl2:N ratio increases to 7.6:1 (1.5:1 molar ratio), breakpoint reaction occurs, reducing the 

residual chlorine level to a minimum. Breakpoint chlorination results in the formation of 

nitrogen gas, nitrate, and trichloramine. At Cl2:N ratios above 7.6:1 (1.5:1 molar ratio), 

free chlorine and trichloramine are present. Figure A.2 shows the relationship between 

chloramine species as the pH changes (USEPA, 1999). The Figure shows that 

dichloramine becomes a dominant species at pH 3.5 - 4.5. At pH’s lower than 3.0, 

trichloramine becomes dominant. 
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Figure A.1. Theoretical breakpoint curve. 

 

 

Figure A.2. Chloramine speciation with pH. 
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To avoid breakpoint reactions, utilities need to maintain a Cl2:N ratio between 3 

and 5 by weight. Therefore, a Cl2:N ratio of 4 is typically accepted as optimal for 

chloramination. 

While chloramines are considered as less-reactive, they are inherently unstable 

due to auto-decomposition (Vikesland et al., 2001). At a constant Cl2:N ratio, there are 

several factors that can contribute to auto-decomposition of chloramines which includes 

NOM, carbonate, sulfate, phosphate, nitrite, bromide, and acetic acid (Vikesland et al., 

2001; Karanfil et al., 2007). Furthermore, all of these reactions are dependent on pH 

(Valentine et al., 1998). 
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Appendix B 

 

NDMA formation concentrations (ng/L) and their corresponding yields 

([Precursor]0 = 200 nM). 

NDMA 

Concentration 

(ng/L) 

Molar Conversion 

(%) 

15 0.1 

75 0.5 

150 1 

750 5 

1500 10 

3750 25 

7500 50 

11250 75 

15000 100 
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Appendix C 

 

 

 

Figure C.1. Typical chloramine residuals measured in NDMA FP tests at 100 mg/L 

initial dose. 
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Figure C.2. Typical chloramine residuals measured in NDMA FP tests at 5 mg/L initial 

dose. 
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Figure C.3. Typical chloramine residuals measured in NDMA FP tests at 5 mg/L initial 

dose in the presence of 100 mg/L ammonia. 
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Appendix D 

 

 

 

Figure D.1. Typical chloramine residuals measured in NDMA FP tests at 100 mg/L 

initial dose (pH=7.5). 
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Figure D.2. Typical chloramine residuals measured in NDMA SDS tests at 3 mg/L initial 

dose (pH=7.5). 
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Figure D.3. Typical chloramine residuals measured in NDMA SDS tests at 3 mg/L initial 

dose in the presence of 100 mg/L ammonia (pH=7.5). 
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Appendix E 

 

Covalent binding of aromatic amines with the constituents of the NOM are 

thought to be an important process in aquatic systems (Chen, 2007). Nucleophilic 

addition of the amine to the carbonyl moieties and/or quinoid groups is proposed to be 

responsible for the covalent binding (Chen, 2007). Quinones - which occur naturally in 

many systems and constitute a significant portion of humic acids - have been frequently 

used to mimic the carbonyl functional groups that may be present in humic acids (Chen, 

2007).  

Among the family of aromatic amines, aniline is the simplest compound and thus, 

it has drawn significant research interest. Parris (1980) investigated the reactions of 

several ring-substituted anilines with humate in aqueous solution and observed biphasic 

binding. Initially, a rapid, reversible equilibrium (phase I) was established, and a slow 

irreversible reaction (phase II) subsequently followed. The formation of imine linkage 

with the humate carbonyls (1,2-nucleophilic addition) was postulated to be responsible 

for the fast reaction (phase I) between aniline and quinones (Weber et al., 1996). The 

slower irreversible reaction (phase II) was proposed to result from the 1,4-nucleophilic 

addition (Weber et al., 1996). The possible pathways are given in Figure E.1. 
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Figure E.1. The proposed pathways for the covalent binding of amines with quinones 

(Weber et al., 1996). 

 

In addition to aniline, many other aromatic amine chemicals, such as 

dichloroaniline, N-methylaniline, chloroaniline, 1-naphthylamine, 4-methylaniline, and 

benzidine have also exhibited the similar biphasic sorption in the presence of quinones 

(Chen, 2007). 
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Appendix F 

 

 

 

Figure F.1. Typical chlorine residuals measured during pre-oxidation tests at 3 mg/L 

initial dose (pH=7.5). 
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Figure F.2. Typical chlorine dioxide residuals measured during pre-oxidation tests at 1 

mg/L initial dose (pH=7.5). 
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Figure F.3. Typical ozone residuals measured during pre-oxidation tests at 3 mg/L initial 

dose (pH=7.5). 
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Figure F.4. Typical chloramine residuals measured after pre-oxidation tests at 100 mg/L 

initial dose (pH=7.5). 
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