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The effects of bead inertia on the Rouse model

J. D. Schieber and Hans Christian Oettinger”

Chemical Engineering Department and Rheology Research Center, University of Wisconsin-Madison,

Madison, Wisconsin 53706

(Received 10 February 1988; accepted 19 August 1988)

The Rouse model for dilute polymer solutions undergoing homogeneous flows has been
generalized to include the inertia of the beads in the equations of motion. To obtain the correct
"diffusion equation" for the probability density distribution function in phase space, we
generalize the diffusion equation derived by Murphy and Aguirre [J. Chem. Phys. 57, 2098
(1972) ] from Hamilton's equations of motion for an arbitrary number of interacting Brownian
particles at equilibrium. Material functions are found, and the noninertial case is seen to be
obtained as the zero mass limit in all steps of the development. In particular, the steady-state
shear results are unaffected by the inclusion of inertia. It is also shown how two assumptions,
"equilibration in momentum space," and the neglect of acceleration, made independently by
Curtiss, Bird, and Hassager in their phase-space kinetic theory, are actually the result of assuming

Z€r0 mass.

. INTRODUCTION

Most models of polymers in solution are of two
types: beads connected by elastic springs, and beads
connected by rigid rods. A model of the first type which has
Hookean springs and neglects hydrodynamic interaction
between the beads is the Rouse model." Models which have
nonlinear springs are the inverse Langevin spring model,’
finitely extensible nonlinear elastic (FENE) spring model,**
and the consistently averaged FENE spring or FENE-P
model.>® Zimm’ has developed a model of Hookean springs
with preaveraged hydrodynamic interaction, and Oettinger
and coworkers®'' have studied Hookean spring models and
FENE-P models with consistently averaged hydrodynamic
interaction. Examples of bead-rod chains without
hydrodynamic interaction are those proposed by Kuhn and
Kuhn,'? Debye,"” and Kramers."* Kirkwood and Riseman'’
considered a freely rotating bead-rod chain with preaveraged
hydrodynamic interaction. A compilation of many of these
papers may be found in a book edited by Hermans '® and
much of the work is summarized in a book by Bird, Curtiss,
Armstrong, and Hassager.'”

All of these works have two points in common:
They begin from a phenomenological approach in the chain
configuration space instead of Hamilton's equations of
motion, and they neglect the mass or inertia of the beads in
the equations of motion describing the dynamics of the
polymer chain. The most explicit argument for the neglect of
bead masses was given by Fixman'® who made order-of-
magnitude estimates for the prefactors of the important terms
in the equations of motion for the beads. Using dimensional
arguments, he concluded that bead inertia was unimportant
for measurements involving frequencies much less than 10"
s'. However, we suggest below that this argument is
quantitatively and qualitatively incorrect.

Although all of the workers mentioned above began
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from a phenomenological approach, it was not until 1976, that
Curtiss, Bird, and Hassager'’ illustrated how these various
models could be derived from Hamilton's equations of motion
using a kinetic theory approach®® by making various
assumptions. This is accomplished by closing two sets of
hierarchical equations. The truncation of the first hierarchy
eliminates the degrees of freedom of the solvent particles, and
the truncation of the second eliminates the momenta of the
chain particles.

Curtiss et al.'” begin by writing the Liouville
equation for both the solvent particles and the particles of a
single chain (N total), and then express this in the form of the
BBGKY hierarchy of equations (named for Bogulyubov,”
Born and Green,”' Kirkwood,”” and Yvon®®) obtained by taking
appropriate integrations over the phases of the particles. In
general, the first equation of this hierarchy involves both the
single and two-particle distribution functions, the second
equation involves the two- and three-particle distribution
functions, and so on until the final equation which involves the
N - 1 and N-particle distribution functions. Taken together,
these contain all of the information of the original Liouville
equation.

If there are / particles in the chain, Curtiss et al."
consider the equation in the hierarchy involving the /- and [ +
Iparticle distribution functions and make an important as-
sumption about the interaction between the / chain particles and
the N - [/ solvent particles called "the modified Stokes law
empiricism." This assumes that the hydrodynamic interaction
between the "solvent" and the chain can be approximated by a
linear, possibly anisotropic, drag law. The resulting equation
contains 6/ degrees of freedom rather than 6N, where [ is
usually many orders of magnitude smaller than N.

From this equation, Curtiss et al.’® create the second
hierarchy of equations involving the zeroth, first, second, etc.,
moments of the generalized momenta of the chain particles by
taking appropriate integrations of this equation over the bead
momenta. Analogously to the first hierarchy, the first equation
involves the zeroth and first moment of the
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particle momenta and is called "the equation of continuity"
for the [-particle configuration distribution function. The
second equation involves the first and second moments of the
bead momenta and is called "the equation of motion." Two
important assumptions are then made to close these two
equations: (i) an explicit form is assumed for the second
moments of the particle momenta; for the dumbbell, this
form is given by the equipartition of energy, and (ii) the
acceleration of the chain particles is assumed to be
negligible. These assumptions are taken to be independent by
Curtiss et al., but it is shown below how they may be
interpreted more consistently as the result of a single
assumption.

In this way, the general diffusion equation for the
configuration probability distribution function for the chain
particles, which may then be specialized for many types of
models, is obtained, and the dynamical equations are no
longer deterministic, but stochastic and irreversible in time.
We note here that there exist many different names in the
literature for these diffusion equations; therefore, we will use
the convention that diffusion equations for probability
distribution functions in configuration space will be referred
to as Smoluchowski equations and those in the full phase
space will be referred to as Fokker-Planck equations, or
FPEs.

It is our goal to parallel the work done in the past for
the noninertial Rouse model with the inertial one. In order to
accomplish this, we must begin with the correct equations of
motion derived from Hamilton's equations of motion for a
dumbbell. These are obtained from the equations of motion
derived at equilibrium which are generalized to account for
flows and the corresponding Fokker-Planck equation is
found. From this FPE, the constitutive equation for the
inertial model is found by solving the four coupled ordinary
differential equations involving the ensemble average of the
second moments of the phase space coordinates. These
moment equations are seen to reduce to the usual moment
equation for the noninertial dumbbell in the limit of zero
mass. The usual Smoluchowski equation for the noninertial
case is also obtained from the FPE in the zero mass case
when appropriate manipulations are made.

From the rheological equation of state, we are able
to calculate several material functions. These are compared
to the usual results for the noninertial Hookean dumbbell
which are found as a limiting case of the inertial model. We
then generalize our results for a Rouse chain.

Il. DEVELOPMENT OF THE MODEL

Because of the two assumptions made by Curtiss, Bird,
and Hassager" about the first and second moments of the
bead momenta, namely the neglect of the acceleration terms
and equilibration in momentum space, their work may not be
taken over here. Instead, we begin by considering the work of
Murphy and Aguirre," who derived a FPE for interacting
Brownian particles at equilibrium. We point out that this
equation was originally derived by Klein" in 1921 from a
phenomenological approach; however, we are interested here
in the connection to Hamilton's equations of motion.

In a method similar to Curtiss, Bird, and Hassager,19
Murphy and Aguirre® also begin with the Liouville equation
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for both the Brownian particles and solvent particles and use
a kinetic theory approach; however, they require only one
hierarchical set of equations. They follow a methodology
pioneered by Kirkwood (e.g., see Ref. 38) and illustrated in a
textbook by Resibois and DeLeener.”® The same methodology
was used by Lebowitz and Rubin®’ to derive the FPE for a
single Brownian particle in phase space.

Murphy and Aguirre also begin with the equation in the
BBGKY hierarchical set involving the /- and /+1-particle
distribution functions. However, they derive the linear Stokes
law drag from approximations based on a few physical ideas
similar to Kirkwood's derivation of the friction coefficient.”®
More importantly, in order to close this equation, they assume
that the mass of the Brownian particles is much greater than
that of the solvent particles. For such an assumption, the
solvent particles are always at equilibrium and depend
parametrically upon the positions of the Brownian particles.
At this pont, they arrive at a FPE for interacting Brownian
particles:

6j}+z

d

=T Jz_lmt?v S (mé‘v +kT )f"
where f; is the [-particle probability density distribution
function for the / interacting Brownian particles, v, is the
velocity and r; is the position of the ith particle relative to a
fixed frame of reference, and F(“ is the force on particle / due
to the presence of all the other Brownian particles. T is the
absolute temperature, k is Boltzmann’s constant, and m is
the mass of a particle. The tensors & are /> hydrodynamic
friction tensors.

For the sake of clarity, we consider first only the Hook-
ean dumbbell. For this model, we are able to find a Fokker—
Planck equation, and then a constitutive equation; from the
constitutive equation we are able to calculate several materi-
al functions. Finally, we show how the results may be gener-
alized to describe a Rouse chain of arbitrary length. Thus,
we take the above diffusion equation for the case of / = 2. We
also neglect hydrodynamic interaction so that

§; = 689, (2)

where { is a scalar friction coefficient, & is the unit tensor,
and &; is the Kronecker delta. We introduce the internal
coordinate Q = r, — r, and note that the interaction forces
for a Hookean dumbbell are

(- —+F‘°’ li)ﬂ

m dv,

L3

(1)

F©= —F=HQ. (3)
The FPE is then
[ —+ Q
.._[v. a
2 8r2
ke [9 (1 9 1 )
T [8v1 (m v TEkr "
d (1 4 1 )}
. — . 4)
av, (mc?v2+ v:)| /2 (
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According to a method begun by Lord Rayleigh and developed
separately by Fokker, Planck, and Ornstein® a complete
equivalence between Fokker-Planck equations or Smoluchowski
equations and stochastic differential equations (or SDEs,
sometimes referred to as Langevin equations) is known.***
Using this method (and Ito calculus), the following SDEs for
each bead are found:

mdv, =F dt — v, dt

+ kT2 dW (1) (i=12), (5

dr; = v, dt, (6)

where the three components of dW{(f) represent three

independent Wiener processes which are completely

described by their first and second moment ensemble
(d wz) =0,

(AW ()dW, (")) =8,6(t—t")ddtdr’, (7)

where <..> denotes an ensemble average. These
stochastic differential equations contain all of the information
contained in the Fokker-Planck equation and no additional
assumptions are necessary to obtain these. We also point out
that other workers have obtained similar SDEs for Brownian
particles from Hamilton's equations of motion by using Mori-
Zwanzig projection operators.”’

We now wish to generalize these equations to account
for systems undergoing flow. This is accomplished by
replacing v; on both sides of Eq. (5) with v'; where

(8)

The tensor k(#) describes the imposed, incompressible, ho-
mogeneous solution flow field by v,(r,f) = k(¢)-r and is not

V=V, — KT;.

a function of position. This method of generalization is
justified by the assumption that we expect the fluid to appear to
be in equilibrium locally in the frame of reference of the
macroscopic motion of the fluid at the center of the bead. Also,
in the limit of H = 0, the two beads then reduce to
noninteracting Brownian particles.

Before considering these generalizations, we note that
Szu and Hermans" attempted to find the viscosity for a
Hookean dumbbell with inertia and wrote an equation of the

type

madv, =F dt — (v, —wr,)dt + (2KkTE)V2dW,.
9

They did not find a constitutive equation, but found the vis-
cosity from energy dissipation arguments. However, the
equation suggested by Szu and Hermans, Eq. (9), leads to
very nonphysical results for the center-of-mass motion. For
example, in steady shear flow of the type

ve, = V¥, Vg, = g, =0, one obtains

m{ (v, — [®r.])%)
= (kT /2) + (mkTi?/26 %) [Eyt* — myt — Lt
— (5m*y/8) — (m/24)].
That is, the x-component of the velocity of the center of mass

relative to the velocity of the fluid at the center of mass grows
unbounded with time. However, the same SDEs that govern
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the internal-configuration motion may be obtained by making
the following generalization of Eq. (5):

md(v; —xer,) =Fdt — {(v;, — xer; )dt
+ (2kTE)'*dW,. (10)

Using Eq. (10), we can reinterpret the results obtained by Szu
and Hermans as the results of a model with dumbbellcentered
isotropic Brownian forces. We note in passing that one
obtains no correction to the steady-state shear viscosity and
first normal stress coefficient for this unphysical model.

Booij39 also wrote an equation of motion similar to Eq.
(10), but did not obtain any results. He estimated what the
relative magnitude of various terms in the equation were in an
instantaneous jump strain only.

We note that the question of bead-centered vs dumbbell
centered isotropic Brownian forces was first raised by Bird,
Fan, and Curtiss.** They did not work in the full phase space of
the chain, but compared results for two different assumptions in
their closure of the second hierarchical set of equations
mentioned above: A Maxwell-Boltzmann distributed velocity
field of the beads around (i) the center of mass of the dumbbell,
and (ii) the center of mass of the beads. For the second case,
they obtained an additional mass-dependent term in the
constitutive equation that was not present for dumbbell-centered
Brownian forces. As shown below, however, the presence of
the mass-dependent term is not compatible with neglecting bead
inertia.

The stochastic differential equations of motion for the beads are
thus obtained from Egs. (5) and (6) by the introduction of v';
defined in Eq. (8):

mdv, =F dt — {v; di
+ (kTHV2dW,, i=1,.2,
dr; = v!dt + xr; dt.

(11)
(12)

We now define the generalized coordinates and corresponding
velocities

Q=r,—r,

r.=(r,+r)/2,

' ’ ’
v ="2“‘“"|,

v. = (v] +v3)/2. (13)

1t is the evolution of these quantities in time in which we are
interested.

A. Center-of-mass motion

The SDE describing the motion of the center-of-mass
coordinates may be obtained from Egs. (11) and (12) by adding
the i = 1 and i = 2 equations and using Egs. (3) and (13):

mdv. = —¢v. dt + (KTO)V2dW,,

dr, =v.dt+ «r_dt,

(14)
(15)

where dW_= (dW,+ dW,)/v/2 whose three compo-
nents represent three independent Wiener processes, which
can be verified by the definition, Eq. (7). Using the rules of Ito
calculus found elsewhere,””** we obtain the following second
moment equation for v, from Eq. (14) (alternatively, one
could write down the corresponding FPE for r. and
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v, multiply by v.v., and integrate both sides of the resulting
equation over r, and v.):

C. Ottinaer: Effects of head inertia 6975

<QQ>, <V'V>, <QV>, and <V'Q>, we find the coupled ordinary
differential equations describing their time evolution. This may
be done in two ways: (i) multiplying the FPE, Eq. (22), by the

4a
dt
This has the solution

{(vvl) = — 2% (vivi) + k_ng 5. (16)  desired moment, say QQ, and integrating over Q and V', or (ii) by
m m using Ito calculus and Egs. (18) and (19) . Either method yields

(veve) =‘;—T(1 —e M 4 (Vv e (QQ) i, =(V'Q) +(QV), (23)
m
d ’ + ’
or, for the experimentally accessible times of interest, o (QV') + % (QV') —k(QV') =(V'V') — 2H (QQ),
t>m/28, " (24)
vov) =XL 5 an 4 ¢
T 2m o (V'Q) + (V'Q) —(V'Q)x'
for all imposed, homogeneous flow fields. Thus, physically 2H
reasonable results are obtained for the center-of-mass motion in = (V'V') — - {QQ), (25)
contrast to the results obtained using the equations of motion m
posited by Szu and Hermans.* 4 vy L 2 gy BTG o 2H
dz< >+m (V'v') — 5 - (QQ) () -
(26)

B. Internal configuration motion ) o o
) ) . i The subscript (1) indicates a convected derivative defined by
The equations of motion for the internal configuration

phase space coordinates are found from Egs. (11) and (12 ) by s J

taking the difference between the i = 2 and i = 1 equations and Ajy=—A=—A—xA— Axh (27)
using Egs. (3) and (13) to obtain ot dt
mdV' = —2HQdt — ¢V dt + 2(kTE)V? dW, (18)
whered W = (d W, — d W,)/v/2 can also be verified by Eq. (QV') =1 (QQ)., +1(r) (29)
= m .

(7) as three independent Wiener processes independent of W, (7). By taking the operation [ (d /dt)d + (£ /m)& — k]« on Eq.
The SDEs for the well-known Hookean dumbbell without inertia (29) and subtracting from Eq. (24), one obtains
may be obtained by setting m = 0 in Eq. (18), multiplying Eq.

(18) by 1 /¢, and adding Eq. (19) . In this way, one obtains —;‘ (% + :i—) (QQ) 1, — ik {QQ),, + 27H (QQ)
d r ’
dQ=wQdr— (2H/£)Qdt + 2(kT /£)'> d W.(20) - (E + %)I(t) + kl(r) =(V'V').
This has an equivalent Smoluchowski equation of the form

By performing a similar operation on Eq. (28) (replacing
_2H o- 2kT a8 W, 21 the left-hand dot product with k- by a right-hand dot product

W _
¢ £ 3Q k") and subtracting from Eq. (23), one obtains

d

E 70 {[=Q]
where ¥(Qj;t) is the configuration distribution function. L (-d— + i) (QQ)(,, — KQQ),, k" +2HM(QQ)

This is equivalent to Eq. (13.2--13 ) of Ref. 35 for no external 2 \dtm

forces, and is the well-known Smoluchowski equation for a + (i + i ) I(t) — L(1)x! = (V'V'). 31)

noninertial Hookean dumbbell. dt m

We now continue toward our goal of finding the corresponding

material functions. Equations (18) and (19) have an equivalent Subtracting Eq. (31) from Eq. (30) yields

FPE of the form

) + £ 100 — 3 IeI() + (']
dt m

= %(QQ)(])’KT - ZI;K'<QQ>(1) .
_9d [2H Q+ £ V' + ﬂ i} o (22) If equilibrium at t = -co is used as the initial condition, this has
av' Im m m> v’ the solution

where f(Q,V';t) is the probability distribution function for

the internal motion. This is a so-called "linear" FPE since it has
linear drift terms and constant diffusion terms. Therefore, it

o

S S
%~ 30 V' + [«QlYf

1 e
I(I)Z_J. \--i_-(l—!]/mA r,rr
o) ¢ (')

has a solution which is Gaussian in @ and V and is completely [(QQ) (1, k" — k(QQ) (1 I [A (1) " dr’,
characterized by its first and second moments. Rather than (32)
solve the partial differential equation for f and integrate over Q where A(4,t’) = T{exp [(1/2) 5 x( g)dsl} and T( )isa
and V'to find the desired second moments time ordering operator [see Appendix D of Ref. 35 for a
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more detailed explanation of a similar function, E(f¢")

which is equivalent to A when « is replaced by (1/2)k].
Equation (26) may be solved for (V'V’) as a function of

(QQ) and time by an integrating factor and has the solution

V'V =J" e-z;(z—r')/m{4k€§8_£(QQ)(”]dt'.
m m

— @

(33)
By adding Egs. (30) and (31) one
(1+£)(QQ)(.) —3(6(QQ) ¢y + (QQ) K"
dt m
+ 3 Q) =2(VV)) —keI(H) + LK. (34)
m

Thus, insertion of Eqs. (32) and (33) into Eq. (34) givesa
closed integrodifferential equation involving only (QQ), k,
and time. As shown below, these equations contain all of the
information necessary in order to find the stress tensor as a
function of any imposed, incompressible, homogeneous flow
field for this model.

We note that for steady, potential flows, k = k', so that
{QQ) can be written as an expansion involving only & and k.
If we then transform to some coordinate system where the
matrix representation of k is diagonal, the representation of
{QQ) also becomes diagonal. Then, the quantity inside of
the square brackets in the integral expression for I(¢) in Eq.
(32) becomes zero and I(#) = 0. Thus, for steady, potential
flows, the governing equation simplifies greatly:

¢ m) m kT
— =+ + — K> =—12.

Q@) - (£ + Q@) + 7 we@) =
(35)
For the SDEs, we have already studied the limit 72— 0.

Thus, before calculating material functions, we consider the

limit of zero mass for the moment equations, and then the FPE.

If Eq. (26), is multiplied by m* and m is allowed to approach

zero, we find

(m{(V'V')),,_o =2kTd (36)
which is the assumption made by Curtiss, Bird, and Has-
sagerl9 called "equilibration in momentum space." Multi-
plying Egs. (24) and (25) by m, letting m approach zero, and
using Eq. (36) we obtain

Qvy =T 5_2H qq),

(37)
; ¢
(V'Q) =—2—’218—%<QQ>. (38)
Adding Egs. (23), (37), and (38)
(QQ).,, =i§36—%<QQ). (39)

This is exactly the result found for Hookean
dumbbells without inertia [see Eq. (13.2-17), Ref. 35]. Note
that Eq. (36) is simply a consequence of assuming zero
mass, and is not introduced as an assumption.

We now consider what happens to the FPE for the
dumbbell, Eq. (22) in the limit that m = 0. We use a method
which is analogous to that used by Curtiss, Bird,and Has-
sager to close the second hierarchical set of equations. First,

J. D. Schieber and H. C. Ottinger: Effects of bead inertia

we define the contracted configuration distribution function

Y:

Q0 = [ fQVinav (40)
and also the notation

([ 11=37" [ Cr@vinav. (a1)
We begin by integrating Eq. (22) over the velocity V” to
obtain "the equation of continuity":

Lm 5 (VI 4 Q) (42)

Then, we multiply Eq. (22) by V' and integrate over V' to
obtain "the equation of motion":

d
aQ

Moy 5 v
m m

%([[V'n«z):— ([IVV']] + «Q[ V1D

By multiplying by m/{ and letting m = 0, keeping only
those terms involving m°Q and (m)'/?V’, we get

19— 22 03+ {7 vv )
~uvng=2Eeis oo (; [[VV1])¢.

Next, we multiply the FPE by V'V, and integrate over V” to
obtain

(43)

d v
Z[[VV]W

d o1 2H .
= -0 [[VVV]]¢—7(Q[[V]]

VI — 2 vV +

m

4KTE -
m? v,

where we have used the property tr(k) = 0. If we multiply both
sides of this equation by m* and let m—0, we see that
m[[V'V']], o =2kTd

which is what Curtiss et al. call "equilibration in momentum
space" (see p. 71 of Ref. 19). Inserting this result into Eq. (43)
yields

_vne=HqpyEL 9 5

(44)
4 & dQ
Inserting Eq. (44) into Eq. (42) yields
W _ 9 feq Mg _2%T 935 (4
Ey aQ{KQ §Q R BQ}¢ (45)

which is just Eq. (21) with 3 = . Thus, we see from the
above development that equilibration in momentum space
and the neglect of the acceleration term (d /dt) ([[V']11%)
are both consequences of allowing the mass to approach zero
and are not independent assumptions, as incorrectly as-
sumed in Refs. 17 and 19. This process of eliminating the
mass of the Brownian particles corresponds to the limit of
zero dimensionless mass defined by (m/§)/A,. This is a
formal way of accounting for a large separation of character-
istic time scales. The very small time constant m/¢ is a char-
acteristic time scale for the velocity fluctuations due to the
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Brownian forces, and the large time constant, A, = { /4H is
a characteristic time scale for the vibrational motions of the
dumbbell.

We also point out that this method of obtaining the
Smoluchowski equation from a FPE can be generalized to an
arbitrary number of interacting Brownian particles in the
presence of time-independent external forces and seems to be
more straightforward than the method used by Murphy and
Aguirre,24 or Wilemski."

C. The stress tensor

From Eq. (13.3-14) of Ref. 35, we know the dependence
of the extra stress due to the presence of the polymer, m, to be
for a Hookean dumbbell:

w, =nm Yy (v,v,) — nH{(QQ), (46)

where n is the number density of dumbbells. The summation
in the first term on the right-hand side of Eq. (46) can be
written

T (vv,) = 2(vv) + K(V'VY)
= ﬂ 8 — —J- exp[

X§<QQ)I dt s

where Egs. (17) and (33) have been used and 6/8¢ repre-
sents the convected derivative defined in Eq. (27). As is
customarily done, we substract off the isotropic contribution to
the stress tensor at equilibrium in the definition of 1, Thus,
using Egs. (46) and (47) we obtain

t)]

(47)

t, = nkT® — nH (QQ) — nH

XL exp[—%{r—t')];‘j—,(Qm,-dr’.
(48)

The first two terms on the right-hand side are the usual non-
inertial contribution to the stress tensor in the Kramers
expression. The third term is a contribution from the inertia of
the internal motion of the dumbbells.

D. Time-dependent shear flows

We now continue on our goal of finding the material
functions. We wish to find <Q@> for flows where x has the
matrix representation in a laboratory fixed Cartesian coordi-
nate system: ,

0 1 0
k=0 0 0]y(. (49)
0 0 O
We try a solution of the form
kT 1+f g 0
(QQ)E—E g 1 o], (50)
0 0 1
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where f and g are functions of time. For this form of <QQ>,
I(t) = 0, and Egs. (33) and (34) yield the following inte-
grodifferential equations for fand g:

d . 4H 4H
(—+£)(g—y) +—8+—

dt m m m

Xf exp[ ——E(t
— o m
4H

(d g)(f 21/g)+—f+———

dtm

Xf_ 3 exp[ ——%(t— t’)]

X(f—27g)dt' = (g—1) 7,

—t')](g—%)dt'=0, (51)

(52)
where the dot over the variables f and g indicates a deriva-
tive with respect to time. Equivalent ordinary differential

equations may be obtained by performing the operation (d /
dt) + (2{ /m) on Egs. (51) and (52) to yield

4H

Gt )G )+

(g—7

+ﬂ( +—£) —o, (53)

dt m

[(d E)(_ £) AH] - 5

.(dt+m dt+m +m_(f ve)
ALY (4 Y s
+ (dt+mf <t m)(g Nr. (54

If we introduce the time constant A, and dimensionless
mass yu: Ay = £ /4H and u = 4Hm/¢?, then Egs. (53) and
(54) can be written

[(D'+2)(D'+ 1)D' +2u(D' + 1)1g

=[D'+2)(D'+ 1) +puliyuy, (55)
[(D'4+2)(D'+ 1D +2u(D'+ D1 f

=[(D'+2)(D'+ 1) +pl Ay p2yg

LD +2)[(g— 1, (56)
where
, d
D =/l,,,u;';.

1. Oscillatory shear flow

A solution to Eq. (5§5) may be found for shear flows of
the form

(1) = 7" Re{e}, (57)
where Re{ } represents taking the real part of the enclosed
quantity and co is the frequency of oscillation. It is possible
to generalize the ordinary differential equations into a
complex form if we postulate a solution of the form

g = Re{g*e“ A1 ,7°, (58)
where g* = g*(A,0,1). Then Eq. (55) yields

1+ Agoi(l + Ayopi/2)
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The polymer contribution to the complex shear viscosity,
n* =7’ — in" is defined by the relation (see p. 116, Ref. 35)

J. D. Schieber and H. C. Ottinger: Effects of bead inertia

T _ g (Lt g
nkTAy (1 +//1pri)

u/2

(1 +/Agopi)

0, = — %P, (60) Likewise, once g is known, a solution for fmay be found by
> postulating a solution of the form
where we have used the relation f=L1f%+Re{f*}] - (4472, (63)
7, = Re{1%"} . (61)  where f?and f* are functions of A, and u. From Eq.
Then, from Egs. (48), (50), (60), and (61) we find (56) we obtain
J
f4=Re{(1+u/2 + Yyoui)g* — p/2}, (64)
fe [+ Ay poi+ (u/2)/(1 + 24y poi) ] + 4 p(1 + Ay pwi)(Agog*i — 1)/(1 + 24, poi) (65)

1 + 2 40i(1 4+ A4 pwi)

From these relations, we can find the polymer contribution
to the complex first normal stress coefficients defined by

Ty — T = (V1S + W) (). (66)
Then, from Egs. (48), (50), (61), (63), (64), and (66), the
expression for W9 is

(V{/nkTA%) =Re{ f¢ — g*u/2}. 67)
The expression for W¥ is found from Egs. (48), (50), (61),
(63), (65), and (66):

0+ Ygeu) u/2 .
nkTA3 (1 + Ayopi) (1 +Agouid) ~

Note that the expressions for 7*, ¥¢, and W¥ reduce to the
usual noninertial dumbbell results in the limit that x4 = 0:

1
_'1 + Ayowi
fd—’RC{g*} ) ,uf_’O’
[*-g*/(1 4+ 2A40i), u-0.

Thus, the material functions for oscillatory shear flow re-
duce in the zero mass limit to

n* 1

(68)

g* ’ /.t—>o,

= -, u-0,
nkTAy 1+ Agzwi

\Iltlj—_‘/lH"],» #~0,
i Agy*

= , p—0.
nkTA, 14 21,wi

We note from the expressions for 7* and ¥* for Hook-
ean dumbbells with inertia and bead-centered isotropic
Brownian forces, Egs. (59), (62), (64), (65), (67), and
(68) that there occur corrections involving terms of the or-
der A, ou'’?, in contradiction with Fixman’s argument as to
when the mass should become important. Fixman'® implic-
itly assumed the importance of only a single time constant
m/§ and based his dimensional arguments on that. How-
ever, another governing time constant exists, namely A,
which allows the existence of a dimensionless mass that is
independent of any characteristic dimensionless time. Thus,
terms like the one above, where the characteristic dimen-
sionless frequency A o is scaled by the square root of the
dimensionless mass '/2 can occur.

I

For example, Fixman estimates that £ /m[ = 1/udy ]
=~10"" s~ For systems with a characteristic hydrody-
namic time constant A ;; =1 s, the inertia would be important
when A,0u'’? is of order unity, or when w= IO\Q6 sTi—
instead of IOJE‘Z’ s~ ! as Fixman expected. However, these
frequencies are still not experimentally accessible for any
data that we have seen.

2. Steady shear and startup of shear flows

For a final calculation of a material function, we loolg at
startup and steady shear flows. For startup of shear flow, ¥ of
Eq. (49) has the form

. 0, <0

6
Yo, t>0 (69)

or ¥(t) = y,H(t), where H(z) is the Heaviside step func-
tion. In order to solve Eq. (55) for this case, we introduce the
variable

y=8—AuYoR(7), (70)
where 7 =t /Ay p, and
" , _[r for 7>0
R(T)_f_wH(T)df_[O for 7<0° (71)

Using these definitions, Eq. (55) can be written
[((D'+2)(D'+1)D"+2u(D’'+1)]y
= — Axyop (D' +2)R(7).

The initial conditions are y(0) = »'(0) = y”(0) = 0. This
is a linear ordinary differential equation which may be
solved by standard means such as Laplace transform. The
solution is

y 1 lu2 —_T (/1+ ) —A_7T
—={14+—= )+— e” " — e
Auto ( 2 H (1-2;;)[ Y

)]
212,

where A, =1+ (1 —2u)""% From Egs. (48) and (50),
and the definition of the viscosity growth function

(72)

T (T) = — ()%,
we have

- - (62) /172

(=)
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nt (1) =2( 8 )_2J.T e—2r— ™
nkTAy, AuYo —w

X (5(—7—)) dr — (1 — e~ ). (73)
AuYo
From Eqgs. (70), (71), (72), and (73) we get
77+(T) =1 _1_ —2r ,u'2
wkTh, T2 M T AT
1 1
X ( )e“*f—( )e“f}. (74)
[ A A%

We note that in the limit g = 0:

UMO)
nkTA 47,

which is the usual noninertial Hookean dumbbell result. We
may also obtain the steady-state shear viscosity from Egs.
(59) and (62) in the limit @ = 0 or from Eq. (74) in the
limit 7— oo to find: y = nkTA,. Likewise, from Equations
(59), (65), and (68) we get the usual steady-state first nor-
mal stress coefficient defined in Ref. 35: ¥, = 2nkTA 2%,

=1—exp(—t/Ayg), u=0

Thus, the steady state shear results are unaffected by inertia.
We have shown above how the other material functions for
the inertial Hookean dumbbell reduce to the results for the
usual noninertial Hookean dumbbell in the limit of zero
mass.

Ill. GENERALIZATIONS TO THE ROUSE MODEL

All of the results found so far may be generalized to a
Rouse chain of N structureless beads linearly attached by N-
1 identical Hookean springs of spring constant H with bead-
centered isotropic Brownian forces. The equations of motion
for the beads in this model are

madv, =F dt — v, dt + (2KkTE)V?dW,,
v=12,.,N,

(75)

dr,=v,dt+x-r, dt, (76)

where F!? is now the sum of connector forces on bead v. We
introduce the generalized coordinates

1
r,=—)>r,, 77)
N2 (
Q=rr 1 — T, (78)
and the corresponding velocities
1
vi=—>Yv,, (79)
N <
Vi=Vi, 1 —Vi. (80)

By subtracting the v =k + 1 case of Eqs. (75) and (76)
from the v = k case, and using the definitions given by Egs.
(77)—-(80), the appropriate SDEs for the internal configura-
tion are obtained:

mdV, =3B, FOdt— ¢V, dt

+ QKTHV2Y B, dW,, (81)
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dQ, =V, dt+«-Q,dt, k=12,..N—1, (82)

wherethe N X (N — 1) matrix E,w has been introduced. It is
defined as

Bkv = 6k+ 1L,v 5k,v . (83)

The term containing the connector forces on bead v, F{?
may be rewritten

zgvj Fi”= ‘—HZAjk Q; 3
J] i

where we have used the (N — 1) X (N — 1) Rouse matrix,
Aj; defined by

(84)

A4,=YB,B,. (85)

It has eigenvalues a; = 4 sin?(i7/2N), i = 1,2,...,N — 1 and
may be diagonalized by an orthogonal matrix €1; such that

; @ Ay Qyy = a;6; . (86)
7

This same matrix can then be used to transform the original
internal coordinates into normal mode coordinates, Q, and
i—{'}:

Q% =92.Q, Vi=3Q,V;. (87
1 [

Using these relations, we multiply Eqgs. (87) and (82) by Q,
and sum over k to obtain

mdV, = —a,HQ, dt — (V] dt + (2kTE)'?

XY S B Qy, dW,, (88)
kv
dQ, =V dt + «-Q, dt.
This has the corresponding FPE:
of (a @ = 117
_—= = —_— V'—l- K‘Q,- }
3 Z 20, [«Q ]y
d [aH ~ ¢, kTG 9 l)
W =N V) l ,
+a\7; [m Q,+m i+t F f
(89)

where Egs. (84), (85), and (86) have been used. If we pos-
tulate a solution of the form

FQusQuo Vi Vi 5t =TI £(QVED  (90)

then Eq. (89) canbe written as (N — 1) separate, uncoupled
FPEs:

af; d s ~
i __ 2 qv Q. 1},
o 3, Vi + [« Q, 1}
a aH . ¢ o a,kT¢ 3
A Salicls W20 V7T bt A O
+av; mQ,+m -~ o /i
91

provided that the initial conditions may also be uncoupled.
This is satisfied if we choose our initial conditions to be equi-
librium at t = - . Now we note that Eq. (91) has exactly the
same form as the FPE derived for the single dumbbell, Eq.
(22) when the following substitutions are made:
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H—-a,H/2, kT—akT/2.

The previously defined constants must be replaced by new
ones;

Ap—A, =C/2H, p-u;=2maH/E> (92)
Then, the solutions for each of the normal mode coordinates,
(Q ;/Q;) may be obtained from the dumbbell results in a man-

ner exactly analogous to the noninertial case. The polymer
contribution to the stress tensor is

1, =nkTd —nH S (Q,Q,)
-—HHJ exp[—-£ (t—t’)l
— m

xgg‘} (@.0,), dr".

In other words, the chain provides a contribution to the stress
as if there were a spectrum of N - 1 dumbbells with time
constants given by Eq. (92).

(93)

IV. CONCLUSIONS

We began with the diffusion equation of Murphy and
Aguirre derived for an arbitrary number of interacting
Brownian particles at equilibrium from Hamilton's equa-
tions of motion and generalized these to account for flow
fields. The resulting stochastic differential equations of mo-
tion may be solved analytically without omitting inertial ef-
fects. When this is done, Fixman's argument for the omis-
sion of the acceleration terms in the equations of motion for
the beads are seen to be qualitatively incorrect. However,
the finite-mass corrections to the material functions studied
are still seen to be negligible for small-amplitude
oscillatory shear flow. For samples in solvents of extremely
low viscosity, e.g., "supercritical solvents," we may expect
the inertia of the chains to become more important since the
dimensionless mass ,u depends inversely upon the solvent
viscosity squared.

It was also shown how the equations of motion used
by Szu and Hermans for inertial dumbbells in flow fields
are incorrect. However, their results may be correctly
reinterpreted as dumbbell-centered isotropic Brownian
forces. The same viscosity results were found here. That is,
inertial effects give no additional contribution to the
viscosity for dumbbell-centered isotropic Brownian forces.

In every step of the development, it was demonstrated
how the usual results for the noninertial Hookean dumbbell
may be obtained as a limiting case of zero mass from the
inertial case. In particular, a simple and straightforward
method was illustrated to obtain a Smoluchowski equation
as a limiting case of a Fokker-Planck equation that is as
general as, but more straightforward than methods used
elsewhere.***

Finally, the development provides an example of the
connection between work done independently by Murphy
and Aguirre" and Curtiss, Bird, and Hassager.19 Also, two
important assumptions concerning acceleration and Brow-
nian forces made by the latter can be interpreted as the con-
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sequences of a single assumption of vanishing mass of the
chain particles.

Perhaps the weakest point of our development is the
generalization of the work by Murphy and Aguirre to account
for flows. While the field of nonequilibrium thermodynamics
has recently been extensively investigated, most work has
been done either in situations which are only slightly
perturbed from equilibrium (linear response theory) or by
methods which study locally defined thermodynamic
properties and do not make considerations about the
microscopic mechanics. This suggests that much work
remains to be done to account for flows in more than just the
phenomenological approach done here.

We also point out that it should be possible to generalize
this work to include both hydrodynamic interaction and fluid
inertia. A large effect is not expected in the presence of
hydrodynamic interaction. On the other hand, the effect of
fluid inertia may be quite important but is outside the scope of
this paper.
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