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not strongly predicted by existing symptom subtype distinctions, recent research suggests that
prediction can be improved by using machine learning methods. However, it is not known whether
these distinctions can be refined by added information about comorbid conditions. The current
report presents results on this question.

Methods—Data come from 8,261 respondents with lifetime DSM-1V MDD in the WHO World
Mental Health (WMH) Surveys. Outcomes include four retrospectively-reported measures of
persistence-severity of course (years in episode; years in chronic episodes, hospitalization for
MDD; disability due to MDD). Machine learning methods (regression tree analysis; lasso, ridge,
and elastic net penalized regression) followed by k-means cluster analysis were used to augment
previously-detected subtypes with information about prior comorbidity to predict these outcomes.

Results—Predicted values were strongly correlated across outcomes. Cluster analysis of
predicted values found 3 clusters with consistently high, intermediate, or low values. The high-risk
cluster (32.4% of cases) accounted for 56.6—72.9% of high persistence, high chronicity,
hospitalization, and disability. This high-risk cluster had both higher sensitivity and likelihood-
ratio positive (relative proportions of cases in the high-risk cluster versus other clusters having the
adverse outcomes) than in a parallel analysis that excluded measures of comorbidity as predictors.

Conclusions—Although results using the retrospective data reported here suggest that useful
MDD subtyping distinctions can be made with machine learning and clustering across multiple
indicators of illness persistence-severity, replication is need with prospective data to confirm this
preliminary conclusion.

Keywords

Comorbidity; data mining; depression subtypes; depression symptom profiles; elastic net; machine
learning; predictive modeling; risk assessment

Patients with major depressive disorder (MDD) vary substantially in illness course and
treatment response. Recognition of this variation has led researchers to search for depression
subtypes defined by distinctions assessed at the beginning of treatment, such as supposed
causes (e.g., postnatal depression) (Cooper et al., 2007; Cooper & Murray, 1995), clinical
presentation (e.g., atypical or melancholic depression) (Fink et al., 2007; Uher et al., 2011),
and empirically-derived (e.g., factor analysis, latent class analysis) symptom profiles
(Lamers et al., 2012; Vrieze et al., 2014), in hopes that these subtypes would tap into
underlying psychopathological processes that predict treatment response or course of illness
(Baumeister & Parker, 2012; Carragher et al., 2009).

While some promising results have emerged regarding significant associations of baseline
biomarkers (e.g., Pizzagalli, 2011) and psychosocial variables (e.g., Candrian et al., 2007)
with depression treatment response, subtyping distinctions based on empirically-derived
symptom profiles have been disappointing due to profile instability (Baumeister & Parker,
2012; Hasler & Northoff, 2011; van Loo et al., 2012). However, an alternative approach to
symptom-based subtyping given the desire to predict treatment response and course of
illness would be to define subtypes using recursive partitioning (Strobl et al., 2009; Zhang &
Singer, 2010) and related machine learning methods (James et al., 2013; van der Laan &
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Rose, 2011) that search for synergistic associations of baseline measures with subsequent
outcomes.

The latter methods have been useful in discovering stable synergistic predictors of clinical
outcomes in others areas of medicine (Chang et al., 2012; Chao et al., 2012). Other than
small studies of depression treatment response (Andreescu et al., 2008; Jain et al., 2013;
Nelson et al., 2012; Rabinoff et al., 2011; Riedel et al., 2011), though, we are aware of only
one previous study using machine learning to search for depression subtypes in predicting
course of illness. That study, by van Loo and colleagues (van Loo et al., 2014), analyzed
retrospectively reported data on associations of DSM-1VV MDD symptoms in incident
episodes with four measures of long-term illness persistence-severity in a sample of 8,261
respondents with lifetime MDD in the WHO World Mental Health (WMH) surveys.
Significant subtyping distinctions were found based on the conjunction of child-adolescent
onset, suicidality, and symptoms of anxiety occurring during incident depressive episodes.
Respondents in the high-risk cluster (fewer than one-third of respondents) accounted for 53—
71% of high persistence-severity.

The predictors in the van Loo analysis were limited, though, to variables characterizing
incident episode symptoms. A question can be raised whether an expanded set of predictors
might improve subtyping accuracy. In particular, information about prior lifetime
comorbidities might be especially valuable given that van Loo found symptoms of anxiety to
be powerful predictors of illness course and that evidence exists in the larger literature that
comorbidity is related to the course of MDD (Steinert et al., 2014). The current report
presents an expanded WMH analysis evaluating whether information about temporally
primary comorbid disorders improves on the van Loo results.

METHODS

Sample

The WMH surveys are well-characterized epidemiological surveys of prevalence and
correlates of commonly-occurring mental disorders (Alonso et al., 2013; Kessler & Ustiin,
2008; Nock et al., 2012; Von Korff et al., 2009) administered in six countries classified by
the World Bank as high income (Israel, Japan, New Zealand, Northern Ireland, Portugal,
United States), five upper-middle income (Brazil, Bulgaria, Lebanon, Mexico, Romania),
and five low/lower- middle income (Colombia, Irag, Nigeria, Peoples Republic of China,
Ukraine) (World Bank, 2009). Most surveys featured nationally representative household
samples, while two (Colombia, Mexico) were representative of all urban areas in the
country, one of selected states (Nigeria), and three of selected Metropolitan Areas (Brazil,
Japan, Peoples Republic of China). A total of 93,167 adults (age 18+) participated. Sample
sizes ranged from 2,357 (Romania) to 12,790 (New Zealand). Informed consent was
obtained using procedures approved by local Institutional Review Boards. The average
weighted response rate was 73.7% (55.1-96.2% range). Weights were used to adjust for
differential probabilities of selection and discrepancies with population socio-demographic/
geographic distributions. Further details about WMH sampling and weighting are available
elsewhere (Heeringa et al., 2008). The subsample considered here includes 8,261 WMH
respondents who met lifetime DSM-IV criteria for MDD. (More detailed information on the
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descriptive characteristics of the sample is presented by van Loo et al. (van Loo et al.,
2014).

MDD—DSM-IV MDD was assessed with the Composite International Diagnostic Interview
(CIDI), Version 3.0 (Kessler & Ustiin, 2004), a fully-structured diagnostic interview
administered by trained lay interviewers. The CIDI translation, back-translation, and
harmonization protocol required culturally competent bilingual clinicians in participating
countries to review, modify, and approve key phrases describing symptoms (Harkness et al.,
2008). Standardized procedures for interviewer training and quality control were employed
(Pennell et al., 2008). The likelihood-ratio positive (LR+; the relative proportions of clinical
cases among respondents screened positive versus others) was 8.8, which is close to the 10.0
level typically considered definitive for ruling in clinical diagnoses from fully-structured
approximations (Altman et al., 2000).

Respondents with lifetime DSM-1V/CIDI MDD were asked retrospective questions about
age-of-onset (AOO), whether their first lifetime depressive episode “was brought on by
some stressful experience” or happened “out of the blue,” all DSM-IV Criterion A-D MDE
symptoms for the index episode (including separate questions about irritability, weight loss
and weight gain, insomnia and hypersomnia, psychomotor agitation and retardation, and
about thoughts of death, suicide ideation, suicide plans, and suicide gestures-attempts),
ICD-10 severity specifiers, questions to operationalize diagnostic hierarchy rule exclusions,
and questions about marker symptoms of (i) a mixed episode (sleep much less than usual
and still not feel tired; racing thoughts) and (ii) anxious depression (feeling nervous-
anxious-worried; having sudden attacks of intense fear or panic). We also included in the
initial subtyping analysis a dichotomous measure of whether either of the respondent’s
parents had a history of major depression based on respondent reports in the Family History
Research Diagnostic Criteria Interview (Endicott et al., 1978).

Four retrospective questions were asked about subsequent lifetime MDD persistence-
severity: number of years since AOO when the respondent had an episode (i) lasting two
weeks or longer (referred to below as persistence) or (ii) lasting most days throughout the
year (referred to below as chronicity); (iii) whether the respondent was ever hospitalized for
depression and, if so, the age of first occurrence (referred to below as hospitalization); and
(iv) whether the respondent was currently (at the time of interview) sufficiently disabled
because of his or her depression that he/she was either unable to work or had a limitation of
at least 50% in the ability to perform paid work (referred to below as disability). These are
the four outcomes considered here. The persistence and chronicity measures were divided by
number of years between age-at-interview (AAI) and AOO to create continuous outcomes in
the range 0-100%, while hospitalization and disability were treated as dichotomies.

Prior history of other DSM-IV/CIDI disorders—The CIDI assessed 14 other lifetime
DSM-1V disorders, including three other distress disorders (generalized anxiety disorder,
post-traumatic stress disorder, obsessive-compulsive disorder), five fear disorders
(separation anxiety disorder, specific phobia, social phobia, panic disorder, agoraphaobia),
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and six externalizing disorders (attention-deficit/hyperactivity disorder, intermittent
explosive disorder, oppositional-defiant disorder, conduct disorder, substance [alcohol or
drug] abuse with or without dependence, and substance dependence with abuse). Age-of-
onset (AOO) of each disorder was assessed using special probing techniques shown
experimentally to improve recall accuracy (Knduper et al., 1999).

DSM-1V organic exclusion rules and diagnostic hierarchy rules among the disorders
assessed were used in making diagnoses other than for oppositional-defiant disorder, which
was defined with or without conduct disorder, and substance abuse, which was defined with
or without dependence. As detailed elsewhere (Haro et al., 2006), generally good
concordance was found between these diagnoses based on the CIDI and blinded clinical
diagnoses based on reappraisal interviews with the SCID (First et al., 2002).

We considered not only the 14 disorders themselves but also aggregated combinations and
disaggregated subsets in predicting the course of MDD. The aggregated combinations
included nested dichotomous measures of numbers of distress disorders (1+ and 2+), fear
disorders (1+, 2+, and 3+), and externalizing disorders (1+, 2+, 3+). The disaggregated
subsets included child-adolescent onset versus adult onset cases, where child-adolescent
onset was defined as AOO less than or equal to 18 years of age. Given differences in the
age-of-onset distributions of mental disorders (Kessler et al., 2007), the proportion of cases
with child-adolescent versus adult onsets varies across disorders.

Analysis methods

We followed van Loo and colleagues (van Loo et al., 2014) in predicting persistence and
chronicity in the subsamples of respondents where AAI-AOQ was either 10+ years
(chronicity) or 15+ years (persistence) based on preliminary inspection carried out by van
Loo showing that outcome scores stabilized after these cut-points. The chronicity and
persistence models both used a Poisson link function. Proportional hazards survival analysis
was used, in comparison, to predict first hospitalization among respondents who were not
hospitalized at AOO. Logistic regression analysis, finally, was used to predict current
disability in the total sample. The sample size used to predict the four outcomes varied
widely because of these differences in sample. Only the 2,869 respondents with first onset of
depression 15+ years prior to interview were included in the persistence analysis. Only the
3,958 respondents who had a first onset of depression 10+ years prior to interview were
included in the chronicity analysis. Only the 6,465 respondents who were not hospitalized in
conjunction with their incident episode of depression were included in the analysis of
subsequent first hospitalization. All 8,261 respondents, in comparison, were included in the
analysis of current disability.

The analyses were carried out in two steps designed to generate optimal prediction equations
for the outcomes using a number of different machine learning search methods. In the first
step, regression trees were estimated to find important interactions among the temporally
primary comorbid disorders and between these disorders and the symptoms of MDD in
incident episodes. The WMH weights were used in generating these trees. In order to
minimize risk of over-fitting, 100 trees were estimated, each in a separate bootstrapped
pseudo-sample (Hastie et al., 2009; Strobl et al., 2009; Zhang & Singer, 2010). The R-
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package rpart (Thernau et al., 2012) was used for this purpose. Inspection of the frequencies
with which unique terminal interactions (i.e., sub-samples defined by the conjunction of the
dichotomous predictors selected to optimize prediction of the outcome) occurred across the
100 trees was inspected and further analysis was limited to the subset of interactions that
appeared in at least 10% of trees.

In the second step, a separate dummy variable for each temporally primary comorbid
disorder, a dummy predictor for each of the terminal interactions found in 10% or more of
trees, and an offset term for the predicted values of the outcome from the models estimated
in the earlier van Loo analysis (van Loo et al., 2014) were used to predict each outcome in
multiple regression analyses. The central difficulty in estimating second-step models was
that the predictors were highly inter-correlated, leading to coefficient instability when all
predictors were included in a single equation. The classic way to address this problem is
with stepwise regression (Draper & Smith, 1981), but this method over-fits and performs
poorly when used to predict in new samples (Berk, 2003). A number of machine learning
methods have been developed to improve on stepwise regression. We used one of these
methods, penalized regression. This method trades off a certain amount of bias to reduce
overfitting by shrinking coefficients (either constraining the sum of absolute values and/or
the variances of nonzero standardized regression coefficients in the equations) by including
fixed values of the penalties as constants and estimating model parameters under the
constraints of these penalties (Berk, 2008).

Three different penalized regression models were used in our analysis. These three differ in
the mixing parameter penalties (MPPs) used in estimation. One of these three was the lasso
penalty (MPP=1), which favors a sparse model that forces coefficients for all but one
predictor in each strongly correlated set to zero. A second was the ridge penalty (MPP=0),
which uses proportional coefficient shrinkage to retain all predictors in the model. The third
was the elastic net penalty, which uses simulation to vary MPP in the range 0.0-1.0 to select
a penalty value with the best cross-validated fit (Zou & Hastie, 2005). The R-package
glmnet (Friedman et al., 2010) was used to estimate all the penalized regression models.
GImnet implemented external 10-fold cross-validation to select the MPP yielding best
overall model fit. Internal cross-validation was then used to select the coefficient in front of
the penalty. This means that rather than choosing the predictors to retain by setting an entry
or exit p-value as in stepwise regression, simulation is used to select coefficients to
maximize overall model fit under the penalty in cross validation. Coefficients were
exponentiated to create incidence density ratios (IDRs) for predictors of persistence and
chronicity, hazard ratios (HRs) for predictors of hospitalization, and odds-ratios (ORs) for
predictors of disability.

The coefficients in the three penalized regression models were then used to generate
predicted values for each outcome for each respondent. Importantly, these predicted values
were generated for all 8,261 respondents even though three of the four equations were
estimated using subsamples based on the idea that we wanted to predict the likelihood that
each respondent would eventually have each outcome regardless of how long ago the
respondent had a first depressive episode.
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Inspection of a correlation matrix among the predicted values in the total sample
documented high correlations, suggesting that the predicted values could be combined to
develop a summary measure of risk across all outcomes. This was done by transforming the
predicted values from each equation to percentiles and using these transformed scores as
input to k-means cluster analysis. This clustering partitioned the sample into subtypes with
similar multivariate profiles of predicted scores across outcomes. The R-package stats (R
Core Team, 2013) was used for this purpose, with 100 random starts generated for each
number of clusters to avoid local minimization problems.

Inspection of observed (as opposed to predicted) mean dichotomized outcome scores across
clusters was used to determine the optimal number of clusters to retain in predicting the
outcomes based on area under the receiver operating characteristic curve (AUC; the
proportion of times a randomly selected respondent with the outcome and a randomly
selected respondent without the outcome could be differentiated correctly by cluster
membership). Once this optimal number of clusters was determined, operating
characteristics of a dichotomous screening scale that distinguished respondents in the cluster
with the highest risk of the outcomes from other respondents were calculated for each
outcome. Included here were measures of sensitivity (SENS; the percent of all respondents
with the adverse outcome who were in the high-risk cluster), positive predictive value (PPV;
risk of the adverse outcome among respondents in the high-risk cluster), and LR+ (relative
proportions of cases in the high-risk cluster versus other clusters having the adverse
outcomes).

All analyses used the WMH weights to adjust for differential probabilities of selection in
generating samples. All prediction equations additionally included dummy predictor
variables for country to adjust for between-country differences in outcomes. The effects of
weights but not geographic clustering were taken into consideration in cross-validations.
Standard errors of operating characteristics were estimated using the design-based Taylor
series linearization method (Wolter, 1985), which accounted for the effects of both weights
and clustering, using R-package survey (Lumley, 2004).

Machine learning models

The only terminal interactions emerging repeatedly in regression trees involved number of
fear disorders without regard to AOO. Nested dichotomies for number of fear disorders (1+,
2+, 3+) were consequently included as dummy predictor variables in the penalized
regression analyses. The best-fitting penalized regression model for each outcome was an
elastic net with MPP=0.1. This means the coefficients are especially hazardous to interpret
because many highly correlated predictors remain in the model with proportional coefficient
shrinkage to maximize overall model fit at the expense of interpretability of individual
coefficients. Nonetheless, as individual-level predicted values are very similar in the sparser
lasso model compared to the optimal elastic net model across outcomes (r=.78-.98), it is
possible to inspect lasso coefficients to get some sense of predictor importance.
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All but one of the 22 predictors retained under the lasso penalty across outcomes had
positive coefficients, indicating increased persistence-severity associated with prior
disorders. (Table 1) The proportion of retained coefficients was highest for the fear disorder
interactions (42%; 5/12), next highest for the distress disorders (33%; 8/24), next highest for
individual fear disorders (15%; 6/40), and lowest for externalizing disorders (6%; 2/48
positive associations, 1/48 negative associations). The 5 retained predictors of
hospitalization had HRs in the range 1.09-1.34. The 5 positive retained predictors of
disability had ORs in the range 1.09-1.84. The one negative predictor had an OR of 0.83.
The 7 retained predictors of persistence had IDRs in the range 1.03-1.14. The 3 retained
predictors of chronicity had IDRs in the range 1.10-1.16. The relatively modest size of these
coefficients reflects strong inter-correlations among retained predictors.

Cluster analysis

Predicted values of each outcome were calculated for each respondent in the total sample
based on the ridge, lasso, and optimal elastic net model coefficients. Spearman correlations
among these predicted values were in the range .76-.98. Principal axis exploratory factor
analysis across outcomes showed that the correlations were consistent with the existence of
a single underlying factor (factor loadings in the range .77-.96). (Detailed results are
available on request). Based on these results, k-means cluster analysis of transformed (to
percentiles) predicted outcome scores was used to search for empirically-derived
multivariate clusters defining subtypes with differential outcome risk.

As in the earlier van Loo analysis (van Loo et al., 2014), inspection of mean percentile
scores for solutions in the range between three and eight clusters showed that all solutions
defined one class that had the highest mean scores on all outcomes, a second class that had
the lowest mean scores on all outcomes, and between one and six other classes that had
intermediate mean scores on all outcomes. (Figure 1a—1f) Based on this observation,
alternative three-cluster solutions were constructed from the original four-cluster through
eight-cluster solutions by collapsing the intermediate clusters in each solution. AUC was
then compared for the original three-cluster solution and the alternative collapsed three-
cluster solutions to predict dichotomized versions of the outcomes (top 10 percentiles of
persistence and chronicity along with yes-no measures of hospitalization and disability).
None of the collapsed higher-order cluster solutions had a higher AUC than the original
three-cluster solution on any outcomes (.68 for persistence, 62 for chronicity, .70 for
hospitalization, and .73 for disability). The distribution of cluster membership in the three-
cluster solution was 32.4% in the high-risk cluster, 35.6% in the intermediate-risk cluster,
and 32.0% in the low-risk cluster.

Associations of cluster membership with course of iliness

Concentration of risk of adverse outcomes in the high-risk cluster was examined in the sub-
sample of respondents with AAI-AOO of 15+ years because, as noted in the section on
analysis methods, this was the most restrictive subsample used in the analyses. Cross-
tabulations with dichotomized versions of outcomes show that the proportions of all cases
with positive scores on the dichotomized outcomes occurring in the high-risk cluster (i.e.,
estimates of SENS) were 60.6% for persistence, 56.6% for chronicity, 61.8% for
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hospitalization, and 72.9% for disability. (Table 2) The high-risk cluster also captured
55.8% of all cases with any of the four adverse outcomes and 70.5% of those with two or
more of those outcomes. Between 4.6% (disability) and 18.8% (high persistence) of cases in
the high-risk cluster experienced each of the four adverse outcomes (PPV), while 40.7%
experienced at least one and 13.8% more than one of these outcomes. These proportions
were in the range 2.6-5.4 times as high as among cases not classified as being in the high-
risk cluster (LR+).

Improvement in prediction due to considering comorbidity

Comparison of the operating characteristics of the high-risk cluster based on the current
analysis with the high-risk cluster based on the earlier van Loo analysis (van Loo et al.,
2014) allowed assessment of the extent to which prediction improved when we added
information about temporally primary comorbid disorders. (Detailed results are available on
request.) Three observations are noteworthy. First, the percent of respondents classified in
the high-risk cluster increased from 31.2% to 32.4% in the current analysis (a 3.8% increase
on the base in the earlier analysis). Second, SENS increased more than the 3.8%
proportional increase in size of the high-risk cluster, with a 7.7% increase for having any
adverse outcome (i.e., 1-55.8/51.8 based on SENS being 55.8% in the current analysis vs.
51.8% in the earlier analysis) and an 8.7% increase for having two or more of these
outcomes (i.e., 1-70.5/64.8 based on SENS being 70.5% in the current analysis vs. 64.8% in
the earlier analysis). Third, LR+ increased as a result of the higher increases in SENS than
relative prevalence, with LR+ of 2.6 for having any of the 4 outcomes vs. 2.4 in the earlier
analysis and LR+ of 4.8 for having more than one of these outcomes vs. 4.1 in the earlier
analysis.

DISCUSSION

Data limitations include use of retrospective reports based on fully-structured diagnostic
interviews that included only a limited set of predictors. An especially important limitation
regarding predictors is that personality disorders were not assessed, as personality disorders
are known to predict depression treatment outcome (Candrian et al., 2007). Nor did we
consider other predictors of depression persistence-severity other than depressive symptoms
and comorbidity (e.g., gender, other socio-demographics, stress exposure) because of our
interest in focusing on symptoms-comorbidity in defining subtypes. Future extensions
should include a wider range of predictors and outcomes based on clinical assessments and
prospective designs. The machine learning methods used here, although designed to
minimize model over-fitting, were not completely conservative because they failed to adjust
for within-country geographic clustering. This means that predictor effects might not hold
up as well in other samples as if data had been based on simple random samples. At the
other extreme, the tree and penalized regression methods do not exhaust all available
machine learning methods. As a result, other synergistic associations might be discovered if
future studies used a wider range of integrated machine learning methods (van der Laan et
al., 2007).
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In interpreting predictor coefficients it is important to appreciate that machine learning
methods are designed to maximize overall model prediction at the expense of coefficient
accuracy. The predictors selected under the Lasso penalty, in particular, are the ones that
best represent the joint effects of the larger sets of predictors to which they are related. It is
consequently important not to over-interpret the importance of the specific predictors
retained in these models. Within the context of this and the other limitations noted above, we
found that temporally primary fear and distress disorders are much more consistent
predictors of long-term major depression persistence-severity than are externalizing
disorders. And we found synergistic effects among fear disorders, but not distress disorders
or between fear and distress disorders. The failure to find synergistic effects among distress
disorders is striking given that major depression is a distress disorder (Clark & Watson,
2006).

We found that multivariate predictions are strongly correlated across outcomes and that
distinct subsets of respondents had high or low predicted risk across all outcomes. This high-
risk cluster included one-third of respondents and accounted for 56.6—-72.9% of adverse
outcomes. This clustering was stronger than in the van Loo analysis, documenting the
importance of comorbidity in predicting long-term depression persistence-severity.
Although the finding of strong correlations among predicted scores across outcomes is not
surprising given that all outcomes assessed long-term disorder persistence-severity, the
finding of distinct high-risk and low-risk clusters was not preordained by these high
bivariate associations.

Although a number of previous epidemiological studies examined baseline predictors of
long-term depression course in treatment samples (Judd et al., 2013; Penninx et al., 2008) or
community samples (Bottomley et al., 2010; Patten et al., 2010; Rhebergen et al., 2012),
none searched for depression subtypes among predictors. As noted in the introduction,
though, other subtyping analyses similar to those reported here have been carried out,
including analyses to predict treatment response (Andreescu et al., 2008; Jain et al., 2013)
and naturalistic patterns of remission among patients in treatment (Riedel et al., 2011) as
well as in the placebo control group of a depression clinical trial (Nelson et al., 2012). In
addition, a number of recent clinical studies used methods similar to ours to predict onset of
suicidality during the course of depression treatment (Musil et al., 2013; Rabinoff et al.,
2011; Seemuller et al., 2009) or after termination of treatment (llgen et al., 2009). Our
results suggest that similar efforts in prospective samples might be able to document
subtypes that predict long-term persistence-severity of depression.

In considering the extension of our analyses to prospective studies, it is important to
recognize that we failed to find strong higher-order predictor profiles based on complex
trees despite the sample being quite large. Taken together with the results of a recent
systematic review that failed to find support for stable symptom-based MDD subtypes
defined by internal consistency (e.g., factor analysis, latent class analysis) (van Loo et al.,
2012), this argues against the existence of strong MDD subtypes defined exclusively by
synergistic associations among symptoms or comorbidities. However, broader MDD
predictive subtypes might be found by focusing more closely within the high-risk cluster
identified in our analysis. Importantly, this cluster is not a classical subtype because it was
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discovered by examining multivariate predicted outcome scores rather than the predictors
themselves. Many different predictor combinations could lead to the same predicted
outcome scores. This means that more work is needed to identify subtypes within the high-
risk cluster by considering multivariate profiles among the predictors that determine cluster
membership. This would require other methods than used in the current report. In addition, it
would be useful if future studies expanded the outcomes beyond the four considered here to
gain more insight into the range over which prediction occurs. Such an investigation could
be carried out informally using the simple correlational methods employed here or more
formally using machine learning methods developed to discover genetic master regulators
(Chan & Kyba, 2013; Rabinowitz & Silhavy, 2013; Rayner et al., 2013; Ryu et al., 2007).
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Figure 1. Mean predicted outcome scoresin the three-cluster through eight-cluster k-means?
*Per = the percentile-transformed predicted score on the persistence outcome variable in the

lasso(1), ridge (2). and elastic net (3) models: Chr = the percentile-transformed predicted
score on the chronicity outcome in the lasso (4), ridge (5). and elastic net (6) models; Hos =
the percentile-transformed cumulative predicted probability of hospitalization in the lasso
(7), ridge (&). and elastic net (9) models; Dis = the percentile-transformed predicted
probability of disability in the lasso (10), ridge (11), and elastic net (12) models.
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a-means cluster analysis of percentile-transformed predicted scores on the four outcomes
for all respondents based on the Lasso GLM
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Table 1

Lasso penalized regression coefficients to predict subsequent adverse MDD outcomes based on incident
episode characteristics? and prior comorbidity prior to the first depressive episode?

Persistence Chronicity Hospitalization  Disability
IDR IDR HR OR

1. Comorbid fear disorders
=1 fear disorder 1.05 1.09
=2 fear disorders 1.14 141
>3 fear disorders 1.04 1.00

I1. Fear disorders®
Specific phobia
Total 1.24
Social phobia
AOO <18years 112 1.14
Panic disorder
Total 1.34
AOO <18years 1.13 1.10
Agoraphobia
Total 1.87
I11. Distress disor der s
Generalized anxiety disorder
Total 1.06 1.10
AOO <18years 1.16 154
Post-traumatic stress disorder
Total 1.04
AOO <18years 1.14 1.16
Obsessive-compulsive disorder

AOO <18years 1.09

IV. Externalizing disorders®
Intermittent explosive disorder
Total 1.08
Oppositional-defiant disorder
Total 0.83
Substance dependence
Total 1.34
(n (2,869) (3,958) (6,465) (8,261)

HR=Hazard ratio; OR=0dds-ratio; IDR=Incidence density ratio

aPredicted values based on MDD episode characteristics were used as an offset in the models. The following variables were previously found to be
important and used to compute the offset scores: Incident episode symptoms of severe dysphoria, anhedonia, weight loss, weight gain, insomnia,
hypersomnia, psychomotor agitation, psychomotor retardation, suicidality, inability to cope, panic, irritability, racing thoughts, high energy,
endogenous onset, parental history of depression; interactions involving AOO <19 and suicidality’, AOO <19 and anxiety symptoms (panic, worry,
or irritability), AOO <35 and suicidality and anxiety.
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bCoefficients based on 10-fold cross-validation with a lasso penalty. The link functions were Poisson for persistence and chronicity’, Cox
proportional hazards for hospitalization, and logistic for disability. No Confidence intervals are reported because standard errors of such simulated
models are biased. Retained coefficients were selected based on evidence in cross validation that the predictors improved overall model fit rather
than that coefficients fell outside of a pre-specificed confidence interval.

CThe initial predictor set also included separation anxiety disorder (both total and with AOO <18years), specific phobia with AOO <18years, total
social phobia, and agoraphobia with AOO <18years, but none of these predictors was retained in the lasso penalized regression model for any of
the outcomes.

The initial predictor set also included total obsessive-compulsive disorder , but that predictor was not retained in the lasso penalized regression
model for any of the outcomes.

eThe initial predictor set also included attention-deficit/hyperactivity disorder, intermittent explosive disorder with AOO <18years, oppositional-
defiant disorder with AOO <18years, conduct disorder (both total and with AOO <18years), substance abuse (both total and with AOO <18years),
and substance dependence with AOO <18years, but none of these predictors was retained in the lasso penalized regression model for any of the
outcomes.
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