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Abstract 

In recent years, temporal response function (TRF) analyses of non-invasive recordings of neural 

activity evoked by continuous naturalistic stimuli have become increasingly popular for 

characterizing response properties within the auditory hierarchy. However, despite this rise in 

TRF usage, relatively few educational resources for these tools exist. Here we use a dual-talker 

continuous speech paradigm to demonstrate how a key parameter of experimental design, the 

quantity of acquired data, influences TRF analyses fit to either individual data (subject-specific 

analyses), or group data (generic analyses). We show that although model performance 

monotonically increases with data quantity, the amount of data required to achieve significant 

prediction accuracies can vary substantially based on whether the fitted model contains 

densely (e.g., acoustic envelope) or sparsely (e.g., lexical surprisal) spaced features, especially 

when the goal of the analyses is to capture the aspect of neural responses that co-vary with the 

amplitude of the modelled features. Moreover, we demonstrate that generic models can 

exhibit high performance on small amounts of test data (4-8 min), as long as they are trained on 

a sufficiently large data set. As such, they may be particularly useful for clinical and multi-task 

study designs. Finally, we show that the regularization procedure used in fitting TRF models can 

interact with the quantity of data used to fit the models, with larger training quantities resulting 

in systematically larger TRF amplitudes. Together, demonstrations in this work should aid the 

learning process of new users of TRF analyses, and in combination with other tools, such as 

piloting and power analyses, may serve as a detailed reference for choosing acquisition 

duration in future studies. 
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1. Introduction 

Characterizing how acoustic and linguistic features are encoded in human cortex is a key 

goal of auditory cognitive neurosciences and neurolinguistics. In recent years, substantial 

progress has been made in utilizing noninvasive electroencephalographic (EEG) and 

magnetoencephalographic (MEG) responses to continuous speech in order to uncover a diverse 

set of neural signatures associated with different aspects of language processing. These range 

from responses to relatively low-level features associated with the speech envelope (e.g., Ding 

and Simon, 2012; Power et al., 2012; Kong et al., 2014), mid-level features implicated in 

phonemic processing (e.g., Di Liberto et al., 2015, 2019; Brodbeck et al., 2018), and higher-

order linguistic features associated with semantic and syntactic processing (e.g., Broderick et 

al., 2018; Weissbart et al., 2019; Donhauser and Baillet, 2020; Mesik et al., 2021).  

An important catalyst for this work has been the popularization of regularized linear 

regression methods for mapping the relationship between features in the stimulus space and 

the brain response (Lalor and Foxe, 2010; Crosse et al., 2016). This relationship can be 

characterized in both the forward direction, mapping from the stimulus to the brain response, 

and the backward direction, specifying how to reconstruct stimulus features from patterns of 

brain activity. The forward modeling approach models the continuous M/EEG data as a 

convolution between a set of to-be-estimated feature-specific impulse responses, known as the 

temporal response functions (TRFs), with the known time courses of the corresponding features 

(e.g., acoustic envelope, lexical surprisal, etc). These analyses contrast with the more traditional 

event-related potential (ERP) method, which relies on averaging of hundreds of identical trials 

in order to estimate the stereotypical neural response for a given stimulus (e.g., Luck, 2005; 

Woodman, 2010). Unlike ERP methods, which rely on repetition, the TRF approach allows for 

analyzing brain responses to naturalistic time-varying stimuli, including continuous speech and 

music.  

While the popularity of TRF methods has increased substantially, there remains a 

relative lack of literature exploring how these methods perform in the context of EEG and MEG 

analyses under various constraints, such as the type of features utilized (e.g., temporally sparse 

vs. dense) or the quantity of the data to which the models are applied. This information 

resource gap has more recently received some attention (Sassenhagen, 2019; Crosse et al., 

2021), but published work has provided a broader overview of issues in TRF research (e.g., 

effects of correlated variables, missing features, preprocessing choices, etc.) without a more 

thorough examination of any one issue.  As such, there is a continued need for further 

methodological resources to allow researchers interested in adopting TRF techniques to 

optimize the experimental design for their efficient use.  

One of the most fundamental decisions in study design is the choice of how much data 

to collect (i.e., number of subjects and acquisition duration per subject). This decision has broad 

consequences affecting the cost of the study, complexity of applicable models, data quality 

(due to fatigue / comfort level changes over the course of long experimental sessions), and 

others. With respect to TRF modeling, understanding how analysis outcomes are influenced by 

data quantity is important for making decisions about duration of data acquisition. Specifically, 
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at the low end of the spectrum (small amounts of data), TRF models may be unable to isolate 

neural responses of interest due to poor data signal-to-noise ratio (SNR) and/or limited 

sampling of the stimulus feature space used in the analysis. At the upper end of the spectrum 

(large amounts of data), model performance may saturate, making additional data wasteful 

both in research costs and subject discomfort. Understanding these tradeoffs is particularly 

important for studies of special populations, such as the elderly or clinical patients, who may 

not tolerate longer experimental sessions.  

To date, majority of work exploring effects of data quantity on analyses of speech-

evoked EEG data have focused on attention decoding, especially with backward TRF models 

(e.g., Mirkovic et al., 2015; O’Sullivan et al., 2015; Fuglsang et al., 2017; Wong et al., 2018). 

However, because the driving force behind the interest in attention decoding is innovation in 

hearing aid technologies, much of this work has focused on the performance of trained models 

on decoding attention using limited amount of data. In other words, majority of this work has 

explored the effects of data quantity at the level of model evaluation, rather than on the model 

training itself (but see Mirkovic et al., 2015). In the context of forward modeling, the effect of 

training data quantity on model performance has only received a limited amount of attention. 

Di Liberto and Lalor (2017) explored the impact of data acquisition duration on the 

performance of TRF models of phonemic processing, to assess whether small amounts of data 

can reliably support detection of phonemic responses in individuals. They showed that although 

models trained on data from individual participants required 30+ min to detect these signals, 

generic models derived from data from multiple participants could detect phonemic signals 

with as little as 10 min of data per participant. More recently, in their overview of TRF methods, 

Crosse et al. (2021) used simulations to demonstrate the impact of noise and data quantity on a 

single-feature TRF prediction accuracies and the fidelity of the derived TRFs. However, beyond 

these works, a more thorough exploration of TRF forward model performance in the context of 

more realistic listening scenarios, with a more diverse set of modelled speech features has not 

been performed thus far.  

 The goal of the present work was to provide a detailed, practical demonstration of how 

data quantity and model feature sparsity affect the outcome of TRF analyses in the context of 

measured, noninvasive EEG responses to a dual-talker continuous speech paradigm (Mesik et 

al., 2021). In a series of analyses, we repeatedly fit TRF models to progressively larger segments 

of the data, estimating both individual subject models, as well as generic models based on data 

pooled across multiple subjects. For each analysis, we demonstrate how data quantity 

influences TRF estimates, overall model prediction accuracy, and prediction accuracy 

attributable to the natural variation in feature amplitudes. Additionally, we show the effect of 

the interplay between data quantity and regularization on the amplitudes of resulting TRF 

estimates. Given the unique nature of each auditory study (design, analyses, etc.), we caution 

readers against taking our work as a sole prescription for how much data should be collected in 

future TRF studies. Instead, we believe our work should serve as a detailed demonstration of 

general patterns of TRF model performance as a function of data quantity, and a reference that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495139doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495139
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

should be carefully used in conjunction with other tools and sources of information (e.g., 

piloting and power analyses) for informing study design.  

 

2. Materials and Methods 

EEG data used in the present manuscript was acquired and previously analyzed to investigate 

age effects in cortical tracking of word-level features in competing speech (Mesik et al., 2021). 

Extensive description of the details associated with the experiment and the data are openly 

accessible in the original manuscript. For brevity, we highlight key aspects of this data below.  

 

2.1 Participants 

Data from 41 adult participants (18-70 years old, mean ± SD age: 41.7±14.3 years; 15 male, 26 

female) was used in the present study. The broad age range was utilized to assess age effects 

on speech-driven EEG responses in the original study. Consequently, a subset of participants (n 

= 18) had mild-to-moderate hearing loss (HL), largely concentrated in the high-frequency region 

(≥ 4 kHz), which was compensated-for via amplification. All participants provided a written 

informed consent and received either course credit or monetary compensation for their 

participation. The procedures were approved by the Institutional Review Board of the 

University of Minnesota. 

 

2.2 Stimuli 

Stimuli were four public-domain short-story audiobooks (Summer Snow Storm by Adam Chase; 

Mr. Tilly's Seance by Edward F. Benson; A Pail of Air by Fritz Leiber; Home Is Where You Left It 

by Adam Chase; source: LibriVox.org) read by two male speakers (2 stories per speaker). Each 

story had a duration of approximately 25 minutes. Stories were pre-processed to truncate silent 

gaps exceeding 500 ms to 500 ms, and the levels in each one-minute segment were root-mean-

square normalized and scaled to 65 dB SPL. In participants with HL, the audio was then 

amplified to improve audibility at frequencies affected by HL (see Mesik et al., 2021 for details 

of amplification). Stimuli were presented using ER1 Insert Earphones (Etymotic Research, Elk 

Grove Village, IL). 

 

2.3 Experimental procedure 

Participants completed two experimental runs in which they listened to pairs of simultaneously 

presented audiobooks narrated by different male talkers. The stories were presented at equal 

levels (i.e., 0 dB SNR) and were spatially co-located (i.e., diotic presentation of same stimuli to 

the two ears). One story was designated as the target story and participants were instructed to 

attend to the target talker for the duration of the experimental run, while ignoring the other 

talker. Runs were divided into 1-minute blocks, each of which was followed by a series of four 

multiple-choice comprehension questions about the target story, along with several questions 

about the subjects’ state of attentiveness and story intelligibility. This behavioral data was not 

analyzed in the context of the present manuscript. In the second experimental run, participants 

listened to a new pair of stories spoken by the same two talkers, with the to-be-attended and 
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to-be-ignored talker designations switched, to eliminate talker-specific effects in the analysis 

results. The order of the story pairs as well as the to-be-attended talker designations were 

counter-balanced across participants. All experimental procedures were implemented via the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) in MATLAB (Mathworks, 

Natick, MA, United States; version R2019a). 

 

2.4 EEG procedure 

Data were acquired using a non-invasive 64-electrode BioSemi ActiveTwo system (BioSemi B.V., 

Amsterdam, The Netherlands), sampled at 4096 Hz. Electrodes were placed according to the 

international 10-20 system. Additional external electrodes were used to obtain activity at 

mastoid sites, as well as a vertical electro-oculogram. Data from these external electrodes were 

not analyzed in the present study.   

 

2.5 EEG preprocessing 

Here we include a brief overview of pre-processing steps applied to the data. For more detailed 

description of pre-processing, see Mesik et al. (2021). Unless otherwise stated, pre-processing 

steps were implemented using the EEGLAB toolbox (Delorme and Makeig, 2004; version 

14.1.2b) for MATLAB. To reduce computational load, raw data were downsampled to 256 Hz 

and band-pass filtered using pop_eegfiltnew function between 1 and 80 Hz using a zero-phase 

Hamming windowed sinc FIR filter (846th order, 1 Hz transition band width). Next, the data 

were pre-processed using the PREP pipeline (Bigdely-Shamlo et al., 2015), in order to reduce 

the impact of noisy channels on the referencing process. This procedure involved three stages: 

1) power line noise removal via multi-taper regression, 2) iterative referencing procedure to 

detect noisy channels based on abnormally high signal amplitude, abnormally low correlations 

with neighboring channels, poor predictability of channel data based on surrounding channels, 

and excessive amount of high-frequency noise, and 3) spherical-interpolation of the noisy 

channels detected in stage 2. For this procedure, we used the default parameters outlined in 

Bigdely-Shamlo et al. (2015). Following up to 4 iterations of stages 2-3 (or until no further noisy 

channels were identified), the cleaned estimate of global mean activation was used to 

reference the dataset.  

Subsequently, we epoched all 1-minute blocks and applied independent component 

analysis (ICA; Jutten and Herault, 1991; Comon, 1994) to remove components of data 

corresponding to muscle artifacts and other sources of noise. ICA decomposes EEG signal into a 

set of statistically independent components that reflect various underlying contributors to the 

channel data (e.g., eye blinks, different aspects of cognitive processing, etc.), allowing for 

removal of components driven largely by nuisance factors such as muscle activity.  

The data were then band-pass filtered between 1 and 8 Hz using a Chebyshev type 2 

filter (80 dB attenuation below 0.5 Hz and above 9 Hz, with 1 dB band-pass ripple), applied with 

the filtfilt function in MATLAB. This was done given the existing evidence that cortical speech 

processing mechanisms track speech predominantly via low-frequency dynamics in the 1-8 Hz 

range (e.g., Ding and Simon, 2012; Zion Golumbic et al., 2013). Finally, the data were 
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transformed into z-scores to account for variability in overall response amplitudes due to inter-

subject variability in nuisance factors such as skull thickness. Data from the first block of each 

run were excluded from analysis due to a small subset of participants accidentally confusing the 

attended and ignored speakers in the initial block (this became apparent during behavioral task 

following the first block, which pertained to the to-be-attended story).  

 

2.6 TRF analyses 

The time courses of speech-evoked responses, or TRFs, were extracted from the pre-processed 

EEG data using regularized linear regression, implemented via the mTRF Toolbox (Crosse et al., 

2016, version 2.3). Briefly, TRFs are estimated by regressing a set of n time-lagged copies of the 

time series of a given speech feature (e.g., acoustic envelope) against the EEG time course at m 

channels. This results in m separate TRFs, each representing how the response at a given 

electrode site is affected at the n time lags relative to that feature’s presentation times. This 

procedure can be simultaneously applied to multiple features (see section 2.6.3 for details of 

features used in our analyses), enabling the decomposition of EEG signals into contributions 

from different stages of speech processing (e.g., acoustic vs. semantic processing). 

 To avoid overfitting, the procedure was implemented using leave-one-trial-out cross-

validation in which all-but-one (training) trials or subjects (see sections 2.6.1 and 2.6.2 for 

details) were used to estimate the TRFs, and the remaining held-out (test) trial/subject was 

used to evaluate the prediction accuracy of the estimated model parameters. In the fitting 

stage of each cross-validation loop, the data were first used to select the optimal regularization 

parameter λ. This was done via a separate leave-one-out cross-validation loop utilizing only the 

training trials. In each of these cross-validation folds, the model was fit using a range of 

different λ parameter values and evaluated by predicting the data from the left-out trial. The 

prediction accuracies for each λ value were then averaged across all cross-validation folds and 

electrodes. The λ corresponding to the highest average prediction accuracy was used in the 

final fit to the entire training set. The resulting fit was then evaluated on the held-out “test” 

trial or subject to determine the ability of the TRF model to predict EEG responses to speech. 

The Pearson’s correlation between the predicted and the actual data represents the prediction 

accuracy. This procedure was repeated j-times, where j denotes the number of trials or 

subjects, each time holding out data from a different trial/subject, resulting in j sets of TRF 

estimates and prediction accuracies.  

In addition to overall model prediction accuracies, for each feature with time-varying 

amplitudes, we further estimated the degree to which these variations were tracked by the EEG 

responses. Briefly, this was done by comparing the full model’s prediction accuracy to “null 

model” prediction accuracies, computed with the same model estimate but using test trial 

regressors in which a given feature’s values were shuffled, while maintaining their timing 

(Broderick et al., 2021; Mesik et al., 2021). As such, the true and null model regressors had 

identical dimensionality and only differed in the veracity of one feature (with different null 

models having different feature shuffled). The difference between their prediction accuracies, 

therefore, reflected the aspect of the overall prediction accuracy that systematically varied with 
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the feature shuffled within the null regressor. Because the shuffling process introduces 

variability into null model’s performance, we computed 10 null model prediction accuracies 

within each cross-validation fold of the main TRF fitting procedure for each feature and 

subtracted the average of these from the full model performances. In the remainder of this 

manuscript, these differentials are referred to as feature-specific model contributions.  

The main goal of the present work was to explore how estimates of cortical responses 

to a range of speech features are influenced by the quantity of EEG data included in the 

analysis. To explore this question, we iteratively applied identical sets of analyses to 

progressively larger amounts of the pre-processed EEG data. This was done via two distinct 

analysis approaches: 1) subject-specific analyses, where data from each participant was fit 

independently, and 2) generic analyses, where data from multiple subjects were fit jointly. 

Below we provide details of each analysis approach. 

 

2.6.1 Subject-specific analyses 

The subject-specific analyses involved repeated TRF estimation using data from individual 

subjects with progressively larger amounts of their data. Cross-validated fitting procedure was 

repeated with 11 distinct data quantities (3, 4, 6, 8, 10, 14, 18, 24, 30, 36, and 42 min of data), 

with data in each analysis selected in chronological order to reflect real constraints of data 

collection. While this may potentially bias analysis outcomes via temporally systematic 

phenomena such as fatigue or adaptation, such order effects are a natural aspect of most 

experiments and thus reflect realistic data acquisition scenarios. Group-level analyses were 

performed using each subject’s average TRFs and prediction accuracies across all cross-

validation folds (see section 2.6.4). 

 

2.6.2 Generic subject analyses  

In generic subject analyses, we repeatedly estimated TRFs using data pooled across 

progressively larger number of subjects. Cross-validated model fitting was again repeated with 

11 distinct numbers of subjects (3, 4, 6, 8, 10, 14, 18, 24, 30, 36, and 41 subjects) at two distinct 

data acquisition durations per subject (4 and 8 min), yielding 22 unique analysis outputs per 

model. The data per subject was constrained both because of memory limitations for analyses 

involving larger numbers of subjects, but also to explore the extent to which small amount of 

data per subject can support accurate TRF estimation and robust prediction accuracies.   

A notable limitation of generic analyses, as implemented here, is that all of the data is 

utilized within a single cross-validation procedure, resulting in a single set of average prediction 

accuracy and TRF estimates. While individual subject prediction accuracies from cross-

validation can be used for group level statistics, these statistics are highly susceptible to noise 

from outlier data when utilizing small numbers of subjects. As such, to more accurately assess 

the central tendencies of generic analysis performance as a function of subject count, we 

utilized a resampling approach to obtain distributions of model performances for each sample 

size. Briefly, for each analysis, we randomly resampled, with replacement, participant data 20 

times, and for each resampling instance we fitted a given model and computed mean TRFs and 
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prediction accuracies across the cross-validation folds. To aid statistical evaluation of the 

analyses (see section 2.7) we corrected the prediction accuracies using estimates of the noise 

floor, i.e. range of prediction accuracies that may be expected by chance, by mismatching 

regressor-data pairings and computing their corresponding prediction accuracies. This was 

done at the level of each cross-validation fold (i.e., held-out subject), where we computed 

prediction accuracies for each 1-min data segment for all mismatched regressor-data pairings. 

Each subject’s true prediction accuracy was then noise-floor corrected by subtracting the 

average mismatched prediction accuracy. Results of the 20 resampling analyses were then 

interpreted as a distribution of mean TRFs and prediction accuracies expected for a given 

sample size. Note that to allow for more reliable statistical inference, bootstrap-based analyses 

such as these are typically performed ≥1000 times in order to more precisely estimate the 

degree of overlap between the distributions of parameter estimates for different conditions. 

However, because the goal of this work was to demonstrate general behavior of TRF analyses 

rather than to draw strong statistical conclusions about our data, and the computational load of 

running ≥1000 resamplings for each of 44 analyses (2 models x 11 subject counts x 2 data 

quantities/subject) would have been very high, we chose to perform the more modest 

bootstrap procedure with 20 iterations.  

 

2.6.3 Modelled speech features 

To explore effects of feature choice on subject-specific and generic model performance, each 

modeling approach was evaluated using two distinct models of attended speech processing 

that emphasized features with different levels of sparseness. In the denser “envelope” model 

we included log-transformed acoustic envelope, along with word-onset regressor intended to 

capture responses to acoustic onsets. The sparser “surprisal and audibility” model included 

lexical surprisal for each word, audibility of each word against the to-be-ignored speaker, and 

the word-onset regressor. The latter was shared between the two models to help account for 

onset-driven neural activity, which is known to have particularly large amplitudes. Thus, the 

models differed in that one included a dense feature containing a nearly continuous time-

varying signal, whereas the other model contained two much sparser features containing just 

one value per word. Because the envelope responses have previously been shown to occur at 

latencies < ~400 ms (e.g., Power et al., 2012; Kong et al., 2014; Fiedler et al., 2019), we 

modelled these responses using time intervals between -100 to 500 ms relative to feature 

onsets. Since the responses to the features in the sparser model tend be longer (e.g., Weissbart 

et al., 2019; Mesik et al., 2021), we modelled them using time intervals between -100 to 800 

ms.  

Across the two models, the four features were estimated as follows. The word onset 

regressors contained unit-amplitude impulses time-aligned to the onset of each word. The low 

frequency acoustic envelopes were extracted by half-wave rectifying the speech stimuli and 

lowpass filtering this representation below 8 Hz. This representation was then log-transformed 

to more closely approximate encoding of sound level in the human auditory system. Lexical 

surprisal regressors were the inverse of each word’s probability given the multi-sentence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495139doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495139
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

preceding context, as estimated using the GPT-2 artificial neural network (Radford et al., 2019). 

Word audibility regressors were obtained by computing the ratio of each word’s root-mean-

square (RMS) of its acoustic waveform and the RMS of background speaker’s acoustic 

waveform. As with envelopes, these ratios were log-transformed to more closely mimic sound 

level encoding in the human auditory system. Features in both surprisal and audibility 

regressors utilized the same timing as word-onset regressors, as prior work has shown that 

onset timing results in reasonable characterization of responses to higher-order speech 

features (e.g., Broderick et al., 2018; Weissbart et al., 2019; Mesik et al., 2021).  Finally, non-

zero regressor values for all features were RMS scaled to have an RMS value of 1. This was done 

to make TRFs for different features more similar in amplitudes in order to optimize 

regularization performance. With the exception of the acoustic envelope, a more detailed 

description of the derivation of these features can be found in Mesik et al. (2021). 

 

2.6.4 Regions of interest 

Due to the relatively low spatial resolution of EEG data and for simplicity of analysis result 

presentation, we chose to limit the spatial dimensionality of the results to two regions of 

interest (ROIs), the frontal and parietal ROIs. These ROIs were chosen based on the peak 

locations of activation for the two models. Both ROIs contained 13 electrodes, which 

symmetrically surrounded electrode Fz in the frontal ROI (i.e., AF3, AFz, AF4, F3, F1, Fz, F2, F4, 

FC3, FC1, FCz, FC2, and FC4), and electrode Pz in the parietal ROI (i.e., CP3, CP1, CPz, CP2, CP4, 

P3, P1, Pz, P2, P4, PO3, POz, and PO4). ROI-specific TRFs and prediction accuracies were 

computed by averaging TRF analysis results from these sets of electrodes. All statistical analyses 

were performed on these ROI-averaged results.   

 

2.7 Statistical analysis 

The primary goal of this work was to describe general patterns of TRF model behavior as a 

function of data quantity. For subject-specific analyses, to test whether a given quantity of data 

was sufficient for the derived TRF to yield prediction accuracies that were significantly greater 

than zero, we utilized either t-tests or Wilcoxon signed-rank test, based on the outcome of the 

Anderson-Darling test of normality. These tests were conducted at the group level, using all 41 

individual prediction accuracies. Note that statistics were not corrected for multiple 

comparisons, as we treated the analysis of each data quantity as a quasi-independent 

experiment, emulating the scenario where only that amount of data was acquired. Because 

analyses on different data quantities were not independent due to utilizing partially 

overlapping data, we abstained from direct pairwise comparisons of model prediction 

accuracies, and instead focused on more general description of model performance patterns 

(e.g., trajectory of mean model performance and between-subject variance) as a function of 

data quantity.  

 We additionally used the subject-specific fits to explore the relationship between the 

size of participant pool and the data quantity per subject required to achieve statistically 

reliable detection of cortical tracking of attended speech for different significance levels. To do 
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this, we utilized subject pool sizes ranging from 2 to 41 subjects, and for each pool size, we 

resampled with replacement the prediction accuracies from analyses of each training data 

quantity (i.e., minutes of data per participant) 10,000 times.  Within these samples, we 

conducted t-tests on results derived from each of the 11 data quantities per subject, searching 

for the minimum data quantity for which at least 80% of the 10,000 analyses exceeded the t-

score thresholds corresponding to p < 0.05, p < 0.01, and p < 0.001. For these analyses we used 

parametric statistics, although non-parametric tests resulted in similar patterns of results.  

For generic analyses, we estimated prediction accuracy noise floors as described in 

section 2.6.2. Within each cross-validation fold of each resampling analysis, we computed the 

difference between the true prediction accuracy and the “mismatched” prediction accuracy 

estimated using mismatched regressor-data pairings for the held-out participant. Thus, the 

distribution of these corrected prediction accuracies across resampling analyses reflects the 

proportion of times in which the true regressor-data pairings enabled more accurate data 

predictions than mismatched-pairings. Given that our analyses included 20 resamplings, only 

analyses where all data points exceeded the 0-point were deemed to be significant (i.e., since 

1/20 corresponds to 5%). Note that noise floor correction in generic analyses was motivated by 

the possibility that very small positive prediction accuracies could occur by chance, making it 

difficult to determine the proportion of analyses with reliably elevated prediction accuracies. 

This correction was particularly important given our use of only 20 resampling analyses. In 

principle, this approach could also be used in subject-specific analyses. However, we abstained 

from the use of noise floors in subject-specific analyses because of their greater statistical 

power (i.e., more data points), our use of cross-validation, and the observation that in generic 

analyses, noise floor prediction accuracies were concentrated around zero. 

To assess whether subject-specific and generic analyses resulted in estimation of 

morphologically similar TRFs, Pearson’s correlations were used. For these analyses, we focused 

on models that utilized the greatest amounts of minutes (subject-specific analyses) and subjects 

(generic analyses). 

 

3. Results 

3.1 Subject-specific analyses 

In subject-specific analyses, each participant’s data was individually fit using each of the two 

models and evaluated on held-out data from the same participant. Group-level pattern of 

overall model prediction accuracies as a function of data quantity is depicted in Fig 1 for the 

denser (Fig 1A) and sparser (Fig 1B) models. In general, increases in training data quantity 

resulted in monotonic increases in performance for both models, along with reductions in inter-

subject variability in prediction accuracies. With 41 participants used in these analyses, both 

models reached high degree of statistical significance with as little as 5 minutes of data per 

participant. However, at low training data quantities (e.g., < 10 min), a subset of participants 

exhibited prediction accuracies (i.e., correlations between the predicted and actual EEG data) 

that did not exceed 0. At larger data quantities (e.g. > 20 min), prediction accuracy distributions 

were elevated and largely did not span the value of zero. Finally, while prediction accuracies for 
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the denser model exhibited signs of saturation beyond ~17 min of training data, saturation was 

less apparent for the sparser model.  

 

 
 

Figure 1. Overall subject-specific model prediction accuracies for the denser (A; onset and 

envelope features) and sparser (B; onset, surprisal, and audibility features) models displayed as 

a function of training data quantity (data acquisition duration). The violin plots depict the 

distribution of these values for all 41 participants, with a box plot depiction (interquartile range) 

shown within each violin. Red circles denote median values of the distributions.  The 

uncorrected significance levels of each statical comparison against zero are displayed at the top 

of each plot: * p < 0.05, ** p < 0.01, ** p < 0.001  
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Although overall prediction accuracy is a key metric in evaluating TRF model performance, it 

does not directly reflect the extent to which the model captures systematic variation in neural 

responses as a function of the amplitude of the modelled features. As such, much of the 

prediction accuracy may be driven by “simple” evoked responses that are time-locked to the 

modelled features. To assess the extent to which the trained models captured systematically 

varying aspects of feature-driven responses, we compared the true model prediction accuracies 

to those estimated using regressors in which a given feature’s values were permuted, while 

maintaining their timings (see section 2.6; Broderick et al., 2021; Mesik et al., 2021). Model fit 

contributions from systematically varying features (i.e., excluding onsets) as a function of 

training data quantity are depicted in Fig 2 for the denser (Fig 2A) and sparser (Fig 2B) models. 

Like overall prediction accuracies, these analyses exhibit similar general patterns of increasing 

model fit contributions and decreasing across-subject variability as the data quantity used in 

model fitting increases. However, this analysis revealed a key difference between denser and 

sparser models. While the denser envelope feature showed highly significant group-level model 

fit contributions even at low data quantities (< 5 min), the sparser surprisal and audibility 

features generally exhibited much smaller contributions to prediction accuracy and required 

considerably more data (> ~17 min) to allow reliable detection of these contributions.  

 In addition to prediction accuracies, a key output of TRF models are the TRFs 

themselves: the impulse responses to each of the modelled features. Fig 3 shows TRFs for the 

denser model and Fig 4 shows TRFs for the sparse model. Mirroring the high prediction 

accuracies and model fit contributions, the denser model TRFs (Fig 3) showed a high degree of 

morphological similarity across the different data amounts, albeit with a systematic increase in 

amplitudes seen with increasing data quantity. In line with its lower model fit contributions, the 

sparser model TRFs (Fig 4) generally exhibited greater noisiness at low data quantities, with 

TRFs reaching stable appearance once substantial data quantity (> 17 min) was used in model 

fitting. While there was a trend for lower TRF amplitudes with increasing data quantity, this 

pattern is opposite to that seen for the denser model and generally appears less systematic 

than that seen in Fig 3. Notably, onset TRFs in Figs 3 and 4 exhibit highly dissimilar temporal 

morphologies, with the TRF from the denser model showing a prominent parietal negativity 

around 400 ms that is not seen in the sparser TRF. This discrepancy is caused by the fact that in 

the latter model, higher order features related to the N400 response are captured by the 

surprisal and audibility features, leaving little variance in this response to be captured by the 

onset regressor. This demonstrates that the onset regressor captures response components 

time-locked to word onsets that reflect both lower- and higher-order neural processes 

contributing to the data variance.   

 The systematic increase in TRF amplitudes seen in Fig 3 could, in principle, reflect a 

genuine neural phenomenon related to the chronological inclusion of data into models trained 

on more data. For example, it could reflect improved neural entrainment to the target 

audiobook over the course of the study session. However, examination of the regularization 

parameter (Fig 5A), which controls the penalty assigned to large TRF values during the fitting 
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procedure, indicates a systematic decrease in this parameter with increasing data quantity. In 

other words, models fitted to greater data quantity penalized large TRF amplitudes less, likely 

resulting in the systematic increase in their amplitudes seen in Fig 3. This interpretation was 

supported by a supplemental analysis (not shown), in which we fit the denser TRF model using 

a 6-min moving window to assess whether the TRF amplitude changes over the course of the 

study session. This analysis revealed virtually identical TRF amplitudes in all analysis windows, 

lending support to the effect in Fig 3 being entirely technical in nature. Regularization 

parameter of the sparser model (Fig 5B) showed a similar systematic decrease with increasing 

data quantity without the corresponding increase in TRF amplitudes (Fig 4). This may reflect the 

overall greater noisiness in these TRFs at low data quantities, as well as greater similarity in 

general TRF amplitudes across the three features (in contrast to the large amplitude 

discrepancy between onset and envelope TRFs seen in Fig 3). 

Although utilizing data from all participants provides the most accurate estimate of the 

average model performance for a particular training data quantity, it is less informative about 

the statistical performance of our TRF models with more limited samples. To provide a more 

complete description of how subject-specific models perform under more limited sample sizes, 

we performed a resampling analysis using subsets of participant from our 41-subject pool. 

More specifically, for each participant pool ranging from 2-41 participants, we resampled (with 

replacement) the subject-specific result pool 10,000-times at each of the data quantities and 

determined how many minutes of data per participants were required to reach significance at 

three commonly used significance thresholds (p < 0.05, 0.01, and 0.001). The results of these 

analyses are shown in Fig 6 for overall prediction accuracy, and Fig 7 for feature-specific model 

fit contributions. These results show the expected downward sloping pattern whereby smaller 

participant pools require greater amount of data per participant. Additionally, these results 

mirror those in Figs 1-2 in that the sparser model generally requires more data per participant, 

and capturing significant feature-specific model contributions requires both more participants 

and more data per participant. Finally, while patterns of minimum data per participant required 

to reach significance from Figs 1-2 (i.e., when n = 41) are consistent with those in Figs 6-7 

(rightmost data points in each plot), the exact minutes per participants don’t match between 

the two in some cases, since the true participant sample in Figs 1-2 corresponded to just one 

data point within the larger bootstrap distribution used for Figs 6-7. 
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Figure 2. Model fit contributions as a function of training data quantity for features in denser 

(A, top row) and sparser (B, middle and bottom rows) models. Model fit contributions reflect 

the degree to which the true sequence of feature values allows for more accurate prediction of 

EEG data compared to an arbitrary ordering of that feature. Note that tails of some of the violin 

plots in B are truncated to facilitate visualization of the central portion of the distributions. 

Asterisks denote significance levels as in Fig 1.                       

 

 
Figure 3. Group-averaged TRF time courses for onset (top row) and envelope (bottom row) 

features from the denser model in frontal (left column) and parietal (right column) ROIs. TRFs 

estimated using different amounts of data are depicted in different colors (see legend above 
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the lower right plot). The sharp deflections in envelope response around t = 0 ms reflect mild 

leakage of electrical artifact from earphones into the EEG signal. 
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Figure 4. Group-averaged TRF time courses for onset (top row), surprisal (middle row), and 

audibility (bottom row) features from the sparser model in frontal (left column) and parietal 

(right column) ROIs, as a function of training data quantity (see legend in bottom right). Note 

that these TRFs contain larger latencies than those in Fig 3 due to these features engaging 

higher-order processing, reflected in key TRF features such as the N400 response seen in 

parietal ROI.  

 

 
Figure 5. Distributions of subject-specific regularization parameters, lambda, from the denser 

(A) and sparser (B) models, as a function of training data quantity. Red horizontal lines within 

each box represent the median value while the lower and upper bounds of the blue boxes 

depict the 25th and 75th percentiles of the distributions. To aid the visualization of where bulk of 

the data points were, unusually large parameters were marked as outliers with red “+” symbols.  
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Figure 6. Amount of training data per participant required to reach significant overall prediction 

accuracy as a function of participant sample size for the denser (A) and sparser (B) TRF models 

in frontal (left column) and parietal (right column) ROIs. Different line colors represent different 

significance levels (see legend in lower right). For visualization purposes, minutes of data are 

shown on a log axis. The discrete steps along the y-axis stem from the fact that subject-specific 

analyses were run using 11 discrete data quantities per subject. Therefore, values on the plots 

represent approximate threshold data quantities needed for each sample size.  
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Figure 7. Amount of training data per participant required to reach significant feature-specific 

prediction accuracies as a function of participant sample size for the denser (A) and sparser (B) 

TRF models in frontal (left column) and parietal (right column) ROIs. Different rows of plots 

represent different features. Line colors represent different significance levels (see legend in 

lower right).  

 

3.2 Generic analyses 

In the second set of analyses, we explored the effects of subject count on performance of 

generic analyses using the same two models (with denser and sparser features; section 2.6.3) 

used for subject-specific analyses (section 3.1). In contrast to subject-specific analyses, generic 

TRF models are simultaneously fit to data from multiple participants and evaluated on their 

ability to predict data of held-out participants. Due to the higher computational load of fitting 

models to multiple subjects simultaneously, these models were tested on 4 and 8 minutes of 

data per participant. Figures 8-12 depict results of generic analyses analogous to those shown 

in Figures 1-5 for subject-specific analyses. Note, that the two sets of results are not directly 

comparable, as the latter results depict distributions over and averages of the central tendency 

of 20 resampled generic analyses, rather than distributions of individual subject results. The 

lower variability in these analyses is therefore not directly indicative of generic analyses 

performing better than subject-specific analyses. The resampling approach used here was 

important due to inherent noisiness and strong influence of outlier data in analyzing small 

subject counts (see section 2.6.2).  

 Consistent with subject-specific analyses, the generic model prediction accuracies (Fig 8) 

as well as model fit contributions (Fig 9) both exhibited monotonically increasing performance 

and decreasing variability as the number of participants used to train the model increased. 

Note that because these plots depict distributions of average performances across 20 

resampling analyses, only subject counts for which the entire distribution is elevated above 

zero can be deemed as reliably achieving non-zero performance. As such, depending on the 

ROI, about 7-9 participants were needed to achieve elevated overall model prediction accuracy, 

while ≥ 12 and ≥ 17 participants were needed to observe elevated feature-specific model 

contributions for the denser and sparser models, respectively. Interestingly, comparisons of 4- 

and 8-min of data per subject used in model fitting (left and right pairs of columns in each 

figure) made only a modest difference in performance, with the models trained on more data 

per participant producing tighter performance distributions, and in the case of the denser 

model, reaching significance with fewer participants. Finally, it is noteworthy that the feature-

specific model contributions for the sparse model (Fig 9B) trained on 8-min of data/participant 

showed a trend of a decreased peak prediction accuracy compared to model trained on 4-min 

of data. The cause of this is unclear and may warrant further exploration on different data sets 

in the future.  

TRFs derived from denser generic models, averaged across the 20 resampling analyses, 

are depicted in Fig 10. The TRFs are highly stereotypical across different subject pool sizes and 

the two per-subject data quantities. In line with subject-specific analyses, there is some 
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evidence of increasing onset TRF amplitudes as the overall amount of data used to fit the model 

increases (i.e., with increasing number of subjects; see TRFs depicted by different colors in each 

subplot). On the other hand, the envelope TRFs exhibited no change in amplitude akin to that 

seen in subject-specific analyses (Fig 3). Although this discrepancy is puzzling, the general 

patterns of increasing onset TRF amplitudes was again accompanied by a systematic decrease 

in the regularization parameters (Fig 12A). Notably, because most generic models were overall 

trained on far more data than any of the subject-specific models (for n > 10 and n > 5, in models 

using 4-min and 8-min of data per subject, respectively), the upper bound of regularization 

parameter values seen in generic analyses was substantially lower than those seen in subject-

specific analyses. These differences likely account for the differences in the patterns of TRF 

amplitude increases between the two sets of analyses.  

TRFs from the sparser model (Fig 11) also exhibited a high degree of similarity for 

models trained on different amounts of data, although they generally show slightly higher 

degree of noisiness across different sample sizes. Mirroring the slight decrease in feature-

specific model contributions of models trained on 8-min vs 4-min of data/subject (Fig 9B), there 

is an analogous decrease in TRF amplitudes (Fig 11, left vs right pairs of columns). At the same 

time, we also observed a pattern of slight increases in TRF amplitudes for models trained on 

more participants (i.e., different plot colors in each subplot of Fig 11), mirroring the decreasing 

amplitudes of regularization parameters in these analyses (Fig 12B). We speculate that this 

apparently paradoxical discrepancy between effects of more data per participant vs more 

participants could reflect tradeoff between phenomena driven by cognitive (e.g., waning 

attention or increased adaptation) vs technical (i.e., decreasing regularization parameter with 

more data) factors. 
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Figure 8. Noise floor-corrected generic model prediction accuracy distributions as a function of 

training subject pool size, for denser (A) and sparser (B) models with 4-min (left pair of 

columns) and 8-min (right pair of columns) of training data per subject. The distributions 

depicted by violin plots represent collection of mean prediction accuracies across 20 resampling 

analyses (instead of across-subject variability seen in Figs 1-2). As such, only subject counts with 

distributions with no overlap with zero (i.e. above the dashed horizontal lines) can be 

considered to reliably yield > 0 mean prediction accuracy. 
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Figure 9. Feature-specific generic model contributions as a function of training subject pool size, 

for denser (A) and sparser (B) models with 4-min (left pair of columns) and 8-min (right pair of 

columns) of training data per subject. 
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Figure 10. Average generic model TRF time courses for onset (top row) and envelope (bottom 

row) features from the denser model trained with 4-min (left pair of columns) and 8-min (right 

pair of columns) of data per subject. TRFs estimated using different amounts of data are 

depicted in different colors (see legend above the lower right plot). Note that the sharp 

deflections in envelope response around t = 0 ms reflect mild leakage of electrical artifact from 

earphones into the EEG signal. 
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Figure 11. Average generic model TRF time courses for onset (top row), surprisal (middle row), 

and audibility (bottom row) features from the sparser model trained with 4-min (left pair of 

columns) and 8-min (right pair of columns) of data per subject. TRFs estimated using different 

amounts of data are depicted in different colors (see legend above the lower right plot). 
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Figure 12. Distributions of generic model regularization parameters, lambda, from the denser 

(A) and sparser (B) models, as a function of training data quantity. Details of visualization are as 

in Fig 5.  

 

3.3 Similarity between subject-specific and generic TRFs 

While subject-specific and generic analyses produced qualitatively similar TRFs (Figs 3 and 4 vs 

Figs 10 and 11), we sought to assess this similarity quantitatively using a correlation analysis 
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(Fig 13). To this end, we focused on TRFs derived from the largest quantity of data in each 

analysis (including generic TRFs based on both 4-min and 8-min of data per subject), as these 

TRFs were deemed to most accurately capture the underlying neural responses to each of the 

features. For each feature, we computed the Pearson’s correlation between TRFs derived in 

subject-specific and generic analyses. This analysis confirmed that in vast majority of cases, the 

two analyses produce highly similar TRFs, deviating below r = 0.85 only for sparser features in 

ROIs where the TRF amplitudes are generally quite low (e.g., surprisal response in the frontal 

ROI). These results demonstrate that at least for features modelled here, subject-specific and 

generic analyses enable extraction of highly similar neural responses. 
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Figure 13. Similarity between average TRFs derived using subject-specific and generic analyses 

for features in the sparser (A) and denser (B) models. For generic analyses, both the results 

from analyses utilizing 4-min (left column) and 8-min (right column) per subject are shown. 

Different bar colors represent the frontal and parietal ROIs (see legend in lower left plot). Note 

that these analyses utilized TRFs derived using models trained on largest amounts of data in 

each type of analysis, i.e., most data per subject for subject-specific analyses, and most subjects 

for generic analyses.  

 

4. Discussion 

TRF analyses (Lalor and Foxe, 2010; Crosse et al., 2016) of EEG and MEG data are increasingly 

popular in studies of cortical processing of continuous, naturalistic stimuli such as speech (e.g., 

Di Liberto et al., 2015; Broderick et al., 2018; Weissbart et al., 2019) and music (e.g., Di Liberto 

et al., 2020; Marion et al., 2021). However, relatively few informational and educational 

resources demonstrating the behavior of these analyses under various constraints exist. Such 

resources allow researchers who are new to TRF analyses or considering adopting them to gain 

key intuition and insight to guide their study design. The goal of the present work was to 

demonstrate how quantity of collected data, a key parameter in experimental design, 

influences TRF analyses of attended speech representations in the context of a dual-talker 

continuous speech paradigm. We addressed this question using a previously collected dataset 

(Mesik et al., 2021) using two types of analyses: 1) Subject-specific analyses in which TRF 

models are independently fit to each participant’s data, and 2) Generic analyses in which data 

from multiple participants is jointly used to fit a TRF model. For each analysis type we fit two 

different models, one of which had temporally dense features (acoustic envelope model), while 

the other had temporally sparse features (surprisal and audibility model). These models were fit 

repeatedly to explore how the amount of data per participant influences model prediction 

accuracies in the subject-specific approach and how prediction accuracies are influenced by the 

number of participants in the generic analyses. Finally, we used correlation analysis to compare 

the similarity of the TRFs derived in the two analysis approaches.  

 In addition to demonstrating the unsurprising general pattern whereby fitting models to 

more data provides monotonically improving prediction accuracies and more reliable TRF 

estimates, a closer examination of our results revealed several noteworthy phenomena. First, 

across both types of analyses, significant prediction accuracies could be achieved with just 

minutes of data per participant (Figs 1 and 8), although the denser model with envelope 

features had on average higher prediction accuracies than the sparser model with word-level 

features. While the denser model showed signs of performance saturation in both analysis 

approaches, this was less apparent in the sparser model where only the generic analyses 

utilizing 8 minutes of data per subject showed signs of saturation. Second, in analyses for 

capturing the contributions of individual features to the overall prediction accuracies (Figs 2 

and 9), we observed a marked dissociation between denser and sparser models. Specifically, 

feature-specific model contributions were generally much smaller for the sparse model, and in 

subject-specific analyses, capturing these model contributions for word-level features required 
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much greater amount of training data. However, it is noteworthy that in generic analyses, even 

4 minutes of data per participant could reveal these feature-specific model contributions (Fig 

9). This demonstrates that signals related to sparse features may have sufficient signal-to-noise 

ratio to be detected even with relatively small amounts of data, provided that the model is 

trained on sufficiently large dataset. Third, although TRFs derived with different amounts of 

data generally showed a high degree of time-domain consistency, we observed a systematic 

increase in TRF amplitudes with increasing data quantity (Figs 3-4, and 10-11). This pattern was 

mirrored by systematic decreases in the regularization parameter (Figs 5 and 12), which reflects 

the degree to which larger TRF amplitudes are penalized during model fitting. Finally, TRF 

patterns derived using subject-specific and generic analyses were highly similar (Fig 13), 

demonstrating that the two analyses reveal largely identical signatures of cortical speech 

processing.  

 While the majority of existing works utilizing TRF methods have used these tools to 

address specific questions about the nature of speech and music processing, only a handful of 

studies have explored the methodology itself. In general, the latter works focused on bigger 

picture overview of TRF methods and their utility in speech processing (Crosse et al., 2016; 

Sassenhagen, 2019), as well as on best practices in utilizing these methods in studies of special 

and clinical populations (Crosse et al., 2021). Additionally, Wong et al. (2018) explored 

performance of a range of regularization approaches for fitting forward and backward models 

in the context of a growing body of attention decoding literature. Within this body of work, a 

number of studies further explored effect of data quantity on attention decoding performance 

(e.g., O’Sullivan et al., 2015; Fuglsang et al., 2017; Wong et al., 2018). However, while this work, 

largely utilizing backward modeling, may appear related to the present efforts, a key distinction 

is that our work was the focused on the impact of data quantity on model training, rather than 

the performance of highly trained models in classification tasks (but see Mirkovic et al., 2015).  

Most closely related to the present work, Di Liberto and Lalor (2017) investigated the 

effect of data quantity on performance of subject-specific and generic forward models in the 

context of phoneme-level speech processing. Similar to our results, Di Liberto demonstrated 

that the ability of subject-specific models to capture aspects of speech-evoked responses 

related to the phonemic processing improved with greater amount of data, with models 

requiring about 30 minutes of data to reliably capture phonemic responses. On the other hand, 

their generic model derived via averaging of subject-specific models was able to capture 

phonemic responses with 10-min of data, with no further improvement when more data per 

subject was used. The latter result deviates from our findings, which showed monotonic 

improvements of generic models as data from more participants was utilized in fitting. 

However, this apparent difference may stem from several factors. First, at the lowest end of the 

spectrum, our generic models were trained on data from as few as 2 participants, with 4-min of 

data per participant being used, while the Di Liberto’s analyses always utilized the average of 9 

participant models, each trained on 10-min of data or more. In other words, our analyses 

sampled the space of data quantities used to train models substantially more densely at this 

low end of the spectrum. Second, methodological differences, including Di Liberto’s use of a 
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single-talker paradigm (vs our use of dual-talker stimuli), modelled speech features 

(spectrogram and phonemic features vs envelope and word-level semantic and audibility 

features), and model performance quantification (differential between a more and less 

complex model performances vs overall prediction accuracy and feature-specific model 

contributions) preclude direct comparison of patterns of model performance. Importantly, 

however, our results agree with those of Di Liberto and Lalor in that generic models can provide 

significant predictive power even when they are trained and evaluated on relatively small 

amounts of data per participant (4-min and 10-min in our and Di Liberto’s studies, respectively).  

 

4.1 Utility of subject-specific and generic TRF analyses 

Given that generic analyses demonstrated superior performance to subject-specific analyses 

when small amounts of data per participant was available, it is important to consider the 

scenarios for which each analysis approach may be appropriate. Despite requiring more data 

per participant, subject-specific analyses have been overwhelmingly more popular than generic 

analyses in studies of speech and music processing. A key advantage of these analyses is that 

for each participant, subject-specific fits provide independent estimates of both prediction 

accuracies, and the TRFs themselves, allowing for traditional approaches to group-level 

statistics. Additionally, subject-specific modelling is critically important for studies seeking to 

characterize individual differences within a population, and/or their relationship to behavioral 

performance or other subject-level characteristics.  

Conversely, while cross-validation used during generic model fitting also provides 

independent prediction accuracies for all participants, the TRFs from different cross-validation 

folds are non-independent. Moreover, the interpretation of prediction accuracies for individual 

subjects in the context of generic analyses differs from subject-specific approach, as they reflect 

the predictability of a given participant’s neural representations by a generic model, as opposed 

to the overall strength of speech representations in that participant. In other words, it may be 

the case that due to individual differences (e.g., due to anatomical variability) a particular 

participant’s data may be poorly predicted by a generic model even if their individual model 

could perform substantially better. However, by capturing the shared aspects of neural 

processing within a larger group, generic analyses may be particularly useful for categorizing 

participants, or their mental states, which may have important applications both in clinical 

diagnostics, and for practical tools such as neuro-steered hearing aid devices. Indeed, several 

studies utilizing backward TRF models to decode attention have demonstrated the utility of 

generic models, albeit with a performance deficit relative to subject-specific models (e.g., 

Mirkovic et al., 2015; O’Sullivan et al., 2015). With respect to their utility for clinical diagnostics, 

Di Liberto and Lalor (2017) pointed out that generic models implicitly assume within-group 

homogeneity in neural representations, which may be particularly questionable within clinical 

populations (e.g., Levy et al., 1997; Happé et al., 2006). As such, researchers need to be 

cognizant about this limitation, and the extent to which TRF methods could be useful for 

diagnostic purposes for various conditions remains to be determined. Finally, on a practical 

note, one disadvantage of generic analyses, as implemented in the present work, is that fitting 
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them to large datasets requires large amounts of computational resources and time, especially 

when utilizing a resampling approach to fitting. However, efficient use of resources (e.g., 

downsampling and reducing data dimensionality via methods such as denoised source 

separation, DSS; de Cheveigné and Simon, 2008), and alternative model estimation approaches, 

such as averaging of subject-specific models (e.g., Di Liberto & Lalor, 2017) or models fitted to 

subsets of multi-subject data, can mitigate these technical challenges.  

 

4.2 Limitations 

Although the present work provides a detailed exploration of TRF model performance as a 

function of training data quantity, caution should be taken in generalizing our results to other 

TRF studies. Specifically, choices in the experimental design (e.g., single vs multi-talker stimuli), 

data pre-processing (e.g., denoising algorithms), the applied model’s feature space, and 

statistical analyses (e.g., use of cluster-based permutation tests; Maris and Oostenveld, 2007) 

could all substantially influence the performance of TRF analyses. For example, the use of 

dimensionality reduction techniques, such as DSS, could significantly reduce the amount of data 

needed to achieve significant prediction accuracy. On the other hand, utilizing high-dimensional 

feature patterns derived from deep neural networks (i.e., hundreds or thousands of features vs 

2-3 features in the present study) may require substantially increased amount of data to yield 

significant prediction accuracies. Further work will be needed to provide estimates of data 

requirements, particularly for the latter comparison of low- vs high-dimensional models.  

 

4.3 Conclusions 

The goal of this work was to develop an informational resource for the growing field to TRF 

analyses of continuous speech processing, demonstrating the behavior of TRF analyses as a 

function of data quantity used in TRF fitting. In the context of relatively simple models of lower-

level envelope processing, as well as higher-order processing of word-level features, we 

demonstrate that given a large-enough participant pool, small amounts of data (< 5 min) can be 

sufficient to train subject-specific models that predict significant variance in EEG responses to 

speech-masked speech. At the same time, substantially more data (15+ min) may be needed to 

capture aspects of data that systematically vary with word-level features. On the other hand, 

generic models can support significant prediction accuracy even for feature-specific variance 

with as little as 4-min of data per participant, while providing highly similar TRF estimates to 

those seen in subject-specific analyses. As such, despite their infrequent use, generic models 

have potential to be particularly useful for applications in clinical diagnostics, and multi-task 

studies with low per-task time budgets. While the present work is not, on its own, intended to 

be prescriptive about experimental duration, it may be a useful resource for informing selection 

of experimental duration, especially in conjunction with other tools, such as simulations and 

piloting.  

 

Data availability 
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Data and analysis scripts will be made available upon reasonable request. Requests should be 

directed to JM, mesik002@umn.edu, or MW, wojtc001@umn.edu. 
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