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ABSTRACT

The effects of somatotropin on ovarian reproductive function has become a keen 

research area in mammalian species over the past decade. However, to date, very little 

information is available as to the effects o f somatotropin administration on reproduction 

in the domestic mare. Therefore, the purpose o f these experiments was (1) to determine 

the potential effects (if any) o f administration of exogenous equine somatotropin on 

ovarian follicular development and plasma and follicular fluid hormone concentrations 

in cyclic and noncyclic mares, (2) to determine the mechanism(s) of action o f 

somatotropin treatment on these parameters in the mare, (3) to develop an efficient 

protocol for stimulating ovarian follicular development using somatotropin treatment to 

mares and (4) to develop a repeatable method for the induction o f ovulation in 

seasonally anestrous mares treated with somatotropin. It was determined that 

somatotropin treatment increased the number of ovarian follicles in both cyclic and 

noncyclic mares. In addition, plasma and follicular fluid levels o f IGF-I were increased 

in mares treated with somatotropin. In seasonally anestrous mares, somatotropin 

treatment in conjunction with daily administration of a GnRH agonist was effective in 

inducing a 5-fold increase in the number o f mares ovulating when compared with 

treatment with the GnRH agonist alone. In equine granulose cells cultured in vitro, both 

somatotropin and IGF-I were successful in enhancing cellular proliferation and steroidal 

output, providing evidence that these compounds act directly at the ovarian level to 

affect follicular development. In addition, it was determined that treatment to cyclic 

mares with somatotropin caused a significant delay in the process o f follicular atresia, 

suggesting that it may be through this mechanism that somatotropin increases the
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number o f ovarian follicles in the mare. Further studies are needed in this area of 

equine reproduction so that the exact mechanism(s) through which somatotropin affects 

follicular development can be determined.
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INTRODUCTION

Recently, the role that somatotropin (ST) plays on ovarian follicular dynamics 

and normal reproductive function has come under intense investigation in various 

mammalian species. It has been well documented that administration o f  exogenous ST 

increases follicle numbers on the ovaries o f pigs (Echtemkamp et a l ,  1994), cattle 

(Gong et al., 1991; Lucy et al., 1993) and women (Hugues et a l,  1991; European and 

Australian Multicenter Study, 1995). For example, Spicer et al. (1992) demonstrated 

that female pigs given exogenous pST had more follicles (1 to 4 mm in diameter) 

present on their ovaries after treatment than did contemporary control gilts. This 

response seems to be the most common, since most studies report increases in follicles 

in the small- to medium-size range (1 to 9 mm), with little to no difference in the 

numbers o f larger follicles (Gong et al., 1991). The exact mechanism through which 

ST affects ovarian follicular populations is not currently known, however, its ability to 

stimulate IGF-I production from the liver, thereby increasing systemic IGF-I 

concentrations, may play a crucial role in this process (Homburg et a l ,  1988). It should 

be noted, though, that a direct effect of ST at the ovarian level cannot be ruled out, as 

ST receptors have been detected in ovarian tissue of cattle (Gong et al., 1991).

Since most studies dealing with the effects o f ST on reproductive function have 

used animal models in which circulating concentrations of ST were brought to 

supraphysiological levels as a result o f exogenous administration, the question of 

whether ST at normal physiologic levels was critical to proper reproductive 

performance was raised. One study using hypophysectomized ewes demonstrated that, 

in the absence of ST, gonadotropin administration alone was insufficient in returning

1
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these animals to a normal reproductive state (Eckery et al., 1997). However, when ST 

was administered in addition to LH and FSH, the animals began showing normal 

ovarian follicular development (Eckery et al., 1997). These researchers were able to 

isolate ST receptors located on the surface o f the follicular granulosa cells, and 

presumed that ST acted locally within the follicle to enhance the ability of the follicular 

cells to respond to available gonadotropins, which is currently one o f the most 

prevailing hypotheses concerning the effects o f ST on reproduction. Also, in Ames 

dwarf mice, a condition that is brought about due to a genetic defect which causes the 

absence o f the development of the somatotrophs within the adenohypophysis, a 

significant reduction in both gonadotropic output as well as ovarian follicular 

development was noted and the administration o f bST reversed these conditions (Bartke 

et al., 1996). These studies provide strong evidence that ST provides a physiologic, 

rather than a pharmacologic, effect on reproductive function in domestic species.

It has been proposed that one of the mechanisms of action for ST on ovarian 

follicle populations arises from its ability to stimulate IGF-I production and secretion, 

and that IGF-I then works synergistically with available gonadotropins to enhance their 

response at the ovarian level (European and Australian Multicenter Study, 1995; 

deMoura et al., 1997). In one study using perifused rabbit ovaries, it was demonstrated 

that ST caused an approximate 3-fold increase in IGF-I mRNA within the granulosa 

cells o f the ovarian follicles, showing that ST can indeed cause effects at the ovarian 

level (Yoshimura et al., 1996a), and that these effects were directly correlated with 

follicular IGF-I concentrations (Yoshimura et al., 1994). Also, it is known that IGF-I 

stimulates the formation o f LH receptors in rat granulosa cells (Liu et al., 1998), which

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



would account for its ability to enhance the follicular response to LH. Also, IGF-I 

increases FSH-stimulated progesterone production in rat granulosa cells cultured in 

vitro, further demonstrating an effect o f IGF-I at the level of the ovary (deMoura et al., 

1997). It is therefore likely that many o f  the effects o f  ST are due to increased IGF-I 

concentrations, which increase the follicular response to available gonadotropins.

A second hypothesis involves an ability o f ST and/or IGF-I to increase the 

number of actively growing follicles present within a follicular wave. Since the 

discovery o f cyclical, wave-like growth patterns of follicular growth in most 

mammalian species, the mechanism for selection o f small antral follicles to become 

responsive to growth and development within the follicular wave has been a major 

research focus (for review see Ginther, 1992). It is not currently known what factors 

are involved with follicular selection and recruitment to begin the growth process, but 

increased blood flow to the ovary may play a role (Staigmiller, 1982; Driancourt et al., 

1991; Bao and Garverick, 1998). It is known, however, that these early-antral follicles 

are gonadotropin insensitive, so it is possible that various proteins and growth factors 

are involved in follicular selection (Britt, 1988). Therefore, it is possible that ST, 

through its ability to stimulate IGF-I, could play a role in early follicular activation into 

a follicular wave.

Another possibility is that the increased IGF-I concentrations could prolong the 

lifespan of the follicle by delaying the process of atresia, during which a follicle ceases 

to grow and begins to regress until it is no longer detectable on the ovary. The atretic 

response is thought to be brought about primarily through spontaneous apoptosis, or 

cellular death, o f the follicular granulosa cells (Guthrie et al., 1998). It has been

3
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demonstrated that FSH is the most potent inhibitor o f apoptosis in rat granulosa cells 

cultured in vitro, and it is well known that the mechanism for the ability o f FSH to 

“superstimulate” follicular growth in mammals is by rescuing these follicles from the 

process o f atresia (Chun et al., 1996). Since IGF-I has also been shown to have potent 

inhibitory actions on granulosa cell apoptosis (Chun et al., 1996), this hypothesis should 

not be overlooked.

Another possibly important aspect of this facet of follicular dynamics is the 

ability o f both ST and IGF-I to increase steroidogenesis within the follicle. 

Administration o f ST increases levels o f intrafollicular 3 P-hydroxysteroid dehydro­

genase and aromatase mRNA, allowing for more progesterone and estradiol to be 

produce by the follicular cells (Tapanainen et al., 1992). Although IGF-I causes higher 

granulosa cell production o f both progesterone (Xia et al., 1994) and estradiol 

(Echternkamp et al., 1994; Howard and Ford, 1994), it is the ability of IGF-I to enhance 

estradiol output that gives greater insight to this hormonal system and its effects on 

reproduction. It is known that large, pre-ovulatory follicular development and estradiol 

output are highly correlated in women (Thierry Van Dessel et al., 1996), and it has been 

recently shown that intrafollicular IGF-I concentrations are greatest in pre-ovulatory 

follicles in cattle (Yuan et a l ,  1998). Thus, it is possible that another mechanism o f 

action for IGF-I on follicle development is through stimulation o f steroidogenesis 

within the follicle, allowing for an increased likelyhood for follicular dominance to 

occur (Yuan et al., 1998).

During the winter months, which correspond to periods o f shortened daylength, 

most mares undergo a period o f  reproductive inactivity termed “seasonal anestrous”.

4
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During this anovulatory period, GnRH production and output from the hypothalamus is 

very low, and normal ovarian reproductive activity ceases (Hart et al., 1984). For many 

years, scientists have attempted to stimulate these mares to begin normal follicular 

growth and ovulation using GnRH therapy, with very limited success (Hyland et al., 

1987; Mumford et al., 1994). Given that one o f the mechanisms o f  action for ST/IGF-I 

is to enhance the follicular response to available gonadotropins, It is possible that the 

addition o f daily administration o f  ST in conjunction with GnRH treatment could 

improve the response o f seasonally anovulatory mares to GnRH therapy.

In addition, the development o f an efficient, repeatable method to collect large 

numbers o f viable oocytes from mares, for the purpose of in vitro fertilization (IVF) 

techniques, would benefit the scientific as well as the commercial horse industry. Since 

IVF has become a routine method o f  treating clinical infertility in cattle and women, the 

development of this technique in horses has been under intense study (Meintjes et al., 

1995). One of the largest obstacles to overcome is the lack o f  response seen when 

traditional stimulation protocols involving gonadotropins are used. It is well known 

that the administration of exogenous gonadotropins collected from ovine, bovine and 

equine sources to mares has little to no effect on stimulating ovarian follicular 

development, even when extremely large doses are given (Ginther, 1992). Therefore, it 

is difficult to obtain the numbers o f  oocytes necessary to develop a method o f producing 

equine embryos in vitro.

Also, conventional methods of IVF have yielded limited success in the horse, 

with only one foal being reported to date (Palmer et al., 1991). However, in one study 

using pregnant mares, Meintjes et al. (1995) demonstrated that acceptable numbers of

5
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oocytes could be collected and that fertilization of these oocytes could be achieved 

using a pre-fertilization technique o f drilling a small hole in the zona pellucida of the 

oocytes to allow the sperm access to the oocyte. Unfortunately, no pregnancies were 

obtained using this technique. More recently, intracytoplasmic sperm injection (ICS1) 

has been used to produce equine embryos in vitro with success (Meintjes et al., 1996; 

Dell’Aquila et al., 1997), and two pregnancies have been reported using this technique 

(Meintjes et al., 1996; Squires et al., 1996). Since it has been shown that treatment with 

ST increases the ovarian response in women undergoing controlled ovarian hyper­

stimulation procedures (Owen et al., 1991b; Schoolcraft et al., 1997), and that the 

fertilization rate of the oocytes from ST-stimulated women are greater than those from 

contemporary control subjects (Owen et al., 1991a), it is possible that the same may 

hold true for the domestic mare. Therefore, the purpose of the experiments reported 

herein was to (1) determine the effects o f ST administration on cyclic and seasonally 

anovulatory mares, (2) determine the mechanism(s) o f action o f  ST on reproductive 

function in cyclic and noncyclic mares and (3) develop an efficient, repeatable protocol 

for the production of equine embryos in vitro using ST for ovarian stimulation and ICSI 

for fertilization o f the collected oocytes.

6
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CHAPTER I 

LITERATURE REVIEW 

THE FOLLICULAR WAVE PHENOMENON 

Cyclic Animal Model

In recent years, the study o f the pattern o f growth and development o f ovarian 

follicles has been a key research interest in domestic animals. It has been shown that, in 

most mammals, a group o f follicles, termed a “cohort”, grows and regresses in a 

cyclical, wave-like pattern, hence the term “follicular wave” (Sirois and Fortune, 1988; 

Adams et al., 1992b; Lucy et al., 1993; Pursley et al., 1993). The one exception is the 

domestic pig, as there is no evidence to date that suggests the follicular wave 

phenomenon occurs (Ryan et al., 1994b). Currently, the exact mechanisms involved in 

early follicle activation and introduction into the cohort are not fully understood. It is 

believed, however, that various factors such as increased blood flow, changes in local 

growth factor concentrations and dietary energy intake are involved, since these pre- 

antral and early-antral follicles are not gonadotropin-dependent at this time (Staigmiller, 

1982; Britt, 1988; Bao and Garverick, 1998). It is known that once these small, antral 

follicles are recruited into the cohort a surge o f FSH secretion by the adenohypophysis 

preceeds the visible (via transrectal ultrasonography) initiation o f the new follicular 

wave in both cattle and mares (Evans and Irvine, 1975; Adams et al., 1992b; Badinga et 

al., 1992; Ginther and Bergfelt, 1993; Pursley et al., 1993; Beam and Butler, 1997).

The number o f follicular waves per estrous cycle varies between individual 

animals and species, but in general cattle demonstrate 2 to 3 waves o f follicular growth 

during each estrous cycle (Adams et al., 1992a,b), while mares exhibit 1 to 2 follicular

7
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waves per cycle (Ginther, 1990; Pursley et al., 1993; Buratini et al., 1997). Likewise, 

the duration of growth for each wave varies, with cattle showing ~7 days o f  growth per 

follicular wave while mares exhibit ~10 days o f follicular growth per wave. In general, 

the cohort of follicles begins to grow synchronously, but during this growth phase oneor 

more follicles are “selected” for dominance, at which time these follicles begin to grow 

at a more rapid pace, while simultaneously deterring the further growth o f the remaining 

subordinate follicles within the cohort. Depending upon which stage o f  the estrous 

cycle this cohort begins to grow, the dominant follicle can either ovulate and release its 

oocyte to be made available for fertilization, or it can regress at the time a new wave of 

follicular growth is initiated (for review see Ginther, 1992).

It has been proposed that the surge o f FSH detected just prior to wave 

emergence is necessary for the promotion o f normal growth and development of the 

new follicular wave, however, definitive evidence for this hypothesis is currently 

lacking, as it is generally accepted that these small antral follicles are gonadotropin 

insensitive (Britt, 1988). It is believed, however, that changes in FSH secretion are 

primarily responsible for the divergence in growth of the dominant follicle, which then 

decreases the growth of the remaining subordiate follicles within the current follicular 

wave (Mihm et al., 1997). For example, Mihm et al., (1997) demonstrated that in 

cyclic beef cows, a decline in circulating FSH concentrations by 2 days post-wave 

emergence could cause a change in available growth factors within the cohort o f 

growing follicles that would promote follicular divergence o f the dominant follicle and 

atresia o f  the subordinate follicles. It has also been shown that treatment with a bolus 

injection o f FSH to heifers caused a delay in the divergence of the dominant follicle

8
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from its subordinates, further suggesting the importance of the decline in FSH 

concentrations on follicular divergence and follicular dominance (Adams et al., 1993).

Another important facet of follicular wave growth and development revolves 

around the fate o f the dominant follicle. Once selected, this follicle will usually either 

ovulate or regress, depending upon the stage of the estrous cycle. It has been 

demonstrated that the decline in FSH is related to subsequent increases in intrafollicular 

content of estradiol and IGF-I within the dominant follicle, as well as with a decrease in 

intrafollicular IGF-I binding proteins (IGFBP) that allows for an overall increase in the 

bioavailable IGF-I within the follicle, which has important roles in follicular growth and 

ovulation (Mihm et al., 1997). Also, it has been demonstrated that, in cattle, a decline 

in LH pulse frequency from the adenohypophysis results in atresia o f  the dominant 

follicle, and therefore no ovulation (Lucy et al., 1993). Therefore, for ovulation to 

occur, the animal must be in the proper stage of the estrous cycle where progesterone 

concentrations are low so that an increase in LH pulse frequency can take place 

propagating the final growth and maturation o f the dominant follicle for ovulation to 

occur (Lucy et al., 1993).

As previously stated, the exact mechanisms allowing for follicular recruitment 

into a follicular wave, as well as some o f the mechanisms involved in follicle growth 

and selection and continued growth of the dominant follicle, in addition to ovulation of 

the selected follicle(s), are not fully understood. It has been proposed that ST as well as 

IGF-I and, to a lesser extent insulin, are all involved in this dynamic process of 

follicular growth and development, but the exact mechanisms of action for these growth 

factors are as yet unclear (Bartke et al., 1996; Cox, 1997). It is known that increases in

9
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intrafollicular IGF-I and insulin can enhance the ability of the follicle to respond to 

available gonadotropins in the pig, but whether or not these growth promotors can 

influence early follicle growth and/or the selection process by which one or more 

follicles becomes dominant over the other follicles within a follicular wave remains to 

be determined (Cox, 1997).

Follicular Waves During Pregnancy

Interestingly, both cows and mares continue to exhibit waves o f follicular 

growth and development throughout early pregnancy (Ginther et al., 1989; Ginther and 

Bergfelt, 1992). In cattle, follicular wave growth has been demonstrated to continue 

during pregnancy as well as during treatment with exogenous progesterone up to 100 

days (Bergfelt et al., 1991). Also, pregnant cows usually exhibit follicular growth 

patterns similar to that of cyclic cows up to the last 22 days of gestation, when follicular 

activity seems to temporarily shut down, possibly due to high levels o f estrogens being 

produced by the developing fetus (Ginther et al., 1996). O f interest is the fact that, 

during pregnancy, follicles rarely ovulate in cattle, and the diameter o f the largest 

follicle has been shown to be smaller in pregnant compared with nonpregnant cows 

(Ginther et al., 1989).

In mares, the ovaries are extremely active during the first 30 to 50 days of 

gestation, with large numbers o f follicles growing and regressing in wave-like patterns 

(Ginther and Bergfelt, 1992). Unlike cattle, mares have developed a mechanism to 

produce addition corpora lutea during pregnancy as a method to ensure that adequate 

concentrations of progesterone are maintained throughout early pregnancy so as to 

support continued growth o f the fetus (Ginther, 1992). It has been demonstrated that, as

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is the case with cyclic animal models, surges o f FSH secretion are associated with 

initiation o f new follicular waves during pregnancy for mares (Ginther and Bergfelt, 

1992). However, individual follicular growth characteristics are extremely variable 

between mares, with some mares exhibiting few waves of follicular growth while others 

show a great deal more follicles per wave, more total number of waves, and a higher 

number of secondary corpora lutea during early pregnancy (Ginther and Bergfelt, 

1992). In general, however, unlike the cow model, the ovaries of pregnant mares tend 

to cease new follicular growth by day 70 to 100 of pregnancy, at which time the ovary 

becomes quiescient for the remainder o f pregnancy (Ginther, 1992). This decrease in 

follicular activity is thought to be caused primarily by elevated circulating 

concentrations o f  estrogens present at this time (McKinnon and Voss, 1993). Currently, 

the reason for continued growth and development o f ovarian follicles during pregnancy 

is not fully understood in cattle, since these follicles rarely ovulate and therefore would 

not serve the same function as in the mare, where supplemental corpora lutea formation 

is a necessary event to ensure the continued survival o f the early conceptus. However, 

one possible explanation for continued follicular wave emergence in early pregnancy in 

cattle may be to provide a source of oocytes in the event of abortion.

MECHANISMS OF FOLLICULAR GROWTH AND DEVELOPMENT 

Follicle Activation

Early follicular growth, from the pre-antral to early-antral stages, is a complex 

and puzzling series of events that is not well understood at present. The exact 

mechanisms involved in the process of follicular activation, when a quiescent pre-antral 

follicle suddenly begins to grow and develop, as well as the mechanisms involved in
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recruitment o f  early-antral follicles into a newly emerging follicular wave, are not 

currently known, although it is known that these follicles are gonadotropin-insensitive 

at this time (Britt, 1988; Findlay, 1994; Gong et al., 1996b). One possibility is that 

increased blood flow into local areas containing pre-antral and early-antral follicles is 

involved in the processes of follicular activation and recruitment, as evidenced by the 

fact that, in dairy heifers, it has been demonstrated that the ovary bearing the corpuus 

luteum has significantly more visible ovarian follicles than the ovary without a corpus 

luteum within the same animal (Staigmiller, 1982; Driancourt et al., 1991; Bao and 

Garverick, 1998).

This theory is inadequate, however, since follicular waves can occur on opposite 

ovaries simultaneously, even though one ovary may not have a corpus luteum present at 

the time o f wave emergence (Ginther, 1992; McKinnon and Voss, 1993). Recent 

evidence suggests that estradiol, ST, IGF-I and other growth factors may play a role in 

follicular activation and recruitment (Bergh et al., 1994; Liu et al., 1998). For example, 

it has been suggested that higher concentrations o f ST may be involved in early follicle 

growth, and that protocols involving ST administration to increase the number o f 

follicles should be given for relatively long durations, since it is estimated that it takes 

30 to 60 days for a follicle to develop from a pre-antral state until the time it becomes 

visible via ultrasound (Bergh et al., 1994). Also, in in v/Yro-cultured ovarian follicles 

collected from mice, it has been demonstrated that ST as well as activin can enhance 

pre-antral and early-antral growth even though these follicles are gonadotropin- 

independent (Liu et al., 1998). It is clear, however, that further research is needed in
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this area o f  follicular dynamics to better understand the underlying mechanisms 

involved in early follicle activation and recruitment.

Gonadotropin Input

Once the growing follicles have become part o f  a new follicular wave, they 

reach a stage in which they become gonadotropin-dependent, that is, gonadotropic input 

is required for further growth and development. This input starts at the level o f the 

hypothalamus, with the production and secretion of gonadotropin-releasing hormone 

(GnRH) into the median eminence. This in turn supplies the adenohypophysis with 

blood flow so that the GnRH, along with other releasing factors, can stimulate the 

production and secretion o f various hormones by the adenohypophysis that are 

necessary for normal function o f the entire body. GnRH from the hypothalamus 

stimulates gonadotropes, which are the cells responsible for producing gonadotropins, 

within the adenohypophysis to produce and secrete LH and FSH (Evans and Irvine, 

1976; Alexander and Irvine, 1987; Johnson et al., 1988; Pantke et al., 1991; Irvine and 

Alexander, 1993; Porter et al., 1997), both o f which are vital to the continued growth 

and development o f ovarian follicles in the horse.

GnRH secretion is regulated through neuronal input, and the primary substances 

that are believed to be responsible for the regulation of GnRH secretion are nitric oxide, 

PGE2 and leptin. Using an immortalized cell line derived from rats, it has been shown 

that leptin has both direct and indirect effects on GnRH secretion, primarily through 

OB-R neuronal receptors (Magni et al., 1999). Nitric oxide is a necessary component 

of this pathway, as it has been demonstrated that nitric oxide inhibitors can block leptin- 

induced GnRH and LH secretion (Yu et al., 1997). Adequate feed intake is essential for
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normal leptin production, as fasting and feed restriction both decrease basal leptin 

concentrations in pigs (Mao et al., 1999) and rats (Nagatani et al., 1998). Therefore, in 

order to ensure normal GnRH production, and hence normal LH and FSH secretion, 

proper nutrition should be maintained at all times.

Normal secretion o f GnRH is crucial to the reproductive cycle in most 

mammalian species. In the domestic mare, this is shown by the fact that during times of 

decreased daylength (winter), GnRH secretion by the hypothalamus is severly 

depressed or absent, causing the animal to undergo a period o f acyclicity termed 

“seasonal anestrous” (Ginther, 1992), during which time the mare ceases to have a 

normal cycle, and becomes anovuiatory. In the cyclic mare, it has been demonstrated 

that up to 98% of all GnRH pulses secreted by the hypothalamus were associated with a 

subsequent pulse o f LH secretion by the adenohypophysis, and 83% of these GnRH 

pulses caused a pulse o f FSH secretion (Alexander and Irvine, 1987). Also, Irvine and 

Alexander (1993) demonstrated that secretion o f FSH and LH usually occurred within 5 

minutes after a GnRH pulse, showing that GnRH is the primary hormone controlling 

gonadotropin secretion. However, in mares immunized against GnRH, basal LH 

secretion is more severly affected than that o f FSH, and when these mares are given a 

GnRH agonist, FSH secretion appears normal relative to control animals, while LH 

response to the agonist is minimal, suggesting a differential regulatory mechanism for 

the two hormones (Garza et al., 1986).

Conversely, it has been shown that basal FSH is not affected by GnRH 

administration in mares, while basal LH increases dramatically in response to GnRH 

therapy (Nett et al., 1989). However, other studies have shown that there is a greater
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response of FSH secretion to GnRH administration in mares when compared with LH 

secretion (Evans and Irvine, 1976). It is believed that increasing the pulsatile frequency 

of GnRH release, along with increasing estradiol levels in the blood, is the major cause 

for the “surge” of LH secretion noted during behavioral estrus in the mare, and it is this 

LH surge that is ultimately involved in ovulation of the dominant follicle (Irvine and 

Alexander, 1994). Therefore, it is clear that GnRH is the primary secretagogue for both 

LH and FSH, and therefore critical for normal reproductive cyclicity in the domestic 

mare (Irvine and Alexander, 1994).

Administration o f GnRH and/or one of its agonists is usually carried out to 

achieve ovulation, and this type o f approach has been very successful in the horse 

(Meinert et al., 1993; Swinker et al., 1993; Skidmore et al., 1996; Meyers et al., 1997). 

Since GnRH is secreted in a pulsatile manner, it should come as no surprise that this is 

the preferred manner o f administration of GnRH for the purpose o f inducing ovulation 

in the horse (Becker and Johnson, 1992). Also, this route o f administration yields 

superior results for inducing ovulation in cattle (Gong et al., 1996b). This is primarily 

due to the fact that the ultimate cause o f ovulation is the rise in cirulating levels o f LH, 

and that pulsatile GnRH input is more effective in inducing LH secretion in treated 

animals (Vivrette and Irvine, 1979). Also, while large doses of GnRH can cause a 

substantial rise in plasma LH, the biological activity o f this LH is reduced, and it is 

therefore not as effective in inducing ovulation in the mare (Pantke et al., 1991).

Both FSH and LH are necessary hormones for normal reproductive cyclicity in 

most mammalian species. FSH is required for follicular growth and maturation, and 

increasing the amount o f available FSH can increase the growth of small- and medium-
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sized follicles by up to 7-fold (Gibbons et al., 1997). Unfortunately, there has been no 

clear establishment o f a relationship between the amount o f FSH secreted and ovulation 

rate in the mare, and mares are much less sensitive to ovarian stimulation by 

administration o f  exogenous FSH than other animals (Urwin and Allen, 1983). In the 

mare, FSH is low during the anovulatory season, but during vernal transition, which is 

the period o f time that the animal goes from an acyclic to a cyclic state, FSH production 

and secretion increases, with larger and larger peak levels o f  FSH secretion occurring 

until the first ovulation o f the breeding season (Hines et al., 1991). Once cyclicity has 

resumed, lower baseline concentrations o f FSH are detected, possibly due to the 

secretion o f inhibitory substances by the growing follicles (Hines et al., 1991). Also, it 

has been demonstrated that certain steroids, such as testosterone, may affect the amount 

of FSH accumulation within the adenohypophysis, further causing a decrease in basal 

FSH secretion (Thompson et al., 1984). Although different iso forms o f FSH do exist, 

there is no evidence of a difference in sensitivity to these different isoforms (Cooke et 

al., 1997).

LH is the hormone primarily responsible for the final growth and maturation of 

the pre-ovulatory follicle, with serum concentrations being low during diestrus, high 

during behavioral estrus, and reaching peak levels 1 to 2 days post-ovulation (Evans and 

Irvine, 1975). The key events seem to be (1) an increase in pulsatile amplitude, i.e. 

higher amounts o f LH secreted per secretion episode, which is important in inducing 

final growth and maturation of the pre-ovulatory follicle (Evans et al., 1997) and (2) an 

increase in LH pulse frequency just prior to ovulation, which appears to be a triggering 

mechanism for ovulation to occur (Stagg et al., 1998). As stated earlier, GnRH is the
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primary regulatory hormone for LH release in the mare (Garza et al., 1986), so it is 

apparent that pulsatile secretion of GnRH must follow a similar pattern throughout the 

estrous cycle. That LH is the primary hormone responsible for the induction of 

ovulation in the mare is evidenced by the fact that human chorionic gonadotropin 

(hCG), a compound secreted by the live human conceptus, has strick LH-like 

capabilities in the mare and is extremely useful for inducing ovulation in this species 

(Duchamp et al., 1987), even though its administration causes a decrease in the release 

o f both GnRH and LH (Mores et al., 1996).

Hormonal Regulation of LH and FSH

The female reproductive system is composed of a highly complex, interactive 

set o f checks and balances, which serve to ensure normal reproductive cyclicity. The 

production and secretion o f both FSH and LH are governed not only by GnRH input, 

but also by several other steroid and protein hormones that allow for the process of 

follicle growth, ovulation and corpus luteum formation to proceed at a normal pace. 

For instance, estradiol, a steroid hormone produced by growing ovarian follicles, has 

many implications in the production and secretion of gonadotropins (Vivrette and 

Irvine, 1979; Ireland, 1987; Pinaud et al., 1991). In the granulosa cells, estradiol is 

important in the amplification o f the actions o f  FSH, specifically the “priming” action 

FSH has on granulosa cells to render them more susceptible to the further stimulatory 

actions o f LH (Ireland, 1987), and it is well known that, within the follicle, only the 

granulosa cells are capable o f producing estradiol (Watson and Thomson, 1996). It has 

been suggested that estradiol production by the ovarian follicles is an indicator that the 

follicles are in a healthy, growing state, with much higher production o f estradiol in
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largest, dominant follicle within a follicular wave in cattle (Ireland and Roche, 1983; 

Badinga et al., 1992).

Unfortunately, this difference in estradiol secretory rates between the dominant 

and subordinate follicles does not manifest itself until after follicular divergence has 

occurred, which rules out the notion that one of the factors influencing the divergence 

of the dominant follicle from its subordinates is an innate ability to produce higher 

amounts o f estradiol (Ginther et al., 1997). In addition, although the tendency for 

atretic follicles is to decrease estradiol output while increasing the production o f 

follicular androgens, this is not a sure sign o f follicular atresia, since growing follicles 

produce androgens in addition to estradiol (Kenney et al., 1979; Davis and Sharp,

1991). Interestingly, it has been demonstrated that androgens have a positive effect on 

FSH, as well as LH, secretion during diestrus by allowing for an accumulation of FSH 

within the adenohypophysis prior to its release, causing larger amounts to be secreted 

per secretion episode (Thompson et al., 1983b; Reville-Moroz et al., 1984; Thompson 

e ta l ,  1987).

However, other studies have shown that androgens have either a negative effect 

on FSH secretion (Evans et al., 1997), or no effect at all (Thompson et al., 1987). It is 

known, though, that the increased production o f estradiol by the dominant follicle 

inhibits FSH secretion by the adenohypophysis, decreasing the amount of FSH available 

for stimulation o f the subordinate follicles (Ginther, 1992; Evans et al., 1997). This is 

thought to be one o f the primary mechanisms through which the dominant follicle 

suppresses the growth of the other subordinate follicles within the follicular wave, 

thereby ensuring that it will remain the follicle destined to ovulate (Evans et al., 1997).
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Estradiol also affects the production and secretion o f LH, by both direct and 

indirect pathways (Pinaud et al., 1991). First, estradiol directly stimulates production o f  

LH in the adenohypophysis while inhibiting its secretion to allow for an accumulation 

o f LH so that greater than normal amounts are available for release (Vivrette and Irvine, 

1979). This increase in pituitary stores o f LH can be detected within 24 hours after 

estradiol exposure (Vivrette and Irvine, 1979). Estradiol can then increase GnRH 

output by the hypothalamus to cause the release o f the LH stored within the pituitary, 

creating a net increase in pituitary production o f LH (Vivrette and Irvine, 1979). It is 

primarily through this mechanism that estradiol causes the pre-ovulatory surge o f LH 

noted in most domestic species (McKinnon and Voss, 1993).

Once ovulation o f the pre-ovulatory follicle has occurred, the formation o f the 

corpus luteum begins and progesterone production by this gland increases (Ginther,

1992). Progesterone is the steroid hormone most important for the maintenance o f  

pregnancy, hence its name (“pro” meaning for, “gesterone” meaning gestation). It is 

also intricately involved in the regulation o f LH production and secretion (Adams et al., 

1992a). It has been shown that progesterone can inhibit LH secretion, probably through 

decreasing GnRH pulse frequency (Evans et al., 1982; Adams et al., 1992a). In one 

study using Bos indicus cattle, administration o f progesterone during the follicular 

phase of the estrous cycle delayed ovulation and the timing o f the LH peak, 

demonstrating its ability to suppress LH secretion (Cavalieri et al., 1997). This should 

be expected since, in cyclic animals, there is normally no need for ovulation to occur at 

the time that functional corpora lutea are present. Finally, although progesterone is very 

important in the regulation o f LH secretion, most evidence to date suggests a minimal
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role for this steroid in the regulation of FSH synthesis and release (Evans et al., 1982; 

Adams et al., 1992a).

In addition to steroidal influence, there are also protein hormones produced by 

the developing follicles that aid in the regulation o f pituitary FSH (Miller et al., 1981). 

Most notable o f these is inhibin, a protein produced primarily by the dominant follicle, 

which regulates FSH secretion (Britt, 1988). Inhibin functions to directly inhibit FSH 

secretion by the pituitary, as another mechanism o f reducing the amount of FSH 

available to the subordinate follicles within a follicular wave (Britt, 1988; Roser et al.,

1994). It has been demonstrated in mares that peripheral inhibin concentrations 

increase beginning on day 8 post-ovulation and continue rising until the day o f 

ovulation, closely following the emergence and growth of the dominant follicle (Roser 

et al., 1994). These levels o f inhibin then decline rapidly until day 7 post-ovulation 

(Roser et al., 1994). Interestingly, the circulating concentrations of FSH show the 

opposite pattern, with higher levels during the first 7 days post-ovulation and then a 

decrease as inhibin levels rise (Roser et al., 1994). In mares, inhibin antiserum has been 

shown to increase both plasma FSH as well as the number o f ovulations in treated 

mares, with no effect on circulating LH concentrations (Nambo et al., 1998). This 

demonstrates the ability of inhibin to negatively regulate FSH release from the 

adenohypophysis.

Finally, a second protein hormone produced by growing follicles, activin, aids in 

the regulation o f pituitary FSH. Activin directly stimulates the release of pituitary FSH 

to aid in follicular growth and development, and may actually cause some of the 

somatotropes within the adenohypophysis, which produce ST, to undergo a
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conformational change into gonadotropes capable o f secreting FSH in the rat (Childs 

and Unabia, 1997). Further study into the mechanisms of action o f these protein 

hormones in gonadotropin regulation and follicular development is needed.

The Ovulatory Response

The final response o f the growing follicle, after follicular activation, 

recruitment, growth and selection of the dominant follicle has occurred, is the process 

of ovulation. Ovulation has been described as an inflammatory process (Watson et al.,

1991), which is thought to be ultimately mediated by prostaglandins (Jochle et al., 

1987; Yamauchi et al., 1997). After the ovulatory surge of LH has been released, a 

complex pathway o f events involving prostaglandin production and release is set in 

motion, which culminates in the ovulation o f the pre-ovulatory follicle (Yamauchi et 

al., 1997). It is believed that nitric oxide is intricately involved in this pathway, and it 

has been shown that nitric oxide inhibitors can block ovulation primarily through the 

blockage of prostaglandin formation (Yamauchi et al., 1997). Once ovulation has 

occurred, the ovum is released and made available for fertilization, and the resultant 

ruptured follicle begins the process of forming a corpus luteum, which is responsible for 

progesterone production for the maintenance o f pregnancy.

Nutritional Effects on Follicular Development

The body condition o f the animal, as well as the overall nutritional plane on 

which the animal is maintained, can have profound effects on reproductive 

performance. Cows undergoing feed restriction and those that have a low body 

condition score, which reflects the nutritional status of the animal, have lower numbers 

o f ovarian follicles than those with a high body condition score or those fed adequate
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energy intake (Rutter and Manns, 1991; Ryan et al., 1994a). Also, increasing the 

dietary energy has been shown to be beneficial in increasing the number of follicles 

(Lammoglia et al., 1997), without affecting gonadotropin concentrations (Gutierrez et 

al., 1997b). It appears that the effects o f dietary energy on follicular development occur 

during the time of early follicular activation and subsequent recruitment into a follicular 

wave, since the process seems to be gonadotropin-independent (Gutierrez et al., 1997b). 

In addition, adequate dietary energy is crucial in maintaining normal reproductive 

cyclicity, since restricting the dietary energy intake lowers basal estradiol and 

progesterone production by the follicles and corpora lutea in Brahman cattle, 

respectively (Lammoglia et al., 1997).

One mechanism for the stimulation o f ovarian follicular development may be 

through dietary effects on circulating ST and IGF-I, two growth promoters that also 

have effects on the reproductive axis (Rhind and Schanbacher, 1991). It is known that, 

during periods of feed restriction, serum ST rises, presumably due to its repartitioning 

abilities so that available nutrients are routed away from fat deposition (Rhind and 

Schanbacher, 1991), but also in part due to the ability of blood glucose to suppress ST 

secretion (Barb et al., 1995). In contrast, IGF-I is higher in pigs that are on diets 

consisting of adequate energy intake, presumably due to its growth promoting abilities 

in many cell-types throughout the body (Ryan et al., 1994a). In addition, it has been 

demonstrated that the circulating levels o f high-density lipoproteins can influence 

hepatic IGF-I production by increasing the amount of IGF-I produced (Bao et al.,

1995). Finally, circulating insulin levels are affected by nutritional status, and insulin 

can also have effects in reproduction (Conway et al., 1990). For example, insulin
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treatment to pigs increases the number o f ovarian follicles, but this stimulation is 

primarily through the IGF-I type-I receptor, essentially making the effects o f insulin 

virtually identical to those o f IGF-I (Edwards et al., 1996).

SOMATOTROPIN AND IGF-I IN REPRODUCTION

Somatotropin is secreted by the adenohypophysis in response to growth 

hormone releasing-hormone (GHRH) secreted by the hypothalamus (Dubreuil et al., 

1990; Hugues et a l, 1991). Its primary role is to promote growth in most cell-types 

within the body, however it appears to be very important in reproductive function as 

well. It has been demonstrated that immunization of prepubertal heifers against GHRH 

significantly delays the onset o f puberty and reduces the number o f ovarian follicles 

(Cohick et al., 1996). Furthermore, administration of GHRH significantly raises plasma 

ST as well as follicular steroids, and increases follicle growth in cattle (Spicer and 

Enright, 1991) and women (Hugues et al., 1991). It has been proposed that ST plays a 

permissive role in reproduction, and that only in cases of ST deficiency should one 

expect ST treatment to show a benefit (Piaditis et al., 1995). However, this may not be 

entirely true, as numerous studies have demonstrated positive effects on ovarian 

follicular dynamics with ST administration to normally cycling cattle (Gong et al., 

1991; Rieger et al., 1991; Spicer et al., 1992; Lucy et al., 1993; Echtemkamp et al., 

1994b; Gong et al., 1996a). It has also been reported that cows deficient in ST 

receptors have lower numbers of follicles on their ovaries at any given time, shorter 

waves o f follicular growth and depressed growth of the dominant follicle within each 

follicular wave compared with normal cattle (Chase et al., 1998). It is therefore evident
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that ST plays some role in ensuring normal reproductive function in mammalian 

species.

The administration of exogenous ST has been shown to be beneficial in 

increasing follicular numbers in cattle (Lucy et al., 1993), pigs (Echtemkamp et al., 

1994a) and women (Owen et al., 1991a). It is thought that these effects are brought 

about, at least in part, through the ability o f ST to stimulate hepatic as well as locally 

produced IGF-I (Homburg et al., 1988), although a direct effect of ST at the level o f the 

ovary has been suggested (Gong et al., 1991). Early studies have shown that exogenous 

ST increases ovarian follicle numbers in the small- to medium-size categories, and this 

effect seems to be highly correlated to circulating IGF-I concentrations (Owen et al., 

1991a). Since daily ST secretion patterns are variable and pulsatile in nature, with 

frequent sampling times needed in order to establish baseline patterns for individual 

animals (Thompson et al., 1992), it may be important to establish baseline IGF-I values, 

since ST stimulates IGF-I production and baseline IGF-I concentrations tend to be less 

variable within individual animals (Stewart et al., 1993). However, it is also likely that 

ST exhibits direct effects at the ovarian level as well, since some studies have 

demonstrated positive effects of ST administration on the number of follicles without an 

effect on IGF-I concentrations (Tapanainen et al., 1992). In light of these findings, it is 

likely that ST has both direct effects at the level of the ovary, as well as indirect effects 

through the stimulation of systemic and intrafollicular of IGF-I production.

Many reports have demonstrated that ST administration increases ovarian 

follicle numbers, and also that the administration of ST affects follicular and systemic 

steroid concentrations (Spicer et al., 1992; Tapanainen et al., 1992; Echtemkamp et al.,
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1994b; Gong et al., 1996a). However, other studies in women have shown that ST 

administration has no effect on ovarian follicular dynamics, since exogenous treatment 

with ST resulted in no noticeable effect on follicular growth and development (Hofferer 

et al., 1991; Owen et al., 1991b; Shaker et al., 1992; Eckery et al., 1994; Driancourt and 

Disenhaus, 1997). However, it is important to note that most o f these studies involved 

normally cycling experimental subjects, in which additional ST may not be beneficial to 

reproductive function. In addition, several factors including the time o f the cycle, the 

amount of ST given, as well as the duration o f treatment could all have affected the 

outcome of these studies. It is evident, in any case, that ST is important in normal 

reproductive function as evidenced in animals with little to no endogenous ST input 

(Bartke et al., 1996; Eckery et al., 1997).

In Ames dwarf mice, a genetic condition in which no somatotropes develop 

within the adenohypophysis, resulting in no ST production, normal patterns of ovarian 

follicular development do not occur, but treatment with exogenous ST can completely 

reverse this phenomenon (Bartke et al., 1996). In addition, in hypophysectomized 

ewes, gonadotropin administration alone is insuffucient in restoring normal 

reproductive cyclicity (Eckery et al., 1997). However, once ST is given in addition to 

gonadotropins, the animals will begin to cycle and ovulate in a normal fashion once 

again. (Eckery et al., 1997). These findings demonstrate the importance o f ST in 

normal reproductive function.

It is well documented that treatment with exogenous ST causes plasma IGF-I 

concentrations to rise within 2 to 3 days of the initiation of treatment, and it is believed 

that this growth factor is responsible for many o f the ovarian effects demonstrated with
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ST administration in cows (Gong et al., 1991; De La Sota et al., 1993; Eckery et al., 

1994; Lucy et al., 1994; Samaras et al., 1994; Gong et al., 1997). For example, ST 

administration to cyclic gilts resulted in an increase in the number of small ovarian 

follicles, which was highly correlated to rises in both plasma and intrafollicular IGF-I 

concentrations (Spicer et al., 1992). Interestingly, most studies in domestic species 

have only reported increases in small- to medium-sized follicles, with no difference 

seen in large follicle numbers per animal in animals treated with ST (Gong et al., 1991; 

Spicer et al., 1992; Lucy et al., 1993). However, in one study using gonadotropin- 

stimulated Holstein heifers, ST administration significantly increased both large follicle 

numbers as well as the number of ovulations per heifer when compared with those 

heifers receiving gonadotropin treatment only (Rieger et al., 1991).

Similar findings have been reported in clinically infertile women, especially 

those with polycystic ovarian disease, in which ST treatment in conjunction with 

gonadotropin administration significantly increased the number of large follicles 

available for transvaginal oocyte collection procedures for use in in vitro fertilization 

protocols (Homburg et al., 1988; Owen et al., 1991a,b). It is proposed that elevated 

levels o f ST as well as IGF-I act synergistically with available gonadotropins, causing 

an enhancement of the follicular response to gonadotropin stimulation, which could 

explain the apparent lack o f  large follicle stimulation in experimental subjects receiving 

no gonadotropin stimulation (European and Australian Multicenter Study, 1995). This 

could be important in the treatment o f clinical infertility in not only cattle and humans, 

where gonadotropin treatments alone are often successful, but also in the domestic 

mare, since various protocols involving treatment with gonadotropins have shown little
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to no real success (Rosas et al., 1998). In a recent study in cyclic mares, it was shown 

that treatment with both porcine ST as well as bovine ST resulted in significantly higher 

plasma IGF-I concentrations when compared with untreated control mares, dem­

onstrating that ST from other species has biological activity in the domestic mare 

(Buonomo et al., 1996). However, in this study, no reproductive parameters were 

monitored, and the study was discontinued due to severe local reactions with the 

commercial preparation o f these compounds.

Further studies showing the synergistic effects of ST/IGF-I on gonadotropic 

action in follicular development involve a reduction in the amount of gonadotropins 

necessary to elicit the desired response (Homburg et al., 1988; Owen et al., 1991a; 

Yoshimura et al., 1994). In women undergoing controlled ovarian hyperstimulation 

treatments for use with in vitro fertilization protocols, ST administration significantly 

reduced the total amount of gonadotropins needed to successfully stimulate the desired 

number o f follicles when compared with women receiving no ST treatment (Homburg 

et al., 1988; Owen et al., 1991a; Bergh et al., 1994; European and Australian 

Multicenter Study, 1995). In addition, using perifused rabbit ovaries, Yoshimura et al. 

(1994) demonstrated that ST enhanced the follicular response to available gonado­

tropins by increasing both follicular growth as well as oocyte maturation. Furthermore, 

it was demonstrated that these effects were highly correlated to increased intrafollicular 

IGF-I production, providing further evidence that many of the effects of ST treatment 

are IGF-I mediated (Yoshimura et al., 1994). From a practical sense, it should be noted 

that treatment with ST in no way impairs the fertility o f the resultant oocytes, which
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would obviously limit its use in ovarian stimulation protocols (Homburg et al., 1988; 

Owen et al., 1991a,b; Bilby et al., 1998).

Finally, treatment with exogenous ST can also affect follicular wave patterns. In 

lactating dairy cattle, ST administration has been shown to decrease the interval 

between follicular waves (Kirby et al., 1997b). That is, when cows were given 

exogenous ST, the emergence o f the subsequent follicular wave was hastened by ~48 

hours (Kirby et al., 1997a). This same phenomenon has been reported in young dairy 

heifers, where treatment with both ST and placental lactogen hastened follicular wave 

emergence (Lucy et al., 1994). Since serum IGF-I was increased in all treated animals, 

an IGF-I-mediated response cannot be ruled out (Lucy et al., 1994). That ST/IGF-I 

seems to have the ability to affect follicular wave patterns in this fashion lends further 

evidence that these growth factors may be involved in early follicular activation and 

recruitment into a follicular wave.

Effects of ST on Hormone Production

Conflicting results have been reported in relation to the effects o f  ST on 

gonadotropin as well as steroid production. In both cattle (Gong et al., 1991) and 

women (Tapanainen et al., 1992), it has been demonstrated that ST treatment had no 

effect on plasma LH or FSH concentrations. Also, it was also reported that ST 

administration has no effects in cattle on estradiol or progesterone production in cyclic 

animals (Gong et al., 1991). However, women treated with ST exhibited a decrease in 

serum estradiol as well as serum progesterone levels, with an increase in intrafollicular 

steroid production (Tapanainen et al., 1992). This in contrast to a study by Lanzone et 

al. (1996), in which it was demonstrated that ST administration to subfertile women
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caused a rise in serum estradiol concentrations throughout the duration o f  treatment. In 

addition, pigs treated with ST exhibited no differences in serum concentrations of LH, 

FSH, estradiol or progesterone, however, intrafollicular estradiol production was 

affected, with a decrease in estradiol production noted in medium-sized follicles in pigs 

(Spicer et al., 1992).

Interestingly, in rats treated with equine chorionic gonadotropin (eCG), it was 

shown that, while ST treatment had no effect on absolute serum values of LH, 

administration o f ST did cause slightly different (pleiomorphic) forms o f  LH to be 

secreted, which appear to have a lower biological activity than LH secreted in the 

absence o f  ST treatment (Wilson et al., 1985). In any case, it currently remains unclear 

what effects, if  any, ST administration may have on the production and secretory 

patterns o f  gonadotropins and steroid hormones in mammalian species.

Insulin-like Growth Factor-I

Since treatment with either GHRH and/or ST causes significant rises in both 

plasma and intrafollicular IGF-I concentrations, it is important to gain a better 

understanding o f the exact mechanisms through which IGF-I may affect mammalian 

reproductive function (Owen et al., 1991b; Kirby et al., 1993; Stanko et al., 1994; Gong 

et al., 1997; Sirotkin et al., 1998a). It has been demonstrated that IGF-I increases the 

growth and development o f ovarian follicles in the rat (Yoshimura et al., 1996a,b), as 

well as stimulating resumption of meiosis in the oocyte (Zhou and Bondy, 1993; 

Yoshimura et al., 1996a), and that blocking the IGF-I Type-I receptor reverses these 

effects (Yoshimura et al., 1996a). In addition, treatment of granulosa cells collected 

from growing ovarian follicles with IGF-I increases the responsiveness o f the granulosa
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cells to the stimulatory effects of FSH, possibly through increasing FSH receptor 

numbers (Owen et al., 1991a). This seems to be the most likely mechanism o f action 

for the synergistic effect detected between IGF-I and the gonadotropins, since treatment 

with IGF-I also increases LH receptor numbers in cultured rat granulosa cells (Liu et 

al., 1998). This synergistic effect can be detected in lactating dairy cows during the 

first 14 days postpartum, as it was demonstrated that all cattle that ovulate within this 

time frame have 40 to 50% higher basal IGF-I concentrations, with no differences in 

plasma steroid or gonadotropin levels (Beam and Butler, 1997). This clearly shows that 

higher IGF-I concentrations in the plasma can be important for the resumption of 

reproductive cyclicity in cattle, and that IGF-I is involved in reproductive function. 

Since there was no difference in circulating plasma levels of LH or FSH in this study, it 

is probable that the elevated IGF-I allowed for an enhancement of the response to the 

available gonadotropins in these postpartum cattle (Beam and Butler, 1997). Also, it 

has been demonstrated in subfertile women that the circulating concentration of IGF-I is 

inversely related to the amount o f gonadotropins needed to achieve an adequate 

stimulatory response when undergoing treatment for use in in vitro fertilization 

protocols (Rabinovici et al., 1990).

It has been suggested that intrafollicular IGF-I concentrations may play a role in 

the selection and continued growth o f the dominant follicle within a follicular wave 

(Yuan et a l ,  1998). This is due to the fact that, in some reports, intrafollicular 

concentrations o f  IGF-I are higher in dominant compared with subordinate follicles 

(Rabinovici et al., 1990; Monget and Monniaux, 1995; Yuan et al., 1998). Also, it has 

been shown that IGF-I receptor numbers are higher in dominant follicles when
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compared to those of subordinate follicles (Stewart et al., 1996; Zhou et al., 1996; Yuan 

et al., 1998). However, others have reported no difference in intrafollicular con­

centrations o f  IGF-I between dominant and subordinate follicles (De La Sota et al., 

1996; Thierry Van Dessel et al., 1996). Aside from total concentrations of IGF-I within 

the follicular fluid of dominant and subordinate follicles, the bioavailability o f the IGF-I 

that is present may play an even greater role in dominant follicle growth and 

development. It is known that, in the dominant follicle, intrafollicular concentrations o f 

IGF-I binding proteins change over time, allowing for an overall increase in the IGF-I 

available for cellular stimulation (Monget et al., 1993; Monget and Monniaux, 1995; 

Yuan et al., 1998). It is therefore possible that this increase in bioavailable IGF-I, 

through its interactions with gonadotropins, allows for the stimulation of growth o f  the 

dominant follicle(s) over that o f the subordinate follicles within a follicular wave. 

Finally, it has been demonstrated in mares (Malinowski et al., 1996) as well as women 

(Klein et al., 1996) that basal IGF-I concentrations decrease as age increases, which 

may partially explain the age related decrease in fertility noted in these species.

Other Factors Influencing IGF-I

Aside from ST stimulation, IGF-I production can be influenced by various other 

compounds within the body. It has long been known that estradiol effects both IGF-I 

production as well as IGF-I receptor formation (Monget and Monniaux, 1995; Johnson 

et al., 1996; Johnson et al., 1998; Wilson, 1998a,b). However, there seems to be an 

age-related uncoupling o f the estradiol-IGF-I axis, since prepubertal and adolescent 

females respond differently than adults (Wilson, 1998a,b). In adolescent female Rhesus 

monkeys, estradiol increases systemic IGF-I production, but in adults the opposite
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effect occurs (Wilson, 1998b). In addition, in these adult monkeys, estradiol increases 

IGF-I binding protein concentrations within the follicle, which would further limit the 

amount of IGF-I available for use by the granulosa cells (Wilson, 1998a).

In addition to estradiol, progesterone has also been shown to effect IGF-I 

production by decreasing systemic concentrations of IGF-I (Manikkam and 

Rajamahendran, 1997). Also, treatment o f both sheep (Khalid et al., 1997) as well as 

pigs (Hammond et al., 1988) with gonadotropins or GnRH has been shown to increase 

intrafollicular IGF-I concentrations, however, no effects were detected in systemic IGF- 

I levels. In addition, glucocorticoids have been shown to negatively affect follicular 

growth (Asa and Ginther, 1982; Asa et al., 1983), and this is correlated to a reduction in 

intrafollicular IGF-I levels (Peter and Asem, 1996). Finally, other factors, such as 

tumor necrosis factor alpha (TNFa) have been reported to inhibit IGF-I binding to 

granulosa cells, however, no effects were detected in actual IGF-I production (Spicer, 

1998b).

Intrafollicular Effects o f ST and IGF-I

Both ST and IGF-I have potent stimulatory effects at the level o f the granulosa 

cells within ovarian follicles. ST increases the FSH-stimulated differentiation o f 

cultured rat granulosa cells (Gong et al., 1991), and it synergizes with FSH and LH to 

enhance the effects o f both o f these gonadotropic hormones within the granulosa cells 

(Homburg and Ostergaard, 1995). Also, granulosa cells o f antral follicles do possess 

ST receptors, however, those o f pre-antal follicles do not, suggesting that the increases 

in small follicle numbers noticed during ST treatment is not a result o f  an increase in 

early follicle activation (Sharara and Nieman, 1994). Also, since ST administration to
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granulosa cells collected from women has been shown to have no effect on subsequent 

steroidal output by these granulosa cells, it is assumed that most of the effects noted 

with ST treatment are, in fact, mediated through IGF-I (Foster et al., 1995).

The effects of IGF-I on granulosa cells function are similar to those o f ST, but 

perhaps more broad in nature. It is well documented that IGF-I synergizes with 

available gonadotropins within the follicle, and it is through this mechanism that IGF-I 

causes most o f its ovarian effects (Homburg and Ostergaard, 1995; De La Sota et al., 

1996; deMoura et al., 1997; Singh and Armstrong, 1997). It has been shown that 

granulosa cells from most domestic species have the capacity to produce IGF-I, and also 

that these granulosa cells possess IGF-I receptors, which would suggest that IGF-I has 

both paracrine and autocrine functions within the granulosa cells (Xia et al., 1994; 

Stewart et al., 1997; Sirotkin et al., 1998b).

Since FSH seems to be required for optimal IGF-I production, and since FSH 

increases IGF-I receptor numbers within the granulosa cells, the interrelationship 

between FSH and IGF-I is very important in the growth and development o f the 

follicular granulosa cells (Hammond et al., 1988; Samaras et al., 1996; Beam and 

Butler, 1997; Pawshe et al., 1998). In addition, IGF-I has been shown to increase the 

number of LH receptors in cultured rat granulosa cells, and this, along with the ability 

of IGF-I to increase inhibin secretion (De La Sota et al., 1996) may be an important 

mechanism in the selection o f the dominant follicle within a follicular wave (Beam and 

Butler, 1997). In most domestic species, only the dominant follicle exhibits LH 

receptors within the granulosa cells (England et al., 1981; Staigmiller, 1982), and since 

IGF-I and IGF-I receptors are higher in the follicular fluid collected from dominant
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follicles, the hypothesis that intrafollicular IGF-I is necessary for the selection o f the 

dominant follicle is supported (Beam and Butler, 1997). However, unlike most 

domestic species, ovarian follicles in mares have been shown to possess LH receptors 

from sizes o f 5 mm in diameter upwards (Goudet et al., 1999). Since the ovarian 

follicles o f mares grow to very large sizes (>40 mm in diameter) when compared with 

most other species evaluated, this phenomenon o f only dominant follicles possessing 

LH receptors does not hold true. However, even in mares, those granulosa cells from 

subordinate follicles have less total number o f  LH receptors than do those from 

dominant follicles, which leaves the possibility that intrafollicular IGF-I could play a 

role in dominant follicle selection in the mare as well (Goudet et al., 1999). Finally, 

unlike those o f LH, FSH receptors are found in all follicles from 0.5 mm in diameter 

upwards, so the potential effect of IGF-I on dominant follicle selection may be limited 

to increasing LH receptor numbers rather than an overall increase in both FSH and LH 

receptors (Findlay, 1994).

Both IGF-I and insulin have mitogenic effects on the growth and development 

o f  granulosa cells in mammalian species. IGF-I has been shown to increase DNA 

synthesis in cultured bovine granulosa cells (Khamsi and Armstrong, 1997), which in 

turn leads to an increase in cell proliferation. Numerous studies have clearly 

demonstrated that IGF-I greatly increases granulosa cells proliferation in vitro in 

virtually every farm animal species studied (Xia et al., 1994; Spicer and Echtemkamp, 

1995; Armstrong et al., 1996b; Campbell et al., 1996; Gutierrez et al., 1997a; Mariana 

et al., 1998). Furthermore, while insulin has similar effects (Matamoros et al., 1991; 

Simpson et al., 1994; Whitley et al., 1998), insulin is not as potent an ovarian stimulator
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as is IGF-I, probably due to the fact that it appears that both factors work through the 

type-I IGF-I receptor, which has a greater affinity for IGF-I (Monget and Monniaux, 

1995; Gutierrez et al., 1997a; Willis et al., 1998). In addition, when FSH is 

administered to these in vitro cultured granulosa cells, the cellular response is increased 

by 2- to 3-fold (Xia et al., 1994; Armstrong et a l, 1996b; Campbell et a l,  1996). 

Finally, while cumulus cell expansion in mature follicles is generally thought to be 

FSH-dependent, there is growing evidence that this process is also IGF-I mediated, and 

therefore, IGF-I is required for proper maturation of the ovarian follicle (Lorenzo et al., 

1994; Singh and Armstrong, 1997).

In addition, IGF-I has potent stimulatory actions on steroid production by the 

granulosa cells, which are, again, augmented by the presence o f FSH (Gong et al., 

1991; Spicer and Echtemkamp, 1995; Armstrong et al., 1996b; deMoura et al., 1997). 

It has been demonstrated that the addition of IGF-I to the culture medium of caprine 

(Behl and Pandey, 1999), bovine (Schams et al., 1988; Armstrong et a l, 1996b), ovine 

(Mariana et al., 1998), human (Mason et a l ,  1993; Foster et al., 1995) and porcine 

(Howard and Ford, 1994; Xia et al., 1994; Sirotkin et al., 1998a) granulosa cells 

increases the steroidal output of these cells. In general, both progesterone and estradiol 

production is enhanced through IGF-I treatment, and insulin can cause similar effects 

(Spicer, 1998a). It appears that IGF-I increases aromatase enzyme activity within the 

granulosa cells, and thereby increases estradiol production (De La Sota et a l ,  1996). In 

addition, it has been shown that IGF-I increases the production of steroid acute 

regulatory protein (StAR protein), and in this way augments progesterone production by 

the granulosa cells (Bao et al., 1998; LaVoie et al., 1999). It is therefore evident that
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IGF-I is crucial to maintaining normal granulosa cells proliferation and steroid 

production to ensure that follicular growth and development proceed in a normal 

manner.

IGF-I Binding Proteins

In addition to stimulating IGF-I production, ST administration has been shown 

to increase the production of IGF-I binding proteins (IGFBP) within the follicle 

(Echtemkamp et al., 1994a; Rabinovici et al., 1997). Other factors, including epidermal 

growth factor (stimulatory) and FSH (inhibitory), affect IGFBP production within the 

follicle (Mondschein et al., 1990; Yap et al., 1998). These binding proteins are 

responsible for regulating the amount o f available IGF-I in the plasma and follicular 

fluid, since without them, the IGF-I found in plasma and follicular fluid would be 

utilized by the various cells throughout the body in a short period o f time. IGFBP are 

therefore used to increase the half-life o f circulating IGF-I so that it will be available for 

longer periods of time. Incidentally, an ST binding protein has also been isolated (Amit 

et al., 1993). IGFBP are produced within the follicle by both theca and granulosa cells 

(San Roman and Magoffin, 1992), and they act primarily by binding IGF-I and making 

it less available for cellular utilization (Samaras and Hammond, 1995), which would 

block the stimulatory effects of IGF-I (Spicer and Chamberlain, 1999). Other factors 

involved in regulating IGFBP production are LH and FSH, which seem to increase 

intrafollicular IGFBP concentrations (Armstrong et al., 1996a). In addition, both IGF-I 

as well as insulin are potent inhibitors of IGFBP production, with IGF-I having stronger 

inhibitory actions on IGFBP production than insulin (Poretsky et al., 1996).
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Several IGFBP have been identified to date, and they can be classed as follows: 

(1) small molecular weight IGFBP and (2) large molecular weight IGFBP (Gerard and 

Monget, 1998). The small molecular weight IGFBP include IGFBP-2, -4 and -5, 

whereas the large molecular weight IGFBP are limited to IGFBP-3 (Funston et al., 

1996). Typically, growing follicles have less amounts o f intrafollicular IGFBP than do 

atretic follicles in both pigs and cattle (Samaras et al., 1993; Stanko et al., 1994; 

Funston et al., 1996; Stewart et al., 1996). In addition, it appears that the types o f 

IGFBP present are also important, since follicular fluid from dominant follicles usually 

contain IGFBP-3, with little to no small molecular weight IGFBP present (San Roman 

and Magoffin, 1993; Echtemkamp et al., 1994a; Funston et al., 1996; Gerard and 

Monget, 1998). This is probably due to the fact that IGFBP-3 tends to bind IGF-I less 

tightly than the smaller molecular weight IGFBP, and therefore more IGF-I would be 

bioavailable in large, dominant follicles for the stimulation o f the granulosa cells 

(Mondschein et al., 1991; Echtemkamp et al., 1994b; Thierry Van Dessel et al., 1996).

It has been suggested that decreasing concentrations o f IGFBP, which in turn 

increases bioavailable IGF-I, thereby increasing the number o f  LH receptors within the 

granulosa cells, is necessary for the establishment of follicular dominance (Stewart et 

al., 1996; Zhou et al., 1996). In addition, IGFBP appear to play a prominant role in 

follicular atresia (De La Sota et al., 1996). It has been hypothesized that the onset o f 

folliclular atresia may be determined more by changes in intrafollicular IGFBP 

concentrations than by absolute levels of IGF-I (Monget et al., 1993). This is supported 

by the finding that, during follicular atresia, the ratio o f IGFBP to IGF-I changes, and 

that less IGF-I is available for granulosa cells stimulation (De La Sota et al., 1996).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Also, it is known that FSH stimulates proteases designed to break down IGFBP, which 

may be one mechanism o f avoiding follicular atresia (Erickson et al., 1994). Further 

studies are needed to more clearly define the precise role o f IGFBP in ovarian follicular 

dynamics.

IMPLICATIONS OF SOMATOTROPIN TREATMENT IN THE MARE 

Seasonality

The reproductive cycle in the domestic mare is seasonal in nature, with peak 

breeding activity coinciding with periods o f increasing daylength (summer), while 

during reduced daylength conditions, mares typically undergo a period o f reproductive 

inactivity termed “seasonal anestrous” (Ginther, 1992). The term “anestrous” is not 

entirely accurate, since sporatic exhibitions o f  behavioral estrus are often detected in 

these anovulatory mares (Thompson et al., 1983a). However, this is currently the most 

widely accepted term used to describe this part of the mare's seasonal cycle. 

Interestingly, although the majority of mares do undergo this anovulatory state, up to 

25% of mares actually continue reproductive cyclicity complete with an ovulatory 

response virtually year-round (Hughes et al., 1972). The current theory for this winter 

inactivity in the mare is that, when daylength is decreased, melatonin production from 

the pineal increases, and this increase in melatonin production decreases GnRH 

production and secretion from the hypothalamus (McKinnon and Voss, 1993).

However, it should be noted that, to date there has been no direct evidence 

linking melatonin to GnRH production or secretion (McKinnon and Voss, 1993). It is 

known, though, that hypothalamic GnRH is severely decreased or absent in the mare 

during the winter, and this is the direct cause o f the anovulatory season (Hart et al.,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1984). It has been shown that ovarian follicular development and ovarian size is 

dramatically decreased in seasonally anovulatory mares, and this can be directly 

correlated to decreased GnRH output from the hypothalamus (Hart et al., 1984). That 

actual daylength is involved in this process is evidenced by the fact that exposure of 

seasonally anovulatory mares to artificial lighting regimes (~16 hours of light per day) 

can hasten the onset o f reproductive cyclicity within a relatively short period o f time 

(Kooistra and Ginther, 1975; Sharp et al., 1975; Oxender et al., 1977; Nequin et al., 

1989). This occurs presumably through increased hypothalamic GnRH, which then 

stimulates both LH and FSH production, and this aids in restoring reproductive function 

(Cleaver et al., 1991).

Since most o f the major breed registries require a mandatory birthdate of 

January 1 for foals bom within a year in the United States, along with the fact that the 

gestation length in the domestic mare is ~11 months, it is of importance to the 

commercial breeder to have mares cycling in February, which is during the seasonal 

anovulatory state for most mares in North America. Artificial lighting regimens are the 

most repeatable method of inducing seasonally anovulatory mares to begin reproductive 

cyclicity (Ginther, 1992). However, this method of inducing cyclicity in the mare is 

labor intensive, expensive and time consuming, since it takes 60 to 70 days from the 

onset of treatment with increasing light exposure until ovulation is achieved (Ginther,

1992).

For this reason, GnRH treatment to these anovulatory mares has become an 

intense area o f study in recent years. It has been demonstrated that continuous infusion 

with GnRH can induce ovulation in up to 50% of seasonally anovulatory mares within 4
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weeks (Hyland et al., 1987). However, in all studies to date, the ovulatory response in 

seasonally anovulatory mares treated with GnRH has been shown to be highly variable, 

and that either continuous infusion, multiple daily injections or long-term subcutaneous 

depots are required for any response at all (Johnson, 1986; Hyland et al., 1987; Johnson, 

1987; Ginther and Bergfelt, 1990; Fitzgerald et al., 1993). The variability exhibited in 

the ovulatory response to these different GnRH therapy regimes is probably primarily 

reflected by the state of anestrous that the mares in question are actually in, since mares 

in a deeper state of anestrous, as determined by plasma progesterone concentrations as 

well as ovarian follicular activity, tend to be less responsive to GnRH treatment 

(Fitzgerald et al., 1993; Mumford et al., 1994; Hyland et al., 1987).

The ability of GnRH to stimulate both LH and FSH production is critical to its 

ability to promote ovulation in some seasonally anovulatory mares (McKinnon and 

Voss, 1993). It is well known that pituitary and serum concentrations o f  LH (Hart et 

al., 1984; Thompson et al., 1986b), as well as serum levels of FSH (Alexander and 

Irvine, 1991), are reduced during the winter months in mares, and that GnRH can 

increase both LH and FSH output by the pituitary (Thompson et al., 1986a ; Johnson, 

1987). It is this action of GnRH that allows for the resumption of reproductive cyclicity 

in seasonally anovulatory mares treated with GnRH or one of its more potent agonists.

It is known that prolactin is also decreased during the winter months (Thompson 

et al., 1986b), and that treatment o f anovulatory mares with prolactin can hasten the 

date o f the first ovulation in these mares, possibly through an increase in LH receptors 

among the granulosa cells (Thompson et al., 1997). It is possible that, through a similar 

mechanism, treatment o f anovulatory mares with ST could enhance the response of
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these mares to GnRH therapy by increasing intrafollicular IGF-I concentrations, which 

could in turn increase LH and FSH receptor production on the granulosa cells (deMoura 

et a l, 1997). Since it is well documented that ST administration significantly increases 

the response o f  both cattle and women to available gonadotropins, this could prove to 

be a viable method o f reducing the variability noticed with traditional GnRH treatment 

to seasonally anovulatory mares, and it could make this type o f  treatment regimen 

economically viable for the commercial horse breeder.

OBJECTIVES

The objectives o f the present study were, therefore, to: (1) determine the effects 

o f ST administration to both cyclic as well as seasonally anovulatory mares, (2) 

determine if  ST administration to seasonally anovulatory mares receiving GnRH 

treatment would enhance the ovulatory response over that of GnRH treatment alone, (3) 

determine if a repeatable protocol, including ST administration, could be developed for 

the stimulation and subsequent collection o f viable oocytes from the ovaries of cyclic 

mares for use in in vitro fertilization treatments and (4) determine the mechanism o f 

action of ST administration to stimulate ovarian follicular development.
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CHAPTER n

THE EFFECTS OF EQUINE SOMATOTROPIN (eST) ON OVARIAN 
STIMULATION AND SYSTEMIC HORMONE CONCENTRATIONS IN 

CYCLIC MARES TREATED AT TWO STAGES OF THE ESTROUS CYCLE

INTRODUCTION

In recent years, the role of somatotropin (ST) and its effects on ovarian function 

has become a major area o f interest to reproductive physiologists studying follicular 

development. However, little research has been reported defining the function o f ST in 

reproduction in the cyclic mare. Short-term daily ST secretion in mares is pulsatile in 

nature, much like that o f other species (Thompson et al., 1994). With a large variation 

exhibited in the quantity and in the number o f daily pulses o f ST secreted among 

individual mares, frequent blood sampling over an extended period o f time is needed to 

establish baseline secretion patterns for an individual animal (Thompson et al., 

1992; 1994). Several studies in the human and the cow suggest that ST may have direct 

effects on ovarian activity based on the identification o f ST receptors and binding 

proteins (BP) in the ovary (Spicer and Enright, 1991; Amit et al., 1993; Cohick et al.,

1996). Also, it has been demonstrated that ST administration increases circulating 

levels of IGF-I in cattle, pigs, horses and women (Owen et al., 1991a; Spicer et al., 

1992; European and Australian Multicenter Study, 1995; Buonomo et al., 1996). 

Furthermore, treatment with ST has been shown to affect follicular dynamics and 

estradiol and progesterone secretion patterns in cattle, pigs and humans (Owen et al., 

1991a; Rieger et al., 1991; Spicer et al., 1992; 1993; Lucy et al., 1994).

It is well known that ST mediates many o f its effects through insulin-like growth 

factor-I (IGF-I), and apparently it is through this mechanism that growth hormone alters
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ovarian function (Spicer and Echtemkamp, 1995). Since IGF-I levels can be 

determined with much less frequent blood sampling, it may be more feasible to monitor 

circulating IGF-I rather than ST in mares. Also, follicular fluid from larger follicles 

tends to have higher concentrations o f  IGF-I, and this IGF-I could play an important 

role in the selection o f dominant follicles, as has been suggested in humans and in cattle 

(Rabinovici et al., 1990; Spicer and Enright, 1991).

The purpose o f  this experiment was to (1) determine if treatment with 

exogenous equine somatotropin (eST) would increase the number o f small- and/or 

medium-size follicles on the ovaries o f cyclic mares and (2) to determine the effects o f 

eST treatment on circulating levels o f LH, estradiol, progesterone and IGF-I in cyclic 

mares.

MATERIALS AND METHODS 

Experimental Design

A group of mixed-breed horse and pony mares (n=20), maintained on 

bermudagrass pasture and in good body condition (body condition scores ranged from 5 

to 8 on a scale of 1 to 9), was selected for this experiment. Experimental animals were 

randomly allocated to one of four treatment groups during the breeding season o f 1996 

(June through July). Since mares were to be monitored over parts o f two successive 

estrous cycles, the estrous cycles were designated as “T ” for the treated cycle and “P” 

for the post-treated cycle. Treatment A consisted o f  mares (n=8) each receiving an 

intramuscular (i.m.) injection o f 25 pg/kg of body weight o f equine somatotropin (eST, 

BresaGen Ltd., Thebarton, South Australia) daily beginning on day T6 and ending on 

day T12. The time o f treatment for this group was determined so that elevated plasma
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ST and/or IGF-I levels would be present at the time o f follicular wave emergence, 

which is at approximately day 9 post-ovulation. The ovaries o f these mares were 

monitored daily by ultrasound to determine the day of ovulation (day o f ovulation = day 

TO) and then were monitored every other day beginning on the first day of treatment 

(day T6) and ending on the subsequent day o f ovulation (day PO) using an Aloka 500-V 

ultrasound unit with a 5 MHz rectal probe (Corometrics Medical Systems, Wallingford, 

Connecticut). A blood sample was collected from each of the mares in this group at 24- 

hour intervals during the same time period. The blood samples were collected on ice 

using sterile glass collection tubes (Monoject Vacutainers®, Sherwood Medical, St. 

Louis, Missouri). Treatment B consisted o f mares (n=8) each similarly receiving an 

i.m. injection o f eST daily beginning on day T13 and ending on day T19. This time 

period was used so as to coincide with divergence of the dominant follicle from the 

subordinate within the ovulatory follicular wave, which occurs at approximately day 14 

post-ovulation. Blood sample collection and ultrasonographic monitoring of ovarian 

structures were performed on these mares beginning on day T13 and ending on day 

P5.

Mares randomly assigned to Treatments C and D (n=2/treatment) were used as 

controls, and were administered an i.m. injection of a sodium borate vehicle equal in 

volume to that containing the eST given to mares in Treatments A and B. Follicle 

growth and ovulation in control mares were monitored by ultrasonography and blood 

sample collection was performed in the same manner as the mares allotted to 

Treatments A and B, respectively.
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The crystalline eST was reconstituted in sterile water at a concentration o f 2.5 

mg/ml. Injection sites were rotated daily on opposite sides of the neck region. The 

volume o f each injection ranged from 2.8 to 5.7 ml, depending upon the body weight o f 

the mare (25 pg/kg of body weight).

Ultrasound prints (Sony®, Model No. UP850 thermal printer, Tokyo, Japan) of 

the ovaries o f each mare were collected to monitor follicular development. Each ovary 

was scanned from dorsal to ventral and from lateral to medial sides, and still prints were 

taken each time a follicle was present at its maximum diameter. Each follicle was then 

identified, measured and placed into one o f five follicle classification categories, based 

on its diameter (Category I = <7 mm, II = 8 to 16 mm, III = 17 to 24 mm, IV = 25 to 32 

mm and V = >32 mm).

Hormone Assays

Blood samples were centrifuged at 300 x g for 10 minutes, and the plasma was 

then stored in individually-labeled 7 ml plastic tubes (Curtin Matheson Scientific, Inc., 

Houston, Texas) and frozen within 30 minutes of collection. Validated radio­

immunoassay (RIA) (Sticker et al., 1995) was performed on the plasma samples 

collected from days 1, 2, 3, 5 and 7 of treatment, the day of the onset o f standing estrus 

and the day of ovulation to determine circulating IGF-I levels for each mare. Also, LH 

(Thompson et al., 1983) and estradiol-170 (Diagnostic Systems Laboratories, Webster, 

Texas) levels were determined from samples collected on day P0 and for the 8 days 

prior to day P0 (days -8  through P0) for Treatments A and C, or day -8 to day P5 for 

Treatments B and D.
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In addition, progesterone (Diagnostic Systems Laboratories) concentrations 

were assayed from plasma samples collected every other day beginning on day T6 and 

ending on the first day o f standing estrus (Treatments A and C) or on days PI to P5 

(Treatments B and D). The selection o f these treatment days was determined based on 

cyclic patterns of endogenous secretion of these hormones by mares previously 

monitored at this laboratory, and to determine if exogenous eST treatment would affect 

the circulating plasma levels of progesterone, estradiol, LH and IGF-I in cyclic mares. 

Statistical Analyses

Total number o f follicles present in each follicle size category for each mare was 

obtained from the ultrasound prints and analyzed across treatment groups using analysis 

o f variance (ANOVA). The mean follicle diameter within each size category for each 

mare and the number of ovulations per mare were also analyzed using the same 

ANOVA procedure. Hormone levels obtained for each mare from RIA were analyzed 

across treatment groups (Treatments A vs. C and Treatments B vs. D, respectively) 

using a split-plot ANOVA procedure.

RESULTS

Effect on Follicle Populations

The results o f treatment with exogenous eST on follicle populations in cyclic 

mares are shown in Tables 2.1 through 2.3. In this study, eST administration did not 

significantly alter the mean number o f follicles >8 mm per mare in cyclic mares treated 

daily either on days T6 through T12 (Treatment A) or on days T13 through T19 

(Treatment B) when compared with corresponding control mares (Treatments C and D) 

on day 7 o f treatment, days 3 and 7 post-treatment, or on the first day o f standing estrus.
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However, mares administered daily eST early in the estrous cycle (Treatment A) had a 

significantly greater number o f follicles <7 mm in diameter (P<0.05) when compared 

with control mares (Treatment C) on days 3 and 7 post-treatment and at the onset o f 

behavioral estrus (mean number of follicles per mare [± SEM] of 12.9, 12.8, 13.0 [± 

1.68] vs. 5.5, 5.5,4.0 [± 3.36], respectively).

Correspondingly, daily treatment with eST to mares on days T13 through 

(Treatment B) did not result in increased numbers o f follicles within follicle size 

categories over that of control mares (Treatment D). In addition, the mean number of 

follicles per size category per mare >8 mm in diameter was not different among 

treatment and control groups across all days evaluated in this study. Furthermore, 

neither the mean follicular diameter for follicles within each size category nor the 

number o f ovulations per mare was affected by treatment with eST or the carrier 

vehicle.

Hormone Profiles

Plasma hormone profiles from this study are presented in Figures 2.1 through 

2.8. In summary, eST treatment did not affect plasma progesterone concentrations in 

either eST treatment group (Treatments A and B) compared with control mares 

(Treatments C and D) for any o f the time periods monitored in this study (a total o f 6 

days for Treatments A and C and 5 days for Treatments B and D). Also, circulating 

estradiol levels were not significantly different from day -8 to day P0 in Treatments A 

and B when compared with respective control groups (Treatments C and D). However, 

on days PI through P5 mares in Treatment B had significantly lower plasma estradiol 

concentrations (P<0.05) than control mares in Treatment D (0.21, 0.24, 0.07, 0.13 and
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0.31 [± 0.33] pg/ml per mare compared with 4.6, 2.6, 2.3,4.1 and 1.9 [± 0.61] pg/ml per 

mare, respectively). While the number o f follicles per mare was not significantly 

different between these two groups, it can be speculated that secondary follicles present 

in the emerging follicular wave may have contributed to this increase in estradiol 

concentrations post-ovulation in the control group. Mares in Treatments A and C were 

not monitored past day P0, and therefore plasma estradiol concentrations during this 

time for these mares are not known.

In addition, plasma LH concentrations were significantly lower on day -7 

through day -1, but not on day -8 (pre-ovulation o f the treated cycle) or day P0 for 

mares in Treatment A compared with control mares in Treatment C (0.36, 0.40, 0.34, 

0.67, 1.6, 3.6 and 6.0 [± 0.9] ng/ml per mare vs. 5.3, 7.5, 8.1, 7.7, 9.6, 9.5 and 10.5 [± 

1.8] ng/ml per mare, respectively). However, this may have been due to the fact that one 

of the control mares had unusually high plasma LH concentrations during this time 

peroid. Also, there was no detectable difference in circulating LH levels in mares from 

Treatment B when compared with mares from Treatment D on day -8 pre-ovulation 

through day P5.

Finally, there was a significant increase in plasma IGF-I concentrations for 

mares treated with eST by day 3 of treatment when compared with those for control 

mares (144.99 [± 12.77] ng/ml vs. 64.19 [± 25.55] ng/ml for Treatments A and C, 

respectively and 179.02 [± 16.02] ng/ml vs. 101.08 [± 32.03] ng/ml for Treatments B 

and D, respectively). Increased IGF-I levels were not evident by the first day o f 

standing estrus in mares in Treatment A compared with mares in Treatment C. 

However, eST treated mares in Treatment B, unlike control mares in Treatment D, 

continued to have greater circulating IGF-I levels until the time o f ovulation.
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Table 2.1. Mean number o f follicles within size category per mare per treatment group
on day 3 post-treatment

Treatment <7 mm 8 to 16 mm 17 to 24 mm 25 to 32 mm >32 mm

A. eST 12.9“ (±1.7) 8.0 (±1.7) 2.8 (±1.7) 0.9 (±1.9) 0.6 (±2.1)
C. Control 5.5b (±3.4) 6.5 (±3.4) 3.0 (±3.4) 0.5 (±4.8) 0.5 (±4.8)
B. eST 10.3 (±1.7) 7.8 (±1.7) 2.5 (±1.7) 0.6 (±2.8) 0.1 (±4.8)
D. Control 11.0 (±3.4) 4.5 (±3.4) 1.5 (±3.4) 0.0 1.0 (±3.4)

“■‘’Means within columns with different superscripts are different (P < 0.05).
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Table 2.2. Mean number o f  follicles within size category per mare per treatment group
on day 7 post-treatment

Treatment <7 mm 8 to 16 mm 17 to 24 mm 25 to 32 mm >32 mm

A. eST 12.8a (±1.7) 8.5 (±1.7) 1.4 (±1.9) 0.6 (±2.8) 0.4 (±2.8)
C. Control 5.5b (±3.4) 8.0 (±3.4) 3.5 (±3.4) 0.5 (±4.8) 1.0 (±3.4)
B. eST 11.8 (±1.7) 8.6 (±1.7) 1.1 (±2.4) 0.1 (±4.8) 0.3 (±3.4)
D. Control 12.5 (±3.4) 3.0 (±3.4) 0.0 0.0 1.0 (±3.4)

a'bMeans within columns with different superscripts are different (P < 0.05).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.3. Mean number of follicles within size category per mare per treatment group
on the day o f the onset o f  standing estrus

Treatment <7 mm 8 to 16 mm 17 to 24 mm 25 to 32 mm >32 mm

A. eST 13.0a (±1.7) 7.6 (±1.7) 3.3 (±1.8) 0.9 (±1.9) 0.5 (±2.4)
C. Control 4.0b (±3.4) 7.0 (±3.4) 3.5 (±3.4) 1.0 (±3.4) 0.5 (±4.8)
B.eST 7.6 (±1.9) 7.0 (±1.9) 3.6 (±2.1) 0.7 (±2.4) 0.7 (±2.1)
D. Control 8.0 (±3.4) 5.5 (±3.4) 1.5 (±3.4) 0.0 1.0 (±3.4)

a'bMeans within columns with different superscripts are different (P < 0.05).
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Figure 2.1. Plasma progesterone concentrations (±SEM) for mares treated with eST
early in the estrous cycle (Treatments A and C). T = day of treatment cycle.
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Figure 2.2. Plasma progesterone concentrations (±SEM) for mares treated with eST late 
in the estrous cycle (Treatments B and D). P = day of post-treatment cycle 
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Figure 2.3. Plasma estradiol concentrations (+SEM) for mares treated with eST early in 
the estrous cycle (Treatments A and C). P0 = day o f ovulation of the post­
treatment cycle.
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Figure 2.4. Plasma estradiol concentrations (±SEM) for mares treated with eST late in 
the estrous cycle (Treatments B and D). P = day o f post-treatment cycle and 
PO = day of ovulation o f the post-treatment cycle. (*) Denotes significant 

difference within days.
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Figure 2.5. Plasma LH concentrations (±SEM) for mares treated with eST early in the 
estrous cycle (Treatments A and C). PO = day o f ovulation of the post­
treatment cycle. (*) Denotes significant difference within days prior to 
ovulation.
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Figure 2.6. Plasma LH concentrations (±SEM) for mares treated with eST late in the
estrous cycle (Treatments B and D). P = day of post-treatment cycle and PO 
= day o f ovulation o f the post-treatment cycle.
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Figure 2.7. Plasma IGF-I concentrations (±SEM) for mares treated with eST early in the 
estrous cycle (Treatments A and C). T = day o f treatment cycle and P0 = 
day of ovulation o f post-treatment cycle. (*) Denotes significant difference 
within days.
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Figure 2.8. Plasma IGF-I concentrations (±SEM) for mares treated with eST late in the 
estrous cycle (Treatments B and D). T = day of treatment cycle and PO = 
day o f ovulation o f the post-treatment cycle. (*) Denotes significant 
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DISCUSSION

Early follicular dynamics in the equine species is not well understood when 

compared with other domestics species. Currently, it is believed that follicles <15 mm 

are growing and/or regressing in a continuous fashion, in order to provide a reserve for 

the selection o f the larger follicles. The phenomenon o f  follicular waves has been 

documented in the mare, with mares exhibiting either 1 or 2 waves per interovulatory 

interval. In mares with 2 follicular waves, the first wave emerges at or around day -1 

(day 0 = day o f ovulation) and peaks at day 10. The second follicular wave (as well as 

the first follicular wave in mares with only 1 wave per interovulatory interval) emerges 

at approximately day 10 and ends with ovulation of the dominant follicle o f that wave 

(for review see Ginther, 1992). Further studies are needed in order to develop a better 

understanding o f early follicular dynamics in the horse.

In the present study, we have shown that treating cyclic mares with eST 

increases the number of small follicles present on the ovaries on days 3 and 7 post­

treatment and at the onset o f standing estrus (post-treatment). This finding is similar to 

the ovarian response of swine, in which ST administration has been shown to increase 

either small- (Buonomo et al., 1996) or medium-sized follicles (Echtemkamp et al., 

1994a). Also, Hereford x Friesian crossbred heifers treated with recombinant bovine 

somatotropin (rbST) responded by increasing the number o f small, but not medium or 

large follicles (Gong et al., 1991). This suggests that ST, either through IGF-I or 

directly, may play a more important role in follicle recruitment than in follicle growth 

(Buonomo et al., 1996). It should be noted that Spicer and Enright (1991) have shown 

that treatment of Hereford x Friesian heifers with ST releasing factor increased the 

mean diameter o f large follicles. In the present study, however, there was no increase in 

the mean diameter of follicles within any of the follicle size categories evaluated.

A multitude of studies have evaluated the effects o f ST on both systemic and 

intraovarian IGF-I production and the possibility of direct effects o f ST on ovarian
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function. It has been well established that ST administration increases both circulating 

and follicular fluid levels of IGF-I in cattle, pigs and humans (Mason et al., 1990; 

Rieger et al., 1991; European and Australian Multicenter Study, 1995), and ST has also 

been shown to increase plasma IGF-I in horses (Buonomo et al., 1996). Also, a positive 

correlation between serum and IGF-I levels in follicular fluid has been established, with 

the higher circulating IGF-I levels serving as one source o f ovarian IGF-I, by diffusing 

from circulation into the follicles (Amit et al., 1993).

In the present study, plasma IGF-I levels for mares treated with eST did not rise 

above that of control mares until the third day of treatment with eST. Correspondingly, 

Owen et al. (1991b) noted in women that serum IGF-I levels did not rise until 2 days 

after the onset of ST administration, and it was not until 3 to 4 days after the final 

injection of ST that these IGF-I levels began to return to normal baseline levels, which 

is in agreement with our findings on circulating IGF-I levels in cyclic mares.

It has also been proposed that the effects of ST on ovarian activity are not a 

result o f higher IGF-I levels, but are, instead, indicative o f a direct effect o f  ST at the 

level of the ovary (Gong et al., 1991; Spicer et al., 1992; Cohick et al., 1996). This 

hypothesis is supported by the data o f  Cohick et al. (1996), who detected ST receptors 

within the ovary in prepubertal beef heifers. Cohick et al. (1996) have also reported 

that immunizing these heifers against ST releasing factor resulted in a change in 

follicular development between 3 and 6 months of age, which caused the heifers to 

reach puberty at an older age (>14 months). Also, human pre-ovulatory follicles have 

been found to contain ST binding proteins, lending more evidence to a direct effect of 

ST on ovarian function (Owen et al., 1991a). Spicer and Enright (1991) found that 

administration o f ST releasing factor to Hereford-Friesian crossbred heifers did not 

increase follicular fluid IGF-I, providing further evidence that ST may be the mediator 

o f the increase in follicular activity noted with ST administration. Based on these
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findings, it is most probable that ST acts both directly on the ovary and indirectly 

through IGF-I.

One very important mode o f action o f ST on reproduction is its ability to act 

synergistically with gonadotropic hormones to stimulate ovarian activity. Studies in 

women undergoing ovarian stimulation protocols have shown that administration o f ST 

in concert with gonadotropins can either increase the ovarian response and/or lower the 

dose of gonadotropins needed to stimulate the ovaries in some women (Homburg et al., 

1988; Gong et al., 1991; Hugues et al., 1991; Owen et al., 1991b; Bergh et al., 1994). 

For example, two studies have reported that treatment with ST increased the number of 

fertilized oocytes recovered from superovulated women (Owen et al., 1991b; Bergh et 

al., 1994), while one study indicated that ST did not increase the overall number of 

oocytes collected from superovulated women, but did increase the number o f oocytes 

recovered from women with polycystic ovaries (European and Australian Multicenter 

Study, 1995). In contrast, another study indicated no difference in the amount of 

gonadotropins needed to stimulate ovarian activity in women treated with ST compared 

with those not receiving ST (Tapanainen et al., 1992).

While systemic IGF-I is not affected by treatment with gonadotropins, it is 

interesting to note that steroidogenic activity within the ovary can be modified by 

exogenous ST and/or IGF-I (Adashi et al., 1985). It has been shown that IGF-I can 

enhance FSH activity on bovine and porcine granulosa cells in culture (Spicer et al., 

1992). Furthermore, it has been hypothesized that ST/IGF-I acts in concert with FSH 

and possibly insulin to induce its stimulatory effects on the ovary (Gong et al., 1991). 

This could be one mechanism for selection of follicle dominance, since the higher levels 

o f IGF-I in large follicles could serve to stimulate their response to available FSH and 

thereby enable the follicles to develop at a greater rate than subordinate follicles.

The effects o f ST and IGF-I on blood levels of estradiol, progesterone, LH and 

FSH have been reported for cattle and humans (Gong et al., 1991; Tapanainen et al.,
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1992; Lucy et al., 1994). In dairy heifers and in women, ST treatment has been shown 

to decrease serum levels o f estradiol and while increasing serum IGF-I levels 

(Rabinovici et al., 1990; Tapanainen et a l,  1992). This is similar to our finding in 

cyclic mares, where ST-treated mares also had lower circulating estradiol levels on days 

1 to 5 post-ovulation. The finding that the control mares had higher circulating 

estradiol levels post-ovulation than pre-ovulation was unexpected, and it can be 

speculated that this may be due, in part, to the presence of secondary follicles in the 

newly emerging follicular wave. Why exogenous ST decreases circulating estradiol 

concentrations is unclear, but it could involve a reduction in the ability of the ovarian 

follicles to convert progestins to androgens and subsequently to estrogens.

Treatment with bST has been shown to increase plasma progesterone levels in 

Holstein heifers, and IGF-I increases progesterone production in both cattle and pigs 

(Schams et al., 1988; McArdle et al., 1991; Lucy et al., 1994; Spicer et a l, 1995). This 

is in contrast to the present study in cyclic mares, where we found no differences in the 

amount o f circulating progesterone levels between animals treated with ST and those 

receiving the carrier vehicle. One possibility for this difference could be that the mares 

were treated for only 7 days, while animals in most other studies were treated with 

sustained release subcutaneous injections or implants, which generally last much longer, 

or they were treated for longer intervals. Gong et al. (1991) reported no difference in 

estradiol, progesterone, FSH or LH levels in bST-treated heifers compared with control 

heifers. In our study, mares treated with ST early in the estrous cycle had significantly 

lower levels of plasma LH, but this was likely due to the fact that one of our control 

mares had abnormally high plasma LH and not a result o f the effects of ST treatment 

per se.

In summary, exogenous eST treatment increased both the plasma levels o f IGF-I 

and the number o f small follicles present on the ovaries of cyclic mares. Exogenous 

equine somatotropin treatment did not result in larger follicle diameters, as has been
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shown in other species, possibly due to the timing o f ST administration with respect to 

the stage of the estrous cycle, or perhaps insufficient quantities and/or number o f doses 

o f ST administered. It is evident, however, that ST treatment does have physiological 

effects on ovarian function in the horse and pony mare.
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CHAPTER m

EFFECTS OF ADMINISTRATION OF EXOGENOUS eST TO SEASONALLY
ANOVULATORY MARES

INTRODUCTION

Recently, the role of ST and insulin-like growth factor-I (IGF-I) in reproduction 

have come under intense investigation in domestic species and women. It is known that 

treatment with ST causes an increase in circulating IGF-I levels in horses (Buonomo et 

al., 1996; Cochran et al., 1999). In addition, treatment with ST has been reported to 

cause an increase in the number o f small follicles in horses (Cochran et al., 1999), pigs 

(Echtemkamp et al., 1994a) and cattle (Gong et al., 1991). It has been proposed that 

ST/IGF-I causes its effects on ovarian function by acting synergistically with 

gonadotropins, allowing an increased response o f the follicular cells to available 

gonadotropins (European and Australian Multicenter Study, 1995).

During times of decreased day length, mares undergo a period o f  acyclicity, 

termed the anovulatory or anestrous season. At this time, GnRH secretion from the 

hypothalamus is severely decreased or absent (Hart et al., 1984), causing virtually no 

LH to be secreted from the anterior pituitary o f these mares. During this period, the 

ovaries o f the mare become small and relatively inactive, with little or no follicular 

development taking place.

The purpose o f the present experiment was to determine if eST administration 

would increase the ovarian activity of seasonally anovulatory mares.
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MATERIALS AND METHODS 

Experimental Design

Anovulatory mares (n=10), all in good body condition, were randomly allocated 

to one o f two treatment groups. Treatment A consisted of anovulatory mares (n=5), 

each treated with 25 pg of eST (EquiGen™, BresaGen Ltd., Thebarton, South Australia) 

per kg of body weight (i.m.) once daily for 28 days. Treatment B also consisted of 

anovulatory mares (n=5) from the same experimental herd, similarly treated with the 

eST vehicle. Daily blood sample collections were performed on each mare beginning 

on day 1 (first day of treatment) and continuing until day 28 (last day of treatment). In 

addition, follicular development was assessed at 72-hour intervals, beginning on day 1 

o f  treatment and ending on day 28 of treatment.

Follicle Assessment and Hormone Analyses

The ovaries o f each mare were examined at 72-hour intervals via transrectal 

ultrasonography using an Aloka 500-V ultrasound unit with a 5 MHz rectal probe 

(Corometrics, Wallingford, CT). Each ovary was scanned from dorsal to ventral and 

from lateral to medial sides, and the size o f each follicle was recorded. Follicles were 

assigned to developmental categories based upon their diameter (Category I = <10 mm, 

Category II = 10 to 20 mm, Category III = 21 to 30 mm, Category IV = >30 mm). In 

addition, jugular blood samples were collected using sterile glass collection tubes 

(Vacutainers®, Sherwood Medical, St. Lcuis, MO) and centrifuged at 300 x g for 15 

minutes. The plasma was then frozen within 30 minutes of collection. Validated 

radioimmunoassay (RIA) (Sticker et al., 1995) was performed on the plasma samples 

collected every other day, beginning on day 1 o f treatment and ending on day 28 of
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treatment to determine circulating IGF-I concentrations for each mare. Similarly, LH 

and FSH (Thompson et al., 1983a,b) concentrations were analyzed from these mares. 

Experimental Conditions

This study was conducted during the calendar month of January, 1997 in south 

Louisiana, USA. The average daylength (sunrise to sunset) during the experimental 

period was 10.2 hours. In addition, the daily low temparature ranged from -5°C to 16°C 

and the daily high temperature ranged from 1°C to 26°C. All mares were selected from 

the same experimental herd and housed together in the same pasture during the 

experimental period. All mares were maintained on ryegrass pastures and bahia grass 

hay, free-choice, and supplemented with 2.2 kg o f a commercial 8% protein feed per 

mare per day throughout the experimental period. Each mare used in the present study 

was determined to be seasonally anovulatory by monitoring plasma progesterone 

concentrations as well as ovarian follicular activity for at least 4 weeks prior to the 

initiation o f treatment. Briefly, all mares had plasma progesterone levels o f <0.5 ng/ml 

in addition to having no follicles >15 mm in diameter for the 4-week period prior to 

treatment.

Statistical Analyses

The number o f  follicles present in each follicle size category, as well as the total 

number o f follicles present for each mare, were analyzed across time among treatment 

groups using analysis o f variance (ANOVA). Hormone concentrations from mares 

were analyzed across time among treatment groups using a split-plot ANOVA 

procedure (Cochran et al., 1999).
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RESULTS

Overall, there was a positive effect o f treatment of anovulatory mares with eST 

on the total number of follicles per mare (P<0.05) (Figure 3.1), with follicle numbers 

being significantly higher in treated mares by the seventh day o f  treatment. However, 

this observation was largely due to an increase in the number o f small (<10 mm) 

follicles present on the ovaries of each mare (P<0.05) (Figure 3.2). There was no 

significant effect o f eST administration on the number of follicles >10 mm (Categories 

II-IV) per mare throughout the experimental period (data not shown).

As expected, plasma IGF-I concentrations were elevated (P<0.05) in mares 

treated with eST over those o f  control mares by the third day o f treatment (Figure 3.3). 

However, circulating plasma concentrations o f LH and FSH in these mares were not 

affected by treatment with exogenous eST at any time throughout the experimental 

period.

DISCUSSION

In the present study, treatment with exogenous eST caused an increase in the 

number o f follicles per mare in seasonally anovulatory mares by the seventh day of 

treatment (Figure 3.1). This was due mostly to an increase in the number o f small (<10 

mm) follicles (Figure 3.2), as there was no significant difference in the number of 

follicles >10 mm in diameter per mare for these mares throughout the experimental 

period. This is in agreement with a previous report from this laboratory, which 

demonstrated that treatment with eST increased the number of small follicles per mare 

in cyclic mares during the breeding season (Cochran et al., 1999). In addition, similar
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Figure 3.1. Total number o f follicles per mare for seasonally anovulatory mares treated 
with eST. (*) Denotes significant differences within days.
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findings have been previously reported for pigs (Echtemkamp et al., 1994a) and cattle 

(Gong et al., 1991).

In addition, plasma IGF-I was elevated in mares treated with eST over that o f 

contemporary control mares by the third day of treatment (Figure 3.3). This is in 

agreement with previous reports in the horse (Cochran et al., 1999) and in women 

(Owen et al., 1991), where plasma IGF-I concentrations were not significantly elevated 

until 2 to 4 days o f exogenous ST administration. This finding has been extensively 

demonstrated in various species, and is consistently found whenever exogenous ST is 

administered. Furthermore, there was no difference in circulating LH and FSH 

concentrations for seasonally anovulatory mares treated with exogenous eST. Gong et 

al. (1991) reported similar findings in a study with Holstein heifers treated with 

recombinant bovine ST (rbST), where they found no effect of treatment with rbST on 

plasma LH or FSH concentrations.

It is proposed that ST/IGF-I causes its effects on ovarian stimulation, at least in 

part, through its ability to work synergistically with available gonadotropins (European 

and Australian Multicenter Study, 1995). This has been shown in vitro, where 

administration o f ST to porcine and bovine granulosa cells enhanced the action of FSH 

on these cells (Spicer et al., 1993). This could be one explanation for the increase in 

small follicles in the present study, as it is currently believed that follicles in the 5 to 10 

mm range are not responsive to LH, and would therefore be totally dependent on 

circulating FSH, or independent o f gonadotropin control (Ginther, 1992). If  these small 

follicles are at least partially responsive to FSH stimulation, then the ability o f IGF-I to 

enhance the ovarian cells to available FSH could cause more follicles o f this size
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category to be present on the ovaries of mares treated with eST, as FSH, unlike LH, is 

detectable in jugular blood of seasonally anovulatory mares, although at highly reduced 

levels when compared with cyclic mares during the breeding season (Thompson et al., 

1986a).

Another possible explanation for the ability of ST, via elevated IGF-I, to 

increase the number of small follicles in treated animals could be through a pro­

longation o f the time in which follicular atresia occurs. This hypothesis is supported by 

a study by Chun et al. (1996), where it was determined that in the granulosa cells o f 

rats, FSH treatment decreased the rate o f apoptosis by 60%, while IGF-I treatment 

decreased the rate of apoptosis by 45%. Therefore, one explanation for the findings 

reported in the present study could be that elevated plasma IGF-I levels, which may in 

turn cause elevated IGF-I concentrations in the follicular fluid, could act on the 

granulosa cells and reduce the rate of apoptosis, thereby, increasing the time of 

follicular regression and allowing the follicles to remain present on the ovaries for a 

longer period o f  time. This possible mechanism o f action of IGF-I could, in effect, be 

implied to “rescue” early atretic follicles much the same way as FSH is currently used 

in cattle (Britt, 1988). Further studies are needed to clarify this hypothesis.

In summary, we have demonstrated that treatment of seasonally anovulatory 

mares with eST can increase the number o f  follicles present on their ovaries, with the 

greatest response being seen in the number o f  small follicles. In addition, plasma IGF-I 

was elevated in those mares treated with eST over that of contemporary control mares. 

Since there was no difference in circulating LH or FSH concentrations, the observed 

response in follicle numbers could be through the ability of IGF-I to enhance the
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responsiveness of follicular cells to available gonadotropins, or through its apparent 

ability to prolong follicular atresia by decreasing the rate o f cell death in the granulosa 

cells. However, further studies are needed in order to determine that exact mech- 

anism(s) o f  action o f ST and IGF-I on follicular development in the mare.
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CHAPTER IV

THE EFFECTS OF ADMINISTRATION OF eST IN CONJUNCTION WITH A
POTENT GnRH AGONIST ON REPRODUCTIVE FUNCTION IN 

SEASONALLY ANOVULATORY MARES

INTRODUCTION

It is well established that the reproductive cycle of the mare is seasonal in 

nature, with peak breeding activity coinciding with extended daylength. During times 

of decreasing daylength (winter), mares typically undergo a period of ovarian inactivity 

termed “seasonal anestrous” (Ginther, 1992). During this time, GnRH secretion from 

the hypothalamus is severely depressed, resulting in drastically reduced circulating 

levels o f LH (Hart et al., 1984). It has been demonstrated that increasing the 

photoperiod can increase GnRH ouput by the hypothalamus, thereby increasing plasma 

gonadotropin levels, resulting in cyclic recrudescence (Nequin et al., 1989). From a 

practical standpoint, it would be beneficial to be able to find an efficient means of 

inducing reproductive cyclicity during the anovulatory season due to the fact that most 

major breed registries impose a mandatory birthdate o f January 1 (in the USA) for all 

foals bom the previous calendar year, regardless of when the foals were actually bom. 

Given that the domestic mare has an ~11 month gestation length, mares would need to 

be mated in February in order for the foals bom to fit in with their birthdate more 

closely. Unfortunately, this is a time that coincides with the anovulatory season, 

therefore, very few mares in this hemisphere would normally be in a cyclic state at this 

time.

It has been well demonstrated that increasing photoperiod will enable mares to 

begin the breeding season earlier in the year, however, this method can be costly and
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labor intensive when dealing with large numbers o f mares (for review see Ginther, 

1992). Also, the administration o f GnRH, along with some of its more potent agonists, 

has shown promise in inducing seasonally anovulatory mares to ovulate (Hyland et al., 

1987; Johnson, 1987; Ginther and Bergfelt, 1990; Fitzgerald et al., 1993; Mumford et 

al., 1994). However, this method has shown extreme variation in response, and 

therefore cannot be recommended for commercial purposes at this time (Mumford et 

al., 1994). Also, most reports of successful induction o f ovulation in seasonally 

anovulatory mares using any of the GnRH agonists (GnRHa) have come from either (1) 

continuous infusion, (2) multiple daily injections or (3) sustained-release formulations, 

which can also be costly and labor intensive from a practical standpoint (Hyland et al., 

1987; Johnson, 1987; Ginther and Bergfelt, 1990; Fitzgerald et al., 1993; Mumford et 

al., 1994).

Recently, the role of somatotropin (ST) and insulin-like growth factor-I (IGF-I) 

on reproduction has come under intense investigation in various species. It has been 

demonstrated that administration o f ST can increase the number o f follicles in mares 

(Cochran et al., 1999), cattle (Gong et al., 1996), pigs (Spicer et al., 1992) and women 

(Owen et al., 1991b). It has been proposed that this increase in follicle number is 

attributable, at least in part, to the ability of ST/IGF-I to enhance the granulosa cells 

within the ovarian follicle to the stimulatory effects o f available gonadotropins, thus, 

enhancing follicular growth and maturation (Homburg et al., 1988; Gong et al., 1991; 

European and Australian Multicneter Study, 1995). This could be beneficial in 

inducing seasonally anovulatory mares to ovulate by enabling the follicles present to 

better respond to available gonadotropins secreted in response to GnRHa, thereby,
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reducing the amount and number o f injections of GnRHa, as well as reducing the 

variation in the treatment response.

Therefore, the purpose of these experiments was (1) to determine if  admin­

istration of eST could enhance follicular growth, development and ovulation in 

seasonally anovulatory mares treated with once daily injections o f  a GnRHa and (2) to 

determine if ovulations obtained in this manner were fertile and could result in a viable 

pregnancy.

MATERIALS AND METHODS 

Experiment 4.1

Experimental Design

Twenty seasonally anovulatory lighthorse mares of mixed breeds were randomly 

allocated into one o f two treatment groups. Mares in Treatment A (n=10) were admin­

istered 25 pg eST (EquiGen™, BresaGen Ltd., Thebarton, South Australia) per kg body 

weight once daily, beginning on day 1 (first day o f treatment) and continuing until day 

35 or until ovulation was achieved. Mares in Treatment B (n=10) were similarly 

administered a sodium borate solution (vehicle) beginning on day 1 and continuing until 

day 35 or until ovulation was achieved. All mares (Treatments A and B) were 

administered 40 ng per kg body weight o f a GnRHa (des-Glyl0,[D-His(Bzl)6]- 

Luteinizing Hormone Releasing Hormone Ethylamide, Sigma No. L-2761) once daily 

beginning on day 10 and continuing until day 35 or until ovulation was achieved. Also, 

all mares were administered a single dose o f human chorionic gonadotropin (hCG) once 

a follicle >35 mm in diameter was detected to facilitate ovulation. Daily blood samples 

were collected for each mare throughout the experimental period via jugular veni-
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puncture. In addition, ovarian follicular development was assessed at 72-hour intervals 

via transrectal ultrasonography throughout the experimental period.

Follicle Assessment and Hormone Analyses

Blood samples were collected via jugular venipuncture and immediately placed 

on ice using sterile glass collection tubes (Vacutainers®, Sherwood Medical, St. Louis, 

MO). They were then centrifuged at 300 x g for 15 minutes and the plasma stored in 7- 

ml plastic tubes (Curtin Matheson, Houston, TX) and frozen within 30 minutes of 

collection. A previously validated radioimmunoassay (RIA) (Sticker et al., 1995) was 

performed on the plasma samples collected every other day, beginning on day 1 o f 

treatment and ending on day 35 or until ovulation was achieved to determine circulating 

IGF-I concentrations for each mare within treatment group. In addition, plasma con­

centrations o f FSH and LH (Thompson et a l, 1983) were analyzed from all mares.

The ovaries o f each individual mare were examined at 72-hour intervals via 

transrectal ultrasonography using an Aloka 500-V ultrasound with a 5 MHz rectal probe 

(Corometrics, Wallingford, CT). Each ovary was scanned beginning from dorsal to 

ventral and then from lateral to medial sides, and the size of each follicle was recorded. 

Follicles were assigned to developmental categories based upon their diameter at the 

time of assessment (Category I = <10 mm, Category II = 10 to 20 mm, Category III = 

21 to 30 mm, Category IV = >30 mm). Once a follicle reached 30 mm, ultrasound 

examinations were performed for that mare at 24-hour intervals until the follicle 

reached 35 mm in diameter. At that time, 3,500 units hCG was administered (i.v.) to 

induce ovulation. All mares that responded with visible ovulation/luteinization (via
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ultrasound) were additionally monitored for 10 days following ovulation to assess luteal 

formation and to verify circulating progesterone levels.

Experiment 4.2 

Experimental Design

Experiment 4.2 was conducted to determine if  the ovulations induced by the 

protocol implimented in Experiment I were fertile and capable o f producing a viable 

pregnancy. A total of 14 seasonally anovulatory mares were randomly allocated into 

one o f  two treatment groups. Treatment A consisted o f mares (n=9) administered 25 

pg/kg eST once daily beginning on day 1 and continuing until day 28 or until ovulation 

was achieved. Mares in Treatment B (n=5) were similarly administered the vehicle. 

All mares were administered the same GnRHa as those in Experiment 4.1, at a 

concentration of 50 ng/kg once daily beginning on day 10 and continuing until day 28 

or until ovulation was achieved. Follicular development and circulating plasma 

hormone concentrations were assessed at 72-hour intervals as previously described with 

the following exception: (1) follicles were not assigned to developmental categories 

since follicles of large size (>30 mm), ovulation and pregnancy status were the only 

endpoints o f importance in this experiment. Once a follicle reached 30 mm in diameter, 

follicular growth was assessed at 24-hour intervals until the follicle reached 33 mm in 

diameter. At that time hCG (5,000 units) was administered (i.v.) and the mare was 

inseminated with at least 500 million motile spermatozoa. All mares were inseminated 

with semen collected from a single stallion of proven fertility, which was the same for 

all mares. Oral altrenogest (Regu-Mate®, Hoechst Roussel Vet, Warren NJ) was 

administered once daily at a concentration of 0.044 mg/kg to all mares that ovulated to
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ensure that luteal insufficiency would not inhibit the pregnancy status. All mares that 

were confirmed pregnant were maintained on oral altrenogest until day 50 o f  

pregnancy. Pregnancy diagnosis was performed via transrectal ultrasonography at 14 

and 20 days post-ovulation in all mares that ovulated.

Experiments 4.1 and 4.2

Experimental Conditions

These experiments were conducted during the calendar months o f December, 

1997 — January, 1998 (Experiment 4.1) and January, 1999 (Experiment 4.2) in south 

Louisiana. The average daylength (sunrise to sunset) for both experiments ranged from 

9.5 to 10.6 hours. Also, the daily low temperature ranged from -3°C to 17°C for 

Experiment 4.1 and from -7°C to 19°C for Experiment 4.2. In addition the daily high 

temperature ranged from 10°C to 23°C for Experiment 4.1 and from 4°C to 27°C for 

Experiment 4.2. All mares came from the same experimental herd and were penned 

within the same pasture throughout the experimental period for both experiments. All 

mares were maintained on ryegrass pastures and Bahia grass hay, free-choice, and 

supplemented with 2.2 kg o f a commercial %% protein feed per mare per day throughout 

the experimental periods. The body condition scores for the mares used in these 

experiments ranged from 4 to 7 on a scale of 1 to 9, and were not different between 

treatment groups. All mares used in Experiments 4.1 and 4.2 were determined to be 

seasonally anovulatory by monitoring plasma progesterone concentrations as well as 

ovarian follicular activity for at least 4 weeks prior to the initiation o f treatment. All 

mares had plasma progesterone levels of <0.5 ng/ml in addition to having no follicles 

>15 mm in diameter for the 4-week period prior to the initiation o f treatment.
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Statistical Analyses.

In Experiment 4.1, the number o f follicles per mare, as well as the number of 

follicles within size category per mare were analyzed using an analysis o f variance 

procedure (ANOVA). Numbers of mares ovulating per treatment group were analyzed 

using a similar ANOVA procedure for both experiments. Circulating concentrations of 

LH, FSH and IGF-I were analyzed across treatment groups using a split-plot ANOVA 

procedure (Cochran et al., 1999).

RESULTS 

Experiment 4.1

Follicular Development and Plasma Hormone Profiles 

Results from Experiment 4.1 are presented in Figures 4.1 to 4.3 and Table 4.1. 

There was a significant increase (P <0.05) in the total number of ovarian follicles per 

mare for mares treated with eST plus GnRHa when compared with GnRHa treatment 

alone (Figure 4.1). This increase was due mostly to a significant increase (P <0.05) in 

the number o f Category I (<10 mm) follicles per mare within treatment group (Figure

4.2). More importantly, the number of mares that responded to once daily eST plus 

GnRHa by growing Category IV (>30 mm) follicles was greater when compared with 

GnRHa treatment alone (7/10 vs. 1/10, respectively, P <0.05) (Table 4.1). In addition, 

50% of eST treated mares ovulated, which was significantly greater than the 10% 

ovulating in the control group (P <0.05). Also, two additional mares luteinized without 

apparent ovulation in the eST treated group, which resulted in an overall 70% o f mares 

in this group giving rise to functional luteal tissue formation. This was a significant 

increase over the 10% o f mares responding in the control group (P <0.05).
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Plasma IGF-I concentrations were significantly elevated (P <0.05) by day 3 o f 

treatment in the eST treated group when compared with control mares (Figure 4.3). 

However, there was no increase in either circulating LH or FSH concentrations between 

the two treatment groups throughout the experimental period. Plasma progesterone 

concentrations were monitored in all mares that ovulated/luteinized across treatment 

groups for 10 days following ovulation/luteinization to determine functional status of 

the forming luteal tissue. All luteal tissue formed in all mares across treatment groups 

were determined to be functional at least through the first 10 days post-ovulation. 

However, reproductive cyclic activity was not continued in any mare once treatment 

was stopped. In addition, there was no apparent effect of treatment on cyclic 

recrudescence later in the year (spring) for mares in either group compared with 

untreated mares from the same experimental herd.

Experiment 4.2 

Follicle Development, Pregnancy Status and Plasma Hormone Profiles

In Experiment 4.2, the total number o f follicles and the number o f follicles 

within follicle size categories were not recorded, since the only endpoints o f practical 

importance were (1) development of large (>30 mm) follicles, (2) the number o f  mares 

ovulating within treatment group and (3) the number o f mares with a positive pregnancy 

diagnosis. There was a significant treatment effect o f eST in conjunction with GnRHa 

on the number o f mares with large follicle development (7/9 vs. 1/5, respectively, P 

<0.05) (Table 4.2). Also, there was a tendency for more eST treated mares to ovulate 

(P=0.1) when compared with control mares (6/9 vs. 1/5, respectively). In addition, 

while there was no statistical difference (P=0.2) in the number of mares confirmed
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pregnant between treated and control mares (5/9 vs. 1/5, respectively), the addition of 

eST in conjunction with GnRHa did not adversely effect fertility, as demonstrated by 

the fact that 5 o f  the 6 mares that ovulated in the eST treated group were confirmed 

pregnant by 14 days post-ovulation.

As in Experiment 4.1, plasma IGF-I concentrations were elevated in eST treated 

mares when compared with control mares (P <0.05, Figure 4.4). Again, no difference 

was detected in plasma FSH or LH levels between treatment groups throughout the 

experimental period. As before, all mares which ovulated had elevated plasma pro­

gesterone concentrations for at least 10 days post-ovulation, verifying the functionality 

of the forming luteal tissue in these mares. Also, there was no noticeable effect of 

treatment with eST plus GnRHa or GnRHa alone on resumption o f seasonal 

reproductive cyclicity when compared with untreated mares from the same 

experimental herd.

DISCUSSION

It is well known that, during the winter, most mares exhibit an anovulatory 

period. The direct cause for this can be attributed to the fact that hypothalamic GnRH 

content is severely reduced causing LH output by the pituitary to be almost nonexistent 

(Hart et al., 1984). It is suspected that melatonin output from the pineal gland in 

response to increasing periods o f  darkness plays some function in reducing GnRH 

secretion, however, the exact mechanism of this action has yet to be determined, as 

there are no melatonin receptors found in the hypothalamus o f the domestic mare 

(McKinnon and Voss, 1993). It has long been known that increasing the period of
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Table 4.1. Number of mares per treatment group that exhibited growth o f large follicles
(>30 mm), ovulation and luteal tissue formation (Experiment 4.1)

Treatment >30 mm follicle Ovulation Luteal function

eST plus GnRHa 7/10a 5/10a 7/10a
Control plus GnRHa l/10b l/10b l/10b

a’bMeans within columns with different superscripts are different (P < 0.05).
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Table 4.2. Number of mares per treatment group that exhibited growth o f large follicles
(>30 mm), ovulation and pregnancy status (Experiment 4.2)

Treatment >30 mm follicle Ovulation Pregnant

eST plus GnRHa 7/9a 6/9 5/9
Control plus GnRHa l/5b 1/5 1/5

a'bMeans within columns with different superscripts are different (P < 0.05).
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Figure 4.1. Total number o f follicles (±SEM) per mare for anovulatory mares treated 
once daily with eST plus GnRHa. Day 10=start o f GnRHa treatment 
(Experiment 4.1). (*) Denotes significant differences within days.
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Figure 4.2. Number o f Category I (<10 mm) follicles (±SEM) per mare for anovulatory 
mares treated once daily with eST plus GnRHa. Day 10=start o f GnRHa 
treatment (Experiment 4.1). (*) Denotes significant differences within days.
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Figure 4.3. Plasma IGF-I concentrations (±SEM) for anovulatory mares treated once 
daily with eST plus GnRHa. Day 10=start o f GnRHa treatment 
(Experiment 4.1). (*) Denotes significant differences within days.
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Figure 4.4. Plasma IGF-I concentrations (±SEM) for anovulatory mares treated once 
daily with eST plus GnRHa. Day 10=start o f GnRHa treatment 
(Experiment 4.2). (*) Denotes significant differences within days.
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daylight can enable mares to resume normal reproductive cyclicity (Kooistra and 

Ginther, 1975). At present, the most repeatable method o f hastening the onset o f the 

breeding season is to increase the daylength that the mares are subjected to by exposing 

them to artificial daylight (Kooistra and Ginther, 1975, Sharp et al., 1975, Cleaver et 

al., 1991). Typically, mares are exposed to 16 hours per day o f “daylight” by placing 

them in a lighted stall for a period of -  60 days (Sharp et al., 1975).

There are, however, two major setbacks associated with this type o f  protocol, 

which include: (1) the initial cost of setting up and (2) the length of time required for 

the desired results to be realized. Essentially, when mares are placed under artificial 

daylight, a 60 day period is required because the mares must go through the process of 

vernal transition, which is a period when the reproductive system o f the mare is 

preparing itself for the onset o f the breeding season (Sharp et al., 1975). Exposing 

mares to increased periods o f light per day results in increased output of GnRH from the 

hypothalamus, thus increasing LH production and secretion by the pituitary (Cleaver et 

al., 1991). It is interesting to note that although circulating levels of LH are elevated, 

no change was detected in FSH secretion (Cleaver et al., 1991). This increase in LH 

results in increased ovarian activity and resumption of reproductive cyclicity (Sharp et 

al., 1975; Oxender et al., 1977; Freedman et al., 1979).

It has been shown repeatedly that administration of GnRH and/or one o f its 

analogs can induce ovulation in seasonally anovulatory mares (Johnson, 1986; Hyland 

et al., 1987; Johnson, 1987; Becker and Johnson, 1992; Swinker et al., 1993). For 

example, Johnson (1987) demonstrated that hourly pulses of GnRH cause elevated LH 

levels by 11 days and ovulation within 15 days. In addition, continuous infusion of
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GnRH can also induce ovulation in seasonally anovulatory mares as much as 50% of 

the time, within 15 to 30 days (Hyland et al., 1987). It has been determined that a 

pulsatile mode o f GnRH administration is preferrable to continuous infusion, as 

ovulation is induced in a faster, more repeatable manner (Becker and Johnson, 1992). 

However, both o f  these methods of treatment are cumbersome and labor intensive, and 

are not a feasible method o f inducing ovulation in a commercial sense. Therefore, other 

studies have been undertaken in an effort to find a more suitable method o f GnRH 

administration (Ginther and Bergfelt, 1990; Harrison et al., 1990; Fitzgerald et al., 

1993).

Harrison et al. (1990) have shown that induction of ovulation in seasonally 

anovulatory mares can be achieved via multiple daily injections o f GnRHa (2x daily). 

This method o f  treatment was sufficient to increase pituitary LH output and induce 

ovulation in 57% of treated mares (Ginther and Bergfelt, 1990). Also, constant 

administration o f GnRHa via a subcutaneous depot has been shown to be effective in 

inducing ovulation in these mares as well (Harrison et al., 1990; Fitzgerald et al., 1993). 

However, the substantial variation in response makes these methods currently unreliable 

for commercial purposes (Mumford et al., 1994). It has proposed that the primary 

reason for the variation observed in the ovulatory response to these various methods of 

GnRH administration is the depth of anestrous exhibited by the experimental mares 

under treatment, with less results realized from mares in “deep” anestrus (Hyland et al., 

1987; Mumford et al., 1994). “Deep” anestrus can be classified as the mare(s) in 

question having (1) no follicles >15 mm in diameter and (2) plasma progesterone 

concentration o f <1 ng/ml for at least four consecutive weeks. As most mares do have
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some follicular activity during the anovulatory period, it is crucial to quantify the depth 

o f anestrous in order to determine the potential for success in these mares. Other 

factors, including nutrition and body condition, have also been implicated in the 

frequency and depth o f seasonal anestrus exhibited in the domestic mare (Swinker et 

al., 1993; Fitzgerald, 1996; Fitzgerald and Davison, 1997).

It has been demonstrated that the addition of ST can enhance the ovarian 

response to gonadotropin administration in cattle (Rieger et al., 1991) and clinically 

infertile women (Owen et al., 1991b). In addition, administration o f ST increases the 

number o f follicles on the ovaries of mares (Cochran et al., 1999), pigs (Spicer et al.,

1992), cows (Gong et al., 1991) and women (Owen et al., 1991a,b). It has been 

proposed that these effects are caused, at least in part, by the ability of ST to stimulate 

both local (intrafollicular) as well as systemic IGF-I production (De La Sota et al., 

1993; Bergh et al., 1994). Owen et al. (1991a) reported that IGF-I caused an increase in 

the follicular response to FSH stimulation o f the granulosa cells. Also, addition o f  IGF- 

I to the culture medium of bovine granulosa cells causes an increase in the steroidogenic 

index o f these cells (Schams et al., 1987). Unpublished studies from our laboratory 

have demonstrated a similar effect in cultured equine granulosa cells, where addition of 

IGF-I caused a significant increase in progesterone production. It is therefore likely that 

the administration of ST, either directly or indirectly through increased IGF-I, enhances 

the ability o f the follicle to respond to available gonadotropins via stimulation o f  the 

granulosa cells, possibly through increasing the number o f FSH and LH receptors 

(Homburg et al., 1988; European and Australian Multicenter Study, 1995).
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With this hypothesis in mind, Experiment 4.1 was conducted to determine if the 

beneficial effect reported for ST administration could be demonstrated in the 

anovulatory mare. Since one of the major problems associated with GnRH induction of 

ovulation in these mares is the extreme variability in response, it was hypothesized that 

eST administration may augment the stimulatory effects of the gonadotropins secreted 

in response to administration of GnRHa on follicular growth and development and 

thereby decrease the variability seen in the response. There was a definite beneficial 

effect of treatment o f eST in conjunction with once daily GnRHa administration, as 

witnessed by the increase in large follicle growth (7/10 vs. 1/10, P <0.05), ovulation 

(5/10 vs. 1/10, P <0.05) and luteal formation (7/10 vs. 1/10, P <0.05) in eST-treated 

mares when compared with control mares, respectively (Table 4.1). Also, as previously 

reported in the horse (Cochran et al., 1999), the cow (Gong et al., 1991) and the pig 

(Samaras et al., 1994), plasma IGF-I levels were elevated in mares treated with eST 

plus GnRHa (Figures 4.3 and 4.4). We hypothesize that this increase in systemic IGF-I 

concentrations is responsible, at least in part, for the follicular stimulatory effects 

caused by eST treatment to seasonally anovulatory mares.

The effects of ST administration on circulating gonadotropin concentrations 

have been previously reported (Gong et al., 1991; Gong et al., 1996). It has been 

demonstrated that Hereford x Friesian heifers treated with recombinant bovine 

somatotropin (rbST) had no increase in circulating LH or FSH concentrations (Gong et 

al., 1991; Gong et al., 1996). This is in agreement with the present study for the 

anovulatory mare, as no differences were detected in either plasma LH or FSH levels 

between treated and control mares. This further reinforces our hypothesis that ST/IGF-I
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causes its effects by acting synergistically with available gonadotropins to induce 

follicular growth and development.

Based on the results observed in Experiment 4.1, Experiment 4.2 was conducted 

to determine if the ovulations caused by eST plus GnRHa treatment were indeed fertile 

and capable of producing a viable pregnancy. Although there was no statistical 

difference in the number o f mares conceiving per treatment group (5/9 vs. 1/5) (Table

4.2), it is clear that eST administration had no detrimental effect on oocyte quality, as 5 

of the 6 mares which ovulated in the treament group were confirmed pregnant by 14 

days post-ovulation. This is in agreement with previous reports in the human, where 

women administered ST along with human menopausal gonadotropin (hMG) had no 

detrimental effect on the fertilizability of oocytes collected for in vitro fertilization 

procedures, but actually had an increase in the number of fertilized oocytes per female 

(Owen et al., 1991a; Bergh et al., 1994).

In the present study, we have demonstrated that the addition o f eST to a protocol 

including once daily injections of a potent GnRHa can enhance follicular development 

and the ovulatory response in seasonally anovulatory mares. The increase in the 

ovulatory response seen in eST treated mares has potential commercial applications, 

since this protocol (1) decreases the variation typically seen when administering GnRH 

to anovulatory mares as well as (2) allow for a more manageable protocol o f once daily 

injections to be employed. It is important to note that all mares utilized in the present 

study were determined to be in “deep” anestrus based on the mares having plasma 

progesterone concentrations o f <0.5 ng/ml as well as only follicles <15 mm in diameter 

present on their ovaries for a minimum of four consecutive weeks prior to the initiation
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o f treatment. Given the initial expense and labor involved in artificial lighting 

regimens, as well as the variability and labor involved with traditional GnRH therapy, a 

protocol including once daily injections of eST plus GnRH could be beneficial to 

commercial horse breeders.
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CHAPTER V

PRODUCTION OF LIVE FOALS FROM SPERM-INJECTED OOCYTES 
HARVESTED FROM PREGNANT MARES 

INTRODUCTION

In vitro fertilization (IVF) has become a frequently used treatment for infertility 

in human couples (Cha et al., 1991; Trounson et al., 1994a; Palermo et al., 1996). Also, 

IVF is now a commercially feasible method to recapture the reproductive potential of 

valuable clinically infertile cows (Stroud and Myers, 1992; Looney et al., 1994). The 

consistent production of IVF embryos in the horse has not yet become reality, even 

though adequate success rates have been reported for in vitro oocyte maturation (Del 

Campo et al., 1990; Zhang et al., 1990; Hinrichs et al., 1993a,b) and sperm cell 

capacitation (Vamer et al., 1987; Samper et al., 1989). To date, only one foal has been 

reported as a result o f conventional IVF (Palmer et al., 1991) and there has been one 

foal produced after intracytoplasmic sperm injection (ICSI) of abattoir oocytes (E.L. 

Squires, J.M. Wilson, H. Kato, A. Blaszczyk, unpublished data).

The reason(s) for poor IVF and subsequent development rates o f equine oocytes 

remains unclear. Equine oocytes appear to have a thick zona pellucida compared with 

those of other species, and the time necessary for in vitro maturation (IVM) is longer 

than for domestic ruminant species (Hinrichs et al., 1993a,b). Therefore, it was 

suspected that the zona pellucida of the IVM oocyte is, in part, a barrier to in vitro- 

prepared sperm cells (Li et al., 1995). The potentially altered zona pellucida o f IVM 

oocytes (Chan, 1987; Cohen et al., 1990; Trounson et al., 1994b), in addition to less 

than adequate sperm cell preparation for IVF, likely contributes to poorer than expected 

IVF rates in the mare.
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Live offspring have been produced in laboratory animals (Gordon and Talansky, 

1986) and humans (Cohen et al., 1991, 1992) by using a simple, prefertilization zona- 

drilling procedure to aid sperm cells in crossing the zona pellucida. Recently, acceptable 

fertilization and later stage embryo development rates were obtained consistently from 

oocytes o f pregnant mares by applying a similar prefertilization zona drilling procedure 

(Li et al., 1995; Meintjes et al., 1995). Pregnant mares were utilized as oocyte donors in 

these studies because multiple, good quality germinal vesicle-stage oocytes could be 

harvested repeatedly from a single mare, which is often not the case when using cyclic 

mares as oocyte donors. However, the size of the opening drilled into the zona 

pellucida, the concentration o f sperm cells used for in vitro insemination and the time 

period of zona-drilled oocyte exposure to sperm cells may influence normospermic 

fertilization rates (Choi et al., 1994).

Single intracytoplasmic or multiple subzonal microinsemination o f sperm cells 

may circumvent the variables associated with prefertilization zona drilling and 

minimize the possibility o f  polyspermic fertilizations. In humans, ICSI has become the 

method o f choice for treating male factor infertility (Ng et al., 1993; Palermo et al., 

1996) and, because o f its high efficiency and circumvention of polyspermic 

fertilization, is preferred over the subzonal sperm injection (SUZI) procedure (Palermo 

et al., 1993; Van Steirteghem et al., 1993; Abdalla et al., 1995). However, in domestic 

cats, SUZI first seemed to be more effective than ICSI, with one kitten being bom as a 

result of SUZI (Pope et al., 1995). It was later determined by the same researchers that 

ICSI was more efficient than SUZI in domestic cats (C.E. Pope, personal 

communication) with one report o f live kittens delivered from ICSI (Pope et al., 1997).
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Little is known about the optimum developmental requirements for early-stage 

equine embryos. It has been shown in several species that exposure to relatively high 

levels o f glucose in the culture medium can be inhibitory to embryonic development 

during the first 48 hours of culture, and that culture in a medium containing little or no 

glucose can enhance early embryonic development and viability (Chatot et al., 1989; 

Ellington et al., 1990; FitzGerald and DiMattina, 1992).

The objectives o f this study were (1) to circumvent the possibility o f inadequate 

in vitro sperm cell capacitation, in vitro zona pellucida hardening and polyspermic 

fertilizations by performing ICSI or SUZI procedures on IVM equine oocytes, (2) to 

evaluate the effects o f a glucose-free, phosphate-free medium on the development and 

viability o f  early stage equine embryos and (3) to test the viability o f these in vitro- 

derived embryos by nonsurgical embryo transfer at the morula stage or by surgical 

transfer procedures at earlier developmental stages.

MATERIALS AND METHODS 

Experiment 5.1

Experimental Design

Mature oocytes, as evidenced by the presence of a first polar body in the 

perivitelline space under an inverted microscope, were randomly allocated to five 

microfertilization treatments. In Treatment A, a single immobilized sperm cell was 

injected directly into the ooplasm. In Treatment B, two to three motile sperm cells were 

injected under the zona pellucida in the perivitelline space. Treatments C and D 

consisted o f  sham injection procedures, where a similar volume of 10% (w/v) polyvinyl 

pyrrolidone (PVP) in Earle’s balanced salt solution (Medi-Cult, Copenhagen, Denmark)
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was injected (without containing sperm cells) either directly into the ooplasm 

(Treatment C) or into the perivitelline space (Treatment D). Treatment E was a 

polyspermy control group where immobilized sperm cells (n=3 to 5) were injected 

directly into the ooplasm.

Oocyte Collection

During the months of April to August in the southern United States, immature 

oocytes were collected from early pregnant crossbred mares in good body condition 

(days 21 to 40 o f gestation), using a repeatable noninvasive transvaginal ultrasound- 

guided follicular aspiration procedure as previously reported by this laboratory 

(Meintjes et al., 1994, 1995). All follicles with a diameter >5 mm were punctured with 

a 12-gauge single lumen needle and then rinsed up to 10 times with oocyte flushing 

medium (by alternate filling and emptying). The oocyte flushing medium consisted of 

phosphate-buffered saline (Gibco, Grand Island, NY) supplemented with 1% heat- 

treated calf serum (Gibco), 2 USP units of heparin (Steris Laboratories, Phoenix, AZ), 

100 pg o f streptomycin (Gibco) and 100 units of penicillin-G (Gibco) per ml of 

medium. Follicular activity on the ovaries o f these mares was monitored by transrectal 

ultrasound twice per week, and the follicles aspirated when three or more follicles >15 

mm in diameter were detected. Several mares were aspirated on more than one 

occasion.

In Vitro Maturation and Oocyte Preparation

After oocyte isolation and evaluation under light microscopy (200x), all oocytes 

with an intact oolemma were washed in IVM medium. IVM medium consisted o f tissue 

culture medium 199 (TCM-199, Gibco) with 10% estrual mare serum collected at this
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laboratory. In vitro maturation was conducted in 100 fj.1 microdroplets of IVM medium 

covered with mineral oil in a 35-mm petri dish for 36 hours at 38°C in an atmosphere of 

5% CO2 in air. After IVM, the oocytes were stripped from the majority of their cumulus 

cells by vigorous pipetting for ~5 minutes in a 0.025% (v/v) trypsin (Sigma, St. Louis, 

MO) solution to facilitate the sperm injection procedure. Mature oocytes with an 

extruded first polar body were identified under light microscopy (200X) and then placed 

separately in 5 pi sperm-injection microdroplets consisting of HEPES-buffered 

modified Earle’s balanced salt solution (Medi-Cult, Copenhagen, Denmark) under oil in 

a 35-mm petri dish.

Semen Preparation

One ml (40 to 60 x 106 sperm cells) o f cooled, extended semen from a single 

mature Arab stallion of proven fertility was washed twice in Ham’s F-10 medium 

(Gibco) at 500 x g to remove the seminal plasma and semen extender. Resuspended 

sperm cells (2 ml) were treated with a 1 pM concentration of calcium ionophore 

A23187 (Sigma) for 5 minutes and then quenched with an equal volume o f Ham’s F-10 

medium with 3% bovine serum albumin (Sigma). A 2 pi volume o f this final sperm-cell 

suspension was placed in the same 35-mm petri dish as the prepared oocytes, but in a 

centrally situated 4 pi microdroplet of 10% PVP.

Microinsemination

A total of 94 mature oocytes were alloted to the five microinsemination 

treatments of this experiment. Microinsemination was performed on a heated stage 

under 400X magnification, using an inverted Nikon microscope (Tokyo, Japan) and two 

Leitz micromanipulator units. Each of the 5 pi microdroplets (n=8), that were arranged
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in a circle around the sperm-PVP droplet in a prewarmed petri dish, contained a single 

mature oocyte. The holding pipette (100 pm outside diameter) was situated on the left 

and the sperm injection pipette (3-5 pm diameter) on the right. The tip of both 

microinstruments had a 30° angle to facilitate oocyte manipulation and sperm visibility 

during the injection procedure. The sperm-injection needle was prefilled with 10% 

PVP.

Sperm cells with good progressive motility, displaying simultaneous lateral head 

movement, were selected from the sperm-PVP droplet and immobilized prior to the two 

ICSI treatments (Treatments A and E). Sperm immobilization was conducted with the 

tip o f the injection needle by performing a simultaneous down and lateral cut movement 

initially over the proximal third o f the sperm tail. This crushing of the sperm tail was 

repeated several times further distal from the head. Interestingly, in this experiment 

using equine sperm, the sperm tail did not exhibit the characteristic kinked pattern as 

previously described for human spermatozoa (Dozortsev et al.. 1995; Van den Bergh et 

a l,  1995).

The sperm was loaded tail first into the injection pipette by applying gentle 

suction through the injection pipette. The injection pipette with the sperm cell was now 

moved to an oocyte droplet without raising it from the mineral oil. Using the holding 

and injection pipette, the oocyte was secured with the polar body or area of polar 

granularity at the 6 or 12 o’clock position (Palermo et al., 1996). The sperm head was 

now positioned very close to the tip of the injection needle just before penetrating the 

zona pellucida. After piercing the zona, but before pushing into the ooplasm, any excess 

PVP in front o f  the sperm head was expelled into the perivitelline space. Once the
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injection needle was pushed into the ooplasm, gentle suction was applied until the 

ooplasmic membrane ruptured, enabling a small amount o f ooplasm to be aspirated 

freely into the needle (Vanderzwalmen et al., 1996). The sperm cell and the micro- 

volume o f aspirated ooplasm was then expelled into the ooplasm and the injection 

pipette was swiftly withdrawn.

The SUZI procedure (Treatment B) was similarly performed, but two or three 

motile sperm cells were inserted subzonally into the perivitelline space, as has been 

described previously in humans (Fishel et al., 1990). Also, sham-injection procedures 

were performed similar to the ICSI and SUZI procedures, but only an equivalent 

amount of PVP (<1 pi) was injected into the ooplasm (Treatment C) or under the zona 

(Treatment D) without any sperm cells.

Embryo Co-Culture and Transfer

After sperm injection, the injected oocytes were washed and cultured in groups 

on a monolayer o f bovine oviduct epithelial cells in 50 pi droplets of TCM-199 with 

10% fetal bovine serum (Gibco) under mineral oil at 38°C in an atmosphere o f 5% CO2 

in air. The culture medium was changed every other day and the injected oocytes were 

co-cultured for up to 7 days. Embryo development was evaluated under inverted light 

microscopy (200 to 400X) at 48-hour intervals after microinsemination. All oocytes that 

did not exhibit evidence o f cleavage by 72 hours after the injection procedure were 

selectively removed from culture, fixed and stained with a 2% (w/v) aceto-orcein 

solution (Sigma) to assess fertilization or maturation status (Meintjes et al., 1995).

All morula stage embryos (n=4) were nonsurgically transferred to synchronized 

recipients (one embryo per recipient) on day 5.5 after sperm injection, using a standard
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transcervical embryo transfer procedure (Imel et al., 1981). In addition, a set o f two 

embryos (one 2-cell and one 4-cell embryo) was surgically transferred to the oviduct of 

each of two recipient mares at 48 hours alter sperm injection. Surgical transfers were 

performed by exteriorizing the oviduct through a flank incision, and subsequently 

threading a small catheter (Wallace Embryo Transfer Catheter, Simcare Ltd., Peter 

Road, Lancing, West Sussex, England) containing the embryos ~4 to 6 cm into the 

lumen of the oviduct. The embryos were then expelled into the oviduct along with 10 to 

20 pi of embryo transfer medium (HEPES-buffered TCM-199 supplemented with 10% 

fetal bovine serum).

Statistical Analyses

Fisher’s Exact Two-tailed Test (Metha and Patel, 1983) was used to compare the 

ratios of oocytes that cleaved and proceeded to further developmental stages for the five 

microinsemination treatments. In selecting this test, it was assumed that the distribution 

of oocytes collected from the mares was equal and that each individual oocyte acted 

independently of the other oocytes collected.

Experiment 5.2

Experimental Design

Experiment 5.2 was conducted in a similar manner to that o f  Experiment 5.1, 

with the following exceptions, only ICSI was used to fertilize mature oocytes in the 

second experiment. Mature, injected oocytes (n=86) derived from pregnant crossbred 

mares in good body condition were randomly allocated within mare to one of two 

culture treatment groups (Treatments A and B). Treatment A consisted of injected 

oocytes (n=43) cultured for 48 hours in TCM-199 (with glucose) supplemented with
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15% fetal bovine serum at 38°C in an atmosphere o f  5% CO2 in air. Injected oocytes in 

Treatment B (n=43) were similarly cultured in a glucose-free, phosphate-free medium 

(P-l™, Irvine Scientific, Santa Ana, CA) supplemented with 15% fetal bovine serum for 

48 hours at 38°C in an atmosphere o f 5% CO2 in air. Co-culture was not incorporated 

into in this experiment, since P-l™ medium does not maintain the development of 

bovine oviduct epithelial cells.

Oocyte Collection.

Oocytes were collected during the 1997 breeding season from pregnant mares 

on days 14 to 70 of pregnancy via transvaginal ultrasonography, as in Experiment 5.1, 

except that 12-gauge double-lumen needles (Cook® Veterinary Products Inc., 

Bloomington, Indiana) were used to recover oocytes in this experiment. With this 

method, a slight modification o f the collection procedure was necessary. Negative 

pressure (90 mm Hg) was constantly applied via a vacuum pump while oocyte 

collection medium (PBS plus 1% calf serum with 2 USP units o f heparin, 100 jig of 

streptomycin and 100 units of penicillin-G per ml) was “pulsed” through the follicular 

cavity 10 to 15 times. Adequate force was required in pulsing the incoming medium to 

provide sufficient pressure to expand the follicle and to allow for the detachment of the 

oocyte from the follicular wall.

In Vitro Maturation and Oocyte Preparation

IVM o f oocytes was performed as in Experiment 5.1. However, oocytes in this 

experiment were stripped of the majority of their cumulus cells by gentle pipetting in a 

solution o f 80 units/ml hyaluronidase (Sigma) in TCM-199, rather than in a solution of 

0.025% trypsin as in Experiment 5.1.
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Semen Preparation

Cooled, extended semen (40 to 60 x 106 sperm cells/ml) from the same Arab 

stallion was used for the ICSI procedure in this experiment. A microvolume of this 

semen (<1 pi) was placed, unwashed, into the central PVP droplet (3 pi) in the 

microfertilization dish, without any prior exposure to calcium ionophore as in 

Experiment 5.1.

Microinsemination

Only ICSI was performed in Experiment 5.2, and the ICSI procedure utilized 

was similar to that o f  Experiment 5.1. Only one sperm cell was injected into the 

ooplasm o f an in vitro matured oocyte. Care was taken in assuring that the tail of the 

sperm cell was adequately crushed and that the sperm cell was completely immobilized 

prior to its insertion into the ooplasm of the recipient oocyte.

Embryo Transfer

A total o f 31 embryos were surgically transferred into the oviducts of 

synchronous recipient females at 48 hours post-ICSI. The embryos were loaded into a 

Wallace catheter (Simcare, Ltd.) (1 to 4 embryos/catheter) and the soft, inner portion of 

the catheter was threaded 4 to 6 cm into the surgically exposed oviduct of the recipient 

female. The embryos were then gently expelled along with 10 to 20 pi o f transfer 

medium (HEPES-buffered TCM-199 supplemented with 10% fetal bovine serum). All 

embryos were transferred into the oviduct ipsilateral to the previously ovulated follicle. 

Recipient females were subsequently monitored by ultrasonography at day 14 post­

fertilization to determine pregnancy status. All recipients were treated with altrenogest 

(Regu-Mate®, Hoechst Roussel Vet, Warren NJ) daily, beginning on the day o f embryo

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



transfer and continuing until pregnancy was confirmed 12 to 14 days later. Pregnant 

recipients were maintained on altrenogest supplementation until 120 days o f gestation.

Statistical Analyses

The statistical analyses performed in this experiment were similar to Experiment 

5.1, with the ratio o f embryos cleaved and the embryonic development stages being the 

parameters compared across the two culture treatments.

RESULTS 

Experiment 5.1

A cleavage rate of 39% (2-cell embryos) was obtained for ICSI-derived oocytes 

and this was greater (P<0.05) than the 6% for SUZI oocytes (Table 5.1). Similarly, 

more (P<0.05) ICSI oocytes developed to the 4- to 8-cell stage than did oocytes 

subjected to the SUZI procedure. When more than one sperm were injected directly into 

the ooplasm, 33% of injected oocytes cleaved. This was not different from the oocytes 

subjected to the ICSI or SUZI procedures, but these polyspermic fertilized oocytes 

failed to develop further than the 2-cell stage. Furthermore, none of the sham-injected 

oocytes cleaved. Aceto-orcein staining o f the oocytes that did not undergo cleavage 

revealed that at least 25% of SUZI-derived oocytes did not fertilize and that an 

additional 13% contained a metaphase plate and a single pronucleus.

Two embryos at the 2-cell stage and two embryos at the 4- to 8-cell stage (n=4) 

were surgically transferred to the oviducts o f recipient mares and, thus, did not have the 

opportunity to develop to later stages in vitro. None of the morulae transferred 

nonsurgically resulted in an ultrasonic detectable pregnancy by day 16 after sperm 

injection. However, one of the surgical embryo transfers (2- to 4-cell embryo) resulted
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in a 16 mm embryonic vesicle in the body of the uterus on day 14 after sperm injection, 

but was lost (23 mm diameter) between days 16 and 18 following sperm injection. 

Experiment 5.2

A total o f 263 follicles were punctured from 20 aspiration procedures, yielding 

an average o f  13 follicles punctured per procedure. O f these, 174 oocytes were collected 

giving a recovery rate o f 66% (8.7 oocytes/procedure). Overall, 86 oocytes were 

deemed mature by the presence o f a first polar body after maturation in TCM-199 

supplemented with 10% estrous mare serum (49%). However, when degenerate oocytes 

were excluded from the analysis, the maturation rate was 73%.

O f the 86 matured oocytes exposed to ICSI, 47 cleaved giving an overall 

cleavage rate o f 55%. Cleavage rates differed between the two media treatment groups 

(47% vs. 63% for Treatments A and B, respectively) (P<0.10) (Table 5.2). However, 

there was no difference in the number o f 2-cell, 3-cell, 4-cell, 6-cell or 8-cell embryos 

developing in vitro between Treatments A and B.

Since most of the embryos produced were subsequently transferred into 

synchronous recipients, it was important to establish a system of grading these embryos 

prior to transfer to determine which embryos had the greatest chance o f developing into 

a viable pregnancy. The grading system was based on the rate o f  embryonic 

development as evaluated at 48 hours post-ICSI, and was as follows: Grade-1 = 4- to 8- 

cell stage, with blastomeres o f even size and shape and <15% perivitelline fragments, 

Grade-2 = 4- to 8-cell stage, with blastomeres of even size and shape and 15 to 30% 

perivitelline fragments, Grade-3 = 4- to 8-cell stage, with blastomeres o f  uneven size 

and shape and >30% perivitelline fragments or 2- to 3-cell stage with <15%
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perivitelline fragments and blastomeres o f uneven size and shape, Grade-4 = 2- to 3-cell 

stage, with >15% perivitelline fragments and blastomeres o f uneven size and shape.

A total o f 13 embryos were transferred from Treatment A (one Grade-1, three 

Grade-2 and nine Grade-3 embryos). In Treatment B, 18 embryos were transferred 

(three Grade-1, five Grade-2, seven Grade-3 and three Grade-4 embryos). The one mare 

receiving the Grade-1 embryo from Treatment A was diagnosed pregnant by the 

presence of an embryonic vesicle at day 14 post-ICSI, which resulted in the birth o f a 

healthy female foal, weighing 29.1 kg, at 319 days o f gestation. Similarly, two o f the 

three mares receiving Grade-1 embryos from Treatment B were confirmed pregnant by 

16 days post-ICSI. One of these mares lost her pregnancy between day 20 and day 35 

post-ICSI, and the other pregnancy resulted in the birth o f a healthy, 27.7 kg female foal 

at 328 days o f gestation.

Overall, the pregnancy rate was low for these mares (25% pregnancy/transfer, 

8% pregnancy/embryo). However, when only Grade-1 embryos are considered, 75% 

(three o f four) o f  the mares were diagnosed pregnant by 16 days post-ICSI, and 50% 

(two o f four) resulted in live births.

DISCUSSION

The consistent production o f IVF embryos in the horse will likely have valuable 

commercial, research and conservational applications. Recent studies, applying 

prefertilization zona-drilling (Li el al., 1995; Meintjes et al., 1995) and partial zona 

removal (Choi et al., 1994), for the first time indicated that equine IVF rates may 

approach those o f  other domestic species and possibly humans. These studies also 

implicated that inadequate sperm capacitation and/or the presence o f an in vitro zona
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Table 5.1. In vitro development of subzonal and intracytoplasmic sperm-injected horse 
oocytes

Treatment Oocytes 2-cell
4- to 
8-cell

8- to 
16-cell Morula ET

ICSI 36 14at 9at 3 3 3
SUZI 32 2b lb 1 1 1
ICSI (s) 10 - - - - -
SUZI (s) 10 - - - - -
ICSI (psc) 6 - - - -

ET = embryo transfer; (s) = sham injected, PVP without sperm; (psc) = polyspermy 
control, three to five sperm cells injected per oocyte.
+Two embryos from each of these groups (n=4) were surgically transferred to the 
oviducts o f recipient mares and, thus, did not have the oppurtunity to develop to later 
stages in vitro.
“'“’Different superscripts within the same column are different (P<0.05).
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Table 5.2. In vitro development o f  intracytoplasmic sperm-injected equine oocytes 
following 48 hours o f culture in either TCM-199 or P-l™ culture medium

Characteristic (n) TCM-199
Treatment group

p - r

Cleavage rates 47 20 (47%)a 27 (63%)b

Cell stage:
2-cell 12 (60%) 14 (52%)
3-cell 4 (20%) 5 (19%)
4-cell 4 (20%) 6 (22%)
6-cell 0 (0%) 1 (4%)
8-cell 0 (0%) 1 (4%)

Embryo grade:
Grade 1 1 (5%) 3 (11%)
Grade 2 3 (15%) 5 (19%)
Grade 3 10(50%) 8 (30%)
Grade 4 6 (30%) 11 (41%)

“’‘’Different superscripts within the same column are different (P = 0.09).
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pellucida barrier may contribute to the less than anticipated conventional IVF rates in 

the horse. Although promising, these techniques will always have the possibility of 

producing polyspermic embryos. Many factors such as the size o f the opening drilled 

into the zona pellucida, the concentration of sperm cells used for in vitro insemination, 

the time period o f zona-drilled oocyte exposure to sperm cells and the individual 

stallion semen characteristics may be difficult to standardize and hamper consistent 

normospermic IVF rates.

ICSI is now a standard procedure used for the treatment o f male factor infertility 

in humans (Ng et al., 1993; Palermo et al., 1996) even when sperm cells have to be 

obtained from the epididymides (Mansour et al., 1996) or testicle (Kahraman et al.,

1996). The ICSI technique also circumvents the difficulties encountered with fertilizing 

human oocytes with a hardened zona pellucida, such as IVM oocytes or oocytes 

obtained from patients with severe endometriosis (Ng et al., 1993).

ICSI was considered in the present study in an effort to bypass the necessity of 

effective in vitro sperm cell capacitation, as well as to circumvent the zona pellucida 

and oolemma barrier, while still ensuring normospermic fertilization. There was no 

guarantee that SUZI may not perform better in the horse than ICSI, therefore, SUZI was 

also included in the microinsemination treatment groups in Experiment 5.1. It was clear 

from the data in this experiment that ICSI is the microinsemination technique of choice 

in the horse, as also reported for humans (Palermo et al., 1993; Van Steirteghem et al.,

1993). It seemed that SUZI oocytes were either not penetrated by the perivitelline 

inserted sperm (25% without a single pronucleus and a normal appearing metaphase II 

plate) or were fertilized but not activated (13% with one pronucleus, presumably from
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sperm origin and an intact metaphase II plate). It was encouraging to note that no 

polyspermic fertilized oocytes developed further than the 2 -cell stage and that none of 

the sham-injected oocytes were parthenogenically activated by the injection procedure.

The cleavage rate o f ICSI oocytes in this study (39% and 55% for Experiments

5.1 and 5.2, respectively) seemed to be lower than the cleavage rate of the best sperm- 

treatment group (79%) in a previous prefertilization zona-drilling study by our 

laboratory (Li et al., 1995). Reasons for this lower cleavage rate may include the 

learning curve necessary to perform ICSI efficiently with adequate crushing o f the 

sperm tail (Dozortsev et al., 1995; Van den Bergh et al., 1995), damage to the injected 

oocytes (Palermo et al., 1996) and the possibility that some cleaved polyspermic 

embryos were included in the prefertilization zona-drilling group. However, the 

cleavage and embryo developmental rates obtained by ICSI in this study appear to be an 

improvement on rates from previous conventional equine IVF studies (Del Campo et 

al., 1990; Palmer et al., 1991; Grondahl et al., 1995) and compare favorably with other 

recent ICSI studies in the horse (Dell’Aquila et al., 1997), the cow (Goto et al., 1996; 

Mutsuro et al., 1996) and the cat (Pope et al., 1995, 1997). The data presented in Table

5.1 suggests that there was a marked decline in ICSI embryos between the 4- to 8 -cell 

stage and the 8 - to 16-cell stage. This is due to the removal of four embryos (two 2-cell 

and two 4-cell embryos) from culture for the surgical intraoviductal transfer to 

synchronized recipients. For the same reason, the morula/blastocyst development rate 

between this and the previous prefertilization zona-drilling studies (Li et al., 1995; 

Meintjes et al., 1995) cannot be compared.
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In Experiment 5.2, cleavage rates for ICSI oocytes were higher when the 

oocytes were cultured for 48 hours in P-l™ medium when compared with TCM-199 

(63% and 47%, respectively) (P=0.09). This is in agreement with previous reports on 

the detrimental effects o f high levels o f glucose present in the culture medium for early 

stage mouse (Chatot et al., 1989), cow (Ellington et al., 1990), hamster (Seshagiri and 

Bavister, 1989) and human embryos (FitzGerald and DiMattina, 1992). For example, 

Chatot et al. (1989) found that medium containing a relatively high level of glucose 

inhibited the development o f 1-cell mouse embryos during the first 48 hours o f culture, 

but not after 48 hours. In fact, the addition of glucose to the culture medium on day 3 of 

culture significantly improved development of mouse embryos to the blastocyst stage, 

suggesting that the toxic effects o f glucose is short-lived in murine embryos (Chatot et 

al., 1989).

Similarly, Ellington et al. (1990) determined that a high glucose level in the 

culture medium is inhibitory to bovine embryos during the first 48 hours o f culture and 

that culturing these embryos in a glucose-free medium facilitated the development of 

the embryos through the 8 -cell stage. In addition, it has been shown in both cattle 

(Ellington et al., 1990) and humans (FitzGerald and DiMattina, 1992) that culturing 

early stage embryos in medium without glucose significantly improves embryo quality. 

In contrast, Watson et al. (1994) found no difference in cleavage rates of ovine embryos 

cultured in medium without glucose. In addition, it has been demonstrated that glucose 

levels had no effect on the development of ovine embryos past the in vitro block 

developmental stage (McGinnis and Youngs, 1992).
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Even though no statistical differences were detected between the culture 

treatments for early embryonic development and embryo quality, it is apparent that 

embryos cultured in a low glucose environment were not inhibited in their development, 

since this was the only group to produce both 6 - and 8 -cell embryos at 48 hours post- 

ICSI (Table 5.2). Also, two pregnancies were established from the transfer o f two 

Grade-1 embryos cultured in the P-l™ medium (low glucose), with one pregnancy 

resulting in a live birth.

Results from this study indicate that intracytoplasmic sperm injection should not 

be overlooked as the method o f choice for the production o f  in vitro equine embryos. 

Although no pregnancies resulted from the nonsurgical morula-stage embryo transfers, 

oocytes aspirated from pregnant mares were viable and capable o f establishing four 

pregnancies after in vitro maturation, ICSI, in vitro culture and intraoviductal embryo 

transfer, with two live births resulting at days 319 and 328 o f gestation, respectively.

Also, previous reports have suggested that multiple, good quality oocytes can be 

collected repeatedly from early pregnant mares (Li et al., 1995; Meintjes et al., 1995). 

The benefit o f  using the pregnant mare as an oocyte donor is that the oocytes can be 

collected uniformly at the germinal vesicle stage, which allows for known, fixed IVM 

intervals resulting in larger quantities o f good quality oocytes available for IVF. In 

addition, oocyte retrieval in this study was improved using the double-lumen needles 

when compared with previous reports using a single-lumen needle system (Meintjes et 

al., 1995).

The present study provides strong evidence that ICSI o f oocytes derived from 

pregnant mares can be a viable alternative for the production of gametes for assisted
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reproduction and the treatment of clinical infertility in valuable mares, and that ICSI 

may have application in the conservation o f endangered equids. This study, to our 

knowledge, is the first report of the production of live foals derived from in vitro- 

matured equine oocytes collected from pregnant mares.
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CHAPTER VI

DEVELOPMENT OF A PROTOCOL USING ALTRENOGEST AND eST FOR  
OVARIAN STIMULATION IN THE DOMESTIC MARE FOR USE IN 
TRANSVAGINAL OOCYTE ASPIRATION PROCEDURES FOR THE 

PRODUCTION OF IN  VITRO-DERIVED  EQUINE EMBRYOS

INTRODUCTION

The routine production of in vzTro-derived equine embryos has not yet become a 

reality, even though an acceptable number o f oocytes can be repeatedly collected from 

live mares, with successful in vitro maturation (IVM) o f  the oocytes followed by 

intracytoplasmic sperm injection (ICSI) (Cochran et al., 1998, 2000). Since the first 

report of a foal being bom from in vitro fertilization (Palmer et al., 1991), only one 

other report has been published on the production of IVF-derived foals (Cochran et al.,

1998). In that study, Cochran et al. (1998) demonstrated that pregnant mares could be 

used as oocyte donors, and that ICSI could be performed on these oocytes in order to 

produce live foals. Since conventional IVF rates for horses remains low (Palmer et al., 

1991; DelFAquila et al., 1996), ICSI appears to be the method o f choice for the 

production o f equine embryos in vitro (Dell’Aquila et al., 1997; Cochran et al., 1998; 

2000).

However, one o f  the biggest obstacles to establishing an efficient IVF procedure 

for horses has been the inability to “superstimulate” domestic mares to produce high 

numbers of good quality oocytes, which is routinely performed in many domestic 

animals and in women. It has been demonstrated in cows (Manikkam et al., 1997) and 

horses (Ginther and Bergfelt, 1992) that follicular waves continue throughout early 

pregnancy, and that these animals may serve as oocyte donors for IVF (Meintjes et al.,
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1995). Meintjes et al. (1995) first demonstrated that pregnant mares could be 

effectively used as oocyte donors, and that they could provide high numbers of good 

quality oocytes when the oocytes were collected repeatedly using an ultrasound-guided 

approach. One possible explanation for the success realized when using oocytes derived 

from pregnant mares is that follicular waves that occur during pregnancy show a 

reduced occurrence o f follicular dominance (Ginther and Bergfelt, 1992), caused by the 

continuously elevated levels of progesterone, which in turn reduces the negative effects 

that the dominant follicle exerts on its subordinates. Oral altrenogest, a synthetic 

progestin, has been shown to suppress the occurrence o f dominant follicles in mares 

(Lofstedt et al., 1989), with no effect on subsequent fertility of the treated mares once 

administration was discontinued (Sigler et al., 1989). It is believed, therefore, that by 

treating mares daily with altrenogest, a “pseudopregnant” state could be induced during 

which follicular dominance would be minimized and oocyte collections could be 

performed with a high rate of success.

It has been well established that administration o f  somatotropin (ST) increases 

follicle number in horses (Cochran et al., 1999), cattle (Carter et al., 1998), pigs (Spicer 

et al., 1992), rabbits (Yoshimura et al., 1994) and women (Owen et al., 1993). It is 

believed that the ability of ST to increase follicle number is caused, at least in part, 

through its ability to increase circulating IGF-I concentrations (Owen et al., 1993; 

Yoshimura et al., 1994), as it is well known that ST is a potent stimulator o f IGF-I 

production (Owen et al., 1993; Gong et al., 1997; Cochran et al., 1999).

Therefore, the purpose o f the present study was twofold: (1) to develop a 

protocol for IVF in horses using oral altrenogest treatment to reduce follicular
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dominance and allow for a higher number o f good quality oocytes to be collected per 

mare, followed by IVM and ICSI of the collected oocytes and (2) to determine if daily 

administration o f equine somatotropin (eST) could increase the number of follicles 

available from these altrenogest-treated mares.

MATERIALS AND METHODS 

Experimental Design

A total o f 18 mares in good body condition (body condition scores ranged from 

5 to 8  on a scale o f 1 to 9), from the same experimental herd, were randomly allocated 

to one o f two treatment groups during the breeding season o f 1998. Treatment A 

consisted of mares (n=9) treated with 0.044 mg altrenogest (Regu-Mate®, Hoechst 

Roussel Vet., Warren, NJ) per kg body weight for a total o f 51 days (day 1 = first day of 

treatment). Mares in Treatment A also received a single daily injection of 25 pg eST 

(EquiGen™, BresaGen, Thebarton, South Australia) per kg body weight beginning on 

day 1 and ending on day 51. Mares in Treatment B (n=9) were similarly treated with 

altrenogest in addition to the eST vehicle beginning on day 1 and continuing for 51 

days. All experimental animals were administered either altrenogest plus eST or 

vehicle for a preliminary period of 21 days. This was performed to allow for a possible 

“priming” effect o f eST on follicular development, as well as to subject the mares to a 

period of time (which is approximately equal to one estrous cycle) of progesterone 

dominance. This time of progesterone dominance was used in order to allow for more 

synchronous development o f follicles within a follicular wave.

On day 21, all mares were subjected to a follicle ablation procedure, during 

which all follicles >5 mm in diameter were punctured follicular fluid was collected via a
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transvaginal ultrasonographic procedure. This was performed to (1) remove all atretic 

follicles that may be present on the ovaries of each mare and (2 ) induce a new wave of 

follicular growth for subsequent oocyte collection procedures. After the follicle 

ablation procedure was performed, mares from both treatment groups were maintained 

on their respective treatment protocols, and oocyte collection procedures (n=3/mare) 

were performed at 10-day intervals. Plasma samples were collected at 72-hour intervals 

on all mares via jugular venipuncture for the duration o f the treatment period to assess 

plasma IGF-I concentrations in response to eST administration.

Oocyte Collection

Oocyte collection procedures were performed at 10-day intervals following the 

follicle ablation procedure on day 21 of treatment. This time interval was chosen based 

upon the approximate interval o f follicular wave emergence and growth in the domestic 

mare. Oocyte collections were performed as previously described by Cochran et al. 

(1998). Briefly, a 12-gauge double-lumen stainless steel needle (Cook® Veterinary 

Products Inc., Bloomington, IN) was inserted through the vaginal wall via a 

transvaginal ultrasonic transducer attached to a needle guide. Negative pressure (90 mm 

Hg) was constantly applied using a vacuum pump while oocyte collection medium 

(PBS plus 2% calf serum with 2 USP units of heparin and 100 units o f penicillin-G/ml) 

was pumped through the follicle cavity up to 10 times. Sufficient pressure was applied 

by the incoming medium to expand the follicle and to allow for the detachment o f the 

oocyte from the follicular wall. The flushing medium was then collected into a 500 ml 

container and the contents were searched for oocytes contained therein.
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Oocyte Maturation and Micromanipulation

After oocyte recovery, all oocytes with an intact oolemma were washed in in 

vitro maturation (IVM) medium. IVM medium consisted o f tissue culture medium 199 

(TCM-199, Gibco) with 10% estrual mare serum collected at this laboratory. In vitro 

maturation was conducted in 35 pi microdroplets o f IVM medium covered with mineral 

oil in a 35-mm petri dish for 36 hours at 38°C in an atmosphere of 5% CO2 in air. After 

IVM, the oocytes were stripped from the majority o f their cumulus cells by vigorous 

pipetting for 2 to 3 minutes in TCM-199 containing 80 units of hyaluronidase per ml 

(Sigma, St. Louis, MO) to facilitate micromanipulation. Oocytes with an extruded first 

polar body (Mil) were identified under light microscopy (200X) and then placed 

separately into 5 pi microdroplets consisting of HEPES-buffered TCM-199 under 

mineral oil (Sigma). All Mil oocytes were then subjected to the ICSI procedure as 

previously described (Cochran et al., 1998).

Embryo Culture and Transfer

After micromanipulation, all oocytes were placed in 35 pi microdrops o f  P-l™ 

medium (Irvine Scientific, Santa Ana, CA) and cultured for 48 hours at 38°C in an 

atmosphere of 5% CO2 in air under oil. Embryonic development was then assessed and 

embryos were either surgically transferred into synchronous recipient mares (n=3) or 

allowed to develop additionally in vitro for up to 3.5 days (n=71). After 72 hours of 

culture, all remaining embryos were transferred into Blastocyst medium (Irvine 

Scientific) for the remainder o f the culture period. At day 5.5, all morula-stage embryos 

(n=4) were transferred nonsurgically into synchronous recipient mares.
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Statistical Analysis

The numbers of small- (5 to 10 mm), medium- (11 to 25 mm) and large- sized 

(>25 mm) follicles were recorded per mare during each oocyte collection procedure and 

were analyzed across treatment groups. In addition, the number o f  oocytes collected 

per mare was analyzed for all mares across treatment groups using ANOVA (Cochran 

et al., 1999). Also, the percentage of oocytes reaching metaphase II after 36 hours of 

culture, as well as the cleavage rate o f injected oocytes and embryonic development, 

were analyzed across treatment groups for mares in Treatments A and B via ANOVA 

(Cochran et al., 1999).

RESULTS

Follicle Populations, Oocyte Collections and Plasma IGF-I Levels

The effects o f eST on altrenogest-treated mares are presented in Table 6.1. 

There was no effect of collection procedure (first, second or third collection) on any 

parameter measured, thus, data were pooled across the three collection procedures per 

mare per treatment. Daily administration of eST to altrenogest-treated mares had no 

effect on the number of small (1.40 ± 0.30 for both Treatments A and B), medium (3.3 

± 0.42 vs. 3.7 ± 0.64, Treatments A and B, respectively) or large follicles (1.37 ± 0.23 

for both Treatments A and B) per mare per oocyte collection (10-day intervals). 

Furthermore, there was no difference in the total number of follicles per mare per 

oocyte collection for altrenogest-treated mares with or without eST (6.15 ± 0.65 vs. 6.52 

± 0.76 for Treatments A and B, respectively). However, when the total follicle number 

per mare was analyzed following 2 1  consecutive days of treatment (first follicle 

ablation), mares treated with altrenogest plus eST had significantly more follicles per
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mare when compared with contemporary control mares (22.9 ± 2.5 vs. 13.9 ± 2.5 for 

Treatments A and B, respectively).

Unfortunately, this increase in follicle number was not maintained once oocyte 

collections began at 10-day intervals (Table 6.1). Also, there was no difference in the 

number o f oocytes collected per mare per oocyte collection for mares treated with 

altrenogest with or without eST (4.4 ± 0.56 for both Treatments A and B). Finally, 

there was a definite increase in circulating plasma IGF-I levels for altrenogest-treated 

mares given eST when compared with contemporary control mares (P<0.05, Figure 

6 . 1).

Oocyte Maturation, Embryo Cleavage and Embryonic Development

Results of oocyte maturation, embryo cleavage and embryonic development are 

summarized in Table 6.2. There was no effect on the percent of oocytes reaching 

metaphase II after 36 hours of IVM for mares with or without eST (73% vs. 58% for 

Treatments A and B, respectively). In addition, cleavage rates were similar (44% vs. 

58%) for altrenogest-treated mares with or without eST, respectively. A total o f  74 

ICSI-derived equine embryos were produced from this experiment (35 and 39 from 

Treatments A and B, respectively).

The majority of these embryos (n=71) were cultured in vitro for up to 5.5 days, 

with three embryos being surgically transferred into the oviducts of two synchronous 

recipient mares after 48 hours of culture in order to attempt to establish that oocytes 

collected from mares treated in this fashion were fertile and capable o f producing live 

foals. The pregnancy did not continue in the mare receiving the single embryo at 48 

hours post-ICSI. However, the mare that received two embryos at 48 hours post-ICSI
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was diagnosed pregnant with twins at day 14 post-ICSI, and one embryonic vesicle was 

immediately crushed to prevent complications related to twin conceptuses in the mare. 

Incidentally, both embryos were collected from a single mare in the control group. This 

pregnancy resulted in the birth o f a healthy female foal, weighing 30.5 kg, after 339 

days o f gestation.

To our knowledge, this is the first report of a foal produced from oocytes 

collected from altrenogest-treated mares, followed by IVM and ICSI. Also, this 

represents the first incidence, to our knowledge, o f a twin pregnancy resulting from the 

transfer of in v/7ro-produced equine embryos. There was no treatment effect on 

subsequent embryo development past the 2-cell stage (Table 6.2). Furthermore, none o f  

the mares receiving morula-stage embryos at day 5.5 (n=4) resulted in a pregnancy. 

DISCUSSION

One o f the largest obstacles to developing a repeatable protocol for IVF in the 

horse is the inability to collect high numbers o f good quality oocytes from donor mares. 

The major problem is that most attempts to superstimulate the equine ovary to produce 

a large number o f follicles has met with very limited success (for review see Ginther, 

1992). Therefore, if  multiple oocytes are to be collected from a single collection 

procedure, researchers must utilize the available follicles present at the time o f  

collection to achieve the desired results.

In mares, the ovaries undergo periods of follicular growth and development 

termed “follicular waves”. This is true for other farm animal species as well (Lucy et 

al., 1993; Pursley et a l ,  1993), except for the pig (Ryan et al., 1994). The majority o f  

mares have 1 to 2  waves o f follicular growth per interovulatory interval, each lasting 1 0
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Table 6.1. Effect of eST administration to altrenogest-treated cyclic mares on follicular 
populations

Small Medium Large Total Follicle
Treatment follicles follicles follicles follicles ablation*

eST 1.40 (±0.30) 3.30 (±0.42) 1.37 (±0.23) 6.15 (±0.65) 22.9a (±2.5)

Control 1.40 (±0.30) 3.70 (±0.64) 1.37 (±0.23) 6.52 (±0.76) 13.9b (±2.5)

a'bMeans within columns with different superscripts are different (P < 0.05).
*The follicle ablation procedure was performed at day 21 of treatment to remove any 
atretic follicles and to promote a new wave of follicular growth.
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Table 6.2. Oocyte maturation, cleavage and early embryonic development for 
altrenogest-treated cyclic mares with and without eST

Treatment Maturation Cleavage
eST
Control

73%
58%

44%
58%

Treatment 2 to 4 cell 4 to 8  cell 8  to 16 cell 16 to 32 cell Morula
eST 35 25 19 7 2

Control 39 28 19 6 2
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days (Ginther, 1992; Buratini et al., 1997). One particular problem with attempting to 

collect oocytes from the follicles of cyclic mares is that, during most waves o f follicular 

growth, one follicle is selected to become dominant over the other follicles within that 

wave, and that dominant follicle (DF) produces substances that inhibit the growth and 

development of the subordinate follicles (SF) within the same follicular wave (Ginther, 

1992). Therefore, if one is to collect multiple oocytes from a cyclic mare, one must 

realize that the majority o f the oocytes will come from these SF and may or may not be 

viable.

During periods o f progesterone dominance, such as pregnancy, both cattle 

(Ginther et al., 1989), and mares continue to show follicular wave emergence and 

growth (Ginther and Bergfelt, 1992). However, the incidence o f follicular dominance is 

reduced, possibly due to decreased LH pulse frequency from the pituitary caused by 

elevated plasma progesterone concentrations (Adams et al., 1992a). Bergfelt et al. 

(1991) demonstrated that, in cattle, anovulatory follicular waves continued at least to 

day 100 in both pregnant and progesterone-treated control cows. The fact that these 

follicular waves were anovulatory demonstrates the ability of progesterone treatment to 

inhibit DF development. Similar findings were reported for cows by Ginther et al. 

(1989), where the diameter o f the largest follicle was lower in pregnant cows compared 

with nonpregnant controls. In addition, other studies have demonstrated the ability of 

pregnant cattle to continue follicular development through to parturition (Manikkam et 

al., 1997).

In mares, follicular waves have been documented to occur during vernal 

transition (Ginther, 1990), during reproductive cyclicity (Buratini et a l ,  1997) and
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during pregnancy (Ginther and Bergfelt, 1992). Also, it has been shown that oocytes 

collected from pregnant donor mares are viable and capable o f  producing live foals 

(Cochran et al., 1998). However, utilizing pregnant donors is o f  little use in subfertile 

mares, since it is very difficult to attain a viable pregnancy in this population o f mares. 

Therefore, in the present study, we attempted to induce a “pseudopregnant” state in 

cyclic mares by administering altrenogest once daily. Although we did not attempt to 

identify individual waves of follicular activity in these mares, it was evident that 

follicular growth and development continued through to day 51 o f treatment, as 

evidenced by the number of follicles available for aspiration per oocyte collection 

procedure in the present study. In addition, it has been demonstrated in cattle that 

follicle ablation can induce a new wave of follicular growth (Bergfelt et al., 1997; Bo et 

al., 1995), so it is not unreasonable to assume a similar phenomenon occurs in mares. 

Also evident from this work is that oocytes collected from altrenogest-treated mares are 

viable and capable of producing live offspring.

The administration of ST has been shown to increase the number of follicles in 

cattle (Lucy et al., 1993), pigs (Spicer et al., 1992), women (Owen et al., 1993), rabbits 

(Yoshimura et al., 1994) and mares (Cochran et al., 1999). It is believed that ST causes 

these effects, at least in part, through its ability to increase circulating IGF-I 

concentrations (Owen et al., 1993; Gong et al., 1997; Cochran et al., 1999). In the 

present study, eST administration to altrenogest-treated mares did cause a significant 

increase in plasma IGF-I levels (Figure 6.1). However, this treatment did not increase 

the number o f aspiratable follicles per mare when mares were subjected to oocyte 

collections at 1 0 -day intervals.
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Interestingly, when data were analyzed for the number o f aspiratable follicles 

following 21 consecutive days o f eST treatment (first follicle ablation), there was a 

marked increase in the total number o f follicles >5 mm in diameter on the ovaries o f 

altrenogest-treated mares administered daily injections of eST (Table 6.1). The reasons 

for this are unclear, but possibly include a prolongation of the atretic phase of follicle 

development (Cochran et al., unpublished data). Results supporting this hypothesis are 

reported by Chun et al., 1996, where the authors show that IGF-I is a potent regulator o f 

granulosa cell apoptosis, decreasing the apoptotic index of cultured granulosa cells by 

45%. This then could lead to the follicle remaining on the ovary for a longer period o f 

time, thereby, resulting in increased follicle numbers after a prolonged period o f 

treatment. Unfortunately, the increase in follicle numbers was not maintained once 

oocyte collections were begun at 1 0 -day intervals, which may limit the effectiveness o f 

eST administration for purposes of oocyte collections at regular intervals in the 

domestic mare. Further studies are needed in this area o f follicular growth and 

development

Another explanation for the apparent lack of eST treatment to effect follicle 

numbers in the present study may revolve around the production o f IGF-I binding 

proteins (IGFBP), which limit the bioavailability of circulating, as well as follicular, 

IGF-I. There are at least 5 IGFBP currently identified, each o f  which having a different 

molecular size and a different binding capacity. In general, the low molecular size 

IGFBP (IGFBP-2, -4, -5) seem to have a higher affinity to IGF-I than does the larger 

IGFBP-3 (Mondschein et al., 1991). Interestingly, follicular fluid from small, as well as 

atretic, follicles contain higher amount o f low molecular weight IGFBP, and larger,
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dominant follicles contain more IGFBP-3 (Mondschein et al., 1991; Echtemkamp et al., 

1994b). Therefore, changes in follicle growth and atresia could be regulated more by 

IGFBP ratios than by IGF-I itself (Monget et al., 1993; Echtemkamp et al., 1994b).

Increasing IGFBP in follicular fluid have been shown to inhibit IGF-I-stimulated 

progesterone production by the granulosa cells in pigs (Samaras et al., 1995) and in 

cattle (Spicer et al., 1999). Also, ST administration has been shown to not only 

increase circulating and follicular IGF-I, but also to increase the production o f IGFBP 

(Armstrong et al., 1996a). In the mare, at least 4 IGFBP have been identified, 

corresponding to IGFBP-2, -3, -4, and -5  (Gerard et al., 1998). It is therefore possible 

that prolonged administration of eST to altrenogest-treated mares in the present study 

could have led to a build up o f IGFBP, which would have inhibited the effects o f IGF-I 

on follicle growth and development.

In the present study, oocyte collections performed at 10-day intervals on 

altrenogest-treated mares with or without eST yielded an average o f 4.4 (± 0.56) 

oocytes per mare per collection procedure. This appears to be an improvement over 

previous reports using pregnant donors (Meintjes et al., 1995). However, Cochran et al. 

(2000) reported a recovery o f 8.7 oocytes per mare per collection using pregnant mares 

as oocyte donors. In the latter study, however, mares were not subjected to repeated 

collection procedures at regular intervals and therefore many of the collected oocytes 

came from atretic follicles, which is one o f the points of concern in developing an 

efficient protocol for oocyte collection in the mare.

However, when compared with the traditional approach of using cyclic donor 

mares, with collection o f only the pre-ovulatory follicle of an in v/vo-matured oocyte,
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this technique seems favorable. This is due to the fact that, with ~80% recovery rate for 

preovulatory follicle collections, and the fact that only ~80% of those oocyte collected 

would be at metaphase II, performing oocyte collections from 10 mares would yield 

only between 6  and 7 mature oocytes. With our approach, ~30 mature oocytes could be 

recovered from these same 1 0  mares, which would give a  much higher chance of 

success. Also, there was no difference in the number o f oocytes collected per mare 

from each collection procedure in the present study, so these numbers of oocytes could 

be attained for at least three consecutive collection procedures.

Another obstacle in improving equine IVF is the seemingly lowered success of 

IVM when compared with other domestic species. Successful IVM rates ranging from 

15 to 60% have been reported, which is considerably lower than the 80 to 90% noted 

for cow IVM (Meintjes et al., 1995; Goudet et al., 1997; Goudet et al., 1998a). It seems 

that there is a significant correlation in follicle size and success o f IVM for equine 

oocytes, as oocytes collected from larger follicles have a better chance o f reaching 

metaphase II in culture than those collected from small follicles (Goudet et al., 1997). 

When using pregnant donor mares, 50 to 60% of the collected oocytes reached Mil 

(Meintjes et al., 1995), and the success rate was highest with oocytes collected from 10 

to 15 mm follicles (Goudet et al., 1998b).

The addition o f serum to the IVM medium has been shown to increase the 

number of oocytes reaching metaphase II in culture in the mare (Willis et al., 1991). In 

addition, adding 100 ng/ml of ST to the culture medium increases maturational rates of 

bovine oocytes (Izadyar et al., 1997). In the present study, there was no effect of ST 

administration to altrenogest-treated mares on oocyte maturation following 36 hours o f

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



culture in vitro (Table 6.2). However, the percent o f oocytes reaching metaphase II 

tended to be higher (P=0.1) for altrenogest-treated mares receiving daily eST (73% vs. 

58%, respectively). This suggests the possibility o f  an effect of either ST and/or IGF-I 

on oocyte competence in the mare. Further studies are needed to determine if there is 

any beneficial effect of increased ST/IGF-I on in vitro maturation in the domestic mare.

Another problem with equine IVF is that conventional in vitro fertilization 

procedures have not shown much success to date. Only one foal has ever been reported 

from conventional IVF (Palmer et al., 1991). However, in several studies in which 

relatively large numbers o f  oocytes were used, the fertilization rates for IVF in horses 

has remained low (less than 20%) (Palmer et al., 1991; Li et al., 1995; Dell’Aquila et 

al., 1996). In humans, it has been stated that the best indicator of IVF outcome is 

related to ovarian response to gonadotropins (Roest et al., 1996). Since the admin­

istration o f exogenous gonadotropins has little effect on ovarian follicular development 

in the horse, this may be one indication of a species-specific problem associated with 

IVF.

Since the advent o f ICSI in treating male-factor infertility in humans (Palermo et 

al., 1992), ICSI has become a valuable tool in human infertility clinics. It has been 

shown in subfertile women that ICSI can lead to higher fertilization rates when 

compared with conventional IVF (94% vs. 72% respectively) (Pisarska et al., 1999). 

Also, fertilization can be achieved independent of sperm characteristics (Palermo et al., 

1995), and there is no difference in detectable embryonic defects when comparing ICSI 

to conventional IVF in humans (Govaerts et al., 1996). In the horse, ICSI has been 

shown to be the method o f  choice for IVF procedures compared with other forms of

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



micromanipulation (Cochran et al., 2000), and it yields fertilization rates superior to 

that o f conventional IVF (Dell’Aquila et al., 1997).

Also, unlike other domestic species such as cattle, no additional oocyte 

activation procedures are necessary to induce acceptable fertilization rates. This is 

important since artificial activation o f the oocyte can lead to the development of 

parthenogenic embryos, which have a severely limited chance o f producing live 

offspring. Also, the injection procedure itself is inadequate in inducing parthenogenic 

embryonic division in the equine oocyte (Cochran et al., 2000). In a previous study 

using pregnant oocyte donors, an overall cleavage rate of 55% was demonstrated when 

ICSI was the method o f fertilization (Cochran et al., 2000). Also, live foals have been 

produced from oocytes collected from pregnant mares and subjected to ICSI procedures 

(Cochran et al., 1998). Thus, it seems that if  a routine protocol for producing equine 

embryos in vitro is to become a reality, ICSI should be considered the method o f choice 

for fertilization of the oocyte.

Finally, since there has been very limited success with equine IVF, developing a 

culture system for early equine embryos has not been feasible up to this point. Reports 

from other species have shown a detrimental effect of the presence o f glucose in the 

culture medium during early embryonic development in mice (Chatot et al., 1989), 

cattle (Ellington et al., 1990), hamsters (Seshagiri et al., 1989) and humans (Fitzgerald 

and DiMattina, 1992). Also, Cochran et al. (1998; 2000) have shown that utilization of 

a glucose-free medium (P-l™), which is currently used in human IVF procedures, 

yields superior cleavage rates when compared with TCM-199, which contains glucose. 

Although the difference noted may or may not be related to glucose content, since the
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two media types exhibit other differences, P-l™ medium was chosen as the initial 

culture medium for the present experiment. This culture medium is designed only for 

the first 72 hours of culture following fertilization, at which time a second media type 

(Blastocyst™ medium) is used to allow for embryonic development up to the blastocyst 

stage.

There was no difference in either cleavage rates or embryonic development 

between the two treatment groups in the present experiment (Table 6.2). Unfortunately, 

no blastocysts were produced in the present study, and the nonsurgical transfer o f four 

morula stage embryos did not result in any pregnancies. However, in an effort to verify 

that oocytes collected from altrenogest-treated mares were viable and capable of 

producing live offspring, three embryos were surgically transferred into the oviducts of 

two synchronous recipient mares at 48 hours o f development. The mare receiving one 

embryo did not become pregnant. However, the mare that received two embryos was 

diagnosed pregnant with twins at 14 days post-fertilization via transrectal ultra­

sonography. One embryonic vesicle was immediately crushed, and the other continued 

to develop and resulted in the birth o f a healthy female foal at 339 days of gestation.

In summary, we have demonstrated that a protocol including treatment o f  mares 

with oral altrenogest, with a follicle ablation procedure performed at day 21  followed by 

oocyte collections at 10-day intervals, with IVM and ICSI performed on the collected 

oocytes, can be utilized to produce in vitro-derived equine embryos with a high degree 

o f  success. Furthermore, while culturing these in v/fra-produced embryos to the morula 

stage did not result in a successful pregnancy being established, transfer o f  these 

embryos at earlier embryonic developmental stages can result in the production of
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normal, healthy offspring. This is the first report, to our knowledge, of successful in 

vitro fertilization of equine embryos following a protocol o f daily oral altrenogest to 

induce pseudopregnancy. In addition, this is the first report o f twin pregnancies 

resulting from the transfer o f IVF-derived equine embryos.
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CHAPTER VII

EFFECTS OF eST ON EQUINE GRANULOSA CELL PROLIFERATION AND 
PROGESTERONE PRODUCTION I N  VITRO  

INTRODUCTION

In recent years, the effects o f somatotropin (ST) administration on reproductive 

function in domestic species has become a major area o f investigation. Currently, it is 

not know whether these effects are caused as a direct result o f ST enhancement, or 

indirectly through elevated IGF-I. It has been shown, however, that both ST (Sirotkin 

et al., 1998a) and IGF-I (Foster et al., 1995) are stimulatory to granulosa cells cultured 

in vitro. For example, Behl and Pandey (1999) demonstrated that IGF-I increases 

progesterone production by caprine granulosa cells, and IGF-I has similar effects in 

porcine (Xia et al., 1994) and bovine granulosa cells (Spicer and Echtemkamp, 1995). 

Also, the addition o f  IGF-I to the culture medium causes a significant increase in 

granulosa cells proliferation in cattle (Armstrong et al., 1996b) and sheep (Mariana et 

al., 1998). In addition, it has been demonstrated that ST causes similar effects (Spicer 

and Enright, 1991), and it increases the production of IGF-I from the granulosa cells 

(Siroikin et al., 1998a). It has been shown that granulosa cells do contain receptors for 

ST (Sharara and Nieman, 1994), but it has yet to be determined if  the effects of ST 

administration to cultured granulosa cells are entirely IGF-I mediated.

In the horse, there is little information available as to the effects o f ST and/or 

IGF-I on reproductive activity. It has been shown that daily administration o f  equine 

ST (eST) to increases the number o f small follicles visible on the ovaries o f  cyclic 

mares, with a concomitant increase in circulating IGF-I concentrations (Cochran et al.,

1999). However, whether these effects are caused directly by eST, indirectly through

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IGF-I, or through a combination of both are unclear. Therefore, the purpose of the 

present study was to determine the effects o f eST and IGF-I on cell proliferation and 

steroid production o f equine granulosa cells cultured for 24 hours in vitro. 

MATERIALS AND METHODS

Granulosa cells were collected from all follicles ranging from 20 to 40 mm in 

diameter from six cyclic pony mares. Granulosa cells samples were then pooled, and 

the total number o f  viable cells available for culture was calculated from a subsample o f 

the pooled collection. Treatments for the present study consisted o f (A) TCM-199 

(Gibco, Grand Island, NY) plus 3 mg/ml BSA (Sigma, St. Louis, MO), which served as 

the control medium, (B) control medium plus 100 ng/ml eST (EquiGen, BresaGen, 

Thebarton, South Australia), (C) control medium plus 100 ng/ml eST plus 30 pg/ml 

anti-IGF-I antibody (Sigma), (D) control medium plus 100 ng/ml human recombinant 

IGF-I (Sigma) and (E) control medium plus 100 ng/ml human recombinant IGF-I plus 

30 |ig/ml anti-IGF-I antibody. Treatments were replicated using Nunc four-well culture 

dishes (n=4 wells/Treatment). Granulosa cells were seeded at a concentration o f 

150,000 viable cells/well for each of the five Treatment groups and allowed to culture 

for 24 hours at 38°C in an atmosphere o f 5% CO2 in air. A total volume of 500 pi of 

each medium type was placed into the respective wells.

After 24 hours o f in vitro culture the medium was removed from each culture 

well and centrifuged at 300 x g to remove all granulosa cells remaining in suspension. 

Each medium sample was then stored in individually labeled 0.05 ml centrifuge tubes 

and frozen until analysis of progesterone concentrations by RIA. After removal of the 

medium, each well was treated with 0.025% trypsin to facilitate the detachment of all
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proliferating granulosa cells from the bottom o f  each culture well. The granulosa cells 

were then collected to determine the number o f  proliferating granulosa cells per well 

per treatment. The concentration of progesterone, as well as the number o f proliferating 

granulosa cells per well per treatment, were analyzed using a split-plot ANOVA 

procedure (Cochran et al., 1999).

RESULTS

The results o f in vitro culture o f equine granulosa cells with eST and IGF-I are 

summarized in Table 7.1. There was an increase in the number o f  proliferating 

granulosa cells after 24 hours of culture in all media supplemented with either eST or 

IGF-I relative to control media (P<0.05). In addition, the steroidogenic activity of 

equine granulosa cells as measured by in vitro progesterone production was enhanced in 

all media supplemented with either eST or IGF-I (P<0.05), irrespective o f anti-IGF-I 

antibody content.

Interestingly, there was no detectable increase in IGF-I production in equine 

granulosa cells treated with eST alone when compared with control medium, as RIA 

analysis revealed no detectable IGF-I in either treatment group. The fact that the anti- 

IGF-I antibody had no effect on neither eST nor IGF-I stimulated cell proliferation or 

progesterone production suggests that there was insufficient antibody present to bind all 

available IGF-I, and that eST stimulated cell proliferation and progesterone production 

may be caused by a direct effect of eST alone.

DISCUSSION

Results from the present study clearly indicate that both eST and IGF-I enhance 

granulosa cell proliferation and steroid production in equine granulosa cells cultured in
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Table 7.1. Effects of eST and IGF-I treatment to equine granulosa cells cultured for 
24 hours in vitro

Treatment Number of Cells P4 Production

A. Control 43,750a (±15581) 2.13a (±0.93)
B. eST 117,500b (±15581) 6.72b (±0.93)
C. eST plus anti-IGF-I 129,375b (±15581) 7.14b (±0.93)
D. IGF-I 113,437b (±15581) 6.05b (±0.93)
E. IGF-I plus anti-IGF-I 150,562b (±15581) 5.97b (±0.93)

a'bMeans within columns with different superscripts are different (P<0.05).
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vitro (Table 7.1). These data are in agreement with previous reports in rats (deMoura et 

al., 1997), pigs (Xia et al., 1994), cattle (Schams et al., 1988; Armstrong et al., 1996; 

Khamsi and Armstrong, 1997), sheep (Mariana et al., 1998) and goats (Behl and 

Pandey, 1999). For example, Armstrong et al. (1996) demonstrated that in cultured 

bovine granulosa cells, IGF-I addition to the culture medium markedly increased both 

cell proliferation as well as progesterone production. In this study, it was also 

determined that IGF-I acted in synergism with FSH, as addition o f FSH and IGF-I 

enhanced the response in the granulosa ceils over that o f  either FSH or IGF-I alone 

(Armstrong et al., 1996). This same synergistic effect o f IGF-I with FSH has also been 

demonstrated in the rat, where addition of IGF-I caused a 3-fold increase in 

progesterone production by cultured granulosa cells over FSH alone (deMoura et al.,

1997). It was concluded from that experiment that the primary role for intrafollicular 

IGF-I is to enhance the responsiveness o f the granulosa cells to available gonadotropins 

(deMoura et al., 1997).

In humans, IGF-I has been shown to increase estradiol, but not progesterone, 

production by granulosa cells cultured in vitro (Mason et al., 1993; Foster et al., 1995). 

This same effect has been shown in cultured porcine follicles (Siroikin et al., 1998a) 

and granulosa cells (Howard and Ford, 1994), where intrafollicular estradiol production 

was increased with the addition o f IGF-I to the culture medium. The reason for the 

difference in which steroid is produced by in vitro cultured granulosa cells remains 

unclear, but is likely due to the specific culture conditions and/or the duration of culture 

o f the granulosa cells. For instance, Bemdtson et al. (1995) reported that the 

gonadotropin concentrations must be carefully regulated to maintain follicular-phase
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steroid production (estradiol) by cultured bovine granulosa cells. Also, these authors 

state that in v/Tro-cultured granulosa cells usually produce more progesterone than 

estradiol due to a change in cellular type during culture, as the granulosa cells generally 

more closely resemble luteal cells (Bemdtson et al., 1995). In addition, it is well known 

that during follicular atresia and/or luteinization, estradiol production by the granulosa 

cells is diminished, while progesterone production increases (Gerard and Monget,

1998). It was for this reason that, in the present study, progesterone production was 

chosen as a representation o f the steroidogenic activity of cultured equine granulosa 

cells. Regardless of which specific steroid is measured, the fact remains that IGF-I does 

enhance steroid production in in v/Vro-cultured granulosa cells o f virtually every species 

studied to date.

It has been well documented that granulosa cells contain receptors for both ST 

(Sharara and Nieman, 1994), as well as for IGF-I (Spicer and Echtemkamp, 1995; 

Stewart et al., 1997). Therefore, it is likely that many o f the effects on ovarian 

follicular growth and development are IGF-I mediated, since treatment o f granulosa 

cells with ST causes increased IGF-I production by the granulosa cells (Xia et al., 1994; 

Samaras et al., 1996; Siroikin et al., 1998a,b). However, it has yet to be clearly 

demonstrated whether these effects are entirely IGF-I mediated, or whether there is a 

direct effect of ST on granulosa cells proliferation and steroid production. In the 

present study, while cellular proliferation as well as steroid production were enhanced 

by ST and IGF-I relative to control medium (Table 7.1), the apparent lack o f  sufficient 

binding o f the anti-IGF-I antibody to available IGF-I leaves this question unanswered. 

However, the inability o f eST to increase the concentration o f IGF-I in the medium in
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this study suggests that some o f these effects may be independent of IGF-I and could be 

caused by direct stimulation o f the granulosa cells by ST. Alternatively, an increase in 

intracellular IGF-I to be utilized in an autocrine fashion by the granulosa cells cannot be 

ruled out.

Apoptosis, or regulated cell death, is thought to be the primary mechanism 

through which granulosa cells are destroyed within the follicle, which then results in 

follicular atresia (Kaipia and Hsueh, 1997). One possible explanation for the observed 

effects on follicle numbers in live animals treated with ST could include a model for 

attenuation o f granulosa cells apoptosis through increased intrafollicular IGF-I, thereby, 

increasing the functional life o f the follicles. This hypothesis is supported by the results 

o f  Guthrie et al. (1998), where it was demonstrated that IGF-I prevented spontaneous 

apoptosis in cultured porcine granulosa cells. Also, while FSH is the best suppressor of 

apoptosis in the granulosa cells (60% suppression), IGF-I has been shown to be very 

effective in suppressing apoptosis o f cultured granulosa cells in the rat (45% 

suppression) (Chun et al., 1996). This provides yet another possible model for the 

influence that ST and IGF-I have on reproductive function in mammalian species, and 

may provide a partial explanation for the results seen with in vitro culture o f granulosa 

cells, since the prevention o f apoptosis would lead to a greater number o f viable 

granulosa cells available to then cause an increase in cellular proliferation and steroid 

production.

In conclusion, results from the present study in equine granulosa cells confirm 

those data from earlier reports in other domestic species that both ST and IGF-I enhance 

cell proliferation as well as steroid production following in vitro culture. However, the
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question remains as to whether these effects are entirely IGF-I mediated or whether 

there is a  direct effect of ST on the granulosa cells. Further studies are needed in order 

to clarify this. Also, an alternative method for studying the effects of ST and IGF-I on 

granulosa cells function, such as intrafollicular treatment as described by Gastal et al. 

(1995), may be more beneficial in determining the actual effects of these growth factors 

in the live animal when compared with those of in vitro studies centering around the 

culture o f isolated granulosa cells in a foreign environment.
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CHAPTER VIII

THE EFFECTS OF eST ON FOLLICULAR DEVELOPMENT AND PLASMA 
AND FOLLICULAR FLUID HORMONE PROFILES IN CYCLIC MARES 

TREATED FOR ONE ESTROUS CYCLE

INTRODUCTION

It is well known that somatotropin (ST) and insulin-like growth factor-I (IGF-I) 

are intricately involved in mammalian reproductive physiology. In recent years, this 

area o f reproductive biology has come under intense investigation in most domestic 

species and in humans. It has been demonstrated that administration o f exogenous ST 

increases follicle numbers on the ovaries o f women (Owen et al., 1991a), cattle (Lucy et 

al., 1993), pigs (Echtemkamp et al., 1994a) and mares (Cochran et al., 1999). The 

precise mechanism o f action for ST on ovarian follicular development is not currently 

known, however, it is believed that ST causes these effects, at least in part, through 

stimulation of IGF-I, although a direct effect o f ST on follicular growth is possible 

(Gong et al., 1991). Furthermore, since many o f the studies involving ST admin­

istration are representative o f  animals with supraphysiologic circulating concentrations 

of ST, a pharmacologic, rather than a physiologic, effect may have been seen.

However, in studies involving hypophysectomized ewes, where both 

gonadotropins and ST are absent, it was determined that gonadotropin treatment alone 

was insufficient in stimulating follicle growth, and that ST was required in addition to 

gonadotropins for normal ovarian folliculogenesis to take place (Eckery et al., 1997). 

Also, in Ames dwarf mice, a condition in which no somatotrophs develop within the 

adenohypophysis, which further causes an absence of ST production, a significant 

reduction in gonadotropin secretion and follicular development was noted, and
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administration o f ST reversed these effects (Bartke et al., 1996). It can therefore be said 

that ST production and secretion is required for normal reproductive processes to take 

place.

It is well known that ST stimulates hepatic IGF-I production, and that animals 

receiving ST administration have elevated intrafollicular IGF-I (Gong et al., 1991; 

Monget et al., 1993), but whether these increases in intrafollicular IGF-I are a result o f 

increased production of IGF-I within the follicle, or if the excess IGF-I is a product o f 

the plasma is not fully understood. However, it has been demonstrated that granulosa 

cells do possess the capacity to produce IGF-I (Xia et al., 1994), and that IGF-I mRNA 

is highest in pre-ovulatory follicles (Yuan et al., 1998), which suggests that the 

increased intrafollicular IGF-I is, at least in part, produced locally within the follicle by 

the granulosa cells. This is important, since several studies have demonstrated the 

synergistic actions of IGF-I on gonadotropin stimulation of ovarian follicles in both 

humans and rats (Homburg et al., 1988; European and Australian Multicenter Study, 

1995; deMoura et al., 1997). For example, in in v/7ro-cultured rat granulosa cells, the 

response to FSH administration was trebled when IGF-I was given (deMoura et al., 

1997). Also, IGF-I increases LH receptor numbers in rat granulosa cells, which would 

enhance the follicular response to available LH (Liu et al., 1998). It is therefore likely 

that ST administration causes some o f its effects on follicular development through 

increasing systemic and intrafollicular IGF-I, thereby, enhancing the ability o f  the 

growing follicle(s) to respond to available gonadotropins.

It is currently not known whether the increases noticed in ovarian follicle 

numbers resulting from ST administration are a result of increased follicular activation
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o f gonadotropin-independent follicles, or whether a different mechanism, such as 

delaying follicular atresia is involved. It is well known that follicular growth and 

development occurs in “waves” in many domestic species, and that by increasing the 

number o f follicles recruited into a follicular wave one could then possibly increase the 

ovulation rate (Lucy et al., 1993; Ginther and Bergfelt, 1993; Buratini et al., 1997).

The problem with this approach is that the recruitment o f small antral follicles 

into a follicular wave occurs at a time when the follicles are not gonadotropin-sensitive, 

and at the present time, it is not fully known what factors are involved in follicle 

activation and recruitment into a follicular wave. It is possible that ST and/or IGF-I 

may enhance follicular activation and recruitment, but if  this is the case, then ST 

administration should be carried out for a relatively long (1 to 3 months) duration 

(Bergh et al., 1994). Conversely, ST/IGF-I may act through a different mechanism to 

increase ovarian follicle numbers, such as by either rescuing follicles from the process 

of atresia, or by prolonging the atretic process through preventing apoptosis o f the 

follicular granulosa cells. These possibilities should not be overlooked, since they are 

the two most common methods for FSH stimulation in ovarian superstimulation 

treatments (Mihm et al., 1997).

In the domestic mare, little has been published as to the importance o f ST/IGF-I 

in ovarian follicular growth and development. In one study, Cochran et al. (1999) 

demonstrated that cyclic mares receiving eST had increased numbers o f small follicles 

present on their ovaries at 3 and 5 days after treatment and on the first day o f standing 

estrus. However, this is the only study published to date demonstrating any effects of 

eST administration on reproductive function in cyclic mares. It was not known from
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this study whether the effects seen by the authors were caused by an increase in the 

number o f follicles recruited into a follicular wave or whether ST administration 

delayed or prolonged the follicular atretic process in eST-treated mares.

The purpose o f the present study was, therefore, to determine the effects o f eST 

administration to cyclic mares for one estrous cycle on (1) follicular wave parameters, 

(2) growth and atresia of individual follicles and (3) plasma and follicular fluid 

concentrations o f IGF-I, estradiol and progesterone.

MATERIALS AND METHODS

A total o f 10 reproductively sound cyclic mares of mixed breeds, all in good 

body condition, were randomly allocated into one of two treatment groups. Treatment 

A consisted of mares (n=5) administered 25 pg eST (EquiGen, BresaGen Ltd., 

Thebarton, South Australia) per kg body weight once daily for one complete estrous 

cycle (day 1 = first day of treatment; corresponds to day 1 post-ovulation). Mares in 

Treatment B (n=5) were similarly administered a sodium borate solution, which served 

as the vehicle for the eST. Follicle development and plasma and follicular fluid 

hormone profiles were monitored over a total of three estrous cycles in order to 

establish normal parameters for each mare, as well as to determine if  any carryover 

effects would be seen from eST administration (Pre-Treatment = Cycle A, Treatment = 

Cycle B, Post-Treatment = Cycle C).

Experimental Procedures

Follicle growth and developmental patterns were monitored via transrectal 

ultrasonography in all mares as previously described by Cochran et al. (1999). Briefly, 

a 5 MHz linear transducer was inserted into the rectum of each mare and consecutive
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sagittal sections o f each ovary were photographed using a thermal printer attached to 

the ultrasound machine. Each follicle present was identified, and measurements were 

taken o f each individual follicle at its maximum diameter three times per week. The 

diameter o f each follicle was plotted over time for each mare in order to determine a 

follicular growth and development profile for each mare. These measurements were 

taken beginning on day 1 post-ovulation o f Cycle A (pre-treatment) and continuing until 

the day of ovulation of Cycle C (post-treatment) for all mares.

A follicular wave was defined as all follicle development beginning with the 

time the largest follicle was retrospectively identified until this follicle reached its 

maximum diameter and ovulated. The number of follicular waves per mare per cycle 

and the number o f follicles per wave per mare per cycle was analyzed to determine if  

eST administration would effect any of these parameters. Also, the interval o f growth 

for each follicle, defined as the time in days that a follicle was retrospectively identified 

until it reached its maximum diameter, was analyzed for each mare within treatment. In 

addition, the interval o f follicular atresia, which was defined as the time in days a 

follicle reached its maximum diameter until it was no longer identifiable by ultrasound, 

was analyzed per mare within treatment for each estrous cycle studied. Finally, the 

number o f ovulations per mare per treatment group was analyzed for all estrous cycles 

as well.

Plasma and follicular fluid samples were collected 12 to 24 hours prior to 

ovulation for each estrous cycle (Cycles A, B and C; n=3 collection procedures/mare) 

for mares in both treatments. From each mare, 0.5 ml o f follicular fluid was collected 

via transvaginal ultrasound-guided follicular aspiration from (1) two follicles <10 mm
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in diameter, (2) one follicle 10 to 20 mm in diameter and (3) the pre-ovulatory follicle 

present at the time of collection. Plasma samples were collected via jugular veni­

puncture from each mare on the day o f follicular fluid collection. All plasma and 

follicular fluid samples were placed in individually labeled 15-ml conical tubes, frozen 

within 30 minutes of collection and stored until RIA was performed to determine the 

concentrations o f IGF-I (Sticker et al., 1995), estradiol and progesterone.

Statistical Analysis

The number of follicular waves per mare per treatment group as well as the 

number o f follicles per follicular wave were analyzed using ANOVA (Cochran et al.,

1999). In addition, the number of ovulations per mare per treatment and the number of 

days o f  follicular growth and atresia per follicle were analyzed with a similar ANOVA 

procedure (Cochran et al., 1999). Finally, plasma and follicular fluid IGF-I 

concentrations were analyzed using a split-plot ANOVA (Cochran et al., 1999). 

RESULTS

Follicular Development

The effects of daily eST administration to cyclic mares on follicle populations 

are presented in Table 8.1. All mares exhibited one or two waves of follicle growth per 

estrous cycle regardless of treatment, and there was no effect of treatment with eST on 

the number of follicular waves per mare per cycle, the total number of follicles per 

follicular wave or the length (in days) of follicle growth in the present study. However, 

administration with eST did effect the number o f days required for follicular atresia to 

be completed, as follicles from mares in Treatment A remained on the ovaries for a 

longer duration than those from mares in Treatment B during the treated cycle (Cycle

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B), but not for the pre- or post-treated cycles (Cycles A and C) (8.78 ± 0.64 vs. 6.39 ± 

0.56 for Treatments A and B, respectively, P<0.05).

Also, mares treated with eST ovulated more follicles (P<0.05) than 

contemporary control mares during Cycle B, but not during Cycles A and C, 

demonstrating a positive effect of eST on large follicle development (1.6 ± 0.1 vs. 1.0 ± 

0.1, respectively). There were no detectable effects o f  eST administration on follicular 

parameters in the post-treated cycle (Cycle C) in the present study, suggesting a 

relatively short-lived effect o f eST administration on ovarian follicular dynamics in the 

domestic mare.

Hormone Profiles

Analysis of plasma and follicular fluid steroid concentrations (estradiol and 

progesterone) revealed no detectable differences between treated and control mares for 

any o f the estrous cycles studied. However, plasma IGF-I was elevated in mares 

receiving eST during Cycle B when compared with control mares (610.7 ± 56.1 vs. 

221.3 ± 56.1 for mares in Treatments A and B, respectively), but not for Cycles A and 

C (Figure 8.1). Also, follicular fluid collected from pre-ovulatory follicles 12 to 24 

hours prior to ovulation had higher IGF-I levels (471.1 ± 44.3 vs. 269.7 ± 44.3 for mares 

in Treatments A and B, respectively) in eST-treated mares than in control mares during 

Cycle B (Figure 8.1).

Finally, mares in Treatment A had higher IGF-I concentrations in the follicular 

fluid from pre-ovulatory follicles when compared with follicular fluid from small (<10 

mm) or medium (10 to 20 mm) follicles within the same mares (Figure 2) during Cycle 

B. This was not detected in untreated control mares, as no differences were detected in
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Table 8.1. Effect o f eST administration to cyclic mares on follicular atresia and 
ovulatory response

Treatment Time of atresia (days) Ovulations/mare

A. eST 8.78a ± 0.64 1.6“ ±0.1

B. Control 6.39b ± 0.56 1.0b±0.1

iLbMeans within columns with different superscripts are different (P<0.05).
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Figure 8.1. Plasma and follicular fluid IGF-I concentrations (±SEM) for cyclic mares 
administered once daily injections o f eST. (*) Denotes significant 
differences between treatment groups.
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Figure 8.2. Follicular fluid IGF-I concentrations (±SEM) for small, medium and pre­
ovulatory sized follicles from cyclic mares administered once daily 
injections o f eST. (*) Denotes a significant difference.
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follicular fluid IGF-I concentrations between small, medium or pre-ovulatory follicles 

(Figure 8.2).

DISCUSSION

The importance of ST and IGF-I on reproductive function in domestic species 

and humans has become a major research focus in reproductive biology over the past 

decade. It has been clearly demonstrated that ST administration increases the number 

o f visible follicles on the ovaries of cows (Gong et al., 1991; Lucy et al., 1993; Gong et 

al., 1996), women (Owen et al., 199al), pigs (Spicer et al., 1992; Echtemkamp et al., 

1994a) and mares (Cochran et al., 1999). Also, perifused rabbit ovaries exposed to ST 

responded with increased follicle numbers, as well as with higher intrafollicular IGF-I 

concentrations (Yoshimura et al., 1994). In addition, ST is a potent stimulator o f  both 

systemic and intrafollicular IGF-I in virtually all species studied to date (Hugues et al., 

1991; Owen et al., 1991a,b; Echtemkamp et al., 1994a,b; Yoshimura et al., 1994; Gong 

et al., 1997).

In vitro studies using cultured granulosa cells have demonstrated that most of 

the effects seen with ST administration, such as steroid production and cellular 

proliferation, are IGF-I mediated, since the addition o f  anti-IGF-I antibodies can negate 

the positive effect o f ST administration (Gong et al., 1991). However, Izadyar et al. 

(1997) demonstrated that some of the positive effects demonstrated by ST admin­

istration on cumulus expansion and oocyte maturation were the result o f a direct effect 

on ST and not mediated by IGF-I. It is therefore likely that the effects noted from 

administration o f exogenous ST arise from both a direct effect of ST on follicular 

granulosa cells, as well as an indirect effect through increased IGF-I production.
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Unfortunately, the exact mechanism through which ST/IGF-I exerts its effects 

on follicle development is not fully understood. Although it is known that both ST and 

IGF-I are mediators of gonadotropic actions on the follicular cells, enhancing the 

response o f the granulosa cells to available gonadotropins (Yoshimura et al., 1994), this 

is an insufficient explanation as to how ST/IGF-I is able to increase the number of 

small, presumably gonadotropin-independent follicles of treated animals.

Therefore, one of the goals o f the present study was to determine if  eST 

administration to cyclic mares would result in an increase in the number o f  follicles 

recruited into a follicular wave. The exact mechanism of early follicle activation and 

recruitment into a follicular wave is thought to be gonadotropin-independent, but is 

poorly understood at present (Britt, 1988). Although, growing evidence suggests that 

various growth factors and/or changes in local ovarian blood flow could begin the 

process (Staigmiller, 1982; Driancourt et al., 1991; Gutierriz et al., 1997; Bao and 

Garverick, 1998).

In this study, there was no effect of eST on the number of follicles per follicular 

wave between treated and control mares. Furthermore, there was no difference in the 

number o f follicular waves per estrous cycle between treated and control mares, as all 

mares exhibited either one or two waves o f follicle growth per cycle studied, as has 

been previously reported for cyclic mares (Buratini et al., 1997). Therefore, it is 

unlikely that the increase in follicle numbers demonstrated previously for cyclic mares 

administered eST (Cochran et al., 1999) is a result of an increase in the number o f 

small, gonadotropin-independent follicles available for recruitment into a follicular 

wave.
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Previous reports in rats (Chun et al., 1996) and pigs (Guthrie et al., 1998) have 

suggested that one mechanism o f action for ST/IGF-I may be to decrease the apoptotic 

index o f the granulosa cells, thereby, prolonging the time required for a follicle to 

complete the atretic process. Chun et al. (1996) demonstrated that, while FSH was the 

best suppressor o f granulosa cell apoptosis (60% suppression), IGF-I was a close 

second in suppression (45%), with very minimal suppression seen from other growth 

factors and gonadotropins. It is well known that the major mechanism o f action of FSH 

in superstimulation protocols is to “rescue” follicles already in the growth stage from 

the process of atresia, which is precipitated by spontaneous apoptosis of the granulosa 

cells. It is therefore likely that this could be one mechanism for the ability o f ST/IGF-I 

to increase the number of follicles in treated subjects. In the present study, it was 

determined that eST administration caused a significant increase in the number of days 

required for the completion of atresia of the follicles in treated mares (Table 8.1). 

Therefore, we conclude that a prolongation of follicular atresia, rather than an increase 

in small follicle growth, is likely the mechanism through which ST/IGF-I causes greater 

numbers of small- and medium-sized follicles to be present on the ovaries o f treated 

mares.

ST administration has also been shown to improve the ovulatory response in 

cattle (Rieger et al., 1991), as well as women (Owen et al., 1991a), undergoing ovarian 

superstimulation protocols. It has been demonstrated that these effects are partly the 

result o f an ability o f ST and IGF-I to work in synergy with available gonadotropins, 

enhancing the follicular response to available gonadotropins (Homburg et al., 1988; 

Owen et al., 1991b; Hugues et al., 1991; Yoshimura et al., 1994; European and
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Australian Multicenter Study, 1995; deMoura et al., 1997). This can partially be 

explained by the role of intrafollicular IGF-I on dominant follicle selection. It is 

currently believed that changes in bioavailable intrafollicular IGF-I are, in part, 

responsible for the process o f dominant follicle selection in mammalian species (Owen 

et al., 1991b). As follicles grow and mature, the ratio o f IGF-I:IGF-I binding proteins 

(IGFBP) changes within the follicle, allowing more IGF-I to be available to bind to the 

granulosa cells and, thereby, enhance the response o f these cells to available 

gonadotropins (Monget et al., 1993; De La Sota et al., 1996; Funston et al., 1996; Yuan 

etal., 1998).

One possible explanation for the synergy exhibited between IGF-I and 

gonadotropins could be due to an increase in the number of gonadotropin receptors on 

the granulosa cells o f  the growing follicles, allowing for more gonadotropin binding to 

the receptors and, thus, an increased growth response (Zhang et al., 1987). Beam and 

Butler, (1997) demonstrated that in postpartum dairy cows that had ovulated during the 

first 2-week interval postpartum had at least 40% greater plasma concentrations of IGF- 

I compared with those cows not ovulating early postpartum, further suggesting the 

importance o f  IGF-I in reproductive function. In the present study, administration of 

eST to cyclic mares caused a significant increase in the number o f ovulations per mare 

during Cycle B (treatment cycle) when compared with contemporary control mares or 

with the same mares during both the pre- and post-treatment cycles (Cycles A and C, 

respectively, [Table 8.1]). In addition, previous studies from our laboratory have 

demonstrated that seasonally anovulatory mares respond to gonadotropin therapy at a 

much greater frequency when eST is added to the treatment regimen. These results are
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in agreement with the current hypothesis that increased intrafollicular IGF-I 

concentrations are able to enhance gonadotropic actions on follicular cells.

In the present study, only fluid from pre-ovulatory follicles showed increased 

IGF-I concentrations in response to eST treatment (Figure 8.1). The intrafollicular IGF- 

I concentrations o f  pre-ovulatory follicular fluid was parallel to, but less than, plasma 

IGF-I levels (Figure 8.1), as has been previously reported for humans (Monget et al., 

1993). Also, there were no differences in intrafollicular IGF-I concentrations from 

small, medium or pre-ovulatory follicles in untreated control mares (Figure 8.2). This is 

in agreement with previous reports in women (Tapanainen et al., 1992; Thierry Van 

Dessel, et al., 1996) and cattle (Spicer and Enright, 1991), where no difference was 

detected in intrafollicular IGF-I across follicle sizes. However, other reports in cattle 

(Mihm et al., 1997) and women (Rabinovici et al., 1990) have shown the opposite, that 

there is indeed higher amounts o f IGF-I present in the follicular fluid of large follicles 

when compared with small- and medium-sized follicles. At present, it is still not known 

which case will prove to be correct, but the fact remains that, even if there are no 

differences in absolute values of intrafollicular IGF-I, there are differences in the 

amounts of bioavailable IGF-I between small, medium and pre-ovulatory follicles due 

to changes in intrafollicular IGFBP production (Owen et al., 1991b).

It is currently believed that the increase in intrafollicular IGF-I seen during ST 

administration comes from an increase in both local as well as systemic production o f 

IGF-I. This is due to the fact that, although ST administration causes increased hepatic 

production o f IGF-I (Gong et al., 1997), which could filter into the follicular cavity via 

circulation through the plasma, ST treatment also causes a significant increase in IGF-I
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production by the granulosa cells within the follicle (Yoshimura et al., 1996a). Using 

perifused rabbit ovaries, Yoshimura et al. (1996a) demonstrated that approximately 

three times more IGF-I mRNA was stimulated in follicular granulosa cells exposed to 

ST when compared with those follicles that were not exposed to ST. This verifies that 

follicular cells do have the capacity to produce and secrete IGF-I in response to ST 

stimulation, and that this production was at least partially responsible for the increase in 

follicular fluid levels of IGF-I in these perifused rabbit ovaries (Yoshimura et al., 

1996a). Interestingly, it has been demonstrated in cattle that granulosa cells from pre­

ovulatory follicles contain much greater amounts of IGF-I mRNA than cells from 

smaller follicles, further suggesting an important role o f intrafollicular IGF-I on 

dominant follicle selection (Yuan et al., 1998). Also, it has been shown that 

immunization of cattle against somatotropin releasing factor lowers intrafollicular IGF- 

I, as a result o f the diminished capacity to produce and secrete ST (Kirby et al., 1993; 

Stanko et al., 1994).

It has been demonstrated that ST administration can increase intrafollicular 

steroid concentrations in cattle (Spicer and Enright, 1991), women (Tapanainen et al., 

1992) and pigs (Echtemkamp et al., 1994a). Increases in intrafollicular estradiol and 

progesterone can be brought about through the ability of IGF-I to increase 3 P* 

hydroxysteroid dehydrogenase and aromatase enzyme mRNA in the granulosa cells of 

treated subjects (Tapanainen et al., 1992). However, while some studies show an 

increase in intrafollicular estradiol (Echtemkamp et al., 1994b; Howard and Ford, 1994) 

or progesterone (Xia et al., 1994), others have reported that treatment with ST produces 

no detectable increases in intrafollicular estradiol and progesterone secretion (Spicer et
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al., 1992; Tapanainen et a l ,  1992). In the present study, there was no effect o f eST 

administration to cyclic mares on either plasma or follicular fluid concentrations of 

estradiol or progesterone. In addition, there was no effect o f time (Cycle A vs. Cycle B 

vs. Cycle C) on either plasma or intrafollicular steroid levels in this study. Further 

studies are needed using cyclic mares to confirm these findings.

In summary, we have demonstrated that the administration o f eST does effect 

reproductive function in cyclic mares. Although no effect was seen in the number of 

follicles recruited into a follicular wave or the number o f follicular waves per estrous 

cycle, it was determined that eST treatment to cyclic mares did cause a prolongation of 

the follicular atretic process, allowing the regressing follicles to remain on the ovaries 

for a longer period of time.

As expected, plasma IGF-I concentrations were elevated in eST-treated mares, 

and intrafollicular IGF-I was higher in pre-ovulatory follicles as well. This could be the 

reason for the increase in ovulation rate noticed in mares administered eST during 

Cycle B (treatment cycle). There were, however, no differences in plasma or 

intrafollicular concentrations o f estradiol or progesterone between treated and control 

mares in this study. The present study provides strong evidence as to the importance of 

ST and IGF-I on reproductive processes in the domestic mare, and partially explains 

some of the underlying mechanisms involved in dominant follicle selection and growth. 

Further studies are needed in this area o f  equine reproductive physiology to evaluate 

these effects further.
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

Treatment o f domestic species and women with somatotropin (ST) has been 

shown to have dramatic effects on follicular growth and development at the level o f the 

ovary. To date, little has been reported as to the effects o f  ST administration to the 

domestic mare. In the present series of experiments, it was demonstrated that ST 

administration increases ovarian follicles in both cyclic as well as seasonally 

anovulatory mares. This is similar to the findings reported for other species, where ST 

administration caused a higher number of ovarian follicles to be detectable via 

ultrasound during the ST treatment period. The mechanism o f action o f ST on ovarian 

follicular dynamics has yet to be conclusively established. In the mare, as in other 

species, a significant rise in peripheral as well as intrafollicular IGF-I was detected as a 

result o f  ST treatment, and it is currently believed that this excess IGF-I is, at least in 

part, responsible for the ovarian effects that occur with ST administration. Since a 

higher number o f ovarian follicles was found with ST administration to both cyclic and 

anovulatory mares, in the present study, we hoped to identify the mechanism of action 

of these effects. Also, we wished to attempt to incorporate these findings into a 

practical scheme to improve the fertility of the domestic mare.

In cyclic mares, it was noticed that administration o f equine ST (eST) not only 

significantly increased the number of ovarian follicles present during the treatment 

interval, but it also increased the number of ovulations per mare when compared with 

untreated control animals. Since no effects were noticed in circulating plasma gonado­

tropin concentrations, it was hypothesized that ST administration, primarily through
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increasing circulating IGF-I levels, enhanced the ability of the follicles to respond to 

available gonadotropins, thus enabling more follicles to respond to these gonadotropins 

by growing to larger sizes. In addition, it was determined that the ST treatment to 

cyclic mares did not effect the number of follicles recruited into the cohort o f follicles 

that make up a  follicular wave. Rather, ST administration caused a delay in the atretic 

response o f the ovarian follicles, prolonging the period of time required for the follicles 

to completely regress.

This would explain why increased numbers of ovarian follicles are typically 

noted in animals treated with ST, since, after ST administration, the affected follicles 

would be present on the ovaries for a longer period o f time and would therefore appear 

to be more numerous when evaluating the ovaries via ultrasound. This mechanism of 

action should come as no surprise, since this is very similar to the mechanism of action 

of FSH, which is thought to “rescue” follicles from the atretic process, so that increased 

numbers o f follicles can be made available for the harvesting o f multiple 

oocytes/embryos from treated individuals.

There was no clear relationship detected as to the ability of ST to stimulate 

above normal concentrations o f steroid hormones circulating in the blood. In general, 

ST administration had no effect on circulating steroid hormone levels in treated mares, 

but did increase intrafollicular steroid concentrations in large-sized follicles. Also, as 

demonstrated in other species, both ST and IGF-I exposure significantly increased 

steroidal output by in vitro cultured equine granulosa cells, demonstrating the ability of 

both hormones to stimulate granulosa cell steroidogenesis. As to the effects o f ST/IGF-
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I on gonadotropin production and secretion, there was no evidence o f any effect of 

elevated ST or IGF-I on circulating FSH or LH concentrations in any animal studied.

In seasonally anovulatory mares, it was determined that ST administration 

caused a significant increase in the number o f ovarian follicles. However, only follicles 

less than 15 to 20 mm in diameter were detected in these mares, which would severely 

limit the use of this hormone in a practical setting. Therefore, since treatment of 

various species with ST has been shown to cause an enhancement o f the growing 

follicles to available gonadotropins, it was hypothesized that treatment of seasonally 

anovulatory mares with GnRHa in addition to ST may cause an increase in the 

ovulatory response o f these mares to the GnRHa.

This proved to be the case, since ST administration in addition to GnRHa 

treatment significantly increased the number of mares that grew large, pre-ovulatory- 

sized follicles, as well as increased the number of mares ovulating when compared to 

mares treated with GnRHa alone. In addition, the ovulations detected in mares treated 

with GnRHa plus ST were determined to be fertile, since pregnancies and live births 

were accomplished using this treatment regimen. It is also o f importance that once 

daily ST treatment was utilized in conjunction with once daily GnRHa treatment to 

induce ovulation in seasonally anovulatory mares. This is the first report, to our 

knowledge, of the induction o f ovulation in seasonally anovulatory mares using only 

once daily injections o f GnRHa. We have demonstrated that ST administration can 

enhance the follicular response to available gonadotropins in seasonally anovulatory 

mares, and that treatment o f these mares with ST allows for a more predictable, less 

variable ovulatory response.
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One o f  the primary goals o f this research was to develop an ovarian stimulation 

protocol for the collection of oocytes from mares for use in in vitro fertilization 

techniques. Once a repeatable method o f producing equine embryos and foals with in 

vitro methods was developed (e.g., ICSI), a method of increasing the number o f viable 

oocytes collected from individual mares was evaluated. It was determined that ST 

administration did not increase the number o f  available ovarian follicles in altrenogest- 

treated mares when oocytes were collected from these mares at regular 10-day intervals. 

However, when the mares were treated for 21 consecutive days prior to oocyte 

collection, there was a significant increase in the number of ovarian follicles available 

for collection when compared with control mares treated only with altrenogest.

This further implies that the ovarian effects noted with ST treatment are 

enhanced by a prolongation of follicular atresia, rather than an increase in the number of 

new, developing follicles within a follicular wave. If  ST administration caused its 

effects by increasing the number of follicles within a follicular wave, then it would be 

expected that mares treated in this fashion would have a higher number o f ovarian 

follicles available for aspiration at any time during the treatment period. Since oocyte 

collections were performed at 10-day intervals in the present study, which coincide with 

the approximate interval of follicular wave growth in the domestic mare, it can be 

concluded that no increase in the number of follicles within a follicular wave occurred 

in ST-treated animals, as no differences in ovarian follicle numbers were detected 

between treated and control mares. It should be noted, however, that a method of 

repeatably producing equine embryos in vitro, which were capable o f producing live
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foals, was developed in conjunction with a protocol that allows for multiple oocytes to 

be collected from individual mares at a given time.

In addition, it was demonstrated that most of the effects o f  ST administration at 

the level of the ovary is due primarily to increased IGF-I exposure o f the follicular 

granulosa cells. This was shown in vitro by culturing equine granulosa cells in the 

presence o f either ST or IGF-I. In both cases, the cellular response was similar, with 

both hormones stimulating cellular proliferation as well as cellular steroid production to 

a similar degree.

In summary, we conclude that ST administration to the domestic mare enhances 

the ovarian response both directly and indirectly through IGF-I by stimulating granulosa 

cell function and by enhancing the responsiveness of the granulosa cells to available 

gonadotropins, possibly by increasing gonadotropin receptors within these cells. 

Finally, it was determined that the increases in ovarian follicular numbers detected with 

ST administration were primarily a result o f prolonging the atretic process by the 

ovarian follicles as a direct result o f ST treatment. Further studies are needed in this 

area o f equine follicular dynamics to elucidate more thoroughly the mechanism of 

actions of ST and IGF-I in the equine ovary.
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