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Abstract: This paper develops a choice model for environmental public goods which allows for 

consumers to learn about their preferences through consumption experiences. We develop a theoretical 

model of Bayesian updating, perform comparative statics over the model, and show how the theoretical 

model can be consistently incorporated into a reduced form econometric model. Our main findings are 

that in a Random Utility Model (RUM) discrete choice model, a subject’s scale should increase and the 

variability of scale should decrease with experience if subjects are Bayesians. We then estimate the 

model using field data regarding preferences for one particular public good, water quality. We find 

strong evidence that additional experience increases scale, thereby makes consumer preferences more 

predictable from the econometrician’s perspective.  We find supportive but less convincing evidence 

that experience decreases the variability of scale across subjects.    
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1. Introduction 

Consumers often make decisions under uncertainty about their preferences, such as when a firm 

introduces a new product. Experience goods are goods for which consumers are uncertain about their 

preferences and learn about them with each consumption event (Nelson, 1970; 1974; Stigler et al., 

1977). Economists often model experience goods by assuming consumers have a true preference 

parameter, or type, which they learn about through Bayesian updating. For private goods, preference 

uncertainty for an experience good is revealed in agents’ purchasing decisions over time. However, for 

public goods or quasi-public goods, rich panel data to test and control for the relationship between 

experience and preference uncertainty or learning often do not exist because markets for public and 

quasi-public goods are often incomplete  (Carson et al., 2014). 

In the environmental economics literature, experience with a public good has been shown to matter 

both for measures of  the predictability of consumers’ preferences and as a determinant of willingness 

to pay (WTP) for public goods (Boyle et al., 1993; Adamowicz, 1994; Whitehead et al., 1995; Cameron et 

al., 1997; Breffle et al., 2000; Ferrini et al., 2007; Hanley et al., 2009).1  However, there is no broadly 

accepted way to test for and control for the effects and presence of experience and learning on WTP.2 

This is particularly important for non-market valuation methods such as contingent valuation and 

discrete choice experiments (DCE) both because the public good being valued may be unfamiliar to 

many respondents, and because respondents are presented with information describing the public good 

at the beginning of the study (Bateman et al., 2004; Carson et al., 2011).   

This paper develops a theoretically consistent and readily implementable method of explicitly 

controlling for the effect of experience on preference and willingness to pay estimates for public goods.3  

Motivated by previous work in the literature, we use a simple Bayesian theoretical model to identify 

how additional experience would affects a consumer’s preference uncertainty for an experience good 
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from a Bayesian perspective (Ackerberg, 2003).  We then link the theoretical model to a reduced form 

generalized mixed logit model (G-MNL) widely used in discrete choice experiments to estimate demand 

for public good and quasi-public goods.  The extended G-MNL model both tests and controls for the 

effects of previous experience with the public good in estimating willingness to pay.  It allows 

preferences to become more deterministic both within and across subjects from the perspective of the 

analyst as experience with the good increases.4 We then estimate the reduced form econometric model 

using a data set well-suited to test for the effects of experience on preference uncertainty.   

The Bayesian theoretical model leads to two testable hypotheses when applied to the reduced form 

econometric model.  First, in the Bayesian exercise, a consumer becomes less uncertain about their own 

preferences for a public good (e.g., their type) as they have more consumption experiences (e.g., more 

signals).  Our econometric model controls for the effect of experience on preference uncertainty by 

allowing the model’s scale parameter to be a function of experience.  The scale parameter weights the 

importance of the deterministic portion of a random utility model (RUM) relative to the idiosyncratic 

portion. An increase in the scale parameter increases the relative importance of the deterministic 

portion of the utility function.  Put another way, utility over a good, a public good becomes more 

deterministic from the econometrician’s perspective as the scale parameter increases.    Second, in the 

Bayesian exercise we also find that increases in experience also decrease the variance of the scale 

parameter across individuals.  Any heterogeneity allowed in the idiosyncratic portion of a RUM is 

predicted to be reduced by the Bayesian model. 

With respect to the first hypothesis, we find that experience, consistent with the theoretical exercise, 

significantly increases the scale parameter.  This result is strong and robust.  We find mixed evidence for 

the second hypothesis: experience does decrease the variance of the scale parameter but that result is 

only marginally significant.  Significance of the result was sensitive to whether 1) we allowed for 
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preference heterogeneity in the public good’s price and 2) the functional form of the distribution of 

scale parameters.   This is possibly due to lack or power in our data, as we discuss below, and merits 

additional research.   

There are several reasons why this paper is an important contribution. First, our model offers a 

theoretically consistent and parsimonious empirical technique for taking experience into account for 

researchers using random utility-based valuation approaches. While other researchers have accounted 

for experience in stated preference demand estimation, we are not aware of any commonly used 

approach which is theoretically motivated.  Second, while there is strong evidence for one of the 

hypotheses derived from the Bayesian model, the evidence for the second hypothesis is less robust.  As 

a result, this paper shows a need to both better understand how experience affects preferences for 

public goods and develop a theoretically consistent model which captures these effects. Given that 

previous research shows prior experience is correlated with preferences and WTP, understanding this 

link is vital for forming efficient economic policy.5 Lastly, the empirical model proposed is widely 

implementable for both private and public good settings, and for both revealed and stated preference 

data. While there are other simulation based structural models that can allow control for experience 

explicitly (Crawford et al., 2005; Osborne, 2011), the model here is easily applicable to a widely used 

method for estimating demand for public and quasi-public goods.  As a result, we present a 

parsimonious way of controlling for the effect of experience on preference uncertainty insofar as 

consumers are Bayesian updaters.  It can be applied as a simple extension of the standard econometric 

approach to choice experiment data, and which is an intuitively plausible and attractive way of thinking 

about how people’s preferences are influenced by consumption experience. 

 

2. Theoretical Motivation 



Experience and Preferences for Public Goods 

5 
 

Using a simple Bayesian framework, this section shows the expected effects of experience on the 

observed choices of consumers when additional consumption events help to refine preferences for a 

good. We demonstrate how this framework can be carried over to the case of public goods within the 

standard random utility model of demand (McFadden, 1974; Hanemann, 1984). This section shows that 

previous experience will increase the scale and decrease the scale variance heterogeneity for individual 

consumers.  

In line with the random utility model in the experience good literature (Ackerberg, 2003), assume the 

utility derived from a good is: 

 𝑈𝑖𝑗𝑡 =  𝜷𝒋
′𝑿𝒋 + 𝛿𝑖𝑗

𝑡+1 + 𝜖𝑖𝑗𝑡   

where i  indexes an individual, j  a good, and t  time.  This specification takes a Lancasterian view of 

utility in that individual traits of a good affect a consumer’s preference for it (Lancaster, 1966).  The 

traits or attributes of good j are given by the vector jX  and marginal utility over those traits of good j  

are jβ ; for exposition here, they are not assumed to be individual-specific as with a random coefficients 

model but could be represented in that way with no loss.6 Utility for the good is also a function of an 

idiosyncratic component, 𝜖𝑖𝑗𝑡, which varies with each consumption experience.  This term reflects the 

varying levels of utility a consumer enjoys from a good.  For example, it could reflect utility received 

from visiting a beach depending on the weather on a particular day.  Importantly, this idiosyncratic 

component of utility is observed by the consumer before they decide to actually consume the good.  The 

idiosyncratic utility component is assumed normal and is drawn from the same distribution for all agents 

in the economy: 𝜖𝑖𝑗𝑡~𝑁(0, 𝜎𝜖
2).  

There is also a component of the utility function,  1t
ij , which we follow Ackerberg (2003) in calling 

“experience utility”.  It is a scalar representing how much utility a consumer receives due to factors 
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unobservable to them at the time of consumption (e.g., their type).  This term could represent intrinsic 

feelings about a good (e.g., walking along a particular beach) conditional on observable characteristics.  

Importantly, consumers do not observe  1t
ij  before they consume the good; hence the t+1 timing of 

this component of utility whereas all other goods have the t subscript.  In the simplest case,  1t
ij  would 

be time invariant in which case consumers learn their type with certainty after one consumption 

experience.   More generally, we model “experience utility” as the sum of a time invariant mean and 

random idiosyncratic component:   1t
ij ij ijtu .  The time invariant component of experience utility 

we call a consumer’s type: ij .  We assume that the idiosyncratic component is normally distributed 

around zero:  2~ (0, )ijt uu N .  Lastly, we assume that there is a known distribution of time invariant mean 

types across the population: 𝛿𝑖𝑗~𝑁(0, 𝜎𝛿
2). 

Following Ackerberg (2003), the consumers’ problem can be thought of as learning about the “true” 

type from a sequence of noisy signals.7  We model the learning process as a Bayesian updating 

procedure.  Individuals never receive a signal that perfectly reveals their type in this model. Instead, 

individuals observe the sum of their time-invariant type and idiosyncratic random utility component 

(e.g.,   1t
ij ij ijtu ). As a result, individuals must infer what their time invariant type is, ij , by 

evaluating the likelihood they had the experience they did given their priors over type and the 

distribution of the idiosyncratic error term, ijtu .8 

Following DeGroot (1970) and Ackerberg (2003), we assume priors over a consumer’s type, ij , are 

distributed normally, 𝛿𝑖𝑗
𝑜 ~𝑁(0, 𝜎𝑜

2).  After K  consumption experiences with the good, posterior beliefs 

about type can be represented as: 
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(1) 𝛿𝑖𝑗
𝐾~𝑁 (

∑ 𝛿𝑖𝑗
𝑡+1𝐾

𝑡=1

𝜎𝛿
2+𝜎𝑢

2

𝜎𝑜
2 +𝐾

 ,
𝜎𝛿

2+𝜎𝑢
2

𝜎𝛿
2+𝜎𝑢

2

𝜎𝑜
2 +𝐾

)  

By inspection, additional experience has an ambiguous effect on the mean of beliefs over type; the 

relative strength of an individual’s experience must be compared to the reduction in mean from 

additional experiences. The variance of beliefs over type is falling in experience (e.g., the second term 

falls as K  increases).  

Now consider how this model of learning would manifest itself in the dynamics of consumption 

decisions. For exposition, assume an individual’s true type is half of one standard deviation below the 

mean type:   .5ij , and that the variance of both the prior and true type is one. In this example, we 

plot the posterior distribution given an expected draw (e.g., the posterior conditional on draws of the 

individual i ’s true type:     1 .5t
ij ij ijtu ) in Figure 1. Put another way, we parameterize this 

example so that there is no noise introduced by the idiosyncratic term. Therefore, Figure 1 shows the 

updating of the posterior distribution of beliefs over type,  1K
ij , for one and two draws respectively. 

There are two important features of Figure 1. The first is that, as expected, the consumer’s posterior 

mean type,    
1K

ijE , falls given new consumption experiences because each signal is below the mean 

of their prior. Second, the variance around the posterior mean is decreasing as successive signals 

mechanically decrease the variance of posterior beliefs. In this simple example, we assume that both 

consumption signals are the mean true signal for expositional purposes, but this assumption can be 

relaxed without qualitative loss.9 

Figure 1 and equation 2 above show that a model of Bayesian learning dictates that additional 

consumption experiences with a good will decrease the variance of a consumer’s utility for that good. 
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Put another way, the variance of the composite idiosyncratic term, 𝛿𝑖𝑗
𝑡+1 + 𝜖𝑖𝑗𝑡, decreases as experience 

levels with a good increase. Effectively, the magnitude of the composite idiosyncratic component of 

utility decreases relative to the deterministic component as experience with the good increases and a 

consumer’s uncertainty over her type is reduced. Therefore, relative to the magnitude of the 

deterministic component of utility (e.g., 
j jβ X ), the model predicts the variance of the idiosyncratic 

portion of an agent’s utility should be falling in the amount of experience with the good as an individual 

has more experience with a good.  

The above Bayesian model has implications not only for the magnitude of the deterministic component 

of utility relative to the idiosyncratic component of utility within a respondent but also for the variance 

of that magnitude between respondents. The variance of the full idiosyncratic portion of utility (to the 

econometrician) conditional on K  consumption events is: 

(2) 𝑣𝑎𝑟(𝛿𝑖𝑗 + 𝑢𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡|𝐾) =
𝜎𝛿

2+𝜎𝑢
2

𝜎𝛿
2+𝜎𝑢

2

𝜎𝑜
2 +𝐾

+ 𝜎𝑢
2 + 𝜎𝜖

2.  

By inspection, the variance of the uncertain portion of utility is also decreasing with experience.10  

Across all agents, then, the model predicts that the variance of the idiosyncratic portion of utility should 

be decreasing in experience.  This would be true even if different agents had 1) biased versus unbiased 

priors or 2) the strength of priors was allows to vary across the population (e.g.,  2
u  varies by individual).  

Put another way, any type of heterogeneity in the variance of the idiosyncratic portion of utility would 

be ameliorated with additional experience.   

In sum, allowing for Bayesian learning through experience creates variation in the magnitude of the 

deterministic component of utility relative to the stochastic component of utility. The magnitude of the 

deterministic component of utility relative to the stochastic component of utility is often referred to as 
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the ‘scale’ parameter in empirical work. The theoretical model above shows that scale should increase 

as experience increases (e.g., the relative magnitude of the deterministic component of utility 

increases). Further, scale heterogeneity should decrease in experience as experience reduces the 

variance of the composite error term. From a theoretical perspective, not allowing the scale and scale 

variance to vary with experience amounts to misspecification of the error structure. 

 

2.1 Application to the Random Utility Model Framework. 

 Consider the implications of Bayesian updating model for a multiple-good or multiple-attribute discrete 

choice model in a random utility framework (McFadden, 1974). The key aspect of the model presented 

to the econometrician is that both the consumer’s idiosyncratic component of utility, 𝜖𝑖𝑗𝑡, and the 

experience component of utility,  1t
ij , are unobserved.  Intuitively, then, from the econometrician’s 

perspective the random component of utility is the sum 𝜀𝑖𝑗𝑡 = 𝛿𝑖𝑗
𝑡+1 + 𝜖𝑖𝑗𝑡.  As shown above, if the 

variance of the experience component of utility ( 1t
ij ) decreases with experience, so must the variance 

of  ijt .  This subsection presents how this artifact of the theoretical exercise above can be applied to a 

random utility model to consistently control for the effects of experience in a choice experiment.   

Since the econometrician does not separately identify the experience and idiosyncratic portions of 

utility, for the remainder of the paper we combine these two components into their sum.  Specifically, 

for the remainder of the paper the random component of utility refers to the random component of 

utility from the econometrician’s perspective.  As shown above, then,  ijt  refers to the sum of the 

experience and idiosyncratic component of utility since they are both unobserved from the 

econometrician’s perspective.11 
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The utility associated with any choice experiment alternative can be divided into a sum of contributions 

that can be observed by a researcher, and a component that cannot, and hence is assumed random. 

Specifically consider the following empirical specification of a random parameters multinomial choice 

model: 

(3)       it ijt i i ijt ijtU Alternative j U β x  ,  

where:  

 ijtU  represents respondent i ’s utility associated with selecting alternative j  out of a set of J  

available alternatives at time occasion t ; 

 the stochastic component of the utility function    may be interpreted as resulting from 

researcher’s inability to observe all attributes of choice and all significant characteristics of 

respondents (McFadden, 1976), or as decision maker’s choice from a set of his decision rules 

(Manski, 1977). 

 ijtx  is a vector of respondent- and alternative-specific choice attributes, i.e. goods or their 

characteristics; 

 iβ  represents a vector of individual-specific taste parameters associated with marginal utilities 

of the choice attributes. The multivariate distribution of these parameters in the sample is f , 

𝛃𝒋~𝒇(𝐛, 𝚺), where b  is a vector of sample means and Σ  is a variance-covariance matrix, with a 

vector of square roots of diagonal elements s  which represent standard deviations of random 

taste parameters; 

  i  is the scale parameter which normalizes the variance of   to 1.12 The scale parameter can be 

individual-specific, as it is reasonable to allow different agents to have relatively larger or 

smaller idiosyncratic components as opposed to deterministic components of the utility 
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function.13 The scale heterogeneity of the agents can be described with a parameter  , such 

that given the scale distribution g, 𝜎𝑗~𝑔(1, 𝜏).14 

The above specification of the random utility model accounts for unobserved preference heterogeneity 

in terms of both taste parameters and scale. In addition, one can introduce observed preference 

heterogeneity in the model by including individual-specific covariates of means of random taste 

parameters b , their variances , the scale parameter   or its variance  . A convenient reduced form 

way of accounting for previous experience is by estimating the term   explicitly as a function of prior 

experience, z , so that 𝜎𝑗~𝑔(1 + 𝚽′𝒛, 𝜏). Allowing the vector z to be comprised of experience related 

covariates, then, operationalizes the theoretical model presented above. Specifically, the theoretical 

model predicts that experience related covariates should increase the mean of the scale parameter, 

thereby decreasing the magnitude of the error term in equation (4).   

There are three important features of this characterization of the econometric model. First, there is no 

distinct modeling of the experience component of utility.  The goal of this paper is to consistently model 

the effects of experience on utility in a reduced form econometric model.  Actually identifying the 

parameters of experience utility, then, we leave to future work.  Second, an agent might never receive a 

sufficient number of signals to discover their “true” type.  For example, one sufficiently bad draw could 

lead to a consumer to form posteriors well below their mean experience utility – the first oyster I eat is 

bad and therefore I never eat another oyster even though on average I am an oyster lover. Third, we 

treat z  as a count variable in the econometric model of Section 3 therefore neglecting the variability in 

signal strength across occasions.  Put another way, using a count variable such as number of 

consumption experiences neglects possibly heterogeneity in the intensity of each experience.15 

Allowing experience related covariates to affect the mean of the scale parameter is equivalent to 

allowing experience to influence all the taste parameters.16 Provided that all utility function taste 
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parameters are random and they are allowed to be correlated, this effect may already be to some 

extent accounted for by off-diagonal elements of Σ  (Hess et al., 2012). Collecting the common effect for 

all taste parameters has, however, a very interesting behavioral interpretation – allowing scale to be a 

function of previous experience permits the magnitude of the error term, to be systematically related to 

experience. As a result, the relative importance of observable characteristics in determining utility is 

exactly what is implied by Figure 1 above: as experience increases, agents learn their type with more 

certainty so that choices become less random.17 

Finally, just as experience-related covariates in the mean scale collect common effects for all taste 

parameters, introducing experience-related covariates in the variance of the scale parameter collects 

common effects for variances of all random parameters. In this case, the scale variance can be modeled 

as a function of experience, 𝜎𝑗~𝑔(1, 𝜏exp (𝛏′𝒛𝒋)). Behaviorally, this effect allows experience to cause 

respondents to become more similar/different with respect to how deterministic their choices are.18 

This paper proposes a way in which experience can be accounted for in econometric modeling of 

consumers’ preferences in a random utility framework as introduced above. In particular, by focusing on 

effects of experience on scale and scale variance, we implement a reduced form way for Bayesian 

updating to inform the econometric specification. In the remainder of the paper we demonstrate how 

this can influence preferences and public good willingness to pay estimates.19 The method developed in 

this paper is widely applicable to both stated and revealed preference data.20 

There are a range of other lenses through which the effects of experience and learning on stated WTP 

have been investigated. The first relates to the literature on option values and the idea of commitment 

costs. Corrigan et al. (2008) use the framework of Zhao et al. (2004) to model the effects of being 

allowed to postpone a “purchase” decision over an environmental good in order to gain more 

information about it. WTP thus depends on expected gains in information in their framework. A second 
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lens literature shows that experience can help people learn their preferences for unfamiliar goods 

within choice experiment settings, and that the context of this learning is very important (Plott, 1996; 

Bateman et al., 2008; Brown et al., 2008; Norwood et al., 2011). This works studies what helps 

preferences for unfamiliar goods or unfamiliar valuation mechanisms converge into stable values over 

repeated interactions which are consistent with the axioms of economic theory in what Brown et al. 

(2008) call “preference refinement”.   For example, convergence which exist for private goods through 

repeated transactions are almost never available for environmental public goods (Plott, 1996).  

Finally, there are many papers which consider how people learn as they complete increasing numbers of 

choice tasks and the implications of this specifically for the scale parameter (see Czajkowski et al., 2014 

for a recent review). In stated preferences, initial work by DeShazo et al. (2002) shows that the scale 

parameter changes with a number of measures of choice set complexity. Hu et al. (2006) found the scale 

parameter decreases as respondents progress through choice sets and thus gain more experience in 

choosing.  Finally, Lusk et al. (2008) finds that providing more information on choice options for 

consumer purchases has a significant effect on the scale parameter.  Our paper is different from all of 

this previous work in that our goal is to develop an econometric framework to control for prior 

experience with a good (as opposed to an elicitation mechanism) in a theoretically consistent way, 

which as shown above has very specific implications for the scale parameter. 

 

2.2 Econometric treatment 

In this section we set out a method for accounting for the effects of experience on consumers’ 

preferences in discrete choice models by allowing for experience-related observable and unobservable 

preference and scale heterogeneity in a manner consistent with the theoretical treatment of the 
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preceding section. We later apply these methods using two case study data sets to investigate how 

experience and familiarity with the good influences respondents’ preferences and scale.  

The random utility framework presented in the previous section conveniently lends itself to econometric 

modeling – random utility theory is transformed into different econometric models by making 

assumptions about the distribution of the random error term and the random parameters. Typically,  ij  

is assumed to be independently and identically (iid) Extreme Value Type 1 distributed across individuals 

and alternatives; in addition, assuming that all the random taste parameters are multivariate normally 

distributed21 and that the individual scale parameter is log-normally distributed22 leads to the 

Generalized Multinomial Random Parameters Logit model type II (G-MNL; Fiebig et al., 2010). Following 

the notation introduced in section II, respondent i ’s utility associated with choosing alternative j  is: 

(4)      ijt i i ijt ijtU b υ x  ,  

where the individual-specific random taste parameters are now represented by a vector of their 

population means b  and individual-specific deviations from these means iυ . The new subscript t  

represents different choice tasks the same respondent may face – in discrete choice experiments an 

individual is confronted with a sequence of choice tasks which allows the researcher to extract more 

information from each respondent of the study, and facilitates identification of preference and scale 

heterogeneity (Ruud, 1996; Revelt et al., 1998; Fosgerau, 2006; Hess et al., 2011). 

The key focus of our theoretical treatment is on the representation of the effects of experience in a 

random utility model. Therefore, we adapt the G-MNL model to account for the effects of experience, as 

explained in section II. This can be done by introducing indicators of experience or familiarity with the 

good  z  as covariates or means and variances of random taste parameters 

𝛃𝒋~MVN(𝐛 + 𝚽′𝒛𝒋, 𝚺exp (𝛙′𝒛𝒋)) and/or as covariates of random scale and its variance 𝜎𝑗~LN(1 +
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𝚽′𝒛𝒋, 𝜏 + 𝛏′𝒛𝒋).23 Importantly, allowing for scale heterogeneity provides a convenient way in which the 

behavior of the error term can be a function of previous experience which Section II shows must be 

allowed for in order for the empirical model to be consistent when allowing for Bayesian learning. 

Further, while the theoretical model predicts scale should increase in experience and scale variance 

should decrease with experience, thereby decreasing the magnitude of the error term relative to the 

deterministic portion of the utility, we do not restrict parameters estimates thereby permitting any 

relationship between experience and the parameters of interest. Finally, we do not have exogenous 

variation in experience.  People who prefer the good more than others typically are observed as having 

a higher measured level of experience.  Rather, our model tests and controls for learning through 

experience.24 We cannot, therefore, make causal inference about the effect of experience on 

preferences. 

The above model specification results in the following probability of observing respondent i  choosing 

alternative j  out of the J  available alternatives at choice occasion t : 

(5) 

 
  

  

 

   





   



   
 

 
   
 

   






1

0

exp exp

Pr

exp

where:

exp

exp

it

i i i ijt

it J

i i i ikt
k

i i i i

i i

i

y j

diag

b φ z υ x

b φ z υ x

φ z ξ z

υ ΓΩς

Ω s ψ z

 .   

Since the probability is conditional on the random terms, the unconditional probability is obtained by 

multiple integration, the expression for which does not exist in closed form. Instead, it can be simulated 

by averaging over D  draws from the assumed distributions (Revelt et al., 1998). As a result, the 

simulated log-likelihood function becomes: 
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In the Results section of this paper we estimate the above empirical model fora stated preference 

choice experiment. Because of the importance of information processing in motivating our approach, 

we are particularly interested in the coefficients on z , which will be proxies for prior experience with 

the good being studied, and which enter the utility function as covariates of the scale parameter and its 

variance, thus allowing for Bayesian updating.  

 

3. Description of Data  

In this paper, we use a choice experiment data set to explore the effects of respondent experience with 

an environmental good, beach water quality, ideally suited to use the theoretical and econometric 

framework introduced above. Beach water quality is ideally suited for this exercise because the dataset 

contains a measure of previous experience with beach water quality (number of beach visits) allowing us 

to use our technique with a viable experience proxy.  This section describes that data set.  

This study considered the economic value of potential improvements to coastal water quality such as 

may result from implementation of changes to the European Union’s Bathing Waters Directive in 2015 

to people living in Northern Ireland. The focus of this Choice Experiment was on the valuation of 

changes in coastal water quality to those who use beaches in Northern Ireland for recreation. This group 

of respondents is likely to be particularly affected by changes planned under revisions to the Bathing 

Waters Directive, since many of the water quality parameters which this directive focuses on are those 

linked to human health and the exposure of beach users to illness from contact with water-borne 

pathogens. The current revisions to the Directive relate to greater restrictions upon the standards for 



Experience and Preferences for Public Goods 

17 
 

bathing water.  The attributes chosen for the DCE describe three relevant aspects of coastal water 

quality: benthic health, human health risks, and beach debris. For each aspect, respondents were able to 

select between no change to the existing policy, a small change and a large change.  Supplementary 

online appendix B describes the three aspects in more detail.    The per visit cost to an individual of 

visiting a beach with a given set characteristics (the costs of travel to the site) was used as the cost 

attribute. Travel costs have been used before as the price attribute in several choice experiments 

relating environmental quality changes to recreational behavior (e.g., Hanley et al., 2002; Christie et al., 

2007). Six levels of additional cost were selected: 0, £0.6, £1.6, £3, £6, and £9. 

The design of the experiment was generated using efficient design principles. With three blocks, this 

meant that each individual responded to 8 choice cards. In each choice card, respondents were asked to 

choose the option they preferred from three choices. A sample choice card in included as Figure 2. Some 

558 respondents were surveyed on-site at a range of beaches around the Northern Irish coast in autumn 

2011.  

In this study, the indicator of respondents’ experience with the good “coastal water quality” which we 

used was the reported number of days spent at the beach each year  bdays . We are confident that 

number of days spent at the beach per year is a good proxy for experience here as beach quality is 

visually observable. It is also in the interest of beach goers to find out about water quality measures for 

health reasons before they enter the sea to go swimming or surfing, and such information is displayed 

on-site at designated beaches as part of a requirement of the Bathing Waters Directive.  

The premise for using this dataset is that beach water quality is an experience good.  Put another way, in 

order for the dataset to be valid in estimating our model, agents don’t know their true “type”, on 

average, for water quality until they have had experiences with it.  The following chain of events must 

occur in order for the dataset to be valid in a study which appropriately controls for experience on WTP 
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for public goods: 1) agents make a recreational choice conditional on their priors over their type, 2) 

while agents are engaged in recreational choice they experience the recreation environment, 3) one 

component of that environment is related to the relevant program (e.g., water quality along the beach), 

4) agents update their preferences for said component of the environment (e.g., water quality).  

Importantly, the policy alternatives explicitly have the characteristic of affecting the “component of the 

environment” (e.g., water quality).  This chain of events assures that we have measured valid experience 

proxies as well.  In sum, then, since the policies relate environmental components for which agents have 

experienced via their recreational choices, they are able to update their preferences for those goods. 

It should be noted that our measure of familiarity, number of visits to the beach, is not exogenous. It is 

likely to be correlated with preferences for amenities associated with each public good. Indeed, finding 

an instrument for experience or familiarity can always be an issue in empirical work on experience 

goods. As a result this study cannot identify a causal link between experience and scale nor scale 

variance.25 We can, however, still construct and estimate a model which is theoretically consistent with 

Bayesian updating of preferences and test whether the theoretical predictions of the model are 

consistent with the data.  

 

4. Results 

We estimated the augmented G-MNL model described in section 2.2 which allows us to account for the 

effects of experience on respondents’ choices assuming that all taste parameters are random, normally 

distributed, and possibly correlated. The indicators of respondents’ experience or familiarity with the 

good were included as covariates of scale and its variance.  This section reports our results.  We also 

briefly discuss important features of the policy covariates before discussing coefficient estimates for our 

experience proxies and their implications. 
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The estimation was performed using Matlab 8.1 Optimization Toolbox, using 1000 shuffled Halton draws 

to simulate distributions of random parameters. We found the log-likelihood function of the G-MNL 

model to be relatively flat near the optimum – we therefore used multiple starting points and relatively 

tight convergence criteria to ensure convergence at the global maximum.26 

 Standard errors of coefficients associated with standard deviations of random parameters were 

simulated using Krinsky and Robb method with 106 draws (Krinsky et al., 1986). We use the following 

dummy coded choice attributes: SQ  – an alternative specific constant associated with the no change 

(no improvements) alternative; improvements in benthic health ( 1BH  – small increase, 2BH  – large 

increase) with no improvement as a reference level; reductions of health risks ( 1HR  – reduction to 5% 

risk, 2HR  – reduction to ‘very little risk’) with the current 10% risk as a reference level; and 

improvements in debris management ( 1DM  – prevention, 2DM  – collection and prevention). In 

addition, the linearly coded variable FEE  represented the additional cost of travelling to each beach. 

The resulting vector of choice-specific variables was: 

  1 2 1 2 1 2, , , , , , ,SQ BH BH HR HR DM DM FEEX  .  

We used bday  – log of the reported number of days spent at the beach each year (mean 74.89) as a 

proxy of respondents’ experience or familiarity with coastal water quality.27 

We estimate the model allowing the cost parameter to be random and non-random.  Allowing a random 

cost parameter significantly outperforms the non-random cost parameter model by both the log 

likelihood criterion and the AIC, we provide the latter for comparison because it is a common practice in 

applied work aimed at calculating mean WTP (and not only its median).  Table 1 presents our choice 

model estimates.  The important distinction in it, though, is the comparison between allowing 

experience measures to enter the scale and scale variance measure (e.g., comparing column 1 to 2 and 
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column 3 to 4) within each cost parameter specification.  In each case, we assume the scale term is 

distributed log normally.   

The taste parameters of the coastal water quality study are very well-behaved, all highly significant and 

of expected sign. There is a considerable amount of unobserved preference (taste) heterogeneity. The 

results indicate that respondents perceived improvements in debris management as the most 

important, followed by reductions in health risks and improvements in benthic health.  

The number of days a respondent spent at the beach in the past year ( bday ) was added as a covariate 

for scale and scale variance in columns 2 and 4.  Looking at the random cost results, respondents who 

visited beaches more often had a significantly higher scale parameter (i.e. lower magnitude of the error 

component in their random utility function) at the 1% level and significantly lower scale variance at the 

10% level. This is consistent with the model of Bayesian updating developed in Section 2. Column four 

shows that when we restrict the cost parameter to be non-random, the effect of experience on mean 

scale is still positive and significant at the 10% level.  The effect of experience on scale variance is still 

negative but is no longer significant at the 10%.   

Figure 3 plots mean scale and scale variance as a function of function of our experience proxy.  The 

experience proxy is demeaned and normalized so that 0 corresponds to mean experience, and -1 and +1 

to 1 standard deviation worth of deviations from the mean.  Figure 3 shows that scale increases and 

scale variance decreases with experience. However, the estimates in the right-hand panel associated 

with the non-random cost parameter are much less precise.  The rigidity of the non-random cost 

parameter trades off against the scale term since the scale term dictates the ability of the RUM to link 

each consumer to their stated preferences.  In effect, then, allowing the cost parameter to be random 

permits the experience measure to have more explanatory power over the idiosyncratic error term.  
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Taken together, Table 1 and Figure 3 provide support for the predictions of the theoretical model as 

applied to the econometric model presented in section 2.  Evidence for the first prediction of the 

Bayesian model (experience increases mean scale) is more robust than for the second prediction 

(experience decreases scale variance).   

Lastly, we perform a joint hypothesis test.  We test whether as experience increases that both scale 

increases and scale heterogeneity decreases since the theoretical Bayesian model implies both occur the 

simultaneously.  To do so, we perform a likelihood ratio test of the preferred model with random cost 

parameters in columns 1 and 2 and the models with non-random cost parameters in columns 3 and 4.  

In the model with random cost (e.g., columns (1) versus (2)) the p-value for the joint test that increases 

in experience both increase scale and decrease scale heterogeneity is .0004.  In the model with random 

costs, then, adding experience related covariates significantly improves the model fit.  The p-value in the 

model with non-random costs (e.g., columns (3) versus (4)) is .299.  As a result, we fail to reject the null 

hypothesis that adding experience related covariates significantly improves model fit with non-random 

costs.  As before, it appears that the rigidity of the non-random cost parameter trades off against the 

scale term since the scale term dictates the ability of the RUM to link each consumer to their stated 

preferences.  For a public good for which agents have less preference heterogeneity, then, we would 

expect to reject the joint null hypothesis even in the model with non-random cost parameters.  In sum, 

with the preferred random costs model we find evidence that agents update their preferences in a way 

consistent with Bayesian updating.   

While we do not report results here, we also estimated the model while specifying a Weibull distribution 

for the scale parameter.  The Weilbull distribution is advantageous in its shape flexibility, however, the 

variance of a Weibull distribution is a function of its scale and shape parameters, neither of which in and 

of itself fully determines the variance.  In those regressions, evidence for the first prediction remained 

robust.  For the second prediction, though, the estimated scale variance was not significant or even took 
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to wrong sign.  We therefore believe our results to provide strong evidence in our case study that the 

scale parameter increases with experience, however, evidence that scale variance across subjects 

decreases with experience is somewhat tenuous.  Within a subject, then, scale increases with 

experience as predicted by the Bayesian model. However, across subjects, it appears that the 

implications of the Bayesian model are less well supported by this data.28 

Although the main contribution of this paper is to investigate the effects of experience on preferences 

for an environmental public good in a theoretically consistent model, we also investigate the importance 

of controlling for experience on willingness to pay point estimates and confidence intervals.  We 

calculated implicit prices associated with each attribute. Since the price coefficient in our studies was 

assumed random in the best fitting models, the ratio distribution resulting from dividing each random, 

normally distributed parameter associated with the attribute levels with the random, normally 

distributed cost coefficient does not have finite moments, i.e. no mean and standard deviation of the 

empirical (Cauchy-like) distribution of WTP exist (Hinkley, 1969). For this reason, we calculated median 

WTP, along with its simulated standard error, and the 0.025 and 0.975 quantiles as proxies of the 95% 

confidence interval. In order to do so we adopted the following simulation method, based on the Krinsky 

and Robb parametric bootstrapping technique: 

(1) we took 105 multivariate normal draws from the estimated vector of model coefficients and the 

associated variance-covariance matrix; 

(2) for each of the draws we assembled the variance-covariance matrix from the simulated 

elements of the lower triangular of Cholesky matrix and took 105 multivariate normal draws 

using the simulated random taste parameters and their variance-covariance matrix; 

(3) we calculated ratios of respective preference parameters to calculate WTP for each of the 

attribute levels. The empirical distributions of WTP allowed as to observe the median and the 
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0.025 and 0.975 quantiles (95% quantile range of WTP distribution) along with their simulated 

standard errors. 

Table 2 compares the three different policy interventions for the water quality study. The median WTP 

estimates are very stable when experience is or is not included as a covariate for scale and scale 

variance. Both the magnitudes across econometric models and the WTP estimates within models are 

similar. Further, adding experience-related covariates to the water quality study does not significantly 

decrease the variance of median WTP estimates. It is important to stress, though, that these WTP 

estimates are for only one particular public good and there are several caveats to apply here.  First, 

beach visits is only a proxy for peoples’ experience with beach quality.  It is possible that better 

measures exist.  Second, the degree that consumers’ priors are biased or unbiased for a good would 

affect how important including experience with a public good is.  Third, since the second prediction of 

the Bayesian model is not as robust as the first, the particular theoretical model proposed here could 

need refinement. Indeed, these are fruitful areas for future research.  

 

5. Conclusions 

It is surprising that the full implications of experience on preferences have not received more attention 

in the literature on the estimation of demand for public goods for which market data does not exist. We 

offer a theoretical model which shows that within a Bayesian framework, not permitting scale and scale 

variance to vary with experience amounts to a mis-specification of the structure of the error term in 

random utility models. We then develop and estimate a reduced form econometric model of demand 

estimation which both extends the generalized multinomial logit model and is consistent with this 

Bayesian theoretical framework. 
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The Bayesian theoretical predictions for the effects of more experience on the idiosyncratic component 

of utility are generally supported by data in our case study (coastal water quality).  The results for the 

first theoretical prediction, that individuals with more experience have a higher estimated scale 

parameter, is strong and robust.  The results for the second theoretical prediction, that heterogeneity in 

scale across respondents should decrease with experience, is present but less convincing motivating 

future work in this area.  We show in supplementary online appendix A that the G-MNL model is also 

implementable with other theoretical approaches to learning. 

There are several implications of the results in this paper. The first is whether consumers do update as 

Bayesians or use some other updating procedure. This paper shows that we cannot reject a Bayesian 

model of updating. However, this does not imply that the Bayesian model is the correct one since our 

results are not causal. Indeed, more work on the second theoretical prediction of the Bayesian model is 

needed.  To that end, other models posited by the literature on the effects of experience on economic 

actions include behavioral models such as confirmatory bias and rational inattention (Rabin et al., 1999; 

Gabaix et al., 2006). Second, while we offer on theoretically consistent econometric model that controls 

for experience level, there are potentially other models yet to be implemented. Third, we can make no 

claims as to the causal effect of experience and learning on WTP.  The causal effect of learning on WTP 

for public goods and policy options which change the supply of such goods is a question which requires 

further empirical work. Finally, we note that our model does not allow for the precise sequencing of 

experiences to matter for preferences or for scale, only their quantity.  Further, we do not have any 

measure of the intensity of experiences in our data, only its frequency. It may also be that individuals 

sort heterogeneous experiences into a finite number of “categories”, and that this process in itself helps 

determine the way in which experiences influence future choices (Fryer et al., 2008). All of these would 

be interesting sophistications to explore. 
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1
 In addition, e.g., Brown et. al. (2008) and Kingsley et al. (2010) ask how agents value public goods as they have 

more experience in valuing them (rather than direct experience with the good being valued).  For example, these 

papers have subjects repeatedly choose between binary states of the world within a given survey to see how 

preferences change and/or become more stable for a particular good within a given survey.  These studies, then, 

ask important questions about the refinement of preferences which could come from thinking about a good, 

thinking about comparisons between management options for the good, or becoming more familiar with the 

survey or valuation technique within one particular survey.   As a result, their preference uncertainty is quite 

different than our investigated here.  More broadly, there is a larger body of work which addresses how familiarity 

with markets or valuation mechanisms can affect stated or revealed willingness to pay measures (List et al. 1998 

and List 2001). In contrast our paper is about how previous experience with a particular public good affects WTP 

for it when elicited in a standard choice experiment.  Combining these two approaches, we feel, is a fruitful area 

for future work. 

2
 We do not address the much more complicated issue of the causal effect of learning on WTP.  This paper merely 

seeks to control for extant effects of experience and learning in a theoretically consistent way.  

3
 There is significant interest in empirically identifying how learning about private goods affects preference 

uncertainty and consumer demand (Erdem et al., 1996; Ackerberg, 2003; Crawford et al., 2005; Goeree, 2008; 

Osborne, 2011). In this literature, a formal model of learning and information agglomeration is often integrated 

into the demand framework in a theoretically consistent way and estimation occurs in an explicitly Bayesian 

structural model (Ackerberg, 2003; Israel, 2005).  In contrast, our model is a reduced form model with a 

specification that is informed by theory. 

4
 Insofar as our model decomposes the error in a choice experiment setting, this work builds on Scarpa et al. 

(2005). 

5
 Whilst for the particular data sets and measures of experience used in this paper our “new approach” does not 

result in big differences in welfare measures, we think its merit lies in presenting a way to model the effects of 

experience in a manner which is theoretically consistent.   



Experience and Preferences for Public Goods 

26 
 

6
 We relax this assumption below.  Supplementary online appendix A considers the implications of more general 

utility specifications. 

7
 Note that learning could affect both means and variances of random taste parameters, and as a result, the mean 

and variance of willingness to pay. This will be discussed in more detail below.  Additionally, there is also a 

literature in marketing research which models the effects of past choices, expectations and learning-through-

inspection on choices and preferences in the current period, which is very much in the spirit of the kind of Bayesian 

updating we employ here: see Meyer (1982), Meyer et al. (1997) and Meyer (2008). 

8
 For example, when a new good is introduced, say a new restaurant, a consumer will not likely be able to 

distinguish between the possibility they like that restaurant more than the average patron (e.g., their ij ) or if 

they happened to have a particularly good experience on that occasion (e.g., ijtu ). 

9
 One could perform Monte Carlo simulations over the entire distribution not conditioning on realized signals. 

There would be no qualitative differences, though, as it would have the effect of increasing the size of the tails in 

each posterior distribution. 

10
 Note that this result would hold even if the population error variance term were allowed to be heterogeneous 

across the population so long as it remains iid. 

11
 In order to separately identify these two parameters, either a structural model or a panel dataset is needed.  

Given our focus on widely implementable WTP estimates for public and quasi-public goods (for which panel 

datasets are rare) we leave separately identifying these effects to future work. 

12
 Note, that the scale cannot be econometrically separated from the other parameters of the utility function and 

the estimates of taste parameters are in fact multiplications of the underlying taste parameters and scale (Fiebig et 

al., 2010). With no loss of generality one can normalize scale to 1 and, due of the ordinal nature of various utility 

functions, treat the estimates of utility function taste parameters as true taste parameters, which can only be 

interpreted in relation to each other.  

13
 For example, when one agent has very well-defined preferences, one would expect their deterministic 

component of utility to be large in magnitude relative to the idiosyncratic component. 

14
 In this case the mean of the scale parameter is normalized to 1. 
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15
 We are grateful to an anonymous referee for pointing both of these things out to us. 

16
 Thus, as Louviere and Meyer (2008) put it: “The estimated parameters of choice models reflect not just the 

enduring preferences that consumers may have for products and attributes, but also the momentary state of 

consumer learning about products.” (page 22). 

17
 Another way to interpret this is that the errors in the random utility model are heteroskedastic in previous 

experience.  

18
 Another alternative, adding experience as an explanatory variable for parameter uncertainty (e.g., in the 

covariance matrix of a parameter in a random coefficient model), has no clear theoretical foundation either. The 

goal of this modelling approach is to build a widely implementable model that accounts for experience in a 

theoretically motivated way without having the endogeneity concerns of prior work (e.g., Carson et al., 2009). This 

model is flexible enough to control for learning through experience without being subject to the same endogeneity 

concern as using experience directly as a linear argument in the random utility function.  Another alternative is 

allowing experience to directly affect preference parameters using a large structural model (Goeree, 2008; 

Osborne, 2011).  While theoretically consistent, these labor intensive models are not easily implementable by 

researchers in a public and quasi-public good setting.  

19
 There are other ways in which experience has been introduced in demand estimation studies and we briefly 

review them in ssupplementary online appendix A. This model, though, can be integrated with those alternative 

techniques as well – the technique we develop here is similar to those discussed in ssupplementary online 

appendix A if consumers, on average, have unbiased priors.  

20
 Insofar as this model allows for scale heterogeneity across individuals, it builds on Train et al. (2005) and Scarpa 

et al. (2008), which could also potentially allow for adding similar experience related controls. 

21
 𝛃𝑗~𝑀𝑉𝑁(𝐛, 𝚺), so i i β b ΓΩς , where ΓΩ  is a lower triangular matrix resulting from Cholesky decomposition 

of the variance-covariance matrix Σ  of random taste parameters  Σ ΓΩ ΓΩ  with the vector of square roots of 

diagonal elements s ), such that Γ  has ones on the diagonal and possibly non-zero below diagonal elements 

accounting for correlations of random taste parameters, Ω  is a diagonal matrix of standard deviations s , and iς  
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is a vector of random, normally distributed unobserved taste variations associated with taste parameters (with 

mean vector 0 and covariance (identity) matrix I ). 

22 
𝜎𝑗~𝐿𝑁(1, 𝜏), so  0expi i     where 𝜀0𝑖~𝑁(0,1) and 2 2   . 

23
 Since experience-related covariates enter diagonal elements of Σ  only (i.e. only the variances of random taste 

parameters),    exp idiag Ω s ψ z . 

24
 Put another way, if agents do update their preferences with additional consumption experiences then a G-MNL 

model which does not control for learning in a theoretically motivated way is misspecified.    

25
 To do so, the econometrician would need a rich panel dataset for which there is not only an instrument but 

individuals’ consumption patterns are tracked over time.   

26
 In optimization we used the trust-region or the quasi-Newton algorithm (for cross-checking) with numerical 

gradient and BHHH-type approximation of the Hessian. The convergence criteria for function change, maximum of 

the gradient, and the lower bound on the size of a step were set to 
1210

, since we found that the levels and 

convergence criteria typically used in statistical packages (STATA, NLOGIT) terminated optimization prematurely, 

effectively making the results very sensitive to starting points. We believe this to be a result of a relatively flat LL 

function of the G-MNL model near its maximum and encourage other researchers who discovered problems with 

the G-MNL model convergence to try this approach. 

27
 The variable was normalized so that its mean in the sample was 0 and its standard deviation 1. This allows us to 

investigate relative differences between experience between respondents without encountering numerical 

problems associated with very high values entering the scale parameter.   

28
 While there is no clear theoretical reasons for doing so, consider the implications of adding experience related 

covariates to the right hand side of the random utility model.  First, note that the econometrician cannot 

separately identify both effects on preferences and scale simultaneously. We do not report the results here 

although they are available upon request, but we re-estimated the model including experience related covariates 

on mean willingness to pay for various policies. They are insignificant in all cases but two policy options (SQ and 

FEE).  Finally, likelihood ratio tests show that adding experience related covariates to means does not improve the 

fit of the models in any significant way. Taken together, this is evidence that the theoretical model foundations in 
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section two provide the structure to control for experience in a G-MNL model at least as well as adding experience 

related covariates to the right hand side of the random utility model. 
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Figure 2. Example choice card from coastal water quality survey 

 

 Beach A Beach B Beach C 

Benthic Health and 
population. 

Small increase 
More fish, mammals and 
birds. Limited potential to 

notice the change in species 
numbers. 

Large increase 
More fish, mammals and 

birds and an increased 
potential of seeing these 

species. 

No Improvement 

Health Risk  
(of stomach upsets and ear 
infections) 

Very Little Risk 
– excellent water quality 

5% Risk 
– good water quality 

10% Risk 
– no improvement 

Debris Management 

Prevention 
– more filtration of storm 

water, more regular 
cleaning of filters and better 

policing of fly tipping. 

Collection and 
Prevention 

– debris collected from 
beaches more regularly in 
addition to filtration and 

policing. 

No Improvement 

Additional cost of 
travelling to each beach. 

£3 £9 £0 

Please tick the ONE option 
you prefer. □ □ □ 
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Figure 3. Scale dynamics associated with changes in respondent’s experience indicator – coastal 

water quality study 

Cost parameter random Cost parameter non-random 
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Table 1. The discrete choice model results for the water quality study  

 

 
Model without 

experience related 
covariates 

Model with 
experience related 

covariates 

Model without 
experience related 

covariates 

Model with 
experience related 

covariates 

 Cost parameter random Cost parameter non-random 

Variable 
Coefficient of random parameter’s mean  

(s.e.) 

SQ  
-6.2235*** 

(0.9624) 
-6.9032*** 

(1.0761) 
-4.3221*** 

(0.7027) 
-4.8224*** 

(0.7773) 

1BH  
0.9663*** 

(0.1849) 

1.0974*** 

(0.2097) 

0.9288*** 

(0.1486) 

0.9326*** 

(0.1555) 

2BH  
1.1917*** 

(0.253) 

1.2973*** 

(0.2896) 

1.5507*** 

(0.2902) 

1.4806*** 

(0.264) 

1HR  
1.0595*** 

(0.2185) 

1.1472*** 

(0.2458) 

1.1089*** 

(0.1646) 

1.0991*** 

(0.1702) 

2HR  
1.4573*** 

(0.2696) 

1.63*** 

(0.3164) 

1.7139*** 

(0.2131) 

1.7347*** 

(0.2255) 

1DM  
1.7213*** 

(0.2445) 

1.8525*** 

(0.2706) 

1.3682*** 

(0.1811) 

1.4081*** 

(0.1887) 

2DM  
1.9632*** 

(0.2182) 

2.1083*** 

(0.246) 

1.5012*** 

(0.1699) 

1.5612*** 

(0.177) 

FEE  
-0.6096*** 

(0.0606) 

-0.6513*** 

(0.0713) 

-0.3253*** 

(0.0237) 

-0.3296*** 

(0.0257) 

 
Coefficient of random parameter’s standard deviation  

(s.e.) 

SQ  
9.0032*** 
(1.1993) 

9.5732*** 
(1.3662) 

7.6334*** 
(0.9958) 

8.3312*** 
(1.1128) 

1BH  
1.0613*** 

(0.2338) 

1.2119*** 

(0.2487) 

1.0075*** 

(0.1638) 

0.981*** 

(0.1731) 

2BH  
2.2316*** 

(0.3639) 

2.4352*** 

(0.4044) 

2.9763*** 

(0.3362) 

2.5499*** 

(0.3222) 

1HR  
1.3446*** 

(0.2871) 

1.5015*** 

(0.317) 

0.9741*** 

(0.2583) 

0.8996*** 

(0.2926) 

2HR  
1.8176*** 

(0.3322) 

1.977*** 

(0.3692) 

1.4608*** 

(0.302) 

1.4794*** 

(0.3464) 

1DM  
2.014*** 

(0.3052) 

2.0671*** 

(0.341) 

1.7239*** 

(0.3723) 

1.8737*** 

(0.4237) 

2DM  
1.554*** 

(0.3349) 

1.5536*** 

(0.3409) 

1.6179*** 

(0.3427) 

1.7868*** 

(0.3837) 

FEE  
0.6839*** 

(0.0649) 

0.7411*** 

(0.0766) 
0  

(fixed parameter) 

0  

(fixed parameter) 

 
Coefficient of scale-related parameter 

(s.e.) 
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Scale variance 
parameter (τ)  

2.4894*** 
(0.2503) 

1.6378*** 
(0.5311) 

2.6779*** 
(0.2591) 

2.1337*** 
(0.7018) 

Covariates of scale 
(bday) 

0  
(fixed parameter) 

0.1971*** 

(0.0753) 
0  

(fixed parameter) 

0.1077* 

(0.0608) 

Covariates of scale 
variance (bday) 

0  
(fixed parameter) 

-0.2785* 

(0.1423) 
0  

(fixed parameter) 

-0.1862 

(0.1415) 

 Model characteristics 

Log-likelihood 
(constants only)

 -4691.6270 -4691.6270 -4691.6270 -4691.6270 

Log-likelihood
 -2684.9963 -2677.2128 -2928.4668 -2927.2602 

McFadden’s 
pseudo R

2 0.4277 0.4294 0.3758 0.37607 

AIC/n
 1.2508 1.2482 1.3581 1.3585 

n (observations)
 4366 4366 4366 4366 

k (parameters)
 45 47 36 38 

Note: *, **, and *** for 10%, 5% and 1% significance levels, respectively. 

 



 Table 2. Implicit prices for the water quality study  

 
Model without experience 

related covariates 
Model with experience 

related covariates 
Model without experience 

related covariates 

Model with experience related 
covariates 

 Cost parameter random Cost parameter non-random 

 
median  

(s.e.) 
95% quantile 

range 
median  

(s.e.) 
95% quantile 

range 
median/mean 

(s.e.) 
95% quantile 

range 
median/mean 

(s.e.) 
95% quantile 

range 

SQ  
-2.72*** 
(0.7903) 

-4.3 – -1.19 
-2.84*** 
(0.8109) 

-4.47 –  -1.24 
-13.31*** 
(1.7184) 

-16.54 – -9.86 
-14.63*** 
(1.8605) 

-18.12 – -10.76 

1BH  
0.99*** 
(0.2605) 

0.49 – 1.52 
1.06*** 
(0.2676) 

0.55 – 1.61 
2.86*** 
(0.4316) 

1.99 – 3.71 
2.83*** 
(0.4211) 

2 – 3.65 

2BH  
0.81** 

(0.3506) 
0.15 – 1.54 

0.78** 
(0.3677) 

0.09 – 1.56 
4.75*** 
(0.7959) 

3.16 – 6.29 
4.51*** 
(0.6671) 

3.16 – 5.74 

1HR  
0.66** 
(0.335) 

0.03 – 1.34 
0.64* 

(0.3559) 
-0.03 – 1.37 

3.4*** 
(0.4803) 

2.47 – 4.36 
3.33*** 
(0.4954) 

2.39 – 4.33 

2HR  
0.87** 

(0.4195) 
0.09 – 1.73 

0.92** 
(0.4509) 

0.07 – 1.82 
5.26*** 
(0.5804) 

4.13 – 6.43 
5.27*** 
(0.6082) 

4.09 – 6.48 

1DM  
1.21*** 
(0.3534) 

0.54 – 1.91 
1.24*** 
(0.3471) 

0.58 – 1.94 
4.21*** 
(0.4799) 

3.28 – 5.15 
4.28*** 
(0.4845) 

3.33 – 5.22 

2DM  
1.71*** 
(0.2688) 

1.18 – 2.23 
1.68*** 
(0.2649) 

1.15 – 2.19 
4.61*** 
(0.4308) 

3.79 – 5.49 
4.73*** 
(0.4372) 

3.9 – 5.61 

Note: *, **, and *** for 10%, 5% and 1% significance levels, respectively. 

 

 


