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Abstract 

Variation of model size as determined by grid density is studied for both model 
refinement and damage detection. In model refinement, it is found that a large model with 

a fine grid is preferable in order to achieve a reasonable correlation between the 
experimental response and the finite element model. A smaller model falls victim to the 
inaccuracies of the finite element method. As the grid become increasing finer, the FE 
method approaches an accurate representation. In damage detection the FE method is 
only a starting point. The model is refined with a matrix method which doesn't retain the 

FE approximation, therefore a smaller model that captures most of the dynamics of the 

structure can be used and is preferable. 

Introduction 

size of the model can come from either representation of the many different parts of the 
structure or a fine level of discretization. As grid density increases, the model ideally 
converges to an accurate representation of the behavior of the actual structure or at least 

more accurately represents the dynamics of the structure. However, as the grid density 
increases, the model size also increases, demanding more computing power to evaluate the 

model. Also, although using a very fine mesh increases model accuracy, some form of 
model correlation will still have to be performed to correct for inaccurate parameters such 

as modulus or density, or uncertain parameters such as springs at an interface. 

Large finite element models are typically used to represent modern structures. The 

Model correlation and model based damage detection, while related, have very 
different objectives. Model correlation is performed to adjust an FE model response to 
approach the experimental response of the structure. The correlated model is then used as 
an analytical tool for stresdstrain analysis, control law development, response to untested 
conditions, etc. For damage detection, the model must very accurately represent an 

experimental data set. This accurate representation of the structure will be used as a 
baseline to determine changes in the mechanical characteristics of the actual structure that 
result from fatigue, corrosion, unplanned impact, etc. 

All the techniques found in the literature can be used for both damage detection 

and model refinement. In practice, however, model correlation is usually performed with 
an algorithm that adjusts the physical parameters such as density in order for the 
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correlated model to remain finite element consistent. In contrast, damage detection is 
typically performed with a matrix update method which does not maintain finite element 
consistency. Survey papers providing an overview of methods of both damage detection 

and model correlation are provided by Ibrahim [l], and Heylen [2]. 

A popular method of model correlation is the use of Design Sensitivities (DS) to 

drive the variation of a given set of parameters. Through a wise choice of parameters and 
a FE model that represents all relevant behavior of the system, the model can be adjusted 

to accurately represent the actual structure. The use of DS involves some sort of 

optimization. Least Squares methods [3] and, more recently Genetic algorithms [4], have 

been used successfklly to correlate models. 

Matrix methods for damage detection can be divided into three categories: 
optimal matrix updates, eigenstructure assignment methods, and minimum rank 
perturbation techniques. Optimal matrix update methods calculate the change in the 

property matrices (mass, stiffness, and/or damping) that minimize a given cost function, 

typically defined with a Frobenious norm, subjected to various constraints. These 

constraints can include satisfaction of the eigenvalue problem, conservation of a given 
sparsity, definiteness of property matrices, etc. [SI [6] 

Eigenstructure assignment techniques find the pseudo control that will bring the 
model into agreement with the test data. The pseudo control is then used as a correction 
to the property matrices. By inspecting the changes in the property matrices, the extent of 
damage can be determined.[7] [SI 

Minimum Rank Perturbation Theory (MRPT) has been developed as a 

computationally efficient method of determining the extent and location of damage in a 
structure. By constraining the rank of the perturbation matrix, an accurate assessment of 

the extent of damage can be made. The rank constraint has been found to be consistent 

with many forms of damage that occur in practice. [9] [lo] 

A tradeoff exists between the level of discretization used in a FE model and the 

size of the resulting model. The question that arises is "When is the grid fine enough?". 
Since model correlation and damage detection have different objectives, it is reasonable to 
believe that different mesh resolution would be necessary for each problem. In this paper, 

the question of discretization is addressed in both the model correlation and the damage 

detection problem. The structure used is a portion of the 1-40 bridge over the Rio Grande 
which was extensively tested by Farrar et a1 [ 113. The models range from a simple 26 
node beam and plate model, to a 2682 DOF (Degree of Freedom) model. The same 
models are used for both the model correlation and the damage detection, for comparison. 

Model Correlation Theory 

sensitivity approach coupled to a genetic algorithm optimizer. The genetic algorithm is 
used because of the possibility of local minima in the solution space. The sensitivity 

The model correlation was performed using PEGA [4],[12] which utilizes the 
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approach uses the design sensitivities of the eigenvalues with respect to the chosen 
parameters to determine corrections to the parameters based upon the linear 

approximation 

where qnew are the experimental frequencies, 'p0 are the frequencies of the FE model and 

p is a vector of parameters chosen to vary. The rectangular matrix (acp/+) is known as 
the design sensitivity matrix and can be determined by MSCNASTRAN [13]. 

PEGA uses Equ. (1) to approximate the new 'po for the evaluation of the Fitness 

Index which is defined as 

where wfare used to weight the individual frequencies. 

Figure 1 shows a flow chart that describes the correlation procedure. The models 
are correlated by a combination of running PEGA which produces changes in the chosen 
parameters and running MSCNASTRAN to update the model. A one to one 
correspondence between the analytical and experimental frequencies is obtained by 
calculating the Modal Assurance Criterion (MAC) using the analytical and experimental 
mode shapes. Although PEGA produces an estimate of the updated natural frequencies of 
the model, these estimates are typically in error and a full run of MSCNASTRAN is 
necessary for an evaluation of the correlation. This cycle is repeated until the model has 
converged. As indicated in [4], when the model form has been properly defined, 
convergence requires less than ten iterations. 



Choose Parameters 

I 

Match frequencies 

Calculate DSA 

I RunPEGA I 

To verify PEGA's 
Results 

Nn 

I 1 

Figure 1. Flow chart for PEGA iterations. 

Damage Detection Theory 

The goal for the 1-40 bridge was to determine if damage was present and, if so, 
locate the damage, not estimate the extent. The objective was to reduce the work load of 
an inspection team. Ifthe damage can be determined to lie within a certain area, the 

inspection team can concentrate its efforts to that area. For this work, MRPT was used 
for the damage detection which uses modal characteristics of the assumed damage 
structure and compares them with a baseline model which has been correlated with the 
bridge in some assumed healthy state. MRPT was used originally to correlate the model 
for the damage detection portion of this work. The model was linear although the 

damage was typically non-linear. 

The model correlation portion of damage detection is different from the typical 
definition of model correlation. Here the updated model must match the "healthy" 
experimental data exactly so that errors in the model are not wrongly interpreted as 

changes in the structure's health. A parameter based update, while powerful, will rarely 
allow the FE model's response to exactly match the test data. Matrix methods, specifically 
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MRPT, can exactly place the measured modes in the model assuming the form of the 
model is a least approximately correct. 

The damage detection correlation involves correlating both the mass and stiffness 

matrix to the experimental data. A brief discussion of the procedure will be provided here 

with the details being found in Zimmerman and Kaouk [9].  

The measure test data is assumed to satisfjr 

(Ma -AM)V,,U~, +(Ka -AK)V,, = O  (3) 

where Ma and Ka are the original mass and stiffness matrices, AM and AK are the 

perturbation matrices sought that correct the analytic model to match the experimental 

response, Vtest is the matrix of mass normalized measured mode shapes and a2test is a 
diagonal matrix of the measured frequencies squared. If the known information is 

grouped on one side of the equal sign and the unknowns on the other, two matrices Bm 

and Bk can be defined 

If B can be decomposed into Bm and Bk as follows 

AM and AK can be calculated using MRPT as 

AM = B, ( BT,v,,,)-' BT, 

The inversion is possible if Bm and Bk are of full rank. 

The AM and AK as calculated in Equ. (6) have a few properties that make them 

attractive for damage detection. One property is that the correction to Ma and Ka, Equ. 

(6), will exactly place the experimental modes into the analytical model because they will 

satisfy Equ (3). Another property is that the corrected mass and stiffness matrices (Ma-A 

Ad) and (Ka-AK) will be symmetric. This was shown in [9].  

A very significant property is that the zerohon zero pattern of B is reflected in AM 

and AK. Determining the location of damage requires the inspection of the zerohon zero 
pattern of the dynamic residual, B. If a degree of freedom is affected by damage, a non 
zero value will be present at that DOF in B. If that DOF is not affected by damage, a zero 
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will be at that location. Typically noise and model errors will be present making each 

entry in B be non zero, therefore "large" values are taken as damaged DOFs. 

A final property is that the rank of AM and AK will be equal to the number of 
modes used for the calculation of B. This rank constraint allows the adjustment of the 

rank of AM and AK by a choice of the number of modes to use. The rank constraint has 

been found to be consistent with many forms of damage that are typically encountered. 

Clearly there is an infinite set of Bm Is and Bk Is that satisfjr 

To arrive at a unique solution, physically meaningfid constraints must be enforced. Two 
constraints come from the orthogonality conditions. The mass normal measured modal 

data must satisfjr 

By rearranging the orthogonality equations as before, separating the known quantities and 
the unknown quantities and comparing the result with Equ. 5, Equ. 8 becomes 

The pseudo inverse could be used at this point to solve for Bm and Bk, however, 
that would destroy the important zerohon zero pattern of the resulting Bm and Bk. To 
preserve the zerohon zero pattern a formulation similar to the one used to derive Equ. (6) 

is used. A matrix P is to be found which satisfies 

P(VLtB) = B 

which can be found by 

P = B(v;~B)-* 

so the decomposition of B can be performed as 

The calculation of AM requires that the modes be mass normal. Measured modes 
can be mass normalized if the driving point of the structure in question is measured. 
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Otherwise, if it is felt that the mass matrix represents the mass of the structure fairly well, 
the modes can be made mass normal by 

Note that Equ. (13) does not affect the orthogonality of the modes, only the scaling. 
Although the measured modes of the bridge were experimentally extracted to be mass 
normal, Equ. (13) was used to force the modes to be mass normal to the analytical model. 

This was necessary due to confusion in the units of the measured data. 

The damage inflicted on the 1-40 bridge consisted of making increasingly larger 
cuts in one of the two plate girders supporting the road bed (Fig. 2). The first cut was a 2 

ft vertical cut in the center of the web. The second cut extended down to the top of the 
lower flange. The third cut was made through half of the lower flange. The final cut 

severed the lower flange. The cuts did not remove any significant mass and therefore can 

be modeled as only a decrease in stiffness. 

423.3ft ,-/ 
11 

/ 
dams e 

(DdF 20) 

Figure 2. Bridge Model Schematic 

Two definitions of the dynamic residual are used in this work. The first definition 

of the dynamic residual uses the assumption that the damage only affects the stiffness 

matrix and is defined as 

where the subscript h refers to the model correlated to the healthy data as described in 

Equ. (6) and the subscript d refers to the modal data of the damaged structure. The 
second definition assumes that both the mass and the stiffness matrices change and uses 
Equ (12) to define Bm and Bk, with Bk being used for locating damage. The thought here 

is that by separating mass and stiffness effects the noise in Bk will be reduced. 
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Noise in the measurements tends to mask damage in any one of the columns of any 
of the B matrices defined above. In order to compress the information in all of the modes 

a singular value decomposition can be performed on B and the location of damage can be 
determined by inspecting the zerohon zero pattern of the first p lee singular vectors, 
where p is the rank of B determined from an inspection of the singular values. [ 101 

z =  

Areas that are stiff relative to the rest of the structure also cause problems in 

locating damage. Noise in the measurements is magnified by the large value associated 
with stiff elements which can swamp out the actual damage location. For example, a 
structure with a global stiffness on the order of lo6 may have a localized stiffness on the 

order of 109. Assume a noise level of 2% and a damage level in the less stiff region of 

20%. The 2% noise in the stiff region gives a stiffness variation on the order of 2x107 
while the damage in the less stiff region only has a variation of 2x105. The damage would 
not be apparent unless some form of scaling is present. In this work the scaling used is 

defined as 

- -  
Z1 

Z2 

z3 

Z" - -  

B = w B  

where 

and 

In the bridge model, the pylons are areas of large stiffness when compared to the 

stiffness of the two plate girders. Without this weighting, damage is always located at the 
pylons. 

Description of Models 

models used for correlation and the models used for damage detection is that the damage 
detection models have the Y translations and the X rotations grounded to prevent out of 
plane motion, whereas the model correlation models have the full 6 DOFhode (Fig 2). 
The measurements were only in the X direction and the modes of interest have very small 
components in the Y translation and the X rotation. Sensors used for the collection of the 

experimental data consisted of 13 X direction accelerometers equally spaced along each of 

Two different models were used for this study. The only difference between the 
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the main plate girders for a total of 26 measurements. Only the first six modes were 

measured. The number of DOFs for each model given below refer to the model 

correlation model. 

The large model (2682 DOFs) consisted of the roadbed as modeled with CQUAD4 
elements, each of the two main plate girders divided into 48 CBAR elements, and each of 

the three pylon assemblies are divided up into 3 CBAR elements. Springs connect the 
pylons to the two plate girders and connect the roadbed to the ground in the X and Y 
directions at the abutment . 

The small model (108 DOFs) consisted of one CBAR element between each of the 
sensor locations for the two plate girders, a roadbed made up of 12 CQUAD4 elements, 

crossbars between the two main plate girders at the sensor locations, and springs to 

ground to represent the pylons and the connection of the roadbed to the ground at the 

abutment. 

Model Correlation Results 

the optimization are the modulus of elasticity and thickness of the road bed, all the spring 
constants, the two principal moments of inertia of the two main plate girders, the two 
principal moments of inertia and the cross sectional area of each of the pylons, the two 
principal moments of inertia and the cross sectional area for the beams connecting the 
pylons, and an added mass term to account for crash barriers that were present on the 
road bed for a total of 27 design variables. All correlations are done using the data from 
the first damage case. 

The first six modes were correlated with PEGA. The parameters chosen to vary in 

The results for the large model are shown in Table 1. Four iterations were 

required to get convergence of the frequencies. Most of the frequencies show good 
correlation. The exception is modes four and five which are close in frequency. During 
the correlation process they often required reordering. These two modes are closely 
spaced and tend to want to switch. In some of the experimental data, it was not possible 
to differentiate between these two modes. 



6 6.01 5.87 4.66 

Table 1. Change in large model’s frequencies (Hz) 

Mode Initial Frequency Final Frequency Experimental 

1 2.21 2.45 2.51 

2 2.71 3.05 2.98 

3.29 3.66 3.56 3 

4 3.47 4.17 4.12 

5 3.60 4.11 4.20 

6 4.17 4.67 4.66 

The results for the small model are shown in Table 2. Four iterations were also 
performed on the small model. The second and third modes in the small model were 
switched from the first iteration and never corrected. The small model had the most 
trouble predicting the higher frequencies. 
model. Since the mesh is so coarse, only the general motion of the bridge could be 
predicted. 

All six mode shapes were predicted in the 

Table 2. Change in small model’s frequencies (Hz) 

Mode I Initial Frequency Final Frequency Experimental 

1 2.08 I 2.2i 2.5 1 

2 3.42 3.46 I I 2.98 

3 3.18 3.37 I I 3.56 

4 3.90 I 4.12 4.12 I 
5 5.00 I 4.74 4.20 I 

Damage Detection Results 

presented above. Each model was reduced to the sensor set DOF (X translation), 
producing a model with 26 degrees of freedom. The reduction method used was the 
Guyan reduction [14]. Once the original model was reduced, the mass and stiffness 

The detection of the location of damage was performed using the MRPT results 
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matrices were updated using the first damage case data as was shown in the Model 
Correlation section. In general, the large model did not perform as well as the smallest 

model in locating the damage. This is due to the inaccuracies in the reduction procedure. 

Guyan reduction does not accurately reduce the mass matrix if a large amount of inertia is 
present at the omitted DOFs. A poor representation of the mass matrix results, 

diminishing the ability to locate damage. Currently, other techniques of reduction are 

being explored as well as eigenvector expansion methods. 

There were many problems identieing the modes from the experimental data. 
There were 12 other bridge sections of similar construction all within close proximity of 
the test section. Each other section was excited by traffic and, therefore, corrupted the 
measurements producing clusters of modes around each peak. The test consisted of 
testing one of the three spans over the Rio Grande. The other two spans were in the 

process of being demolished while the tests were being performed. This can be viewed as 
an unquantifiable change in the boundary conditions, hrther corrupting the measurements. 

The large model required the removal of 1762 degrees of freedom from the model. 

The mass matrix for this system can be expected to be a poor representation of the original 
mass of the system due once again to the Guyan reduction. The damage was located near 
DOF 20. Figures 3 and 4 show the scaled left singular vectors for the two most severe 
cases of damage. Moving left to right in Fig 3, the most severe case of damage, the first 
and third scaled B vectors show the damage clearly at the proper location whereas the 
second and remaining vectors do not clearly indicate a damaged location. Similarly for 
Bk, only the second and third vector indicate damage at the correct location. The first left 
singular vector contains the most information about the condition of the bridge. The first 
left singular vector in both B and Bk indicate that the first DOF may be affected by 
damage. Both B and Bk for the third damage case (Fig. 4) show no clear or consistent 
indication of damage. 

B for cLt-4 B for clt-4 

1 :KI 0.5 

0 0 

1 2 

0.5 1 

0 0 

1 1 

0.5 0.5 

0 0 

0 20 40 

0 20 40 0 20 40 

dof dof 

81( for clt-4 Bk for clt-4 

1 1 

0.5 0.5 

0 0 

1 :a 0.5 

0 0 
0 2 0 4 0 0  20 40 

1 1 

0.5 0.5 

0 0 
0 2 0 4 0 0  2 0 4 0  

dof dof 

Figure 3. Scaled B and Bk vectors for fourth damage case (large model) 
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B for cut-3 B for cU-3 
1 2 

0.5 1 

0 0 
0 2 0 4 0 0  2 0 4 0  

2 1 

1 0.5 

0 
o o 2 0 4 0 0  2 0 4 0  

Bk for tit-3 Bk for cu1-3 
1 1 

0.5 0.5 

0 0 
0 2 0 4 0 0  2 0 4 0  

1 2 

0.5 1 

0 0 
0 2 0 4 0 0  2 0 4 0  

4 1 1 1 

2 0.5 0.5 0.5 

0 0 0 0 
0 2 0 4 0 0  2 0 4 0  0 2 0 4 0 0  2 0 4 0  

dof dof dof dof 

Figure 4. Scaled B and Bk vectors for third damage case (large model) 

The small damage model only required the removal of 52 degrees of freedom. It 

would be expected that the reduced mass matrix would more accurately represent the 
actual mass of the system. Figures 5 and 6 display the modified B and Bk vectors for the 
small model. The correct damage is clearly indicated in the first four scaled left singular 
vectors of the B for the fourth damage case (Fig. 5). For Bk, only the first two and the 
fourth scaled left singular vectors clearly show the proper damage. For the third damage 
case (Fig. 6), the B vector shows no consistent or clear indication of damage. The first 
scaled left singular Bk vector shows damage at DOF 20, the actual location. 

B for cut-4 
1 

0.5 

0 
0 20 40 

1 

0 
0 20 40 

1 

0 
0 20 40 

dof 

B for ad-4 

21-----1 

1 

0 
0 20 40 

Bk for ar1-4 

2- 

1 

0 
R 

0 20 40 

1 

0.5 

0 0 
0 20 40 0 20 40 

1 

0 Ilh 
0 20 40 

dof 

1 

0 
0 20 40 

dof 

Bk for cu1-4 

1 

0.5 

0 
0 20 40 

0 l I  0 20 40 

1 

0 nil 
0 20 40 

dof 

Figure 5.  Scaled B and Bk vectors for fourth damage case (small model) 
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B for cut-3 B for cut-3 

1 2 

0.5 1 

0 0 
0 20 40 0 20 40 

1 2 

0.5 1 

0 0 
0 20 40 0 20 40 

0 
l I  0 20 40 : 0 20 40 

dof dof 

Bk for cut-3 Bk for cut-3 

1 2 

0.5 1 

0 0 
0 20 40 0 20 40 

2-  1 

1 0.5 

0 0 
0 20 40 0 20 40 

Figure 6. Scaled B and Bk vectors for third damage case (small model) 

Discussion 

The model correlation process as used here varies design parameters such as 
density to adjust a finite element model to approximate an experimental response. The 
model remains a finite element approximation. Typically with finite element models, a 

finer mesh will result in a better correlation. With a finer mesh, the FE approximation is 
more exact and with a finer mesh there can be more design parameters to include in a 
correlation. This gives the model more degrees of freedom to be adjusted. 

The larger model of the 1-40 bridge, after correlation, did represent the 
experimental frequencies better than the small model, especially at higher frequencies. The 
mode shapes, however, were accurately represented in both models. For a basic 
understanding of the characteristics of the bridge a coarse mesh model is sufficient while 
for any detailed work, the more refined mesh would be more appropriate. 

For damage detection, it is the fact that the small model can accurately represent 
the mode shapes that allows it to be useful. The model is first reduced then corrected 
using MRPT that places the measured modes in the model exactly. Since the mode shapes 
are predicted, the corrections to the model are mainly to fix the frequencies. The larger 

models, however, are greatly corrupted by the Guyan reduction process and the large 
changes that MR.PT produces in the mass and stiffness matrices adversely affects any 

structure that was present in the model to begin with. 

Conclusions 

Large and small models are compared from the viewpoint of model correlation and 
damage detection. For model correlation, large models are necessary to reduce the effects 

of the discretization error inherent in the finite element method. For damage detection, a 
small model that captures the approximate nature of the structure, such as mode shapes, is 
sufficient and can be preferable. Use of a large model for damage detection will require 
either a large amount of DOFs to be removed via some reduction method or require a 

large portion of the mode shapes to be approximated with some expansion process. 
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