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ABSTRACT

An in depth parametric evaluation of the effects of
Coulomb friction in an axial spline joint on the
stability of the rotor-bearing system was conducted
through time transient integration of the equations of
motion. Effects of: spin speed, friction coefficient,
spline torque, external damping, imbalance and side load
as well as asymmetric bearing stiffnesses were
investigated.

A subsynchronous instability is present at the bending
critical speed when the spin speed is above this
critical. The limit cycle orbit is circular, is
proportional to the product of the friction coefficient
and spline torque (MT), is inversely proportional to the
external damping and is independent of spin speed.

When imbalance is applied to the rotor, beating between
the subsynchronous natural frequency and the synchronous
(spin speed) frequency occurs. The subsynchronous
component of the orbit is proportional to AT, while the
synchronous component is proportional to the imbalance.

When a static side load is applied, the unstable node at
the center of the orbitally-stable limit cycle grows into
an elliptical orbitally-unstable limit cycle, separating
stable - from unstable regions of the phase plane.
Below a threshold value of side load, the transient
motion approaches one of two asymptotic solutions
depending on the initial conditions: the larger stable
limit cycle or a point at the center of the smaller
unstable limit cycle. Beyond the threshold value of side
load the rotor-bearing system is stable and all motions
decay to a point.

Asymmetry in the bearing stiffnesses reduces the size of
the subsynchronous whirl orbit.

1.0 INTRODUCTION

Stability of rotor-bearing systems has been studied by
numerous authors, such as Gunter [1], Black [2], Glasgow
[3] and more recently, Lund [4]. Internal rotor friction
has been demonstrated [5], both analytically and
experimentally, to cause instability in rotors operating
above their first bending critical. Turbopumps such as
the Space Shuttle Main Engine (SSME) High Pressure
Oxidizer Turbopump (HPOTP) contain friction joints such
as interference fits and splines. These rotors may
operate above flexible bending criticals and have

relatively light external damping, both of which are
potential conditions for instability.

This paper is concerned with the evaluation of the
effects of the system parameters on the stability of a
rotor that contains two spline joints. The parameters
investigated were: spin speed, friction coefficient,
spline torque, external damping, imbalance, side load and
asymmetry in bearing stiffnesses.

2.0 ROTOR MODEL, NUMERICAL APPROACH AND INITIAL
CONDITIONS

Figure 1 shows the rotor-bearing model used to exercise
the spline. It consists of a shaft mounted on ball
bearings at the ends with a spline sleeve in the middle.
Spline couplings at the ends of the sleeve connect it to
the rotor. External damping to ground is applied at the
sleeve. The spline configuration is the same as that in
the SSME HPOTP rotor. This same spline was tested in a
rotor-dynamic test rig, similar to the model in Figure 1,
which showed a very strong subsynchronous whirl at the
first critical, as reported in [1]. The first undamped
natural frequency of the system corresponds to a bending
critical at 1247 RPM. Figure 2 is a plot of the
corresponding mode shape, showing the relatively large
bending of the shaft at the sleeve ends and the
relatively small deflection at the bearings.

NOMENCLATURE

A0,Aa	difference in angular displacements across
the spline measured in coordinate systems
fixed on the ground and fixed on the rotor,
respectively.

Ke	angular stiffness of the spline.

steady torque transmitted by spline.

Uf , U,,	energy contributions per cycle due to spline
friction and external damper, respectively.

coefficient of friction.

spline teeth pressure angle.

spin speed of rotor.
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Figure 1. Rotor model consisting of shaft and spline sleeve.

rigure z. nnoae snape for IIISL nawrai irequency

A Coulomb friction model that describes analytically the
behavior of a spline coupling was developed in [1],
showing that the moment transmitted across the spline
joint is given by:

-M=KAO+
 21T Aa

a cos *r I A a I
(1)

	M= M	Ae = Ae AQ = AO+OnIO

	M r	A4	e^ nee

where: AO and AC are the differences in angular
displacements across the spline measured in coordinate
systems fixed on the ground and on the rotor,
respectively . Ka is the angular stiffness of the spline,
T is the spline torque, µ is the coefficient of friction
and Y is the pressure angle.

When conditions are such that the relative angular
velocity across the spline joint approaches zero, the
joint will stick. However, the spline model is assumed to
be slipping. The phenomenon of the transition from a
slipping to a sticking interface was not found to be
relevant to the stability question. The equations of
motion were integrated versus time using a fourth-order
Runge-Kutta method. The time step was made small enough
to avoid numerical instability and assure accuracy of
solution.

Different initial conditions were used to start the rotor
transient motion. Either an imbalance force or a static
side force of 1780 N [400 lbs] was applied to the rotor
at rest, for 1 second and then released. Figure 3 shows
the transient response orbits for these two initial
conditions. In both cases, the rotor motion approaches
the same circular orbit from the outside. Another
simulation where the displacements and velocities after
the imbalance was removed were scaled down by a factor of
0.6 is shown in Figure 4. In this case, the rotor motion
approaches the same circular orbit from the inside. The
parametric study is mostly concerned with the final
motion of the system and not the intermediate transient.
The set of displacements and velocities corresponding to
the above circular limit cycle orbit was found to be the
most appropriate choice of initial conditions. However,

.0500	
Imbalance

cc
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•1000	--0500	.0000	.0500	.1000
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Figure 3. Transient response orbit to different initial conditions.
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Figure 4. Orbit for initial conditions scaled by SI=0.6.

since under non-symmetric operation there were two
different solutions to the final motion, a scale factor
(SI) was used in order to scale the set of displacements
and velocities used for initial conditions.

3.0 PARAMETRIC STUDY

3.1 Symmetric conditions.

Under symmetric conditions (no side force and isotropic
bearing coefficients), when the rotor is spinning at
frequency f2 and is whirling in a circular motion at
frequency ur, the energy added in one cycle to the rotor-
bearing system by the spline joint can be calculated to
be:

Ur. sgn(e-c)
4-Tr1	 (2)

cos*

where r l is the amplitude of the relative angular
displacement across the joint. On the other hand, the
energy contribution from a viscous damper is given by:

U,.= -2n m B4	 (3)

where r is the radius of the circular whirl orbit at the
damper .ocation. The negative sign indicates that energy
is being dissipated.

When the motion reaches its limit cycle, the net energy
added to the system is zero. Setting the sum of the
above two equations to zero yields the amplitude of the
motion:
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0, if Q<m

4
2 T

 r r^ 2 If Q>W.
^y (rz )

where the ratio (r I/r) is obtained from the mode shape of
the motion. Below the first bending natural frequency,
both energy contributions are negative, resulting in zero
motion. Above the first bending natural frequency, the
radius of the limit cycle orbit is proportional to the
product of the friction coefficient and the spline torque
(MT) and inversely proportional to the external viscous
damping (B). Of course, when the rotor motion is such
that the moment acting through the spline joint does not
exceed that required to overcome slip (2µT/7rcosT): the
joint connection will be elastic and the rotor will be
stable without subsynchronous motion, in spite of
operation above the first bending critical.

3.2 Imbalance

Figure 5 is a plot of three different limit cycle orbits
showing the combined effects of friction and imbalance:
1)an imbalance of 890 N [200 lbs] and zero friction, 2)an
imbalance of 890 N and µT=56.5 N-m [500 lb-in], and
3)zero imbalance and AT=56.5 N-m. The case with
imbalance only has purely synchronous motion while the
case with only friction has motion purely at the first
natural frequency. For both of these cases the orbit is
circular.

F (N) pT(N-m)
a7 _ 890 0

/890
57

x 0.35

.0.70	0.35	0.00	0.35 0.70

M,W5,a at Degrees of Freedom w. 5(o  10 1 ) 
oosoz

	Figure 5.	Limit Cycle Orbits for Different Combinations of Imbalance

and Friction Torque Product.
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The case with both imbalance and friction shows a
combined motion beating between the two frequencies and
contained within an annular region. Figure 6 shows the
FFT of the lateral displacement as the imbalance force is
increased from zero to 890 N. Clearly, the synchronous
component of motion increases in proportion to the
imbalance force while the subsynchronous component is
unaffected. Thus, there are two components of motion,
uncoupled from each other, at two frequencies:

a subsynchronous component (at the first
bending critical), proportional to µT/B.
This component is responsible for the mean
radius of the annular region.

a synchronous component (at the spin speed),
proportional to the imbalance force. This
component is responsible for the width of the
annular region.

3.3 Side Load

A static side load applied to the rotor will cause a
moment to be transmitted through the spline connections
between the sleeve and the rotor. There exists a
threshold for this side load beyond which the rotor-
bearing system is stable and all motions decay to a
point. Below the threshold, the transient motion will
approach one of two solutions as two, depending on the
initial conditions, as discussed below.

In the theory of the stability of nonlinear systems, a
limit cycle is defined as an isolated closed phase path s
which corresponds to a periodic mode of operation in the
system. If all neighboring phase paths approach this
cycle, from both the inside and outside, asymptotically
as t-', it is called a stable limit cycle. On the other
hand, if there exists at least one neighboring phase path
that does not approach this cycle as t-, it is called an
unstable limit cycle. Similarly, a stable or unstable
node is a singular point towards which or away from which
all neighboring phase paths move as t-'. For more
information on this subject, see [6].

When the rotor is operating above the first bending
critical and at zero side load there is an orbitally-
stable circular limit cycle for the motion at a whirl
frequency equal to the first bending critical, regardless
of the initial conditions. The center of this circle is
an unstable node.

As the side load is applied, the center of the orbitally-
stable limit cycle moves in the direction of the load.
This unstable node grows into an orbitally-unstable limit
cycle. Figure 7 is a comparative plot of the two limit
cycles as the side load is progressively increased from
zero to 1780 N. The arrows indicate the stability status
of the different cycles and nodes. The unstable limit
cycle is elliptical in shape and has its major axis
inclined a few degrees from the direction of the applied
load, as can be determined b y looking in more detail at
the case of 890 N side load at different initial
conditions. Figure 8 shows part of the orbit of the
rotor near this cycle for three values of initial
conditions (SI-3.5, 3.875 and 4.25) between t=0.55 and
t=0.60 seconds. Figure 9 shows the complete orbits (from
t=0 to 1 sec) for these three conditions. As seen, the
orbit decays to a point for SI-3.5, where as it grows to
the stable limit cycle for SI=4.25. For SI=3.875 on the
other hand, the orbit does not depart drastically from
the cycle in Figure 8 even after time has reached a full
second. The criteria which determines the final orbit is
not simply whether the initial rotor displacement is
inside or outside this unstable limit cycle but it is a
complex function of all of the initial displacements and
velocities of the system.

Thus, the unstable limit cycle represents a threshold for
the initial conditions of the rotor-bearing system to

"Phase path" is the term given to the path of a
representative point in the phase plane, while
"phase" is used to describe the state of the
system, i.e., the set of displacements and
velocities of the system at a given time.

Figure 6.	FFT of Lateral Motion for Different Amounts of Imbalance.
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Figure 7. Comparison of orbitally stable (Larger) and orbitally unstable
(smaller) limit cycles at different side loads.
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Figure 9.	Transient orbit for three different initial conditions near the

unstable limit cycle between t= 0 and 1 sec.

eventually reach the non-zero orbitally-stable limit
cycle, which is manifested as a subsynchronous vibration.
For small initial conditions, the transient orbit will
decay in an elliptically-shaped spiral towards a point at
its center which is now a stable node. Figure 10
illustrates the transient orbits for three different
values of small initial conditions (SI= 3.5, 2 and 1).
On the other hand, for large enough initial conditions,
the orbit grows towards the larger, more-circular stable
limit cycle, from either the inside or the outside.
Figure 11 illustrates the transient orbits for three
different values of large initial conditions (SI= 5, 10
and 20).

As the side load is increased, the orbitally-unstable
limit cycle grows very rapidly towards the larger limit
cycle. This larger cycle, on the other hand, decreases
and becomes elliptical very gradually with increasing
side load. The principal axis of this larger cycle is
along the direction of load. Both limit cycles merge
into one another at the threshold of side load (about
1330 N for this case) to form what is called a "semi-
stable" or double cycle[2]. Although motions with large
initial conditions approach this cycle asymptotically
from the outside, any disturbance will cause the motion
to decay towards the stable node at its center.

Figure 12 contains superimposed plots of the envelopes of
the lateral component of motion versus time for numerous
values of the initial condition scale factor (SI) and a
side load of 100 lbs. Figures 13, 14 and 15 are similar
plots for side loads of 890, 1330 and 1780 N,

stable limit cycle.

t .200	 le

limit

cycle

tic
offset

o -000 II

¢- .600

unstable

limit

cyde

.20 1.

.000	.600	1.200	1.800	2.400	3.000
TIME (SEC)

Figure 12. Envelopes of Lateral Motion versus time for different initial

conditions at 445 N side load.

respectively, except for a factor of 2 in the scale of
the abscissa. At large orbit amplitudes (near the limit
cycles) the decay rate with time is fairly slow while as
the orbit size decreases the decay rate rapidly
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increases.	Further increase in side load beyond the
threshold increase the rate of decay of the motion
towards the stable node at the static offset. This is
shown in the plots of the envelops for the case of a side
load of 1780 N (Figure 15) which do not show any evidence
or a limit cycle.

1.2DD

.600

LO	\	 ------------------------------- ----------------------------- --

o .000
0

I

¢- .600

-1.209)

	-000	.600	1.200	1.800	2.400	3.000
TIME (SEC)

Figure 13. Envelopes of lateral motion versus time for different initial

conditions at 1780 N side load.

1.200
staac

offset

	

.600	
1B

------- ------ 

---^-	
------------ - -----

	o .000	 ----
0

f
- -60D	 unatab9®

lumoe	 sts e

cycle	 limit

cycle

-1.20

	

.000	.600	1.200	1.800	2.400	3.000
TIME (SEC)

Figure 14. Envelopes of lateral motion versus time for different initial

conditions at 890 N side load.

Figure 16 plots the size and ellipticity of the stable
limit-cycle orbit as the side load is increased. The
orbit starts out as a large circle which becomes
elliptical and shrinks in size, very slowly for small
side load and then very rapidly as the threshold (1780 N)
is approached.

3.4 Asymmetric bearing coefficients

Figure 17 shows the effect of decreasing one of the
components of direct bearing stiffness ( K., ) on the limit
cycle orbit. As Kyy is decreased from 1011,000 to 10,000
lb/in, the orbit becomes elliptical with the major axis
inclined about 135° from the x-axis and increasin g to
about 110% of the radius of the original circular orbit.
Further decrease in K decrease the size of the orbit
without much further effect on its ellipticity. Figure
17 is a plot of the major and minor axes of the limit
cycle ellipse. In the case of this rotor model, no
reduction in the major axis is noticed until K /K,.x is
less than 10%. However, as shown by the mode shape in
Figure 2, the rotor model utilized here to exercise the
joint is fairly flexible compared to the bearing
stiffness. A stiffer rotor would involve more
participation of the bearings in the first bending mode.
Therefore, it is expected that for relatively stiffer

1 .200

.600	- iEE=-=-===-

w
-----------------------------	--------------------------	-------

o .000
0

static

Semistebte	 offset

limit cycle

-1.20

.000	.600	1.200	1.800	2.400	3.000
TIME	(SEC)

Figure 15. Envelopes of lateral motion versus time for different initial

conditions at 1330 N side load.

rotors, asymmetry in the bearing coefficients should have
a more beneficial effect in controlling rotor
instability.

125

Waya axis, a(cT)
Alinor axis b(cm)

Ellipticity, a/E

0.75- ---------------- ----------------- --------------- -- ------------

025

0m

	0 	 470	 940	 14E	 S80

Static side bad (N)

	

Figure 16 .	Effect of side load on limit cycle.
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Figure 17. Limit cycle orbits versus increasing bearing stiffness asymmetry.
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the rate of decay of the motion towards the stable
node at the static offset.

3.5 Rotating Speed

The rotor will be stable or unstable depending on whether
the rotating speed is lower or higher than the first
bending critical speed of the rotor-bearing system.
Several simulations performed with and without side load
showed no effect of speed. Other than determining the
stability status, the spin speed has no noticeable effect
on the size of the orbit or on the transient motion to
reach it. (The only effect is through the small
influence that the gyroscopic effects have on the first
bending critical speed and mode shape.)

4.0 CONCLUSIONS

For symmetric operation:

There is only one asymptotic solution (as t-+C0)
independent of the initial conditions. If the spin
speed is less than the first bending critical speed,
the energy contribution from the friction in the
spline is negative, resulting in zero subsynchronous
motion and a stable rotor. If the spin speed is
greater than the first bending critical speed, the
rotor is unstable and its motion is a circular limit
cycle whirling at a frequency equal to the first rotor
bending critical. The radius of this limit cycle
orbit is proportional to the product of the friction
coefficient and the spline torque, and is inversely
proportional to the external viscous damping.
Transient motions proceed in spiral paths, from either
the inside or the outside, towards the limit cycle
circle. The center of the circle is an unstable node.

2. Other than determining whether instability is present
or not, there is very little effect of spin speed on
the size of the subsynchronous motion, only the small
influence that the gyroscopic effects have on the
first bending critical speed and mode shape.

3. With rotor imbalance the limits of the rotor orbit
widen from a circle to an annulus. The motion within
this annulus contains two components at two
frequencies: a subsynchronous component (at the first
bending critical) and the synchronous component. The
subsynchronous component is proportional to the
product of the friction coefficient and the spline
torque. The synchronous component is proportional to
the imbalance force and is responsible for the width
of the annular region. Both components are uncoupled
from each other.

Bearing asymmetry:

4. Asymmetry in rotor bearing stiffness coefficients
reduces the size of the subsynchronous whirl orbit
brought about by internal friction.

Static side load:

5. There exists a threshold for the side load beyond
which the rotor-bearing system is stable and all
motions decay to a point. Below the threshold, the
transient motion will approach one of two asymptotic
solutions depending on the initial conditions.

6. As the side load is applied, the unstable node at the
center of the orbitally-stable limit cycle moves in
the direction of the load and grows into an orbitally-
unstable limit cycle. For small initial conditions,
the transient orbit will decay in an elliptically-
shaped spiral towards a point at its center which is
now a stable node.	On the other hand, for large
enough initial conditions, the orbit grows towards the
larger, more-circular stable limit cycle, from either
the inside or the outside.	As the side load is
increased, the orbitally-unstable limit cycle grows
very rapidly towards the larger limit cycle. This
larger cycle, on the other hand, decreases and becomes
slightly elliptical.

7. Both limit cycles merge into one another at the
threshold of side load to form a "semi-stable" or
double cycle. Although motions with large initial
conditions approach this cycle asymptotically from the
outside, any disturbance will cause the motion to
decay towards the stable node at its center. Further
increase in side load beyond the threshold increase
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