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Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and
Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in
terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed
in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after
treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual
species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of
either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide
susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more
susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms
while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l71 caused low biofilm
removal (510%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity
over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species
biofilms, but were more marked for those formed by P. fluorescens (removal 440% of the total biofilm). The overall
results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and
reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low
antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on
biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single
biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and
resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible
to the biocide than B. cereus biofilms.

Keywords: antimicrobial resistance; biofilm control; glutaraldehyde; dual species biofilms; post-treatment effects;
regrowth

Introduction

Biofilms constitute a protected mode of growth that
allows microorganisms to survive in hostile environ-
ments. Unwanted biofilm formation causes biofouling
of heat exchange systems and marine structures,
microbial induced corrosion of metal surfaces, dete-
rioration of dental surfaces, contamination of house-
hold products including food and pharmaceuticals as
well as the infection of short- and long-term biomedi-
cal implants and devices (Hall-Stoodley et al. 2004;
Choi et al. 2010; Tang et al. 2011; Teodósio et al.
2011). Antimicrobial agents have been the main
weapons used to control biofilms, acting either by
interfering with microbial metabolism or by facilitating
their detachment from the surface (Chen and Stewart
2000; Faÿ et al. 2010; Wong et al. 2010). The target of
an antimicrobial strategy is to inactivate and reduce

the number of microorganisms and to control the
formation of biodeposits on surfaces (Mun et al. 2009;
Simões et al. 2010a).

Aldehydes belong to the group of electrophilic
active agents which, due to the electron deficiency at
the carbonyl carbon atom, can react with nucleophilic
cell entities and thus exert antimicrobial activity (Hugo
and Russell 1982). Glutaraldehyde (GLUT) (1,5-
pentanedial) is a colorless, oily, liquid with a pungent
odor. It has been used extensively for disinfection and
sterilization purposes in the food, poultry, leather and
cosmetic industries and also for various applications in
microbiological and biomedical areas (Laopaiboon
et al. 2003). It is also used to control microbial growth
in cooling water systems and is probably the most
widely used biocide in oilfield operations (Lutey
1995; Kjellerup et al. 2009). Several studies have
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demonstrated the effectiveness of GLUT against
different microorganisms (Bacillus subtilis, Candida
albicans, Escherichia coli, Pseudomonas aeruginsa,
Pseudomonas fluorescens, Serratia marcescens and
Staphylococcus aures) in suspension (Angelillo et al.
1998; Walsh et al. 1999; Simões et al. 2006). The use of
GLUT to control biofilms has also been reported
(Takeo et al. 1994; Midelet and Carpentier 2004;
Simões et al. 2005a, 2009; Jones et al. 2011). Although
the ability of GLUT to inactivate biofilms has been
demonstrated, it is also reported to increase their
attachment and mechanical stability (resistance to
removal) (Takeo et al. 1994; Midelet and Carpentier
2004; Simões et al. 2005a). Thus, new data are required
in order to clarify the potential of GLUT to control
biofilms.

One of the most significant advantages of GLUT is
the fact that it is not corrosive to various substrata
including stainless steel, soft metals, rubber and glass
(Herbert 1995; Laopaiboon et al. 2003). The biocidal
effects of GLUT are attributed to the presence of two
aldehyde groups that interact with the microbial cell
constituents. These can react with ammonia and
primary amines and more slowly with secondary
amines, contributing to a strong binding to outer
cellular layers (Cloete et al. 1998; Walsh et al. 1999)
thus hampering essential cellular functions (McDon-
nell and Russell 1999).

In the food industry, it is important to disinfect the
processing equipment, taking into account the con-
stitutive microflora. In dairy environments, the most
commonly encountered bacteria belong to the genera
Enterobacter, Lactobacillus, Listeria, Micrococcus,
Streptococcus, Bacillus and Pseudomonas (Sharma
and Anad 2002; Dogan and Boor 2003; Shakerifard
et al. 2009; Simões et al. 2010a). Pseudomonas spp. are
some of the most important bacteria causing spoilage
of conventionally pasteurized liquid milk products and
Bacillus spp., particularly B. cereus, are implicated in
food spoilage. In a commercial dairy plant, B. cereus
accounted for 412% of the constitutive microflora of
biofilms (Sharma and Anand 2002). As B. cereus and
P. fluorescens are ubiquitously present in nature, they
are easily spread through food production systems,
and contamination with these species is almost
inevitable (Andersson et al. 1995; Dogan and Boor
2003). Inhibiting biofilm formation can be achieved
through a better knowledge of the mechanisms that
contribute to their formation, development and
maintenance.

The aim of the present work was to assess the
effects of GLUT on the inactivation, removal and
regrowth of single and dual species biofilms formed by
B. cereus and P. fluorescens. The characterization of
single and dual species biofilms was performed to

assess the potential physiological aspects that deter-
mine biofilm susceptibility to GLUT. For comparative
purposes, antimicrobial tests with planktonic cells were
also performed.

Material and methods

Microorganisms and culture conditions

P. fluorescens ATCC 13525T and a B. cereus strain
isolated from a disinfectant solution and identified by
16S rRNA gene sequencing were used throughout this
study (Simões et al. 2008a). Bacterial growth condi-
tions were 27 + 28C and pH 7, with glucose as the
main carbon source. Bacteria were grown in indepen-
dent 0.5 l glass reactors (Quickfit, MAF4/41, England),
with an air flow rate of 0.425 l min71 and continuously
fed with a sterile concentrated standard growth
medium (glucose, 5 g l71, peptone, 2.5 g l71 and yeast
extract, 1.25 g l71, prepared in 0.02 M phosphate
buffer, pH 7). Continuous feeding, with the aid of a
peristaltic pump (Ismatec Reglo, Germany), was at a
rate of 10 ml h71 (P. fluorescens) or 13 ml h71

(B. cereus) of sterile medium, in order to have the
same cell concentration. Under the experimental con-
ditions used, both bacteria had similar growth profiles
and rates (Simões et al. 2008a).

Biocide

The aliphatic aldehyde-based biocide GLUT (Reidel-
de-Haën, Germany) at 25% (w/v) was used throughout
this study. Solutions of biocide were obtained by
dilution with sterile distilled water. Planktonic tests
were performed with GLUT at 25, 50, 100, 200, 500
and 1000 mg l71. Biofilm tests were performed with
GLUT at 200 mg l71.

Biofilm reactor

The bacterial cultures referred above were used to
continuously inoculate (10 ml h71 – P. fluorescens;
13 ml h71 – B. cereus) two independent 2 l chemostat
systems, fed with a minimal nutrient medium (glucose,
0.05 g l71, peptone, 0.025 g l71 and yeast extract,
0.0125 g l71 in phosphate buffer pH 7) at a flow rate of
1 l h71, to obtain a bacterial suspension with 6 6 107

cells ml71. Biofilms were grown on 24 ASI 316
stainless steel (SS) slides (2.5 cm 6 2.5 cm and 1 mm
thick) that were hung within the chemostat system
(Figure 1). The chemostat system was operated at
27 + 28C, with aeration (air flow rate – 0.350 min71)
and stirring (VWR, VMS-C7 Advanced; 120 rpm;
stirrer length – 2.5 cm), according to previous studies
(Pereira and Vieira, 2001; Simões et al. 2003a; Ferreira
et al. 2010). The biofilms were allowed to grow for
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6 days, which was the time needed to reach the steady
state in terms of cell density, metabolic activity and
mass (Pereira and Vieira 2001). Biofilm formation was
performed independently for each bacterium.

For dual species biofilm formation, two indepen-
dent 0.5 l chemostats were used to grow B. cereus and
P. fluorescens. The 2 l chemostat system was inoculated
simultaneously with both strains, and fed with diluted
nutrient medium at twice the flow rate (2 l h71) than
the one used for single species biofilm formation, in
order to obtain a cell density and residence time similar
to that of the single species situation. The experiments
were repeated on three different occasions for every
scenario tested.

Biofilm sampling for phenotypic characterization

The biofilm (chemically untreated) on the SS slides was
removed using a scraper; resuspended in 10 ml of
buffer solution (2 mM Na3PO4, 2 mM NaH2PO4,
9 mM NaCl and 1 mM KCl, pH 7) and then
homogenised by vortexing (Heidolph, model Reax
top) for 30 s with 100% power input, according to the
method described by Simões et al. (2005a). The
homogenised biofilm suspensions were characterized
in terms of respiratory activity, total and extracellular
polymeric substances (EPS) content (proteins and
polysaccharides), biomass amount and cell density.
The number of spores of B. cereus in single and dual
species suspensions and in biofilms was assessed by
surface plating (300 ml sample) after heat treatment
(808C, 5 min). The plates of solid standard concen-
trated growth medium (13 g l71 agar) were incubated
at 27 + 28C for 72 h.

Respiratory activity

Respiratory activity assays with planktonic cells and
biofilm suspensions were performed in a model 53

Yellow Springs Instruments (Ohio, USA) biological
oxygen monitor (BOM), as previously described
(Simões et al. 2005b). Samples were placed in the
temperature-controlled BOM vessel (27 + 28C). Each
vessel contained a dissolved oxygen (DO) probe,
connected to a DO meter. Once inside the vessel, the
samples were aerated for 30 min to ensure oxygen
saturation ([O2] ¼ 9.2 mg l71, 1 atm). Afterwards, the
vessel was closed and the decrease of oxygen concen-
tration monitored over time. The initial linear decrease
observed corresponded to the endogenous respiration
rate. To determine the oxygen uptake due to substrate
oxidation, 50 ml of a glucose solution (100 mg l71) was
injected into each vessel. The slope of the initial linear
decrease in the DO concentration, after glucose
addition, corresponded to the total respiration rate.
The difference between the two respiration rates
represented the oxygen uptake rate due to glucose
oxidation and was expressed as mg O2 g71

bacteria

min71 or mg O2 g
71

biofilm min71.

Protein and polysaccharide quantification

Biofilm EPS (proteins and polysaccharides) were
extracted using Dowex resin (50X 8, NAþ form, 20–
50 mesh, Fluka-Chemika, Switzerland), according to
the methods of Frølund et al. (1996). The separation of
the EPS matrix without damaging the cells is an
important prerequisite of an extraction procedure. In
this study, ATP was used as an indicator of cell lysis
(Simões et al. 2005a), and no ATP release was detected
during the extraction process. Dowex resin was added
to biofilm suspensions. EPS extraction took place at
400 rpm and 48C, for 4 h. The extracellular compo-
nents (present in the supernatant) were separated from
the cells via centrifugation (3777 g, 5 min). The total
(before EPS extraction) and extracellular biofilm
proteins were determined using the Lowry modified
method (Sigma, Portugal), with bovine serum albumin
as standard. The procedure is essentially the Lowry
method (Lowry et al. 1951) as modified by Peterson
(1979). The total and extracellular polysaccharides
were quantified through the phenol–sulphuric acid
method of Dubois et al. (1956), with glucose as
standard.

Biomass quantification

The dry mass of the biofilms was assessed by the
determination of the total volatile solids (TVS) of the
homogenised biofilm suspensions, according to stan-
dard methods (American Public Health Association
[APHA], American Water Works Association
[AWWA], Water Pollution Control Federation
[WPCF] 1995). Following this method, the TVS

Figure 1. Schematic representation of the experimental
system used to form single species biofilms. Dual species
biofilms were formed with two independent 0.5 l reactors
providing B. cereus and P. fluorescens to the 2.0 l reactor
(chemostat system).
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assessed at 550 + 58C in a furnace (Lenton thermal
designs, UK) for 2 h is equivalent to the amount of
biological mass. The biofilm mass accumulated was
expressed in mg of biofilm per cm2 of surface area of
the slide (mgbiofilm cm72).

Cell counts

The cells separated through centrifugation from the
EPS (present in the supernatant) were stained with
40,6-diamidino-2-phenylindole – DAPI (Sigma, Portu-
gal, Cat. No. D-9542), a DNA binding stain, as
described by Simões et al. (2007a). Cells separated
from the extracellular products were diluted to an
adequate concentration (in order to have 30–250 cells
per microscopic field of view). Thereafter, the bacterial
suspensions were filtrated through a Nucleopore1

(Whatman) black polycarbonate membrane (pore size
0.22 mm) and then stained with 400 ml of DAPI at
0.5 mg ml71 and left in darkness for 5 min. A Zeiss
(AXIOSKOP) microscope fitted with fluorescence
illumination was used with a 100 6 oil immersion
fluorescence objective to visualise the cells. The optical
filter combination for optimal viewing of stained
preparations consisted of a 359 nm excitation filter in
combination with a 461 nm emission filter. Images
were obtained using a camera (AxioCam HRC, Carl
Zeiss) attached to the microscope and AxioVision
software. A program path (Sigma Scan Pro 5)
involving object measurement and data output was
used to quantify the number of cells. The mean
number of cells was determined through counts of a
minimum of 20 microscopic fields, per membrane. In
dual species biofilms, B. cereus and P. fluorescens were
distinguished by their difference in size (Simões et al.
2007b, 2008a). B. cereus biofilm cells were 1.45 +
0.11 mm compared to P. fluorescens cells, which were
0.681 + 0.09 mm.

Exposure of planktonic cells to glutaraldehyde

A suitable volume of the bacterial cultures was
withdrawn from the independent 0.5 l glass reactors,
washed with saline (0.85% – w/v NaCl) phosphate
buffer (0.02 M) by three consecutive steps of centrifu-
gation (3777 g, 5 min) and resuspended in 0.02 M
phosphate buffer (pH 7) in order to obtain a
suspension with a cell density of approximately
1 6 109 cells ml71. This bacterial culture was then
divided into aliquots of 50 ml which were introduced
into several 100 ml sterilised glass flasks. The flasks
were incubated on an orbital shaker (120 rpm, 278C),
and exposed to different concentrations of GLUT (0,
25, 50, 100, 200, 500 and 1000 mg l71) for 30 min.
Planktonic cultures of dual species were obtained by

the addition of 25 ml of each bacterial culture at a cell
density of approximately 1 6 109 cells ml71.

The antimicrobial action of GLUT against single
and dual species B. cereus and P. fluorescens plank-
tonic cultures was assessed by determining the
bacterial respiratory activity through oxygen consump-
tion after neutralizing with sodium bisulphite (Sigma)
at a final concentration of0.5% (w/v) (Simões et al.
2006). Bacteria from dual species planktonic cultures
were also stained using a Live/Dead BacLight bacterial
viability kit (Invitrogen) in order to ascertain the
proportion of viable cells from each species, as
described by Simões et al. (2005b, 2009). At least,
three independent experiments were performed for
each tested condition.

Exposure of biofilms to glutaraldehyde

The slides covered with biofilms were carefully and
aseptically transferred to closed vases containing a 200
mg l71 GLUT solution in phosphate buffer (0.02 M,
pH 7) and left under orbital agitation (120 rpm) for
30 min, according to previous studies (Simões et al.
2003a, 2005a, 2008a). The concentration tested was
selected based on previous reports (Simões et al. 2003b,
2005a). The biofilms, analyzed immediately after
treatment, were subjected to a process of GLUT
neutralization with sodium bisulphite. The remaining
slides plus biofilm were aseptically transferred, without
a GLUT neutralization step (in order to simulate
industrial disinfection processes), to the 2 l reactor with
fresh medium. Those slides with biofilm were used for
post-biocide treatment analysis (for example: regrowth
or sloughing events) 3, 7, 12, 24, 48 and 72 h after
GLUT exposure. For each conditions tested/sampling
time, control (without biocide treatment) experiments
were performed.

For analysis, the biofilm was scraped off the metal
slides into 10 ml of phosphate buffer pH 7 and
vigorously homogenized by vortexing. The homoge-
nized suspensions of biofilm were used to assess the
metabolic activity, cell viability (for dual species
biofilms) and mass according to the methods above
described. After metabolic activity assessment, the EPS
from dual species biofilms were extracted as described
above and the bacteria were stained with the Live/
Dead BacLight kit in order to ascertain the proportion
of viable cells of each species (Simões et al. 2005b,
2009). At least, three independent experiments were
performed for each conditions tested.

Calculations and statistical analysis

The decrease in the respiratory activity (bacterial
inactivation) of planktonic cells, as a measure of
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GLUT antimicrobial activity, was determined accord-
ing to the following equation:

Bacterial inactivation ð%Þ ¼ ½ðRAC�RAGÞ=RAC�
� 100 ð1Þ

where RAC is the respiratory activity of the control
sample and RAG is the respiratory activity after the
treatment with GLUT. Biofilm activity (%) was
assessed immediately after biocide exposure, 3, 7, 12,
24, 48 and 72 h after GLUT application.

The results are expressed as the percentage of
activity according to the following equation:

Biofilm activity ð%Þ ¼ ðA1=A0Þ � 100 ð2Þ

where A0 is the respiratory activity of the control
assay, ie without GLUT treatment, and A1 is the
respiratory activity immediately after the GLUT
treatment, 3, 7, 12, 24, 48 and 72 h later.
The percentage of biofilm removal due to GLUT
treatment was determined through the following
equation:

Biofilm removal ð%Þ ¼ ½ðW�WBÞ=W� � 100 ð3Þ

where W is the biofilm mass without biocide applica-
tion and WB is the biofilm mass after biocide
treatment, 3, 7, 12, 24, 48 and 72 h later.

The data were analysed using the Statistical
Package for the Social Sciences, version 17.0 (SPSS,
Inc, Chicago, IL). The mean and standard deviation
within samples were calculated for all cases. The data
were analyzed by the nonparametric Kruskal–Wallis
test based on a confidence level �95%.

Results

Analysis of biofilms formed in the chemostat system
showed that B. cereus and P. fluorescens biofilms
oxidized glucose, which was the main carbon source in

the growth medium (Table 1). P. fluorescens biofilms
were found to be three times more metabolically active
resulting in higher biomass, cell density, and extra-
cellular proteins and polysaccharides than B. cereus
biofilms (P 5 0.05). The biofilm matrix of P. fluor-
escens was highly composed of proteins (31% of
total proteins) and polysaccharides (45% of total
polysaccharides), while B. cereus biofilms had 10% of
the total proteins and 8% of the polysaccharides as
matrix constituents. Dual species biofilms were about
four times more metabolically active than P. fluor-
escens biofilms and had a higher cell density
(P 5 0.05). The mass of dual biofilms was higher
than that of B. cereus biofilms, but lower than for P.
fluorescens (P 5 0.05). The dual species biofilm matrix
had a significant proportion of both extracellular
proteins (54% of total proteins) and polysaccharides
(47% of the total). Moreover, the cell densities
(Table 1) of B. cereus and P. fluorescens in dual species
biofilms were similar (P 4 0.05).

The application of GLUT to planktonic cells
(Figure 2) showed that B. cereus was more susceptible
than P. fluorescens at all concentrations tested
(P 5 0.05). The inactivation of dual species plank-
tonic cultures was an average of each single species.
However, analysis of cell viability demonstrated that
B. cereus was more affected by the biocide (P 5 0.05).
GLUT at 200 mg l71 caused inactivation of 95% of
B. cereus suspensions, 49% of P. fluorescens suspen-
sions and 70% of dual species suspensions. In the
latter, about 43 (+7)% of P. fluorescens cells and 91
(+6)% of B. cereus cells were non-viable based on
Live/Dead BacLight staining. Total inactivation of B.
cereus was achieved at a concentration of 500 mg l71

while GLUT at 1000 mg l71 caused inactivation of
76% of P. fluorescens and 89% for dual species
biofilms. Dual species suspensions exposed to GLUT
at 1000 mg l71 had 100 (+0)% non-viable cells of B.
cereus and 86 (+3)% non-viable cells of P. fluorescens.

The application of 200 mg l71 of GLUT to biofilms
promoted a reduction in respiratory activity (Figure 3)

Table 1. Phenotypic characteristics of single and dual species biofilms of B. cereus and P. fluorescens.

B. cereus P. fluorescens Dual

Biofilm mass (mg cm71) 0.106 + 0.014 0.220 + 0.030 0.145 + 0.11
Biofilm activity (mg O2 g

�1
biofilm min71) 0.0768 + 0.030 0.252 + 0.048 0.911 + 0.29

Log cell density (cells cm72) 11.4 + 0.33 12.5 + 0.21 13.1 + 0.08a

Proteins (mg g�1
biofilm)

Total 396 + 69 218 + 42 413 + 25
Matrix 39.3 + 1.3 67.6 + 15 223 + 13

Polysaccharides (mg g�1
biofilm)

Total 99.7 + 10 69.8 + 18 65.3 + 15
Matrix 7.48 + 1.1 31.6 + 2.5 30.5 + 5.5

a12.8 (+0.11) of B. cereus and 12.8 (+0.15) of P. fluorescens. Mean values + SD for at least three replicates are illustrated.
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440% for both single species biofilms. The effect of
GLUT on the activity of dual biofilms was lower (20%
reduction in activity) and the number of non-viable B.
cereus and P. fluorescens in those biofilms was similar
(P 4 0.05). GLUT promoted low biofilm removal
(Figure 4) for both single and dual biofilms (removal
510%; P 4 0.05). The number of spores of B. cereus
was determined in order to provide information on
their density in the total population (spore and
vegetative). In both planktonic and biofilm tests with
single and dual biofilms with B. cereus, spores were
never detected at a density of41 per million vegetative
cells.

The post-biocide treatment results (Figures 3
and 4) show that for sampling times of 3 and 7 h, no

significant regrowth was detected in terms of activity
and mass (P 4 0.05). However, 12 h after GLUT
treatment, biofilms recovered their activity (Figure 3).
This recovery was more significant for B. cereus single
species biofilms and for dual species biofilms
(P 5 0.05). The recovery event is particularly relevant
for dual species biofilms at 48 h and longer after
GLUT exposure. Those biofilms had metabolic activ-
ity similar to those that had not been exposed to the
biocide (P 4 0.05). The number of viable B. cereus
and P. fluorescens in dual species biofilms was not
statistically different (P 4 0.05) for several of the post-
treatment sampling periods. In terms of the mass
results (Figure 4), application of GLUT had a longer
term effect on biofilm removal, causing sloughing
events. This was found for the several biofilms, being
more evident for P. fluorescens biofilms and less
significant for dual species biofilms (P 5 0.05). Sig-
nificant sloughing events (removal 4 40% of the total
mass) were found for P. fluorescens 12, 24 and 48 h
after treatment (P 5 0.05). The application of GLUT
had less effect on B. cereus single species biofilms
(5 25% of biofilm removal) and on dual species
biofilms (510% of biofilm removal) during the post-
biocide treatment period. The long-term effects of
GLUT on removal of B. cereus and P. fluorescens
single biofilms were attenuated 72 h after biocide
application. This effect was verified for dual species
biofilms 48 h after exposure to GLUT, being similar
(0% biofilm removal) to untreated biofilms. This result
demonstrates the higher resistance to removal of dual
species biofilms compared to those formed by single
species. No significant differences (P 4 0.05) in

Figure 3. Activity (%) of P. fluorescens (¤) and B. cereus
( ) single and dual species (&) biofilms immediately after
treatment with GLUT at 200 mg l71for 30 min and 3, 7, 12,
24, 48 and 72 h later (post-biocide treatment). Mean
values + SD for at least three replicates are illustrated.

Figure 4. Removal (%) of P. fluorescens (¤) and B. cereus
( ) single and dual-species (&) biofilms immediately after
treatment with GLUT at 200 mg l71for 30 min and 3, 7, 12,
24, 48 and 72 h later (post-biocide treatment). * ¼ no biofilm
removal compared to the control experiments (without
GLUT exposure). Mean values + SD for at least three
replicates are illustrated.

Figure 2. Inactivation of planktonic P. fluorescens (}), B.
cereus 1 ( ) single and dual species (~) due to exposure to
GLUT at 0, 25, 50, 100, 200, 500 and 1000 mg l71for 30 min.
Mean values + SD for at least three replicates are
illustrated.
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activity and mass were detected with respect to the
biofilms used as controls (without biocide treatment).

Discussion

B. cereus and P. fluorescens are two major contami-
nants that cause problems in industrial systems
(Dogan and Boor 2003; Shakeifard et al. 2009; Zhao
et al. 2009; Lequette et al. 2010). Their undesired
effects are accentuated when they form biofilms. Once
developed, the biofilms are harder to eradicate and
may serve as a chronic source of microbial contamina-
tion (Peng et al. 2002; Simões et al. 2008b). GLUT is a
dialdehyde that has a broad spectrum of activity
against bacteria and their spores, fungi and viruses.
The mechanism of action involves a strong association
with outer layers of bacterial cells, specifically with
unprotonated amines on the cell surface (McDonnell
and Russell 1999).

Biofilms were formed in a chemostat system, a
bioreactor that offers a simple approach to study and
characterize biofilms in a well-controlled, real-time and
reproducible manner, and to mimic biofilms formed in
industrial processes (Pereira and Vieira 2001; Simões
et al. 2003a). Analysis of biofilms formed in the
chemostat system showed that dual species biofilms
comprised similar numbers of B. cereus and P.
fluorescens cells, although higher cell densities were
obtained when compared to single species biofilms.
This higher cell density accounts for the higher
metabolic activity of dual biofilms. P. fluorescens single
species biofilms and dual species biofilms contained
high amounts of EPS. High EPS production appeared
to be associated with high metabolic activity. A
previous study demonstrated the correlation between
metabolic activity and EPS formation (Simões et al.
2007a). Some of the characteristics studied, namely cell
density, metabolic activity and EPS content, are
relevant to control of biofilm by conventional disin-
fectants (Simões et al. 2005a, 2007a).

The association of both species in planktonic
culture had no effect on antimicrobial resistance or
susceptibility to GLUT compared to the single species
situation. B. cereus in the planktonic state was more
susceptible to the biocide than P. fluorescens. This
result reflects the expected behaviour of Gram-positive
and Gram-negative bacteria when exposed to biocides
as the former are more susceptible to biocides than the
latter (McDonnell and Russell 1999; Maillard 2002)
due to the presence of an outer layer in Gram-negative
bacteria (White and McDermott 2001).

The use of a sub-lethal concentration of GLUT
(200 mg l71) allowed the behaviour of biofilms to
antimicrobial stress to be assessed. B. cereus and
P. fluorescens biofilms had similar susceptibilities to

GLUT; however, this was higher than for dual species
biofilms. It was expected that P. fluorescens (Gram-
negative) biofilms would have higher resistance to the
biocide compared to those formed by B. cereus due to
their cell physiology, higher cell density and the
content of the matrix components. Pereira and Vieira
(2001) proposed that GLUT applied to biofilms reacts
with proteins of the polymeric matrix as well as directly
affecting the cells, thereby decreasing their efficacy.
There is clear evidence that EPS can decrease biofilm
susceptibility to antimicrobial agents (Drenkard and
Ausubel 2002; Stewart 2002). EPS is composed mainly
of polysaccharides, proteins, nucleic acids and lipids
(Flemming and Wingender 2010).

The results showed that planktonic cells were more
susceptible to GLUT compared to those in biofilms.
This was particularly pronounced for B. cereus, when
present either as a single or dual species. Several
reasons may account for this distinct behaviour of
planktonic and biofilm cells, as already reported by
several authors. Apart from diffusion limitations that
may occur, the penetration of biocide into microbial
biofilms is also controlled by the reaction of the
antimicrobial chemical with biofilm components, for
example, organic matter, inorganic particles and cell
debris (Yu and McFeters 1994; Pereira and Vieira
2001; Grobe et al. 2002). Furthermore, the extracel-
lular polymeric matrix is charged and can therefore
bind to antimicrobials before they reach the target cell
(Stewart 2002; Simões et al. 2008b), while the
metabolism of cells within biofilms is different from
that of planktonic cells (Lewis 2001; Vilain et al. 2004).
In addition to the well-described mechanisms of
biofilm resistance to antimicrobials, the associating of
two species increased the resistance of the biofilm to
inactivation and removal by GLUT. Dual species
biofilms were more resistant to GLUT than those of
the single species. Therefore, when a biocide is used to
control biofilms, the microbial response to the
antimicrobial chemical depends not only on the type
of microorganisms and on the type of biocide, but also
on the complex interactions established between the
individual species that may confer increased resistance.
In a previous study it was demonstrated that B. cereus
and P. fluorescens had an antagonistic interaction in
both planktonic and biofilm systems (Simões et al.
2008a). However, their association enhanced biofilm
survival and resilience from GLUT treatment. This
interaction may lead to the formation of biofilms with
low susceptibility to biocides. Similarly, Leriche and
Carpentier (1995) demonstrated that P. fluorescens and
Salmonella typhimurium in biofilm enhanced each
other’s survival following chlorine treatment. Other
apparent protective effects to biocide exposure caused
by multispecies association of bacteria in biofilms have
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been reported (Whiteley et al. 2002; Leriche et al. 2003;
Simões et al. 2010b).

The decreased effects of GLUT in removing
biofilms reported in this study concurs with previous
reports where it was demonstrated that GLUT
reduced removal and increased the attachment
strength of biofilms (Midelet and Carpentier 2004;
Simões et al. 2005a; Shakeri et al. 2007). This aspect
was reinforced in another study with single and dual
biofilms of B. cereus and P. fluorescens (Simões et al.
2009). In a recent study, Jones et al. (2011) studied
the viscoelastic properties of bacterial biofilms
resulting from chemical and antimicrobial treatments
and found that GLUT weakened P. aeruginosa
biofilms. The differences reported in terms of biofilm
cohesion by these studies are apparently related to
the microorganism and to the type of system used to
form biofilms. Simões et al. (2005a, 2009) used a
bioreactor rotating system while Jones et al. (2011)
formed biofilms by the colony biofilm method, ie a
colony biofilm is grown under static conditions on a
semipermeable membrane placed on an agar plate
(Merritt et al. 2005).

Understanding how biofilms respond to conditions
of external stress is essential for the development of
efficient control strategies. The ability of GLUT to
inactivate biofilms was greater than its ability to
remove biofilms from surfaces. In industrial systems,
any biofilm remaining may constitute a source of
additional problems including regrowth, development
of resistant biofilms, or by providing a haven for other
microorganisms, including pathogens (Møretrø and
Langsrud 2004; Simões et al. 2008b). This study
demonstrates that GLUT affected biofilm proliferation
post-biocide treatment. The application of GLUT had
a long-term effect on biofilms. This effect was most
marked for the biofilm mass data, and was more
significant for P. fluorescens biofilms then for the dual
species biofilms. The post-biocide treatment results for
biofilm mass are probably related to the antimicrobial
mode of action of GLUT. The high cross-linking
effects of GLUT (Walsh et al. 1999) probably influence
biofilm development. In other studies (Simões et al.
2005c, 2008b), the application of two biocides,
cetyltrimethylammonium bromide and sodium dodecyl
sulphate, to biofilms promoted significant regrowth
over time both in terms of mass and metabolic activity.
In this study, biofilms only recovered in terms of
metabolic activity 12 h after treatment, while in terms
of mass, recovery was only evident 72 h after treatment
for single species biofilms and after 48 h for dual
species. Analysis of the post-biocide treatment data
reinforces the higher resistance of dual species biofilms
to GLUT exposure, compared to single strain B. cereus
or P. fluorescens biofilms. In addition, biofilms of

B. cereus were more resistant to GLUT treatment than
P. fluorescens biofilms.

In conclusion, the decreasing rate at which new
biocides are being introduced in industrial processes
magnifies problems associated with the development of
resistance to current biocides. Thus, it has become
important to understand all aspects of the interactions
between current biocides and biofilms, in order to
maximise their efficient use. In this study, planktonic
cells of B. cereus were more susceptible to GLUT than
planktonic cells of P. fluorescens and inactivation of
planktonic dual species cultures was an average of each
single species. GLUT inactivated planktonic cells more
efficiently than their biofilm counterparts. B. cereus
and P. fluorescens single and dual species biofilms were
different in metabolic activity, cell density and both
extracellular protein and polysaccharide content. The
role of cell physiology (Gram-negative or Gram-
positive) and biofilm characteristics did not alter the
susceptibility/resistance when GLUT was applied to
biofilms. Single species biofilms of P. fluorescens were
the most affected by GLUT application, while the
species association increased biofilm resistance to
GLUT and resilience after treatment. To the authors’
knowledge this is the first study demonstrating the
long-term effects of GLUT on single and dual species
biofilm removal. The study also provides experimental
evidence on the role of biofilm diversity in biocide
resistance.
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