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ABSTRACT

The effects of two different evaporation parameterizations on the climate sensitivity to

solar constant variations are investigated by using a zonally averaged climate model. The model

is based on the two-level quasi-geostrophic zonally averaged annual mean model of Ohring and

Adler (1978) with some modifications to the 1 °ating parameterizations. One of the evaporation

parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the pre-

dicted vertical temperature and humidity gradients near the earth's surface (model A). The other

is the linear formulation of Saltzman (1968) with the Bowen ratio essentially determined by the

prescribed linear coefficient (model B).

The computed climates are in good agreement between model A and model B, except for

the energy partition between sensible and latent heat at the earth's surface. The simulated tem-

peratures and the radiation quantities at the top of the atmosphere for both models are in good
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agreement with the observations, but, the energy partitions between the atmosphere and the

earth's surface are different. Compared to the results of Hoyt (1976), the solar heating and the

long-wave cooling in the model atmospheres are too small, and the net solar and the net long-

wave radiation a l the model earth's surfaces are too large. As a result, the turbulent heat flux

is too large. The neglect of short.=wave absorption by CO 2, 02 , dust, and cloud droplets is re-

sponsible for this discrepancy.

The difference in evaporation parameterizations causes a discrepancy in the response of

temperature lapse rate to solar constant variations and a difference in the sensitivity of longwavA

radiation to surface temperature. Compared to the linear evaporation formulation (model B),

the nonlinear evaporation formulation (model A) appears to produce a reduction not only in the

sensitivity of surface temperature to solar constant variations but also in the amplification of the

global climate sensitivity due to ice-albedo feedback. The difference in evaporation also causes

a difference in the response of surface heat budget to solar constant variations. The latent and

sensible heat fluxes are found to change in the opposite direction in model A, but in the same

direction in model B. The results of model A are qualitatively in agreement with those of

Wetherald and Manabe ( 1975).
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THE EFFECTS OF GROUND HYDROLOGY ON CLIMATE

SENSITIVITY TO SOLAR CONSTANT VARIATIONS

1. Introduction

The transfer of latent heat from the earth's surface to the atmosphere is an important

physical process. It is directly related to the determination of the surface temperature through

the surface energy balance equation. It affects indirectly the latent heat release, cloud cover,

temperature lapse rate and other dynamics. Charney et al. (1975) adopted two different evapor-

ation parameterizations in the Goddard Institute for Space Studies (GISS) general circulation

model (GCM), and found that the difference in evaporation markedly affected cloud cover, pre-

cipitation, surface temperature, dynamical instabilities and related eddy activities. The purpose

of this study is to investigate the effects of two different evaporation parameterizations on cli-

mate sensitivity to solar constant variations using a zonally averaged climate model.

The model is based on the annual mean zonally averaged climate model of Ohring and

Adler (1978), hereafter referred to as O/A, with some modifications to the heating parameteriza-

tions. For the calculation of evaporation, O/A adopted the linear formulation of Saltzman (1968),

in which a linear relationship between latent (evaporation) and sensible heat fluxes at the earth's

surface was assumed. According to this parameterization, the Bowen ratio (ratio of sensible to

latent heat) is not sensitive to the variation in surface temperature. Also, the changes of sensible

and latent heat fluxes resulting from a climate variation are generally in the same direction, and

the ratio of the changes is essentially fixed by the prescribed linear coefficient. However, from

the GCM numerical experiments, Wetherald and Manabe (1975), hereafter referred to as W/M,

found that the Bowen ratio had a strong dependence on surface temperature, and that the changes

of these two fluxes due to the variation in solar constant were in the opposite directions. In this

study, we have included a simple boundary layer to one of the models to improve the parameter-

ization of evaporation. With this simple boundary layer, the Bowen ratio can be determined from
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the vertical gradients of water vapor and temperature near the earth's surface, and the relationship

between sensible and latent heat is nonlinear. The responses of the two models, with linear and

nonlinear evaporation formulations, to the changes in solar constant are studied. The model with

t	 nonlinear evaporation formulation is referred to as model A, and that with the same linear form-

ulation as O/A is referred to as model B.

4

In section 2, we briefly describe the dynamical model and heating processes with more

detail discussion on the model modifications to O/A. In section 3, we examine the performance

of both models A and B by comparing the computed climates with the observations. The effects

of these two different evaporation parameterizations on the climate sensitivity to solar constant

variations are investigated in section 4. Finally, conclusions of the major results of this study

are given in section 5.

2. Descriptions of the climate models

It is well known that one of the most difficult problems for a zonally averaged clim ^te

model is to parameterize the large—scale eddy transport processes, especially the angular momen-

turn transport. Green (1970) suggested that the angular momentum transport can be parameter-

ized by considering the potential vorticity transport. Following this idea Wiin—Nielsen and Sela

(1971) studied the potential vorticity transport and determined the exchange coefficients from

the observed atmospheric data. Sela and Wiin—Nielsen (1971), and Wiin—Nielsen and Fuenzalida

(1975) incorporated those exchange coefficients into the two—level quasi—geostrophic models to

simulate the seasonal variations. Radiative heating is crucially important for climate studies, but

has been highly simplified in the aforementioned works. Ohring and Adler (1978) developed an

annual mean zonally averaged hemisphere model for climate sensitivity studies using the same

dynamic model, but with improved treatments of solar and longwave radiation.

As mentioned in the introduction, two evaporation parameterizations, designated as model

A and model B, have been used in this study to investigate the effects of ground hydrology on

2



the climate sensitivity to solar constant variations. The only difference between them is the

treatment of evaporation and convection. Both models are based on O/A with some changes in

the heating parameterizations. The difference between model A and O/A is the pa.rameterizations

of evaporation, convection, latent heat release, cloud and surface albedo. Since the parts of the

model common to O/A have been discussed by Ohring and Adler (1978), they are only briefly

described here. Table 1 shows the dynamical model, heating processes, and the methods of

computation. The dynamical model is the standard two level quasi-geostrophic model, with the

atmosphere divided into two layers, 0-500mb and 500-1000mb. The governing equations are

the zonally averaged quasi-geostrophic potential vorticity equ: tions, which can be obtained by

combing the vorticity equation and the thermodynamic energy equation (Sela and Wiin-Nielsen,

1971; Wun-Nielsen and Fuenzalida, 1975). The 500mb temperatures are computed from the

potential vorticity equations, and the surface temperatures (at 1000mb) are obtained from the

surface energy balance equation.

The surface, Hs(i), and the atmospheric, Ha(i), heating processes considered are solar radi-

ation, longwave radiation, convection, evaporation, latent heat release, and oceanic transport.

Solar radiation absorbed in the atmosphere and at the earth's surface, H a (1) and H,(1), are com-

puted according to Lacis and Hansen (1974), with the modification of cloud albedo being solar

zenith angle dependent (see O/A). Clouds are parameterized into an effective single cloud lay,..

with amount, top, base, and optical thickness prescribed from observations. Solar radiation ab-

sorbed by H2O, 03 are included but not the absorption by 02 , CO2 and cloud droplets.' The

distribution of water vapor is determined by assuming fixed vertical profiles and fixed surface rel-

ative humidities. Latitudinal variation of total ozone amount is taken from London (after Craig,

1 0/A added 0.08cm of water vapor to the cloud layer to account for the absorption by cloud droplets. Accord-
ing to our analysis, this only increases the surface temperature by lex thatt 0.1 C. Since the liquid water content
of the cloud is not well-known, we simply neglect this addition and retain the original Ltcis and Hansen routine
in this respect.

ORlG1i4AL WAGE IS
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1965). Solar constant is set to be 1360Wm- 2 for the standard case, and the annual mean values

of cosine solar zenith angle are prescribed to each latitude belt.
f

Longwave radiation at the earth's surface acid its flux divergence in the Umbspliete, 1,(2)

and Ha(2), are computed according to the emissivity formulation of Sammrri (1968, 1970). The

longwave radiative transfer due to CO2 a' d H2O is included, but that due to 03 is neglected.

Both clouds and the earth's surface are assumed to have unit emissivity. The temperature struc-

ture for computing longwave radiative flux is assumed to be linear with height for the troposphere

and isothermal for the stratosphere. The tropospheric temperature lapse rates ate detehWned

f	from the computed 500mb and surface temperatures. The stratospheric temperatures tire set

1 
equal to those of the tropopause, and the tropopause heights are fixed to their observed annual

mean values. The concentration of CO2 is assumed to be uniform and taken to !ae 5 x 10-4 by

weight (330 x 10-6 by volume).

The heating of earth's surface by ocean currents, H8(5), is parameterized aomrding to the

diffusivity approach of Sellers (1973), and is computed from the surface temperature gradients.

The heating parameterizations modified from O/A are described below.

a. Convection

The sensible heat flux from the earth's surface to the atmosphere through convection and

turbulent transfer is parameterized as

Hs(3) _ -[b (T, - TS) + cl
	

(1)

He(3) _ -Hs(3)
	

(2)

where HS(3) and Ha(3) are surface and atmospheric heating due to convection, respectively, TS

and TS are temperatures at 1000mb and 500mb levels, respectively, and b and c are constants

independent of latitude. This formulation has been used by Saltzman (1968), Saltzman and

Vernekar (1971, 1972), and O/A. The constants b and c used by Saltzman (1968) are determined

4



b, 8.31 cal cm-2 day- 1 K- 1 , is also adopted. For a fixed value of b, the specification of c generally

affects the sensible heat flux, the Bowen ratio, and the tropospheric lapse rate. The constant c

used by Saltzman (1968) and O/A are -196.41 and -160cal cm- 2 day- 1 , respectively. It is taken

to be -190 and -170cal cm-2 day-1 for models A and B, respectively, in order to better simulate

the temperature fields.

b. Evaporation

The energy used in evaporating water from the earth's surface, N(4), is generally related

to the sensible heat flux, HS(3). Saltzman (1968) assumed that the evaporation (latent heat flux)

was linearly proportional to sensible heat flux, with the coefficients prescribed independent of

latitude. In model A, we also assumed some kind of relationship exists between latent and sensi-

ble heat fluxes. But, the coefficient is determined internally rather than prescribed. In model B,

we used the same linear formulation of Saltzman (1968) for evaporation. The parameterizations

of evaporation for models A and B, respectively, are

Hs(4) = W e HS(3)
	

(model A),	 (3)

Hs(4) = W [e' HS(3) t f
	

(model B),	 (4)

where W is a water availability factor depending on the relative amount of ocean, land, sea ice,

and snow at each latitude belt, and is assumed to be 1 for ocean, 0.8 for land, and 0 for ice and

snow (Saltzman and Vernckar, 1971), e' and f' are constants and taken to be 1.27 and -80.1 cal

CM-2 day- 1 , respectively (Saltzman, 1968), and a is determined from the ve ^tical gradient! of

water vapor and temperature near the earth's surface as

e = [ L(q$ — q B )l /[c pas — TB )1.
	 (5)

where q is the specific humidity, T is the temperature, subscripts "s" and "B" refer to the 1000

mb level and the top of the boundary layer, P B , respectively, q= is the saturated q at 1000mb, L

is the latent heat of condensation, and e p is the specific heat at constant pressure. In the general

circulation models, P B is usually chosen to be the lowest prognostic level (e.g., Manabe, 1969).

5



In this study, Pil is specified such that the Bowen ratio of the standard case in each latitude belt

is close to its observed value. The coefficient a and the sensible heat flux are determined from

the predicted temperature field. 'Therefore, (3) is a nonlinear relationship between sensible and

latent heat flux. For the linear formulation of (4), which is also used by O/A, therelative re-

	

sponse of latent and sensible heat to a climatic perturbation is essentially determined by the pre-	-

scribed constant e'. The ratio of change in latent heat to change in sensible heat due to any

perturbation is equal to We'. This ratio is determined by the model when (3) is used.

c. Latent heat release

For an equilibrium condition, latent heat release in an atmospheric column is equal to the

latent heat flux from the underneath earth's surface plus the convergence of water vapor by at-

mospheric circulation. It is assumed in O/A that the flux convergence of water vapor by atmos-

pheric motion is proportional to the deviation of zonally averaged cloud amount from its hemis-

pheric average. Since the cloud amount is fixed in the model, this implies that water vapor flux

convergence is independent of atmospheric circulations. According to the cloud statistics of Lon-

don (1957), this also implies that the latent heat release in the equatorial region (5°N) is very

close to the surface evaporation there. These phenomena contradict the observed situation (e.g.,

Sellers, 1965). hollowing Sellers 0973), we have computed the flux convergence of wa ter vapor

from the computed surface temperature acid prescribed vertical profiles of meridional wind and

water vapor. The latent heat release, Ha (4), is parameterized by

	

Ha(4) _ —H,(4) — D,
 (6)

where

	

D — say (M + E),	 (7)

M and E are the mein meridional and eddy transports of water vapor across a latitude circle,

respectively, D the flux divergence of moisture, a the radius of the earth, and 0 the latitude.

The vertical profiles of specific humidity, q, and mean meridional wind, v, are assumed, respec-

tively, as

f

6



or •

q = qs (P/P,)^ ,
 (8)

V = vs (2P - PS)/Ps,
 (9)

where P is the pressure and the subscript "s" refers to the 1000mb level. The coeffici. . nts of A

are taken fr.)m Smith (1966). Note that the same water vapor proMes of ( 8) are used in the cal-

culations of solar and longwave radiation. The value of qs 6 Aletertnined from the predicted sur-

face.. temperatures and the fixed surface relative humidities (Table 2). The mean meridit 'nal and

eddy transports of water vapor are calculated as

QL

	

fts	
AL

M= 8 	vgdp= g am vsgsPs.
0

L

fo

ps K '^a dp=- gL a Kv aa^ P=,

where

aM = X/[(1 + W..2 + A)1,

ar = IA  +A),

and Q is the length of latitude circle, g the acceleration of gravity, K„ is the eddy diffusitivity for

water vapor and is assumed as

KV = 0.8 IATS I x 10t0

where AT, in the surface temperature difference between successive latitude belts.

The values of vs can be determineu through the equations of motion for the friction layer,

by relating the pressure gradient force to the temperature gradient. The zonal ( u s ) and meridionai

( vs ) components of surface wind are written as

^(R
aT^1^"t

	

us = 0, vs ,a ,-
(b - 1) as®®) , for ^ = 0

3

Us = [R(b - l) d^-sJ/[f(1 
+ ial 

)j, vs = a'lus lus /f, for o ^ 0

OR OINAL PAGE IS
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where R is the gas constant, f the Coriolis parameter, a' 'he constant of proportionality relating

the frictional force to surface wind speed, and b the constant of ; proportionality relating the sur-

face pressure gradient force to surface temperature gradient. The values of a' and b are taken

from SePers (1973).

d. Surface albedo

To calculate the surface albedo, the earth's surface is assumed to consist of four surface

types, i.e. open ocean, snow free land, snow, and sea ice. The annual mean surface albedo at

each latitude is computed as

4	4

r(o) -	fj (0) nij M rij (0),

j : 1 t= 1

where s is the index for surface type, j the index for season, r ij (0) the reflectivity of surface type,

i at latitude 0 during season j, n ij (0) the fraction of latitude belt covered by surface types during

season j, and fj (0) the weighting function accounting for the seasonal change in solar radiation

that incidences on the earth's surface. The seasonal values of fj (0), shown in Table 3, are com-

puted from the data of Budyko (1963), as analysed by Schutz and Gates (1971, 1972 1973.

1974). Note that the values of fj (0) :n O/A are based on solar radiation at the top of the atmos-

phere. Table 3 also shows the reflectivities of ocean and land, and the observed surface type

coverages of Curran et al. (1978). Land reflectivities are taken from Selle" (1973) and vary only

with latitude. Ocean reflectivities are taken from Budyko (1974) and vary with latitude an i sea-

son. The reflectivities of snow and sea ice are made to depend on surface temperature. Follow-

ing Wetheraid and Manabe (1975 1 , .ea ice and snow are classified into stable and unstable types.

Referring to the surface albedo study of Posey and Clapp (1964), the reflectivities of unstable

sea ice and snow are assigned to be 0.4 and 0.5, respectively, those of stable sea ice and snow

are 0.6 and 0.7, respectively.

Since the unstable snow/ice is usually associated with higher surface temperature and snial-

ler snow/ice coverage as compared with stable types, the discrimination between the stable and

r 
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unstable snow (or sea ice) is made according to the fraction of land covered by snow (or ocean

covered by sea ice) in each latitude belt in each season. The critical fraction is taken to be 0.5.

In order to incorporate the feedback mechanism between snow/ice albedo and surface

temperature, the snow/ice covers are computed from the model through some empirical relation-

ships between the snow/ice cover and the surface temperature. Since only the annual mean sur-

face temperatures (not the seasonal mean surface temperatures) are computed from the model,

the seasonal snow and sea ice covers are related to annual mean surface temperatures. The sea-

sonal linear relationships for snow and sea ice and the data on which they are based are shown in

Figs. 1 and 2. These are derived from the surface temperature data of Oort and Rasmusson

(1971) and Newell et al. (1972), and the snow/ice cover of Curran et al..

The data of sea ice cover are from the arctic sea ice analyses of the U.S. Navy Fleet

Weather Facility for the period of 1972-1975, and those of snow cover are inferred from the

satellites of ESSA, ITOS, NOAH, and SMS-1 for the period of 1966-1975. The empirical . .a-

tionships of Figures la, lc, 2a, and 2c for the winter and summer seasons were made available

for Ohring and Adler (1978) to use in their . model. Note that the snow and ice covers of spring

and fall in O/A are interpolated from those of summer and winter for calculating the mean an-

nual surface albedo. For the experiments with ice—albedo feedback, the seasonal ice and snow

covers are computed from the model through these linear relationships, but the observed snow

and ice covers (Table 3) are used for the experiments without this feedback mechanism.

e. Cloud parameters

Clouds are parameterized into a single cloud layer, with the amounts the same as in

O/A and taken from London (1957). The effective cloud top and base are different from

those of O/A. These attitudes are determined from the cloud statistics of London (1957) and

Rodgers (1967). We first determined the non—overlapping cloud amount for ea-h cloud type

from the cloud amounts of London assuming that clouds were randomly distributed, and then

used these non—overlapping cloud amounts as weighting functions to compute the averaged cloud

9



heights. All clouds are assumed radiatively black. Since the optical properties of Ci cloud are

quite different from others, we have subjectively reduced the nonoverlapping cloud amount of Ci

by half in determining the effective cloud top and base. As shown in Table 2, the effective cloud

top and base are about 1 km lower than those of O/A, and the mean cloud top and base are about

4.7 and 2.7 km, respectively.

The optical thickness of the single cloud layer, rc , is determined from the six cloud types

by considering overlapping clouds. Following Stone et al. (1977), the optical thickness of Ci, As,

St, Ns, Cu, and Cb are taken to be 2, 6, 8, 16, 16, and 32, respectively, for determining r c of

the effective cloud layer. The particulate short wave absorption by cloud droplets and dust is

not included. The neglect of absorption by cloud droplets causes an overestimation in single

scattering albedo of the cloud. This together with the neglect of short wave absorption by 02

and CO2 further causes an overestimation in the planetary albedo and an underestimation in the

urface temperature. Therefore, the values of rc must be adjusted such that the planetary albedo

and surface temperature compare well with the observations. A rc of 7 used in O/A appeared to

be able to better simulate the observed climate, we have used this value as a reference for adjust-

ing rc . The hemispheric mean value of r c derived from Stone et al. (1977) is about 11.5, which

is 4.5 larger that that used by O/A. In this study, the latitudinal distribution of rc derived from

Stone et al. is reduced by an amount of 4.5 in each latitude belt. As shown in Table 2, r c is

smaller in the subtropics and larger in the tropics and the middle latitudes. However, the latitud-

inal variation in rc is small.

3. Simulation of observed climate

For any sensitivity study using a model, it is desirable that the model can reasonably sim-

ulate the observed climate. The results of models A and B with the inclusion of ice—albedo feed-

back and the standard solar constant are compared with the observations in this section. The lat-

itude dependent parameters relating to the heating parameterizations are shown in Tables 2 and 3.

10



Fig. 3 shows the latitudinal variations and hemispheric mean values of surface (TS) and 500mb

temperature (TS ) for models A and B, together with the observed values from Oort and Rasmus-

son (1971). The simulated temperatures are in good agreement with the observations for both

models, except TS at S°N. The discrepancy of T S at the equatorial region between the models

and the observations is primarily due to the quasi—geostrophic character of the governing equa-

tions. Heat budgets of model atmospheres and those computed from actual atmosphere by Lon-

don and Sasamori (1971), Sasamori et al. (1972), and Hoyt (1976) 1 are shown in Fig. 4. Heat

budget analyses show the following:

(1) The heat budgets are in good agreement between model A and B, except for the en-

ergy partition between sensible and latent heat fluxes at the earth's surface.

(2) The radiative energy budgets at the top of the atmosphere are in good agreement be-

tween the models and the observations. However, the energy partition between the

atmosphere and the earth's surface is different between the models and the observations.

(3) Solar radiation absorbed by the model atmospheres is too small and that absorbed by

the model earth's surfaces is too large.

(4) The larger solar radiation absorbed by the model earth's surfaces then induces larger

turbulent heat fluxes and net upward IR flux at the model earth's surface.

(5) The larger net upward IR flux at the model earth's surface further induces smaller

IR cooling in the model atmospheres.

A comparison of the absorption of solar radiation by absorbers in the atmosphere for

model A, model B, and Hoyt (1976) is shown in Table 4. It can be seen that, the smaller absorp-

tion of solar radiation by the model atmospheres results primarily from the neglect of absorption

In this study, `Hoyt (1976)' refers to his cloud model A, which adopted the same cloud statistics of London
(1957).



by CO21 02 , dust, and cloud droplets. Water vapor and cloua contribute more than half of the

difference between absorption by the model atmospheres and that calculated by Hoyt (1976).

This difference arises mainly from the different treatment of cloud droplet absorption of solar

radiation between Lacis and Hansen (1974) and Hoyt (1976). Short wave absorption by cloud

droplets is considered very important according to the latter, but less important according to the

former. This discrepancy is quite significant.

Figs. 5 and 6 show the latitudinal distributions of the planetary albedo, surface albedo,

solar radiation absorbed by the earth—atmosphere system and outgoing long—wave radiation at the

top of the atmosphere for models A and B, together with the values from Hoyt (1976), Ellis and

Vonder Haar (1976), and Posey and Clapp (1964). As can be seen from Figs. 5 and 6 that

the -zsults of the models are in good agreement with the observations. It is noted that the dis-

crepancy of the outgoing IR flux at the top of the atmosphere between the models and observed

values of Ellis and Vonder Haar (1976) reflects the deviation of the computed temperature field.

Figs. 7 and 8 show the latitudinal distributions of the absorbed solar radiation and net IR flux

at the earth's surface, and the absorbed solar radiation and IR flux divergence in the atmosphere

for models A and B, together with the values from Hoyt (1976). Compared to the results of

Hoyt (1976), the absorbed solar radiation and net upward IR flux at the earth's surface are larger

in the models (Fig. 7), while the absorbed solar radiation and IR flux divergence in the model

atmospheres are smaller (Fig. 8).

Latitudinal distributions of the latent and sensible heat fluxes at the earth's surface, and

the meridional transport of water vapor and latent heat release in the atmosphere for models A

and B, are shown in Figs. 9 and 10, together with the observed values from Sellers (1965) and

Starr et al. (1969). As mentioned earlier, the major difference between the heat budgets of models

A and B is the energy partition between sensible and latent heat fluxes at the earth's surface.

This discrepancy is located in the low latitude (Fig. 9). As a result of a smaller meridional

ORIGINAL
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surface temperature gradient in model A, the magnitude of the meridional transport of water

vapor through each latitude circle is slightly smaller in model A than in model B. The divergence

of water vapor transport is generally smaller in model A than in model B, but the difference is

small. The discrepancy of latent heat release between models A and B is produced by the differ-

ence in evaporation at the earth's surface, and is located in the low latitudes (Fig. 10).

In conclusion, the simulated climates are in good agreement between models A and B,

with the exception that, in the low latitudes, evaporation is less effective in removing heat from

the earth's surface and latent heat release is less effective in heating the atmosphere in model B

as compared with model A. Also, the simulated radiative energy budgets at the top of the model

atmospheres are in good agreement with the observations. However, the energy partition between

the atmosphere and the earth's surface is different between the models and the observations. The

neglect of solar absorption by CO 2, 02 , dust, and especially cloud droplets is responsible for this

difference in energy partition.

4. Sensitivity to solar constant variations

In order to study the effect of different evaporation parameterizations on climate sensi-

tivity to solar constant variations, several numerical experiments using both models A and B, with

and without ice-albedo feedback, were performed for solar constants equal to 0.99 So , So and

1.01So. The standard value for solar constant, So , is taken to be 1360Wm-2 . The ice and snow

covers are predicted for the cases with ice-albedo feedback, but are fixed to the observed values

(Table 3) for the cases without ice-albedo feedback. Tables 5 and 6 show the temperature

changes resulting from a 1%v change in solar constant for models A and B, and other studies. For

the cases without ice-albedo feedback, the magnitude of the temperature changes is essentially

symmetric with respect to small changes in solar constant. Therefore, those changes correspond-

ing to a 1% increase in solar constant are not shown in Table 6. As can be seen from Tables 5

and 6, the sensitivity of surface temperature to solar constant variations is much smaller in model
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A (nonlinear evaporation formulation) than in model B (linear evaporation formulation). Also,

the hemispheric mean surface temperature changes of model B are very close to those of O/A,

with a difference of only 0.05°C. With the inclusion of the ice—albedo feedback, the change in

surface temperature of model B increases with increasing latitude, which is in agreement with the

results of O/A. For the cases without ice—albedo feedback, however, the latitudinal distributions

of surface temperature change are different between model B and O/A. The surface temperature

changes in O/A decrease with increasing latitude, while the changes in model B are fairly uniform.

This is a result of different parameterizations of latent heat release. The flux convergence of

water vapor is fixed in O/A, but is predicted in model B. For a reduction in solar constant, al-

though the change in solar input (decreases with increasing latitude) initially tends to produce

larger temperature decrease in the low latitude than in the high latitudes. The decreased meri-

dional temperature gradient then causes a reduction of water vapor divergence in the subtropics

and of water vapor convergence in the middle and high latitudes. The latent heat release in the

atmosphere, in turn, is increased in the subtropics and decreased in the middle and high latitudes.

As a result of the change in temperature lapse rate, the turbulent heat flux from the earth's sur-

face to the atmosphere is then decreased in the former and increased in the latter regions. There-

fore, the surface temperature change is reduced in the subtropics and is increased in the middle

and high latitudes. The mean meridional and eddy transports of water vapor, whose strength

depends on the temperature gradient, have an effect of moderating the latitudinal variation of

temperature change.

With the inclusion of the ice—albedo feedback mechanism, Table 6 shows that the maxi-

mum temperature change occurs at the surface level of the polar region for both models A and B.

For the low and middle latitudes, the temperature change is larger at the 500mb level than at the

earth's surface for model A, but the reverse is true for model B. The temperature lapse rate is,

therefore, decreased in model A and increased in model B for an increase in solar constant. Using

a GCM to perform the solar constant experiments, Wetherald and Manabe (1975) found that the
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temperature changes are larger at the mid-troposphere than at the earth's surface for the low and

middle latitude. This is in agreement with the results of model A. However, contrary to the re-

sults of W/M, model A produces the largest temperature change in the stratosphere, which is a

result of determining the stratospheric temperatures from the predicted tropospheric temperature

lapse rates and fixed tropopause heights. It is expected that the tropopause height determined

internally, e.g., through the radiative equilibrium method, might improve these results.

Table 5 shows that the sensitivity of surface temperature change to solar constant varia-

tion is the smallest for model A as compared with model B and other studies. In order to inves-

tigate the cause of this discrepancy, we have examined the global sensitivity parameters, /3, de-

fined by Schneider and Mass (1975) as

	

dTs	F°

	

- S° dS	(dF/dTs) + [(S° /4) (da/dTs)]

where

F=4(1 -a),

S is the solar constant, F the outgoing longwave flux, a the planetary albedo, the subscript `b"

indicates the standard value, and overbar "—" indicates the global mean. Table 7 shows the re-

suits of the global sensitivity parameters for models A and B, and other studies. The major dif-

ference between model A and others is the longwave sensitivity parameter dF/dT S, which is much

larger in model A than in other models. It implys that the outgoing longwave radiation is more

sensitive to the surface temperature variation in model A than in other models. If we let

F = F i -(Fi - Fc ) AC,

where F t and Fc are the outgoing longwave fluxes for clear and overcast skies, respectively, and

AC the cloud amount, the longwave sensitivity parameter may be written as

1P
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dF_ 0 1 (10 t dr`c
Ac	for fixed Ac .	(10)

dTs - dTs	d_Ts dT s

Since the cloud amount and height are fixed in the GCM of W/M and models A and B, we have

further compared the longwave sensitivity parameters using ( 10). According to Ramanathan

(1977), the results for W/M may be written as

	

dF	1.94 + 0.25 Ac for So -+ So + 2%

dT - C .8 - 0.4 A for S -^ S - 2%) (W/M).

	

s
 c
o
0

The results for models A and B may be written as

dF3.84 + O.12 Ac for So -^ So + I%

	

dTs - 3.71 + 0. 15 Ac for So S0-^	
_ 1%) (model A),

and

dF2.78 - 0.17 Ac for So -^ So + 1%

dTs - (2.74 - 0.15 Ac for So S0 - I %) 
(model B).

As expected, the discrepancy caused by the second term is much smaller than that caused by the

first term, and the clear sky longwave sensitivity W ild-Ts ) is responsible for the difference in

long-wave sensitivity (0/dTs). The discrepancy in dF, /dTs between models A and B is mainly

due to the difference in the response of the temperature lapse rate to solar constant variations.

As mentioned before, the temperature lapse rate generally decreases in model A and in-

creases in model B as solar constant increases. The outgoing longwave radiation is, therefore,

more sensitive to surface temperature change in model A than in model B. On the other hand,

the discrepancy in dF, /dTs betwee.1 model A and W/M comes from the difference in the response

of water vapor and the stratospheric temperature to solar constant variation. Although the sur-

face relative humidity is fixed, the relative humidity for the troposphere of models A (and model

B) decreases with increasing solar constant. With a 1% increase in solar constant, the relative

humidity at 850mb decreases by about 0.8% in model A "about 0.4% in model B). But the re-

sults of W/M show that the relative humidity for the lower troposphere increases with increasing
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solar constant. Since water vapor is mostly confined to the lower troposphere, this indicates that

water vapor must be increased more and the infrared opacity due to water vapor is larger in W/M

than in model A to reduce dF/dTs as solar constant increases. As mentioned before, the variation

in solar constant caused a maximum temperature change in the stratosphere of model A, but a

minimum change in the stratosphere of W/M. This also increases the longwave sensitivity parameter

in model A as compared to W/M.
i
f
{
t

The response of surface heat budget to the variation in solar constant for both models

are shown in Table 8 and Fig. 11. As can be seen, the responses are quite different due to

different parameterizations of evaporation. The results of model A are qualitatively in agreement

with those of W/M. Both model A and the GCM of W/M show that the latent heat flux increases

with increasing solar constant, but the sensible heat flux decreases with increasing solar constant.

As pointed out by Wetherald and Manabe, the nonlinear increase in saturation vapor pressure

makes more energy available for evaporation and less energy available for sensible heat flux as

the surface temperature increases. Contrary to the results of model A and W/M, the changes in

sensible and latent heat in model B are essentially in the same direction due to the linear relation-

ship between them. The difference in the response of sensible heat flux to solar constant varia-

tion between models A and B results from the different response in temperature lapse rate, which

also produces the difference in the change of the net longwave radiation at the earth's surface.

The net longwave radiation changes in model A are much smaller than those of W/M. The re-

sponse of water vapor to solar constant variation is responsible for this difference. Latent

heat flux is more sensitive to solar const..nt variation for the nonlinear evaporation formulation

than for the linear evaporation formulation, with the major difference located in the low latitudes.

This implies that cloudiness might be more sensitive to solar constant variation for the case of

nonlinear evaporation if clouds are to be generated by the model.

In a reappraisal of the ice-albedo feedback, Lian and Cess (1977) introduced a parameter

ry = p/Q' - 1, to indicate the amplification in global climate sensitivity due to ice-albedo feedback,

P
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where Q and P' are the global sensitivity parameters with and without ice-albedo feedback, respec-

tively. The value of 7 estimated by them is about 0.25. For the cases with a 1% increase in solar

constant, the values of 7 in models A and B are about 0.26 and 0.36, respectively. For the cases

with a 1% decrease in solar constant, the values of 7 are about 0.32 and 0.41 for model A and

model B, respectively. The ice-albedo feedback causes an asymetric climate change in both mod-

els, with slightly larger amplification for the cases with decreasing solar constant. Although the

same parameterization to account for the ice-albedo feedback is used in both models A and B,

the amplification factor 7, appears to be smaller in model A than in model B. Also, the values

of 7 in model A are closer to the results of Uan and Cess (1977) and W/M.

5. Conclusions and remarks

Based upon the annual mean zonally averaged climate model of Ohring and Adler (1978)

with some modifications, the effects of different evaporation parameterizations on the climate

sensitivity to solar constant variations are investigated. The changes from O/A are the parameter-

izations; of convection, evaporation, latent heat release, cloud properties, and surface albedo. Two

different evaporation parameterizations are tested in this study. One is the nonlinear formulation

with the Bowen ratio determined by the predicted vertical temperature and humidity gradients

near the earth's surface (model A). The other is the linear formulation of Saltzman (1968) with

the Bowen ratio essentially determined by the prescribed linear coefficient which is also used in

O/A (model B). The major results of this study are summarized below.

1) The computed climates are in good agreement between models A and B, except

the energy partition between sensible and latent heat fluxes at the earth's surface. The latent

heat flux further induces the differ,.-nee in latent heat release.

2) The simulated temperatures and the radiation budgets at the top of the atmos-

phere for both models are in good agreement with the observations, but with different energy

partition between the atmosphere and the earth's surface. Compared to the results of Hoyt

(1976), the computed atmospheric solar heating and infrared cooling are too small, and the net
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solar radiation and the net longwave radiation at the earth's surface are too large. This is a result

of neglecting the absorption of solar radiation by CO2 1 02, dust and cloud droplets in the model.

3) The difference in evaporation parameterizations causes a discrepancy in the

response of temperature lapse rate to solar constant variations and a difference in the sensitivity

of longwave radiation to surface temperature, dF/dTs . Compared to the linear evaporation form-

ulation (model B), the nonlinear evaporation formulation (model A) appears to produce a reduc-

tion not only in the sensitivity of surface temperature to solar constant variations but also in the

amplification of the global climate sensitivity due to ice-albedo feedback.

4) The difference in evaporation also causes a difference in the response of surface

heat budget to solar constant variations. The results with the nonlinear evaporation (model A)

are qualitatively in agreement with those of Wetherald and Manabe (1975). Both model A and

W/M show that the changes of latent and sensible heat fluxes are in the opposite direction, with

the latent heat increasing and sensible heat decreasing for an increase in solar constant. The non-

linear increase in saturation vapor pressure makes more energy available for evaporation and less

energy available for sensible heat flux as surface temperature increases. However, the responses

of sensible and latent heat in model B are in the same direction, and are an outcome of the linear

relationship between these fluxes.

5) Latent heat flux is more sensitive to solar constant variation for the nonlinear

evaporation than for the linear evaporation, implying that cloudiness might be more sensitive to

solar constant variation for the nonlinear evaporation case if clouds are to be generated by the

mod(A.

6) Due to the fact that water vapor is determined by fixing vertical lapse rates and

surface relative humidities, the lower tropospheric relative humidities in model A (also model B)

were found to decrease with increasing solar constant. This is contrary to the results of W/M, in

which the lower tropospheric relative humidities increase with increasing solar constant. There-

fore, the infrared opacity is smaller in model A than in M/W. For the troposphere of the pow
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and middle latitudes, the temperature lapse rates decrease with increasing solar constant in L,,jth

model A and W/M. Since the water vapor increases much less in model A than in W/M as solar

constant increases, the increase of downward infrared flux at the earth's surface is smaller in mode;

A than in W/M. Therefore, as the solar constant increases, the decrease of the net infrared flux at

earth's surfac: is smaller in model A than in W/M, and the surface temperature increases less It,

model A than in W/M. A better method for computing the water vapor is considered crucially

important for climate sensitivity studies.

7) Because the stratospheric temperatures in model A are determined from the pre-

dicted tropospheric temperature lapse rates and the fixed tropopause heights, the variations in

solar constant were found to produce the maximum temperature changes in the stratosphere,

which is contrary to the results of W/M. It is expected that if the tropopause height is deter-

mined internally e.g., through the radiative equilibrium method, the results might be improved.

8) For a small variation in solar constant, the hemisphere mean surface temperature

changes are in good agreement between model B and O/A. The ice-albedo feedback causes the

change in surface temperature to increase with increasing latitude in model B and O/A. For the

case without ice-albedo feedback, however, the latitudinal distributions of surface temperature

changes are different between model B and O/A. The parameterization of latent heat release is

responsible for this difference.
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Table I
Dynamical Model and Heating Processes, NO) and Ha0) Indicate

the Surface and Atmospheric Heating Processes, Respectively

Dyn Model &. Heating Processes	 Computation Methods

Two-Level Quasi-Geostrophic Model	Sela and Wiin-Nielson (1971)

Solar Radiation, H,(1), H a(1)	 Lads and Hansen (1974)

Longwave Radiation, HS(2), Ha (2)	Sasamori (1968, 1970)

Convection, HS (3), Ha(3)	 Saltzman (1968)

Evaporation, HS(4)	 Non-Linear (Model A, This Study)
Linear (Model B, Saltzman, 1968)

Latent Heat Release, Ha(4)	 Sellers (1973)

Ocean Transport, HS(5)	 Sellers (1973)

4
 S

Ha =	Haw,	HS(i) = 0

i=1	i=1
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Table 3
Parameters for Surface Albedo Calculation

Latitude (°N)
Parameter	Season

5	15	25	35	45	55	65	75	85

Land	 0.08 0.13	0.18	0.16 0.15	0.16	0.16 0.16	0.16
Reflectivity

DJF 0.06 0.06 0.08 0.10 0.13 0.17 0.19 0.23 0.23
Ocean MAM 0.06 0.06 0.06 0.07 0.08 0.09 0.11 0.13 0.13

Reflectivity JJA 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.10
SON 0.06 0.06 0.07 0.08 0.10 0.12 0.14 0.15 0.15

DJF 0.24 0.23 0.18 0.15 0.11 0.07 0.03 0 0
Fraction MAM 0.27 0.28 0.28 0.29 0.31 0.36 0.38 0.38 0.37
of Solar JJA 0.24 0.75 0.30 0.34 0.38 0.42 0.50 0.57 0.59

Radiation SON 0.25 0.24 0.24 0.22 0.20 0.15 0.09 0.05 0.04

DJF 0.78 0.72 0.62 0.56 0.48 0.37 0.14 0.10 0
Ocean MAM 0.78 0.72 0.62 0.56 0.48 0.37 0.14 0.09 0

Fraction JJA 0.78 0.72 0.62 0.56 0.48 0.42 0.20 0.17 0.01
SON 0.7t; 0.72 0.62 0.56 0.48 0.42 0.22 0.26 0.01

DJF 0.22 0.28 0.38 0.38 0.15 0.05 0.01 0 0
Land MAM 0.22 0.28 0.38 0.44 0.37 0.24 0.10 0.01 0

Fraction JJA 0.22 0.28 0.38 0.44 0.52 0.55 0.59 0.12 0.01
SON 0.22 0.28 0.38 0.44 0.43 0.35 0.28 0.05 0.01

DJF 0 0 0 0 0 0.06 0.16 0.61 0.94
Sea Ice MAM 0 0 0 0 0 0.06 0.16 0.62 0.94
Fraction JJA 0 0 0 0 0 0.01 0.10 0.54 0.93

SON 0 0 0 0 0 0.01 0.08 0.45 0.92

DJF 0 0 0 0.06 0.37 0.52 0.69 0.29 0.06
Snow MAM 0 0 0 0 0.15 0.33 0.60 0.28 0.06

Fraction JJA 0 0 0 0 0 0.02 0.11 0.17 0.05
SON 0 0 0 0 0.09 0.22 0.42 0.24 0.06
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Table 4
The Absorption of Solar Radiation by Absorbers in the Atmosphere for

Models A and B, and Hoyt (1976) Cloud Model A. The Results are Percentages
of Solar Radiation Incidence at Top of Atmosphere

Model A Model B Hoyt (1976)

H2 0 & Cloud 13.33% 13.48% 17.38%

03 3.51% 3.51% 3.40%

CO2 0 0 0.85%

02 0 0 1.70%

Dust 0 0 0.57%

Atm 16.84% 16.99% 23.90%

Table 5
Mean Surface Temperature Changes Resulting from a I% Change in Solar Constant for

Models A and B, Together with the Results from Other Studies (K)

No Ice Ice

Investigator
Feedback Feedback

So ± 1% So+ 1%	so-I%

Model A ±0.66 +0.82	--0.86

Model B ±1.03 +1.40	-1.45

Ohring and Adler (1978) ±0.99 +1.35	-1.50

Gal-Chen and Schneider (1976) ±1.4 -3.1 to -5.4

Sellers (1973) +0.9	-5

Budyko (1969) . 1.5 -5

Manabe and Wetherald (1967) ±1.3

Wetherald and Manabe (1975) +1.5	-2.2

r 
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Table 6
Latitudinal Distributions of Temperature Changes at 500 m and 1000 m Levels

due to a I% Change in Solar Constant for Models A and B (K)

Model A Model B

P	Latitude No Ice Ice No Ice Ice
(mb)	(°N) Feedback Feedback Feedback Feedback

-1% +1% -1% -1% +1% -1%

5 -0.9 0.9 -1.0 -1.0 1.2 -1.2

15 -0.8 0.9 -0.9 -0.9 1.0 -1.0

25 -0.8 0.9 -0.9 -0.8 1.0 -1.0

35 -0.8 0.9 -1.0 -0.8 1.2 -1.2

45 -0.8 1.1 -1.2 -0.9 1.5 -1.6
500

55 -0.8 1.2 -1.3 -1.0 1.7 -1.8

65 -0.8 1.3 -1.3 -1.0 1.8 -1.9

75 -0.8 1.3 -1.4 -1.0 2.0 -2.0

85 -0.8 1.4 -1.4 -1.0 2.1 -2.2

Mean -0.79 1.01 -1.05 -0.91 1.30 -1.36

5 -0.7 0.8 -0.8 -1.1 1.2 -1.3

15 -0.7 0.7 -0.7 -1.0 1.2 -1.2

25 -0.6 0.7 -0.7 -1.0 1.2 -1.2

35 -0.6 0.7 -0.7 -1.0 1.2 -1.3

45 -0.6 0.8 -0.8 -1.0 1.3 -1.3
1000

55 -0.6 0.9 -0.9 -1.0 1.5 -1.6

65 -0.7 1.2 -1.2 -1.0 2.0 -2.3

75 -0.8 1.4 -1.7 -1.0 2.9 -3.0

85 -0.8 2.1 -2.5 -1.1 2.7 -2.2

Mean -0.66 0.82 -0.86 -1.03 1.40 -1.45
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Table 7
Global Sensitivity Parameters for Models A and B, and Other Studies (Wm-2 K-1)

No Ice Feedback Ice Feedback

so :t S0+1% So-195

d`P So d&	d&	dr $o d& d&	dÌ So da	d&

dTs 4 A,	dT,	dTs 4 As dT2	dTg 4 dT1	dTs

Model A	 3.82 -0.25 -0.0007 3.91 -1.05 -0.0031 3.79 -1.09 -0.0032

Model B	 2.52 -0.24 -0.0007 2.70 -1.02 -0.0030 2.67 -1.05 -0.0031

Budyko (1969)	 1.45	0	0

Cess (1976)	 1.63 -0.10 -0.0003

Wetherald and Manabe (1975)	 2.07 -0.52 -0.0015 1.60 -0.54 -0.0016

Table 8
Percentage Changes of Surface Heat Budget Components Resulting from the Changes in

Solar Constant for both Models A and B (with Ice Feedback). SR, Solar Radiation Absorbed
at the Earth's Surfacc; LR, Net Upward Longwave Radiation at the Earth's Surface;
SH, Upward Flux of Sensible Heat at the Earth's Surface; LH, Upward Flux of Latent

Heat at the Earth's Surface; W/M, General Circulation Model of Wetherald and Manabe (1975).
Numbers in Parentheses Indicate the Hemispheric Mean Surface Heat Budget

for the Standard Cases (w m-2)

Model A	 Model B	 W/M

0-* 1% 0-^ -1%	0-+1% 0-+ -1%	0-^ 2% 0->-2% -2%-+-4%

SR (176.8) +1.2% -1.2% (176.0) +1.3% -1.3% (166.0) +1.7% -2.1% -2.9%

LR (67.1) -0.2% +0.1% (67.8) +0.4% -0.4% (63.5) -4.4% +2.295 +2.2%

SH (26.4) -2.9% +2.9% (37.3) +1.1% -1.0% (27.2) -5.1% +0% +7.7%

LH (83.3) +3.5% -3.6% (70.9) +2.1% -2.3% (75.3) +9.3% -6.5% -10.2%
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Figure

1 Relationships Between Seasonal Snow Cover over Land and the Mean Annual Surface

Temperature

2 Relationships Between Seasonal Ice Cover over Ocean and the Mean Annual Surface

Temperature

3 Latitudinal Distributions of Surface (TS ) and 500mb Temperatures (T S ) for Models A

and B, Together with the Observed Values from Oort and Rasmusson (1971)

4 Heat Budgets of Model Atmospheres, and those Computed from Actual Atmosphere by

London and Sasamori (1971), Sasamori et al. (1972), and Hoyt (1976)

5 Latitudinal Distributions of the Planetary Albedo (a), and the Surface Albedo (b) for

Models A and B, Together with the Values from Hoyt (1976), Ellis and Vonder Haar

(1976) and Posey and Clapp (1964)

6 Latitudinal Distributions of the Solar Radiation Absorbed by Earth—Atmosphere System

(a), and the Outgoing Longwave Radiation at the Top of Atmosphere (b), for Models

A and B, Together with the Observed Values from Ellis and Vonder Haar (1976)

7 Latitudinal Distributions of the Solar Radiation Absorbed (a), and the Net IR Flux (b),

at the Earth's Surface for Models A and B, Together with the Values from Hoyt (1976)

8 Latitudinal Distributions of the Solar Radiation Absorbed (a), and IR Flux Divergence

(b), in the Atmosphere for Models A and B, Together with the Values from Hoyt (1976)

9 Latitudinal Distributions of the Latent Heat Flux (a), and the Sensible Heat Flux (b), at

the Earth's Surface for Models A and B, Together with the Observed Values f rom Sellers

(1965)
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Figure S. Latitudinal Distributions of the Planetary Albedo (a), and the
Surface Albedo (b) for Models A and B, Together with the Values from

Hoyt (1976), Ellis and Vonder Haar (1976), and Posey and Clapp (1964)
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Figure 8. Latitudinal Distributions of the Solar Radiation Absorbed (a), and IR
Flux Divergence (b), in the Atmosphere for Models A and B, Together with the Values

from Hoyt (1976)
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