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Large-scale association studies hold substantial promise for
unraveling the genetic basis of common human diseases. A well-
known problem with such studies is the presence of undetected
population structure, which can lead to both false positive results
and failures to detect genuine associations. Here we examine
∼15,000 genome-wide single-nucleotide polymorphisms typed in
three population groups to assess the consequences of population
structure on the coming generation of association studies. The
consequences of population structure on association outcomes
increase markedly with sample size. For the size of study needed
to detect typical genetic effects in common diseases, even the
modest levels of population structure within population groups
cannot safely be ignored. We also examine one method for
correcting for population structure (Genomic Control). Although
it often performs well, it may not correct for structure if too few
loci are used and may overcorrect in other settings, leading to
substantial loss of power. The results of our analysis can guide the
design of large-scale association studies.

Recent advances in genotyping technologies and increases in genetic
marker availability have paved the way for association studies on
genomic scales1. A potential problem for every population-based asso-
ciation study is the presence of undetected population structure that
can mimic the signal of association and lead to more false positives or
to missed real effects (Fig. 1). These concerns have influenced the
design, interpretation and funding of association studies during the

past decade2. Still, levels of population structure in many ethnic
groups are typically small, and despite concerns3,4, there is an increas-
ing sense5,6 that the problem is not serious if association studies avoid
gross levels of population structure.

Upcoming association studies will genotype many markers and
evaluate many individuals, owing to the realization that case-control
studies powered to detect realistic effect sizes will typically require
thousands of individuals7,8. This concern raises two general questions:
(i) how much underlying structure is there in various human popula-
tions and when might this pose problems for large-scale association
studies, and (ii) how accurate and efficient are available methods for
correcting for population structure in case-control studies?

Using genome-wide single-nucleotide polymorphisms (SNPs) in
multiple populations (European Americans, African Americans and
Asians of known Japanese or Chinese ancestry), we quantified the
extent of population structure within and between the populations
and then examined the consequences of population structure for
association studies.

Figure 1  The effects of population structure at a SNP locus. If the study
population consists of subpopulations that differ genetically, and if disease
prevalence also differs across these subpopulations, then the proportions of
cases and controls sampled from each subpopulation will tend to differ, as
will allele or genotype frequencies between cases and controls at any locus
at which the subpopulations differ. The figure shows an example of this
scenario with two populations in which the cases have an excess of
individuals from population 2 and population 2 has a lower frequency of
allele A than population 1. In this example, the structure mimics the signal
of association in that there is a significant difference in allele and genotype
frequencies between cases and controls.
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Using Bayesian methodology, we fitted a statistical model of pop-
ulation structure that is natural for SNP loci9–11 to two versions of
our data set: data set I, the whole data set (partitioned into the three
main subpopulations); and data set II, the Asian sample (parti-
tioned into Japanese and Chinese subpopulations). Fitting a statisti-
cal model has several advantages over traditional approaches that
use summary statistics such as FST (ref. 12) to assess population
structure. First, with abundant SNP loci, the model can be validated
by checking whether it actually fits the data (Fig. 2). Second, when
the model fits well, it can be used statistically to extrapolate beyond
the actual data (e.g., to larger sample sizes). Third, using the model
can provide better estimates of parameters that quantify population

differentiation than can traditional approaches10,13. The present
model measures the difference of each population from a hypothet-
ical average, or ancestral, population by a parameter cj for each pop-
ulation j. These parameters can be thought of as a generalization of
FST (ref. 10).

For data set I, the c estimates were 0.234, 0.116 and 0.152 for the
Asian, African American and European American populations,
respectively, and FST was estimated to be 0.145. For data set II the c
estimates were 0.0085 and 0.016 for the Chinese and Japanese subpop-
ulations, and FST was estimated to be 0.013. These results indicate a
substantial difference between the three main populations and a much
smaller, but still measurable, difference between the Japanese and
Chinese subpopulations. The difference between the Chinese and
Japanese subpopulations is consistent with earlier population genetic
studies based on many fewer loci14.

We assessed the effect of population structure on association
studies in two ways. We simulated cases and controls under the null
hypothesis of no genetic effect on disease status. In the first set of
simulations, we randomly assigned the individuals in data sets I and
II to case or control status according to a model in which disease
prevalence differs across subpopulations. Next, to understand the
effects of population structure for larger sample sizes, we took
advantage of the very good fit of the statistical model (Fig. 2) to sim-
ulate samples with the parameter values estimated from our data,
again randomly assigning case or control status to the individuals.
In addition to the amount of population structure, we examined a
range of differences in disease prevalence, as these effects also con-
tribute to false positive results.

In genome-wide applications, association results considered ‘real’
require higher significance levels than those accepted for single loci,
owing to multiple-testing corrections for the thousands of markers
tested. Although appropriate genome-wide significance levels are not
yet clear15, they are thought to be in the range of 10–4–10–8 (ref. 8). It is
therefore important to assess the effects of population structure on
tests with P values in this range. We focused on the χ2 (trend) test16,17

for association.
For the relatively few individuals genotyped in this study, the χ2

test is conservative (Fig. 3), which could lead to missed real effects
in spite of the structure, though these sample sizes are uncharac-
teristically small for case-control studies. For larger studies, the
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Figure 2  Differences between actual and predicted values (residuals) in data
set II (the Asian sample). The figure plots the two sets of sorted residuals
against each other. The x = y line represents exact agreement between the
two sets of residuals, i.e., a perfect fit of the model and data. The
fluctuations around the line in the tails of the distributions are expected, as
there are relatively fewer points in these parts of the plot.
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Figure 3  Multiplicative change in P values due to population structure in
small samples. The P values are based on the χ2 (trend) test16,17 for
association. Multiplicative change of the P values of the trend statistic,
defined as the actual P value divided by the nominal P value for the Asian
sample (black line) and whole sample (red line) is shown on log10 scale.
Comparing the distribution in this way magnifies the tails of the distribution,
i.e., the part of the distribution of greatest interest for studies of many
markers. The horizontal line at 0 represents exact agreement between the
actual distribution of the trend statistic and the theoretical (χ2) distribution.
Values below 0 indicate that the actual distribution has less weight at large
values (shorter tails) than the theoretical distribution and the test is
conservative, potentially leading to loss of power and missed real effects.
Values above 0 indicate that the actual distribution has longer tails than the
theoretical distribution and the test is anticonservative, leading to excessive
false positive results. For both data sets, the test statistic seems to be
conservative, resulting from a trade-off between the effect of structure,
which tends to make the test anticonservative, and the inadequacy of the
asymptotic χ1

2 distribution for such small sample sizes (Supplementary Note
online), which tends to make the test conservative. The numbers of
individuals genotyped in these data is small for case-control applications,
though typical of some early-stage pharmacogenetics studies29.
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consequences of population structure comparable to that in the
data are presented in Figure 4. Figure 4a considers the setting in
which controls are equally sampled from the three main popula-
tions, but because of a difference in disease prevalence, the cases
have a different mix of populations. Figure 4b considers a study
that intends to examine one main population but doesn’t quite
succeed. For example, cases may come from only one population

but the control set may include small fractions from other popula-
tions (10% from each). In each case, these levels of population
structure cause substantial difficulties.

Studies usually avoid combining individuals across continental
groups, and a more common scenario involves the combination of dif-
ferent individuals within a population. The average FST between pairs
of European populations (Sardinian, Danish, English, Greek and

Figure 4  Multiplicative change in P values due to population structure in large samples (shown on log10 scale). Multiplicative change in P value under scenarios
A1 (a) and A2 (b), in which three populations were simulated with the same structure found in the whole sample. (c–e) Multiplicative change under scenarios
B1–B3, in which samples were simulated from two populations with the same level of structure as estimated from the Asian sample. Scenarios are described in
Methods. As sample size increases, the effects of structure become more severe (see Supplementary Note online for more information). The key indicates the
different P values considered.
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Figure 5  Multiplicative change in P values due to population structure after Genomic Control correction for scenario A2. Nominal P values of 10–3 (a), 10–4

(b), 10–5 (c) are plotted for each scenario, and each plot shows the multiplicative change (on a log10 scale) for a range of sample sizes (n) and for numbers of
loci (L) used in the Genomic Control correction (see key in a). When only a small number of loci (L < 100) are used in the Genomic Control correction, the
effects of structure are not removed and the test remains anticonservative (lines above 0), effectively because the correction parameter λ is not estimated
well enough. When more loci are used (L ≥ 500) the Genomic Control correction results in a conservative test (lines below 0). (There is an asymmetry caused
by the nonlinearity: underestimation of λ, though rarer, has a much more serious consequence than overestimation.) This pattern becomes more extreme for
smaller nominal P values and larger sample sizes; for example, with L ≥ 500 loci, we observed no examples with P values <10–5 in the 108 simulations (c).
The blue dotted line represents an upper 95% confidence limit for the actual P value given this observation.
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Italian) has been reported to be 0.01715, with an average FST excluding
Sardinia of 0.0102 (Table 2.3.1A in ref. 14). The smaller of these values
is similar to the estimated FST from our Chinese and Japanese subpopu-
lations of 0.0133 (average c = 0.0122), suggesting that the level of struc-
ture between these two samples is comparable to that in current mixed
European populations. The consequences of this level of structure for
association studies depend on the difference in disease prevalence
between subpopulations. Differences in disease prevalence of a factor of
two or more are not uncommon, even within countries3,18. Much of
this variation may be due to environmental or geographical risk factors.
If studies do not (or cannot) measure and correct for such factors, seri-
ous problems could arise (Fig. 4e). In addition, residual variance in dis-
ease risk remains after allowance for confounders, leaving some
difficulties even for large studies and small P values (Fig. 4c,d).

Several statistical methods have recently been developed to
account for population structure so that association studies can pro-
ceed even when structure is present16,19–25. One commonly used
method, Genomic Control, uses a set of anonymous markers to cor-
rect for population stratification16. The method is based on the
observation that population structure changes the null distribution
of the χ2 statistic by a simple multiplicative factor, which may be esti-
mated by a collection of L anonymous markers. Here we extend pre-
vious assessments of Genomic Control3,16,20,26,27 to consider large
sample sizes and small P values.

In the scenarios described above, when only a small number of
loci (L = 50–100) are used to correct for structure, the Genomic
Control test is often anticonservative (that is, the actual P value is
larger than that given by the χ2 distribution) and still results in false
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Figure 6  Multiplicative change in P values due to population structure after Genomic Control correction for scenarios B1 (a–c), B2 (d–f) and B3 (g–i). Each plot
shows the multiplicative change for a range of sample sizes (n) and for numbers of loci (L) used in the Genomic Control correction (on a log10 scale). For larger
sample sizes, when only a small number of loci (L < 100) are used in the Genomic Control correction, the effects of structure are not removed and the test is
anticonservative (lines above 0), whereas when more loci are used (L ≥ 500), the Genomic Control correction results in a conservative test (lines below 0). This
pattern becomes more extreme for smaller nominal P values and larger sample sizes (c,f,i). Nominal P values were 10–3 (a,d,g), 10–4 (b,e,h) and 10–5 (c,f,i).
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positives (Figs. 5 and 6). Conversely, when L is large, the test is con-
servative, which avoids false positives but results in a loss of power.
For the levels of structure within the main population groups (Fig.
6) and realistic differences in disease prevalence, the latter conse-
quence does not seem serious. But with more extreme population
structure, such as a small degree of admixture from across popula-
tions (Fig. 5) or large differences in disease prevalence between
subpopulations (data not shown), this consequence can render the
correction ineffective. In some studies it may be unrealistic to
genotype the many Genomic Control markers necessary to avoid
false positive results. In such cases, methods that use fewer ances-
try-informative SNPs4,25 may be more appropriate.

Large-scale association studies are emerging as a tool for under-
standing the genetics of common human diseases. We used a
genome-wide SNP collection to measure the extent of population
structure across three population groups (European American,
African American and Asian) and within the Asian group.
Association studies typically avoid combining individuals across
populations, but a large, multicenter study might inadvertently
include some individuals outside the primary study group or some
individuals with substantial but undetected levels of admixture.
Even small amounts of population admixture can undermine an
association study and lead to false positive results. These adverse
effects increase markedly with sample size. For the size of study
required for many complex diseases7,8, relatively modest levels of
structure within a population can have serious consequences.
Population structure can also lead to missed real associations26, so
it cannot safely be ignored in future association studies. Finally, we
showed that Genomic Control will not adequately correct for pop-
ulation structure if too few loci are used in estimating the correc-
tion factor. If enough loci are used, then the test will typically be
approximately calibrated, although for more extreme population
structure, (larger λ) it can become unacceptably conservative.

METHODS
Data set. The data set consists of genotype data from 42 European
Americans, 43 African Americans and 42 Asians. The data were generated by
Orchid Biosciences as part of The SNP Consortium. The Asian sample con-
sists of 10 subjects with Han Chinese ancestry and 32 subjects with Japanese
ancestry. There were 12,337 markers (in European Americans), 8,134 mark-
ers (in African Americans) and 13,016 markers (in Asians) with maximum
25% missing data. Of these, 3,845 markers were common to all three popula-
tions (data set I) and 8,801 markers segregated within the Asian sample (data
set II). Pairwise plots of sample allele frequencies are shown in
Supplementary Note online.

Measuring population diversity. To assess the levels of population differentia-
tion in our data sets, we fitted a statistical model of population structure9–11.
The model takes the form

where P is the number of populations, L is the number of loci, nij is the number
of chromosomes typed at the ith SNP in the jth population and xij is the num-
ber of copies of the chosen SNP variant at locus i in population j. The variance
parameter cj specifies how far the jth subpopulation’s allele frequencies tend to
be from typical values. Our cj parameters are analogous to FST values, but with
one for each population10,13. We estimated the model parameters in a Bayesian
framework as described in Supplementary Note online.

xij ~ Bin(nij ,    ij)α

  ij ~ Betaα

i = 1,…,L j =1,…,P

πi(1 – cj)

cj cj

(1 – πi)(1 – cj),

We assessed the fit of the model using the standardized residuals10:

where π̂ i  and ĉ j  are the posterior mean values of πi and cj. We simulated a data
set using the parameters π̂ i  and ĉ j  , fitted the model to the simulated data and
compared the residuals with those obtained from fitting the model to the
observed data. The very good agreement between the two sets of residuals
(Fig. 2) indicates that the model fits the data well. A similarly good fit was
obtained for data set I (data not shown).

Measuring association at a SNP locus and Genomic Control. As in ref. 16, we
measured association at a given SNP locus (with alleles A and a) using
Armitage’s trend test for an additive genetic model:

where N is the total sample size, R is the number of cases, n1 and n2 are the total
number of individuals with genotypes Aa and AA, respectively, and r1 and r2 are
the number of cases with genotypes Aa and AA, respectively. In the absence of
population structure, under the null hypothesis of no association, this test sta-
tistic has an asymptotic χ1

2 distribution. The statistic can be derived as a score
test statistic for the additive genetic effect on log-odds scale28.

The key idea underlying the Genomic Control16 approach is that popula-
tion structure elevates the test statistic by an approximate constant factor: Y2

∼λχ1
2. The value of λ depends on the nature of the population structure.

Because population structure is expected to have a similar effect on all loci
across the genome, λ can be estimated from the empirical distribution of Y2

from a set of L unlinked markers. As in ref. 27, we estimated λ as the median
value of the trend statistic divided by 0.456, where values below 1 are
changed to 1.

The pattern of results in Figure 6 reflects, in part, nonlinearity in the
effects of estimating λ. With few loci, there is less precision in estimating λ.
When λ is near 1, the truncation induces overestimation of λ, which tends to
make the test conservative. The overestimation, and hence the conservative-
ness, increases as L decreases. For values of λ further from 1 the truncation
effect diminishes. Here, a nonlinearity means that over- and underestimation
of λ have different effects on the true P value, so that increasing the variance
of the estimator (decreasing L) gives a less conservative test. Earlier stud-
ies16,20,27 seem to have considered the former effect, but the latter may be
more relevant for large studies.

Assigning case or control status to data set I and data set II. To assess the
effects of population structure on a data set with a similar structure to the
whole sample, we randomly assigned the samples case or control status as
described in Supplementary Note online.

Simulating data sets with population structure. We simulated data sets
with 10,000 unlinked loci using the model specified above for the parameter
values estimated for each data set and the same number of cases and con-
trols (here and in Figs. 4–6 denoted n). Unless specified, we sampled con-
trols uniformly from populations and sampled cases according to the
Relative Risk (RR) proportions specified below. To mimic the large-scale
structure between the three main populations, we considered two different
scenarios:

A1: three populations, c1 = 0.234, c2 = 0.116, c3 = 0.152, RR = 1:1:3

A2: three populations, c1 = 0.234, c2 = 0.116, c3 = 0.152, with all controls and
80% of cases sampled from population 3 and 10% of cases sampled from the
other two populations.

We varied the number of cases (and controls) and the number of indepen-
dent loci used for the Genomic Control correction.

Y2 =
N{N(r1 + 2r2) – R(n1 + 2n2)}2

R(N – R){N(n1 + 4n2) – (n1 + 2n2)2}

rij =
xij�nij –   iˆ̂

[{cj + (1 – cj)�nij}ˆ ˆ ˆ ̂ i(1 –   i)]
/2

π

π π
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To mimic the small-scale structure between the Japanese and Chinese sub-
populations, and similar levels of structure between European populations, we
considered the following five scenarios:

B1: two populations, c1 = 0.0085, c2 = 0.016, RR = 1:1.3

B2: two populations, c1 = 0.0085, c2 = 0.016, RR = 1:1.5

B3: two populations, c1 = 0.0085, c2 = 0.016, RR = 1:2.0

B4: four populations, c1 = 0.008, c2 = 0.01, c3 = 0.012, c4 = 0.015, RR =
0.5:1:1.5:2

B5: four populations, c1 = 0.008, c2 = 0.01, c3 = 0.012, c4 = 0.015, RR =
0.5:1:3:10

Scenarios B1–B3 have the same level of structure as estimated in the Japanese
and Chinese subpopulations. Scenario B4 has four populations with approxi-
mately the same level of structure as B1–B3. Scenario B5 is the same as B4 but
with greater differences in disease prevalence between populations.

URLs. Information about The SNP Consortium is available at http://snp.cshl.
org/.

Note: Supplementary information is available on the Nature Genetics website.
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