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The Green's functions of s- and d-electrons in superconductors are obtained on the basis 

of the interpolation theory'>,'> which includes as impurity effects the pair breaking and the 

effective repulsive interaction between s-electrons. By the use of these Green's functions, 

the order parameter and the critical magnetic field at zero temperature in the presence of 

impurities and its initial decrease are given. The localized excited state in the gap 1s 

found and shown to be doublet, differently from that of MUller-Hartmann and Zittartz. 

§I. Introduction 

The effects of impurities on superconductors are qualitatively different between 

the cases of magnetic and nonmagnetic impurities. Magnetic impurities have strik

ing effects even at small concentration,8' while the effects of nonmagnetic ones 

are moderate. 

The condition for the presence or absence of localized moments on transition

metal impurities in normal metals was studied by Anderson.4> A self-consistent 

Hartree-Fock treatment shows that there is a sharp transition between the magnetic 

and the nonmagnetic states, depending on U~nT in the case of half-filled d-levels, 

where U is the intra-atomic Coulomb repulsion and T the width parameter of 

d-level. Therefore, we can assume that the localized magnetic moments are well

defined in the case of U';?>nT and investigate the effects of magnetic impurities in 

various metals on the basis of the s-d Hamiltonian. From this standpoint, Ab

rikosov and Gorikov(AG) 5> discussed the effects of magnetic impurities on super

conductors in the Born approximation. Miiller-Hartmann and Zittartz(MZ) 6> ex

tended the AG theory to take account of the Kondo effect, and obtained fairly 

interesting results. Their theory, however, breaks down at low temperatures (T 

<T x), where magnetic moments disappear. On the other hand, the theory based 

on the Anderson Hamiltonian can cover magnetic as well as nonmagnetic cases 

in the same framework. Shiban discussed the problem from this standpoint in 

the Hartree-Fock approximation, though it is still insufficient as the spin fluctuation 

is not taken into account. 

Recently, Yamada and Yosida8> have developed a theory of impurities in normal 

metals on the basis of the Anderson model for the case of half-filled d-levels. 

Now we can say the problem in normal metals has been solved essentially. Thus, 

we extend their theory to the theory of impurities in superconductors. In the 
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1824 T. ]Matsuura 

case U/rrTy 1 on which we concentrate our attention here, we can divide the 

region of energy and temperature into two with respect to lwi/TK and/or T/TK~l. 

In the nonmagnetic region, I wl /T K<1 and T /T K<1, it is easy to extend the 

theory by Yamada and Y osida81 in normal metals to superconductors. 91 In the 

magnetic region, I wl /T K and/ or T /T K> 1, it is necessary to take into account the 

effects of localized moments. Therefore, in this region, it is adequate to introduce 

an effective interaction J (w) between spins of s-electrons and d-electrons, for which 

we can make use of the result of MZ, ](r») = -p- 1 [ln2 nlwi/4TK+n2S(S+ 1)].-112 

On the basis of such considerations, the effects of impurities on superconductors 

were calculated in the previous paper21 by Ichinose, Nagaoka and the present 

author (MIN) and some improvements were given on the dependence of the 

superconducting transition temperatures and the upper critical magnetic fields on 

the impurity concentration at low temperature (T <T K) and at low magnetic field 

(H <HK), respectively. The know ledge of the Green's functions in the normal 

state (L1 = 0) was sufficient in this calculation. Extending this calculation we now 

attempt to obtain the Green's functions of the superconducting state (Ll=FO) in 

the presence of impurities, and to investigate how the superconducting state is 

modified by the presence of them. We calculate the Green's functions, taking 

into account of the well-known facti 0l that, in the case L1 =FO, the singularity at 

the Fermi level is suppressed by the presence of L1. We, therefore, obtain another 

criterion for the magnetic (nonmagnetic) case that L1 is larger (smaller) than T K· 

The paper is arranged as follows: Section 2 is devoted to obtaining Green's 

functions in superconductors. In § 3 Te and thermal properties near Te, such as 

L1C and C* are discussed. Thermal properties at T = 0, L1, He, h* and o* are 

found in § 4. In § 5 we study the single impurity problem and show the ex

istence of a doublet as the localized state within the energy gap in the case T K 

~Teo· 

§ 2. Formulation 

Our model Hamiltonian is the same as Ratto-Blandin,w Kaiser121 and Shiba's, 71 

i.e., 

H=HBcs+Ha+Hsa, 

HBcs = _E ~ kat,ak6- z= (Lla"tta~kt + h.c.), 
k k 

Ha = z= Ea 0 a1Ji,adi< + U z= nairnait , (2·1) 
iff i 

where at, denotes the creation operator of a conduction electron of the host metal, 

and a1iio that of an electron in the resonance orbital of the i-impurity. ~ k and 
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The Effects of Impurities on Superconductors 1825 

Ed 0 are measured from the Fermi energy. Here, following Yamada-Y osida, sl we 

consider the half-filled resonance d-orbital and take Ed0=- (U/2). HBcs, Hd and 

H,d represent the Hamiltonians of the host superconductor in the BCS approxima

tion, the resonance orbitals and the s-d mixing, respectively. The sites of impurities 

are assumed to be randomly distributed. 

We use the Green's function formalism extended to N am bu space. The tem

perature Green's functions for s- and d-electrons averaged over the spacial distri

butions and the spin directions of impurities are related to the self-energy parts by 

c-1 (k, w) = i!JJ- t;kPs- J p2o2 = iw- t; kPs- flp2o2- .I:, (w), 

Gd - 1 (w) =iwd-Jdp2o2=iw-.I:a(w), 

(2· 2) 

(2·3) 

where oi and Pi are Pauli matrices in spin space and in particle-hole space, re

spectively. f1 is the averaged order parameter of alloys. In normal metals, the 

density of states of d-levels has the central and side peaks at w = 0 and w = ± (U/2) 

respectively. In superconductors the same situation may be expected. In general 

contributions from both peaks are included in Ga(w). We, however, regard Gd(w) 
as the Green's function representing only the central peak of d-levels, as the 

contribution from the side peaks is appropriately expressed in terms of the spin 

dependent scattering. Then the scattering of s-electrons due to the central and 

side peaks can be represented by the s-d mixing and the spin dependent scattering 

terms, respectively. The former term is important in the nonmagnetic region, 

I wl /T K<1 and fl/T K<1, and the latter in the magnetic region, I wl /T K and/ or fl/T K 

> 1. From these considerations, self-energy parts are given by 

.I:,(w) =NiV2PsGdPs+.I:s'(w), 

.I:a(w) = V 2psG,(w)Ps+.I:a' (w), 

G. (w) = 1.:, G (k, w) = -nN p iu~f_P~~2 , 

k v'u 2 + 1 

(2·4) 

(2·5) 

(2·6) 

where u=w/J. The first terms of Eqs. (2·4) and (2·5) are due to the s-d 
m1xmg. .I:/ (w) comes from the effective spin dependent scattering part and is 

easily found if we take only the terms of order ] 2 : 

(2·7) 

where 1/rs is the spin-flip scattering part for which we make use of the result 

of MZ's theory for I wl, f1 larger than T K, and Np the density of states of s-elec

trons at the Fermi energy. .I: a' (w) is due to the repulsive potential U and written 

as 

(2·8) 

where Xeven=nT/4TK and r=nNpV'. The derivations of Eqs. (2·7) and (2·8) 
are given in the Appendix. Substitution of Eqs. (2 · 5) and (2 · 8) into Eq. (2 · 3) gives 
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1826 T. Afatsuura 

Gd- 1 ((!)) =T (iw+i vz/t-1 - ( J;i+ 1 ·-~)62Pz), (2·9) 

nr 1 1 
Lid= 4TK nTL; (w+ (~/Vu2 +1)) 2 + cc-1/Vu2+i)- (Jd/r)) 2 Ju2+1' (2 ·10) 

where w~mu/ 4T K· 

The expression of Gd(ru) in Eq. (2·9) is valid only when lwl <l(w--mu/4TK) 

and 1"<1 (1"-nL1/4TK). When we consider the magnetic region, 1">1 and/or 

I wl > 1, Ga (ril) corresponding to the central peak is expected to vanish since it 

arises from the anomaly due to the sharp Fermi surface which does not exist 

in this case on account of the presence of the gap !l and/or (J). Ga (cu) in Eq. 

(2 · 9) satisfies this expectation. We use this Green's function of d-electron as 

an extrapolation to all region of w and J". From Eqs. (2 · 2), (2 · 4), (2 · 7) and 

(2 · 9), we obtain 

~,((J)) ==l iu+p262 +~ 
2r, Vu2 +1 np 

-i(w+ (u/Vu2 +1)) + ((1/Vu2 +1)- (L1djr))p 262 

x (w+ (u/Ju2 -t~-i)) 2 + ((1/Vu2+i)- (Jd/r)) 2 - ' 
(2·11) 

where n is the concentration of impurities. The following expression is \"erified 

by setting up the equations for @ and J: 

n w 
np -cil+-Cu/lu2 +i5) 2 +-CC1/vu2 +1)- CLldlnY. 

(2 ·12) 

Equation (2 ·12) coincides with Shiba's essentially if we replace the factor 4T K/n 

in the definition of w and Lid by r and ignore the difference of the treatment 

of the spin scattering. 

§ 3. Thermal properties near Tc 

The average order parameter is determined by 

L1 = I gIN pnT 2..: - --1-- , 
'" Ju 2 + 1 

(3 ·1) 

where ril=nT(2n+l). By substituting into Eq. (3·1) the expansion of u and Jd 

in powers of !l 

(3·2) 

(3·3) 
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The Effects of Impurities on Superconductors 1827 

and equating the coefficients of equal powers of L1 on both sides of Eq. (3 ·1), we 

obtain, with the use of Eq. (2 ·12), 

ln Tc"-=B0 (n, T) + l_ B 1 (n, T) ( L1 ·) 2 + ···, 
T 2 ~T 

(3·4) 

(3·5) 

(3·6) 

where 

_1_ = 1- (n/4pT K) (d1/ (1-1-:J~/2_2 
a_J I u> I + (1/rs) 

(3· 7) 

(j)1(T) 
dl = 1 + (n/4pT ~) rft;(r)- ' (3·8) 

r])n(T) = 2nT :E __ _!__ --1- _ -
w>O (1+ZtJ) 2n 10+ (1/rs) 

(3 ·9) 

In Eqs. (3 · 7) and (3 · 9), we make use of an interpolation formula :2) 

(3 ·10) 

When we derive Eq. (3 · 6), we neglect the terms which are of order (Tc/T K) n 

(n>1) in the case TK'J>Tc and (Tx/Tc)n (n>O) in Tc'J>TK. Therefore it is 
quantitatively insufficient in the region Tc/T K~ 1. 

The transition temperature is determined, by taking only B 0 (n, Tc), by 

(3 ·11) 

which is the same equation as obtained in MIN. The numerical results of Eq. 

(3 ·11) are given there. The jump of the specific heat LlC at the superconducting 

transition temperature and its initial decrease C* are given by 

C* = lim (L1C~4_(;o)/11:_L10 . 
n---"0 (Tc-Tco)/nTco 

(3 ·12) 

(3 ·13) 

In both of the limiting cases T K/Tco<f!;1 and TK/Tco'J> 1, these results reduce to 
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1828 T. l"vfatsuura 

the AG's51 for magnetic cases and Takanaka and Nagashima's 131 and Shiba's71 for 

nonmagnetic ones, respectively. However, for the quantitative improvement in the 

region Tc ~ TK, we must take account of more complicated graphs of the self

energy.*1 

§ 4. Thermal properties at T=OK 

The concentration dependence of the average order parameter at OK was 

studied by Kaiser 121 for nonmagnetic cases and Shiba71 for magnetic cases, respec

tively. On the other hand we can discuss both cases. The order parameter is 

given by 

(4·1) 

where 

(}) 

(w+ (u/Ju'+I)r+ ((1/Jzt'+1)- (11d/T))'' 

{ nd 1 } 
y = 11 1- 4pT: -(w + (u/ Ju2+ 1)) 2+-((1/ J zt' + 1)- (11d/ T))' 

and 

d= 4TK 11d. 
nr 11 

(4·2) 

In the nonmagnetic case (11<!(T K), 11 is determined ignoring the terms of 

.:1 c11;r Kr by 

11-:::::::[g[Np { ('"'ndriJ ;=~ ~+11/C} =fgfNp{11fln 2wv +11/C}, (4·3) Jo y (})2 + (11f) 2 11f 

i"'D ' 1 f) /C= dw ( ~ --
o a_l (}) ' 

where 

and 

f= 1- (nj4pT K) d 
1 + (n/ 4pTK) ' 

1 = 1- (n/4pTK)d(1/(1+ fwf)') 
a_J uJ + (1/rs) 

d=::_fln2wv+ ('"'ndw( 1 1 _f). 
11f Jo (1 + w) 2 a_ 1 !u . 

Comparing Eq. (4·5) with Eq. (4·3), we find 

d=_(_Yfg[Np)- (r/Jo(O) ~r/J 1 (0)) 
1- (nj4pTK) (r/J1 (0) - r!J, (0)) 

(4·4) 

(4·5) 

(4· 6) 

*> This problem will be discussed by S. Ichinose in a forthcoming paper by a different approach. 
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The Effects of Imjmrities on Superconductors 

Fig. 1. The reduced critical field H,/ H,o at OK versus 
reduced critical temperature T,/T,o. The dashed 
line represents the BCS law of corresponding 
states and the solid lines our result for 50;S 
(TK/T,,) <10'. 

From Eq. (4·3), we easily obtain 

1829 

(4-7) 

This result coincides with Kaiser' s121 if we replace the factor 4T K! 7r in the definition 

off and JC by r and assume F~Tco· The free energy difference between the 

normal and the superconducting states is easily obtained by 

(4·8) 

The critical magnetic field lie at ;.:ero temperature is determined by 

and 

(4·9) 

Figure (1) shows some examples of the numerical results for S= 1/2 obtained. 

In general case, we introduce the following approximations in Eq. ( 4·1); 

i.e., we substitute u by w/ J in the terms proportional to the impurity concentration 

n of the denominator and (w+u/Vu2 +l) 2 + (1j.Jzi2 f.1.-JdjT)" by (1+Vw2 +LP)". 
The first substitution is reasonable because of the dilute impurity. The incor

rectness of the second at I wl <J is not important, since it does not affect much 

on the result of the summation. Thus, we get the following equations of the 

order parameter as an interpolation formula: 

1 ~? nd -- ~ 1Jf 0- . . 1Jfl , 

[g[Np 4pTK 
(4-10) 

where 

(4·11) 
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1830 T. Afatsuura 

1 
X -- ----- -- ------------

J (1)2 (1 + (1/r, () (1) 2 + .:1 2 ) I:;-t-.i)) 2 + .:1 2 (1- (ndo/4pT K) ci/(i + J u/ +~:F) 2)) 2 

(4 ·12) 

and 

10 1 

Fig. 2. The initial decrease of the reduced order 

parameter at OK Ll/ Llo versus the reduced 

Kondo temperature TK/T,,. Numbers at

tached to each curve denote 1) the contribu

tion from the pair-breaking effects, 2) the 

effective repulsive potential and 3) the total 

value, respectively. 

AG 

.s 0 ._ dldii W!Ll,);;.o 
d/dn(l/~0 );;. 0 

.7 

(4 ·13) 

2 

101 102 

Fig. 3. The initial decrease of the reduced critical 

field at OK versus the reduced Kondo tem

perature T xfT,,. 

AG 

16 h'- dldii (HJHoa) 
. d!dii (V T,, ) 

0.9 

101 10 2 10'2 101 102 

Fig. 4. The initial slope of Ll/ Llo at OK versus 

T,/T,, against Tx/T,o. The line AG re

presents the AG value. 

Fig. 5. The initial slope of H,/ H,, at OK versus 

T,/T,, against TK/T,,. The line AG re

presents the AG value. 
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The Effects of Impurities on Superconductors 1831 

From these equations, we find 

1 n lJf/ 
--~---=lJ!o- ~-- -----~--
lg!Np 4pTK 1+ (nj4pTK)lJf, 

(4·14) 

This equation of the order parameter is analogous to that of the critical temper

ature. The critical magnetic field He at zero temperature is defined by 

H)' 2 iJo (j') 2 h/=(c =- 2 d.:Jo'Jo'~--1 
Hco .do 0 .do 

(4·15) 

where .d/ .d0 of the integrand is the function of ti/ = T K/Tco' and Hco is the critical 

field of the host superconductor. 

The initial decrease of .d and lie is easily written, by the use of Eqs. ( 4 ·14) 

and (4·15) as 

d (.d) n' i"D [;;z _ j 02 n' 
- -~ - = dx 3 ~ r (x) +-

dn .do 2tK Jo x tK 

(4 ·16) 

(4·17) 

where the integrand is the function of tK' and n=n/(2n)'pTco· We illustrate 

- (d/dn) (.d/.do)n~o, - (d/dn) (Hc/Hco)n~o, o*= {(d/dn) U/.do)/(d/dn) (Tc/Tco)} 
and h*= {(d/dn) (Hc/Hco)/(d/dn) (Tc/Tco)} in Figs. (2), (3), (4) and (5), re

spectively. These results are reasonable in comparison with the experimental 

ones given in the review article of Takayanagi and Sugawara.14l a* and h* are 

different from that of Mtiller-Hartmann and Shiba.15l 

§ 5. Single impurity 

In the case of a single impurity located at R =0, we replace u by wj L1 m 

Eq. (2 · 9) and perform the analytic continuation, ioJ-'>W. Thus we obtain 

(5·1) 

nr , 1 .d 
.dd = 4T K T ~ (ZO + (w/ J w'+ .d')) '+ ( (.d/ [w2 -I~A')- (.dd/T))' J w'+ .d' 

(5· 2) 

Equation (5 ·1) has a pole in the case I tJ)I <A and JjT K~l. Because the pole 

locates near the gap edge, we can derive 
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1832 T. 1\Jatsuura 

1 

r 
- (cil/~ .d 2 -W2)- ((.d/fLJ 2-W2 ) -a)!JzPz 

(5. 3) 

-- ( /~ ~: -a) ( j ~ ~: ·-a) 
where 

a=.dd~ n.d ln (4Tx e). 
T 4Tx \ n.d ' 

(5·4) 

The position of the pole is given by 

1-a2 

U) = ± ,d 
o 1 + az ' 

(5. 5) 

which is the same result obtained by Machida and Shibata161 if we substitute 4TK/n 
by r in the definition of a. 

The retarded Green's function Gkk'(co) for the s-electrons in the single impu

rity case is determined by 

Gkk' (uJ) =Gko (oJ) r) kk' + Gko (oJ) t (oJ) Gk,o (w), (5·6) 

with the BCS Green's function 

(5·7) 

The matrix of the scattering due to an impurity has the form 

w0 /L\ 

---..... 1.0 
single~ doublet 

',\ I 
015 1 

\ I 
I I 
I I 

\ : 
I 

0 v 
"I 

I 
I 
\ 
\ 
I 
\ 
I 
\ 
I 

10"4 10"' 10-' 10-1 1 101 10' 103 104 

~ IT, 0 

Fig. 6. The position of the LES versus 
the reduced temperature 1'x/T,o. 

(5·8) 

The degeneracy of the pole (localized excited 

state) is found, following the paper by Nagaoka 

and the present authorm as 

2_ Im Tr s= I.; G kk (w + io) lpalcduJ = 2. 
n -= k 

(5·9) 

Equation (5 · 9) shows the LES is doublet. 

This fact is apparent since the LES is accon:tpanied 

by the half-filled singlet d-electron. We plot 

the position of the LES in Fig. 6. The 

LES at nA/ 4TK~1 1s completely different 

from MZ. 61 In the case J<O, it seems the LES 

changes from the singlet states 171 to doublet at 

the point of An/ 4TK~ 1. In the region An/ 4T x 

~1 or An/4TKp1, the LES is understood easily 

as one particle state. 
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The Effects of Impurities on SujJerconductors 1833 

§ 6. Conclusion 

The Green's functions of s-electrons and d-electrons 111 superconductors were 

obtained on the basis of the interpolation theory which includes as impurity effects 

the pair breaking and the effective repulsive interaction between s-electrons. By 

the use of these Green's functions, the equations to determine the effects of magnetic 

impurities on thermal properties at T=Tc (Tc, LiC and C*) and at T=OK (Li and 

He) were derived. That of Tc was the same as MIN's. We calculated numeri

cally L1 and He at T=OK in the nonmagnetic case and its initial decrease o* and 

h * in both of magnetic and nonmagnetic cases. The localized excited state 111 

the gap is found in the case TK/TcoY1 without the interpolation and shown to 

be doublet. 
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Appendix 

(i) .2/ (11J) 

The term corresponding to Fig. A ·1 is given by 

Ni (J(jiJ)) 's (S + 1) ( -nNp) iu -j:p,o,- -1 iZ£+ o,~, ' 
2N J u 2 + 1 2rs J u2 + 1 

(A·1) 

where ](w) =- (1/p) {ln'(nJ w'-I-L1'/4TK) +n'S(S+1)}- 11'. To discuss the jump 

of the specific heat LJC at the transition temperature, we need to obtain the self-

energy up to the terms of order Ll 3• 

(ii) .2/ (w) 

.2/ (ru) comes from the repulsive potential U. The normal part ts gtven by 

following Yamada-Yosida :8) 

--iliJ(Xeven-1), (A·2) 

w ~--------------------_.w 

Fig. A ·1. The solid and dashed lines represent the propagators of the s-electron and 

pseudo Fcrmiom. The points represent the effective interaction between the s-eleclron 

and pseudo Fennions and are given as -J((J))/2N((l+p3/2)(J~i- (l-p3/2)(J2a(J2 ) ·S. 
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1834 T. l'vfatsuura 

where we ignore the term T(w/TK) 2 • 

For the off-diagonal part, we only keep the term corresponding to the induced 

d-pairing, 

- JdrJ2P2 = UT L, PsGd (w) Psi o.v . (A-3) 
"' 

Substituting Eq. (2 · 9) into Eq. (A· 3), jd is given by 

(A-4) 

Taking the limit u~oo, we obtain 

1 
Jd= (1/T2)"TL,., {i/cm+ (u/ v'uT+=1)) 2 +C (1/v'u2 -+1)---=-cJd/ n) 2} 

x 2. T L, ----- _________ 1/ .Ju~± L _ __ _ __ 
r "' Cw+ (u/v'u2·-t-i)) 2 + CC1/v'u2 +i)- (Jd/T)) 2 

(A-5) 

The effective potential is approximated, when T=O and J=O, by 

1 ~rr2T2 _ ~ ------ ------- - ---- -- ----- ---- - -~------ - -=U 
(1/r)TL,.,{1/(w+ (u/v'u2-+i)) 2+ ((1/v'u2-ti)- (Jd/T)) 2}-4TK · 

(A-6) 

The right-hand side of Eq. (A-6) is the same as given by Yamada-Yosida. 8l We 

therefore find within the above approximation, 

(A-7) 
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