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INCE the early studies of FISHER and WRIGHT the theory of selection within 
populations of finite size has received much attention. KIMURA (1964) has 

reviewed the part of the theory that is based on continuous models in which it is 
usually assumed that individuals mate at random within small closed sub-popula- 
tions or lines. In such a situation we are concerned with the distribution of the 
frequency of individual genes over many replicate lines, or, equivalently, the 
distribution of the frequency of identical genes within the same line. In  this report 
we study selection favouring heterozygous individuals with random mating 
within lines and no selection or crossing occurring between lines. The model for 
inbreeding which we discuss must be distinguished from an alternative situation, 
perhaps more common in plants, in which inbreeding occurs within an infinitely 
large population as a result of non-random mating, for example by selfing or 
mixed selfing and outcrossing. In  the latter type of model, selection also may 
occur between sublines and recurrent mutation is not required for equilibria of 
gene frequency to occur without fixation, whereas it is in our model. These 
equilibrium situations have been analysed recently in some detail by ALLARD 
and co-workers. Many of their results for single loci are reviewed by JAIN and 
WORKMAN (1967) and analysis of a two locus model is given by JAIN and 
ALLARD (1966). 

The effect of selection for heterozygous individuals in small lines when there 
is no between-line selection has been studied by REEVE (1955) using transition 
probability matrices for  mating types in lines of only a few individuals, and by 
ROBERTSON (1962). The latter considered two situations-firstly when there is 
a balance between mutation and fixation and secondly when, in the absence of 
mutation, the amount of heterozygosis is declining at a steady rate. In both, the 
critical factor proved to be the equilibrium gene frequency, which depends on 
the relative fitness of the two homozygotes. If the equilibrium frequency lies 
outside the range 0.2 to 0.8 then selection may have an effect opposite to that 
usually expected and increase the rate of fixation. 

In the present paper we shall be concerned with the intermediate stages of 
selection for the heterozygote in small lines with a known initial gene frequency. 
Selection may alter the mean gene frequency and the proportion of heterozygotes 
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as well as the mean of quantitative traits. Two particular situations are of inter- 
est. In  the context of natural selection, we may be concerned with the effect on 
fitness due to such loci when a large population is suddenly reduced in size. The 
initial gene frequency can then be assumed to be that at equilibrium in large 
populations. We might then speak of the effect of inbreeding on fitness though 
it is in fact the joint effect of natural selection and inbreeding. 

The second situation is one involving artificial selection in which the hetero- 
zygote has an advantage because it is the best of the three genotypes for the 
character under selection. We now have no reason to assume any particular 
initial gene frequency. 

MODEL 

We shall consider only the case of two alleles at a single locus at which there 
is no mutation and which is not linked to other loci under selection. Let us assume 
that the relative selective advantages of the genotypes AIA,, A,A, and A,A, are 
1-SI, 1 and 1-s2, respectively. Let q denote the frequency of the AI allele and 
let 4, given by q = sz/(slfs2), be the equilibrium frequency in large populations. 
We shall only consider values of 4 < 0.5 since there is symmetry about this point. 

Transition matrix for monecious indivliduals: In the model which we shall 
investigate in most detail we assume that there are non-overlapping generations 
and that the parents comprise N monecious individuals which undergo random 
mating including random selfing. At some generation t let there be i A, alleles 
among the 2N alleles at the A locus in the adults, where 0 < i < 2N. For brevity 
let q = i/2N. The genotypic frequencies among the zygotes at generation t + 1 
will be q2, 2g(l-q) and (1-q)2 for A,A,, A,A, and AzA2 individuals, respec- 
tively. These genotypic frequencies depend only on the gene frequencies in their 
parents since there is random mating. Assuming that selection acts through 
differences in viability, the N individuals which become parents of the next 
generation will have a multinomial distribution of genotypic frequencies. 

(1-q)"l-sz) 1Y ijj 1 ( N ) { @(l-~i> - }' {2q(l-q)  - 
W W 

fi(Z,Y,Z) = 
X Y Z  

where fi(x,y,z) is the probability that there are x A,A,, y AIA, and z A2A2 
individuals surviving, with q = i/2N. The average fitness, ijj7 is 

W = l  -s1q2-s2(1  - q ) 2  
= 1 - (SI + s,) [q(l  - 4 )  + ( q  -4)ZI (1) 

The probability that the N survivors have exactly j A, alleles is given by summa- 
tion of the probabilities of all combinations of genotypic frequencies for which 
22 + y = j .  Thus we obtain pi j ,  the probability that there are j A, alleles at gen- 
eration t + 1 given that there were i at generation t as 

pij  = X fi(z,y,z), i , j = O , .  . . ,2N 
2x+ff 

=3 

We let P be the transition probability matrix with elements pii .  Since the selective 
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values are assumed to be independent of generation, P is independent of genera- 
tion number, t, also. 

The expected change in gene frcquency, 6q = E(j /2N - q /q  = i / 2 N ) ,  is 
6q = -(s1+ s * ) q ( l  - 4 )  ( 4  - Q)/Z 

which is the usual formula for response with a model of heterozygote advantage. 
The expected fitness, gene frequency and heterozygosity were computed in 

successive generations by repeated multiplication using the transition matrix. For 
example, let the expected gene frequency at generation t, conditional on the 
initial frequency being qo, be E (qt I qo) or simply E (4). Also let v( t )  be a vector 
with elements ~ ~ ( ~ 1  = E(q t /qo  = i / 2N) .  
Thus 

and we obtain 
U , ( , , )  = i/2N, i = 0 , .  . . ,2N,  

V ( 1 )  = PV(O), 
V ( Z )  = PV(l) 

V ( t )  = Pvct-1, (2) 
and, in general, 

Iteration of ( 2 )  was repeated on a computer for up to t = 8N generations, but 
was terminated earlier if there was almost complete fixation or the distribution 
of gene frequency among lines still segregating appeared to reach a state of steady 
decline. Then the value of A, given by 

is constant for sufficiently large t and all i, 0 < i < 2N. Results for later genera- 
tions were obtained by assuming that the steady state had been reached, comput- 
ing the dominant non-unit latent root, A, and using this to predict subsequent 
changes. The expected heterozygosity, E [ 2q ( 1 - q )  ] within lines was computed 
in a similar manner, with U (, ) becoming 2 ( i / 2N)  ( 1 - i / 2 N )  . The mean fitness 
(equation 1) is a linear function of ( q  - Q)z, with high values denoting low 
fitness, and, for simplicity, fitness has been expressed in this form. Since 

(3) 
the expected fitness could be evaluated from the expected gene frequency and 
heterozygosity. 

Transition matrix for diecious individuals: Although the model with monecious 
individuals lends itself to simple numerical evaluation on a computer, it does not 
represent the real situation in most species. A model with two distinct sexes and 
random mating between the two sexes was therefore investigated for small values 
of population size, with other model assumptions as in the monecious case. In 
general there are (2" + 1) (5" + 1) possible states of gene frequency in the 
two sexes if there are N ,  males and N f  females in each replicate line every gener- 
ation. We shall only consider the case where the population sizes and selective 
values are the same for the two sexes, and we let N ,  = Nf = L and a state i 
specify that there are i, A, alleles in male parents and if A, alleles in female 
parents, (0< i,, if 6 2L). With random mating, the zygotic frequencies in the 
progeny from parents in state i are 

- A = [ W t )  - U % ( t - I ) l / [ U % ( t - l )  U , ( t - z ) l  

E [ ( q  - a z l  = Q'+ (1 - 2 Q ) E ( q )  - E [ q ( l  - q)1 
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qm qf A1 AI, qm(l - q f )  i- (1 - qm)qf ( 1  - 9%) ( 1  - q f )  AzAz 
where qm = im/2L, qf = if/2L. The mean gene frequency among the progeny is 
4 = (qns + qf)/2, and letting r = (qm - q f ) /2 ,  the proportion of heterozygotes 
becomes 2q( 1 - 4 )  -I- 2rZ. Of course, the states could be defined in terms of 4 
and r among the zygotes, instead of qm and qf in their parents. The mean fitness 
in terms of q and r is 

( 4 )  
With selection operating independently in males and females, the probability bii 
that a line is in state j at generation t + 1, Given that it was in state i at gener- 
ation t is 

bi, = P ( j m  j 4 .  P(jf I i)  
where P ( j m  I i), P ( j f  I i )  are the marginal probabilities of obtaining i,,, A, alleles 
in males and j f  A, alleles in females, respectively. For example, 

- w = 1 - (SI + s,) [Q(1  - Q) + ( q  - Q ) Z  - r q  

P ( i m  I 9 = z: ( L 1 [qmqf(l - S 1 ) I " C 4 m ( l  - q f )  + (1 - qm)qfly 

. [ ( I  - q m ) ( I  -4 r ) ( l  -sz>lZ/WL 
2 " f Y  X Y Z  
=I 

( 5 )  
and, since the selection coefficients are assumed to be the same in males and 
females, P(j f  1 i)  is obtained by substituting if for jm in ( 5 ) .  The expected change 
in gene frequency, 6q, is in one generation 

( 6 )  

If terms of order ( r2)"(s ,  + sZ)b  are ignored if a + b > 2, W in equation (4) 
may be replaced by the G of equation ( 1  ) relating to the monecious model. 

Some simplification of the matrix B with elements bii is possible because of 
symmetry. It is shown in the APPENDIX that iteration can be performed with a 
vector of dimension ( 2 L  4- 1 ) ( L  -t 1 ) and a square matrix of the same dimension, 
rather than with a vector and matrix of dimension (2L  4- l)z.  Even so, it was 
necessary to restrict computation to matriccs with L = 5 giving an effective popu- 
lation size of 10, whereas with the model with only one sex it was possible to 
work with N as large as 40. 

Continuous model approximation: As N becomes infinitely large, but with 
N ( s ,  + s,) remaining finite, the selection process can be approximated by a 
continuous model using a diffusion equation ( WATTERSON 1962; KIMURA 1964). 
The KOLMOGOROV forward eqnation has not been solved explicity, although the 
dominant latent root has been evaluated (MILLER 1962). However, we can use 
the form of the equation to make generalisations about our results, since the 
inbreeding and selection process becomes only a function of N ( s ,  f s,), Q and 
the initial frequency, q,,, so long as time is measured on a scale proportional to N .  
Tests were made' to find the adequacy of this generalisation for small values of 
N ,  and results are shown in Table 1. The linear function of fitness, E [ ( q  - 4 )  '1, 
is tabulated for various values of N ( s ,  + s2), ij and t /N generations, for N = 10, 
20 and 40 in the monecious model. The results obtained with different values of 
N are seen to be very similar, except with the largest value of s1 4- sp (0.8). Also, 

(SI + sz)q(l - 4 )  ( q  - Q) + rZ(sl + sz) ( q  + Q - 1 )  sq = - - 
W 
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TABLE 1 

El:(q-i)'] X IO5 computed for several vcrlues of population size (N) with a monecious model 
( M ) ,  and for 5 males and 5 females ( N  = 10)  with a diecious model (D) .  

qn = q, except for q = 0.0 when q, = 0.1. 
- - 

Gener 
ations 

4 x i in  -___ 
0.0 0.5 

1 .o 
2.0 
4.0 

3% 

0.1 0.5 
1 .o 
2.0 
4.0 

4 3 0  

0.3 0.5 
1 .o 
2.0 
4.0 

4 3 0  

0.5 0.5 
1 .o 
2.0 
4.0 

--roo 

V(S,fS2) 1 4 1 G  
Method - 

(N)  D(10) RI(10) PYI(L0) M(41)) D(l0) M(10) M(20) M(4Q) M ( L 0 )  M(40) 

2654 2665 2638 26Q5 
3488 3472 3450 34413 
4068 4001 4.019 44&?5 
4195 4115 4172 4199 
4166 W95 4178 4218 

1841 1883 1857 1845 
2969 3009 2982 2969 
4083 4093 4mQ 4088 
4844 4820 4852 4866 
5312 5235 5293 5320 

4213 4372 4336 4319 
7148 7418 7378 7357 

11071 11424 11398 11384 
15163 15465 15470 15471 
18530 18470 18518 18542 

4980 5193 5160 5143 
8588 8982 8943 8922 

13828 14401 14356 14333 
19796 20339 20301 20282 
25000 24500 25000 25000 

1924 1809 1803 1800 
1687 1495 1541 1563 
892 716 789 828 
208 141 179 u)3 

9 9 25 37 

1528 1496 1487 1461 
1914 1923 1856 1871 
1733 1615 1697 1739 
1288 1219 1292 1335 
1046 104.6 1095 1127 

3203 3326 3399 3429 
4711 4919 5105 5188 
6355 6659 6997 7155 
8083 84.34 8903 9131 

10545 10571 11127 11403 

3626 3831 3964 4020 
5471 5875 6182 6316 
8171 8895 9.455 9701 

12366 13463 14272 14622 
25000 25Mx) 25000 25000 

558 581 
205 220 
27 30 
0 1  
0 0  

841 865 
929 950 
977 984 
998 999 

1 m  1000 

1348 1560 
1708 %(406 

2344 2781 
3451 4Q83 
9000 9000 

1162 1461 
1179 1522 
1184 1552 
1195 16Q2 

25000 25000 

a doubling of N from 20 to 40 has less effect than a doubling from 10 to 20, and, 
of course, the results must converge to the diffusion equation result as N becomes 
infinite. Thus, in order to describe the situation, it seems satisfactory to use results 
from just one value of N .  Since we are in practice likely to be interested in values 
of N much larger than we can handle on the computer, we have only analyzed 
results obtained with N = 40, our largest value. Satisfactory agreement between 
diffusion equation and exact methods has been found in earlier studies by EWENS 
(1963), who also derived correction terms for approximations (EWENS 1964). 
However, these results were for a haploid model with additive selective ad- 
vantages. 

Also included in Table 1 are some results obtained [with the diecious model, 
using the same parameters but with L = 5 ,  equivalent to N = 10. The function 
plotted is E ( q m  + q f )  /2 - 41 * for comparison with the monecious model, but the 
mean fitness in the diecious model is also affected by departures from Hardy- 
Weinberg equilibrium due to gene frequency differences between the sexes of 
the parents. Initially it is assumed that there is the same gene frequency in each 
sex, so that, for example, with 40 = 0.1, im = i, = 1. There is generally adequate 
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agreement between the one and two-sex models with N = 10. At larger values 
of N better correspondence can be anticipated, since the main effect of having 
different sexes would appear to be that this causes departure from Hardy-Wein- 
berg equilibrium among the progeny when the parents have different frequencies. 
However, E [  (qm - qr) 2 ]  = 4 E ( r Z )  is inversely proportional to N ,  and so, for 
large N will become relatively unimportant in the prediction of change of gene 
frequency (equation 5 ) . FELDMAN ( 1966) uses the theory of WATTERSON ( 1962) 
to show that the same diffusion equation approximates both models. We there- 
fore seem justified in drawing conclusions about populations with random mating 
between two sexes from our results with populations in which there is only one 
sex with random mating, including random selfing. 

SELECTION FROM INITIAL GENE FREQUENCY EQUILIBRIUM 

When a large population is suddenly reduced in size, the initial frequency at 
those loci in which segregation had been maintained in the population by superior 
fitness of the heterozygote may be assumed to be close to the equilibrium fre- 
quency, 4.  This situation is clearly of importance and we shall consider it first 
and in some detail. 

The effect on mean fitness, which is the character under selection, can be 
calculated from the average value of ( q  - 4 )  z .  It proves useful to use as a modi- 
fied time scale, 1 - e-t/2N = F*, which is approximately equal to the inbreeding 
coefficient measured from pedigrees. In the absence of selection, the heterozy- 
gosity declines as 1 - F*.  The mean of the character under selection is plotted 
in Figure 1 for  a range of N ( s ,  + s,) values for Q = 0.1, 0.3 and 0.5. For com- 
parison the curve for the expected value of a character controlled by recessives 
(Q = 0) is also included, with initial recessive frequency 0.05. Figures 2 and 3 
show the average heterozygosity and the average gene frequency, respectively, 
during the inbreeding and selection process. Results for = 0.5 are not included 
in Figures 2 and 3 since for Q = qo = 0.5, there can be no change in the mean 
gene frequency when starting from equilibrium, and thus E ( q )  = 0.5 and 
E[%( 1 - q ) ]  = 0.5 - 2E[ ( q  - 4 )  z ]  for all t. Some loci may show heterozygote 
superiority for fitness and yet have additive effects on some observed metric trait. 
Changes in the mean of this character will therefore be a linear function of the 
mean gene frequency, E (4) , shown in Figure 3 .  

When the inbreeding is so rapid that selection has very little effect (as might 
happen for instance by using special crossing programmes in Drosophila) the 
mean fitness declines linearly with F* in all cases ( N ( s ,  4- s,) = 0). Some aspects 
of the results are rather surprising, when it is borne in mind that heterozygote 
superiority has its greatest effect in maintaining segregation in small populations 
when the equilibrium frequency is 0.5. However it can be seen that at low values 
of F* and N ( s ,  4- s z ) ,  selection has a greater effect when the equilibrium fre- 
quency is 0.1. Figures 2 and 3 show that we are here dealing with two quite 
separate phenomena which may act in opposite directions in particular cases. 
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v U 

w 

FIGURE 1.-The effect on the mean value of the selected trait is plotted against 
F* = l-e-t/?” for values of of 0.0, 0.1, 0.3 and 0.5. The initial frequency equals 9, except 
for q = 0.0 (recessive) when the initial frequency is 0.05. Curves are plotted for several values 

- 

of N ( s ,  + sJ. 

These correspond to the last two terms in equation ( 3 )  which represent respec- 
tively the change in gene frequency and in heterozygosity. When the equilibrium 
gene frequency equals 0.5, the mean gene frequency does not change, so that 
changes in the mean of the selected character and in the level of heterozygosity 
are proportional to each other. Inbreeding decline is reduced by the maintenance 
of a high level of heterozygosity since the second term in (1 ) vanishes. On the 
other hand, when = 0.1, we find that selection now reduces the heterozygosity 
but at the same time reduces the effect on the mean of the character by preventing 
fixation of the poorer homozygote. Thus the effect on the mean is due to com- 
pletely different phenomena in the two cases. 

Considering separately the curves for the different equilibrium gene frequen- 
cies as approaches zero (including the recessive case as the most extreme 
value), the inbreeding decline may be halted after a certain time and the selected 
character then rises again. When there is heterozygote superiority and the initial 
gene frequency equals 4,  the final mean can never be as high as that at the outset 
since at complete fixation (P’ = 1 )  we cannot do better than fix all populations 
for the better homozygote, which is inferior to the mean in the initial population 
at equilibrium. On the other hand, with a single recessive gene in which segre- 
gation is maintained by mutation, the final mean may be above the initial value, 
due to complete exclusion of the recessive at larger values of Ns,. It is known that 
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FIGURE 2.-The mean heterozygosity, E[2q(l--q)], plotted as for Figure 1, with F= 0.5 
excluded. 

N/i N , 1Y 1N a. 
I 

FIGURE 3.-The mean gene frequency, E ( q ) ,  plotted as for Figure 1, with ;= 0.5 excluded. 
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in the absence of selection the additive genetic variance within populations due 
to an initially rare recessive gene will increase up to inbreeding coefficients of 
0.5 (ROBERTSON 1952). This provides an explanation of the curves for the extreme 
values of 4 .  The first effect of the reduction in population size is a decline in the 
mean due to an increase in the proportion of homozygotes and selection does not 
become effective until the additive genetic variance has increased as a result of 
the spread of gene frequencies. The inbreeding decline is then halted and the 
mean increased. 

When the equilibrium gene frequency is 0.5 and N ( s ,  + s,) is high the mean 
of the character under selection becomes almost constant after a few generations. 
There is thereafter a very slow approach to fixation. Selection for the heterozy- 
gote under these conditions retards rather than prevents fixation and ultimately 
all replicate lines will become fixed. As F* approaches unity the time scale in 
generations is very much contracted and very small changes in F* lead to rela- 
tively large changes in E [  (q - 9) '1. 

The curves for q = 0.3 have a pattern in between those for the other values. In 
the earlier generations they are similar to those for 4 = 0.5, but the effect of 
selection can be seen from the gene frequency at fixation which is much higher 
when N ( sL + s,) is large and only the better homozygote is fixed. The mean gene 
frequency (Figure 3) for 4 = 0.3 declines more rapidly for N ( s ,  f s,) = 8 than 
for N ( s ,  f s2) = 32 since fixation occurs earlier, but the limiting value of E ( 4 )  
is almost the same in each case. 

INITIAL GENE FREQUENCY NOT AT THE EQUILIBRIUM VALUE 

There are several situations in which the initial gene frequency may not be 
at equilibrium. In natural populations there may be a change in environment, 
which alters the relative fitness of the genotypes, coinciding with a reduction in 
population size, or there may be departures from equilibrium resulting from 
random drift at previous reductions in population size. In populations of plants 
and domestic animals, artificial selection may be applied to a trait which had not 
previously been important. The selective values (s,, s,) are then approximately 
equal to linear functions of the average genotypic values for the quantitative trait. 
The adequacy of this approximation for study of truncation selection in infinite 
populations has been investigated by HILL (1969) and found suitable for most 
descriptive purposes. We shall illustrate the effects of departures from initial 
equilibrium for only one value of N ( s ,  + si), from which we can readily infer 
the results in other situations. 

In  Figures 4 and 5 the mean of the quantitative trait, expressed as [ (4  - 4 )  2] ,  

and the average gene frequency, respectively, are plotted as a function of initial 
frequency and generations of inbreeding for N (sI f s,) = 8 and 4 = 0.3 and 0.5. 
The curves are drawn for values of t such as 0, N / 2 ,  N ,  2N, 8N and CO genera- 
tions, corresponding to F' = 0, 0.22, 0.39, 0.63, 0.98 and l ,  respectively. 

When 4 = 0.5 and 4,, < 0.5. there is an initial period of advance in the mean 
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FIGURE 4.-E[ (4+-) 2] for the selected trait is shown as a function of initial frequency for 
;= 0.3 and 0.5 and N ( s ,  + s2) = 8. Curves are plotted for different numbers of generations. 

of the selected trait (Figure 4). This is later lost, and the final mean is the same 
for all values of qo since both homozygous genotypes have the same value. By 
contrast, when the equilibrium frequency differs from 0.5, the final mean depends 
on the relative proportions of the two homozygotes fixed, and therefore on qo. 
When Q is less than 0.5 and qo high, most of the early advance is retained and 
there is an overall advance in the mean if go > 2ij, approximately. 

If the equilibrium frequency is 0.5, selection always changes the average gene 
frequency (Figure 5 )  towards 0.5 until the steady state is reached. After this 
the average gene frequency remains constant, because the distribution of unfixed 

IO 

5-03 

E (t) 
- 

FIGURE 5.-As Figure 4, but a plot of the mean gene frequency, E ( 9 ) .  

IO 

5-03 

E (t) 
- 

FIGURE 5.-As Figure 4, but a plot of the mean gene frequency, E ( 9 ) .  

D 
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classes is symmetric and fixation takes place at the same rate for each homozy- 
gote. The mean of the selected trait must then slowly decline. However, if Q < 0.5 
and qo > i j ,  selection reduces the gene frequency throughout the inbreeding and 
selection process. If qo < i j  < 0.5, there is an initial increase in the average gene 
frequency as selection towards the equilibrium frequency occurs. The gene fre- 
quency distribution of unfixed classes is asymmetric and the poorer homozygote 
is rarely fixed so that the average gene frequency then declines. We have the 
interesting phenomenon of unidirectional selection in which there is a reversal 
of the direction of gene frequency change during selection. 

The average gene frequency within segregating lines: Only very large popu- 
lations can remain at the equilibrium frequency for long periods of time. If we 
wish to estimate the equilibrium frequency at a locus, as an indirect way of 
measuring the relative fitnesses of the homozygotes, we may have to use informa- 
tion from populations of finite size. The observed frequency within such p o p -  
lations might be thought to be a good estimator of the equilibrium frequency 
providing there has been no recent change in environment or immigration. How- 
ever, the following discussion will show that the observed frequency in small 
populations is a biassed estimator of the equilibrium frequency in large p o p -  
lations. 

Consider an infinitely large population in equilibrium for a locus with hetero- 
zygote advantage, from which many identical sub-lines are drawn. The average 
gene frequency for all lines can be predicted from Figure 3, but this combines 
data from two types of populations: those which are already fixed, in which the 
gene frequency is 0 or 1, and those still segregating. We are concerned here with 
the average frequency within these segregating populations, which will reach a 
steady state value denoted by (r. 

In Figure 6 the relation between 4 and (5 is plotted for a range of N(sl f s,) 
values, where results were obtained using the transition probability matrix 
method described earlier. When N ( s ,  + s 2 )  is infinitely large, the rate of fixation 
will be very low and (5 will equal i j .  On the other hand, when N(sl -t s z )  ap- 
proaches zero, the unfixed classes have a uniform distribution and (5 = 0.5. When 
tj 1 0.5, the distribution of unfixed classes is symmetric about 0.5 for all values 
of N ( s ,  f s2) so that + = Q = 0.5. When i j  # 0.5, we know that at final fixation 
the gene frequency is changed towards that of the better homozygote. If 4 = 0.3. 
for instance, the first effect of the small population size is to spread the gene fre- 
quencies about this value. But only those lines with very low frequencies are 
likely to be fixed so that those left segregating will have a mean gene frequency 
greater than 0.3. We see from the figure that (r almost always lies between 4 
and 0.5. With intermediate Q(#  0.5) and N(sl f s2) very large (> 16), 4 may 
in some cases lie just outside this range. Here fixation occurs very slowly and the 
effect can be attributed to the asymmetry of the effect of selection. If the gene 
frequency drifts from i j  = 0.3, say, it is selected more rapidly back when the drift 
is towards one-half than when it is towards zero because of the term q (1 - q )  in 
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FIGURE 6.-The relations between the average frequency within segregating lines at the 
steady state, (r, and the equilibrium frequency for large populations, 9. Curves are plotted for 
several values of N (sl + s2). 

Sq = -(sl + s,) q(  1 - q )  (q - q)/Z so that there is a relative excess of popu- 
lations with extreme gene frequencies. 

For most combinations of effective population size and selective values, the 
average gene frequency within segregating lines is seen to be biassed toiwards 0.5. 
Thus if we search for polymorphism within a single small population, we are not 
likely to find gene frequencies at extreme values. We are then not entitled to 
infer the relative selective advantages at the loci we observe. 

DISCUSSION 

A wide variety of consequences of inbreeding is possible when there are loci 
with heterozygote advantage. Perhaps the most interesting result is that inbreed- 
ing depression may be delayed for quite different reasons, depending on the 
equilibrium frequency, when the population is initially at equilibrium. If the 
population is not initially at equilibrium, the mean of the selected trait may rise 
initially and then fall as inbreeding progresses, as well as the reverse. 

Two processes were found to reduce inbreeding decline from loci with hetero- 
zygote advantage. When the equilibrium frequency was near 0.5, this was due 
to the maintenance of heterozygosity whereas at extreme equilibrium frequen- 
cies it was caused by preferential fixation, of the better homozygote. It might be 
possible to differentiate between these situations in two ways. In the first, lines 
which had been inbred slowly up to, say, F* = 0.75 (calculated from pedigrees) 
could then be inbred very rapidly, perhaps by full sibbing. With an equilibrium 
frequency of one-half, a rapid decline in fitness would be expected to accompany 
fixation. However, with extreme equilibrium values, most loci will already be 
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fixed, so little further decline in the mean would be expected. The second method 
of differentiation has been mentioned in a different context by ROBERTSON 
(1962), and would apply to very highly inbred replicate lines from the same 
initial population. Crosses between these lines should show heterosis for loci with 
intermediate equilibrium frequencies, since both types of homozygote will be 
fixed in different lines, but for extreme values of the equilibrium frequency most 
lines will be fixed for the same allele, and no heterosis will be found. 

SUMMARY 

A theoretical study has been made of the process of inbreeding at loci with 
heterozygote superiority. Results were obtained using transition probability 
matrices for monecious and diecious random mating sub-populations, and these 
alternative models were compared numerically. It 'was found that, by a suitable 
choice of parameters, general conclusions drawn from one population size with 
a monecious model could be applied to other values of population size and to the 
diecious model.-The rate of inbreeding depression at these loci can be much 
reduced by selection, but selection is found to act in different ways, depending 
on the equilibrium frequency in large populations. If this is close to one-half, the 
effect is due to the maintenance of heterozygosity. With extreme values of the 
equilibrium frequency it is due to increased fixation of the better homozygote, 
and this may cause an increase in the mean after a depression during the initial 
generations of inbreeding.-The relationship between average gene frequency 
within segregating populations at the steady state and the equilibrium frequency 
is investigated. This average frequency usually lies between the equilibrium 
frequency and one-half, giving the impression of more nearly equal selective 
values for the two alternative homozygotes than is really the case. 
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A P P E N D I X  

Reduction of the transilion matrix B for  he diecious model 
Order the (2L + 1 ) 2  states of B into 3 groups: 
Group (1 ) : 2L + 1 states with i,,, = i, 

2L + 1 = 2Lz + L states with i, < i, ordered, for example, as 

(irn, i f )  = (0,1), (0,2), . . . ~ (2L - 1, 2L) 
Group (3): 2LZ f L states with i, > i f  ordered similarly to group (2) as 

(ir,,, if) = ( l , O ) ,  (2,0), . . . . (2L: 2L - 1 ) .  
Since qnj and q ,  and thus i,, and i f  can be interchanged in equation (5) and (6),  B may be 
partitioned as fdlows: 

Group ( 2 ) :  ( 2 ) 

B = ( E  ! )  
where. for example, C specifies transitions from states in group (1) to other states in group (1) 
and is square of dimensions 2L + 1. In order to compute expectations of functions such as the 
mean gene frequency, u i C t )  = E [ ( & ,  + i ,)/2L 1 initial state = i]. which are symmetric in i, 
and i,- we partition the vector 

where for example x ( ~ ,  relates to states o'f group (1 )  and has dimension 2L f 1. It then follows 
that 

V ' ( f I  = ( X ' ( t ) ,  Y',tl, Y ' ( t , )  

and iteration can be performed with 
( 2 L + l ) ( L + I ) .  

the reduced vector and square matrix of dimension 


