
THE EFFECTS OF LATENCY, OCCUPANCY, AND
BANDWIDTH IN DISTRIBUTED SHARED
MEMORY MULTIPROCESSORS

Chris Holt, Mark Heinrich, Jaswinder Pal Singh,
Edward Rothberg, and John Hennessy

Technical Report No. CSL-TR-95-660

January 1995

This research has been supported by ARPA contract DABT63-94-C-0054.

THE EFFECTS OF LATENCY, OCCUPANCY, AND BANDWIDTH
IN DISTRIBUTED SHARED MEMORY MULTIPROCESSORS

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg,
and John Hennessy

Technical Report: CSL-TR-95-660

January 1995

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract

Distributed shared memory (DSM) machines can be characterized by four parameters,

based on a slightly modified version of thelogP model. Thel (latency) ando (occu-

pancy of the communication controller) parameters are the keys to performance in

these machines, and are largely determined by major architectural decisions about the

aggressiveness and customization of the node and network. For recent and upcoming

machines, theg (gap) parameter that measures node-to-network bandwidth does not

appear to be a bottleneck. Conventional wisdom is that latency is the dominant factor

in determining the performance of a DSM machine. We show, however, that controller

occupancy—which causes contention even in highly optimized applications—plays a

major role, especially at low latencies. When latency hiding is used, occupancy

becomes more critical, even in machines with high latency networks. Scaling the prob-

lem size is often used as a technique to overcome limitations in communication

latency and bandwidth. We show that in many structured computations occupancy-

induced contention is not alleviated by increasing problem size, and that there are

important classes of applications for which the performance lost by using higher

latency networks or higher occupancy controllers cannot be regained easily, if at all,

by scaling the problem size.

Key Words and Phrases: Distributed Shared Memory, logP Model, Problem Sizes

Copyright 1995

by

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg,
and John Hennessy

1

The Effects of Latency, Occupancy, and Bandwidth in
Distributed Shared Memory Multiprocessors

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hennessy

Abstract

Distributed shared memory (DSM) machines can be characterized by four parameters, based on a slightly modified version of thelogP
model. Thel (latency) ando (occupancy of the communication controller) parameters are the keys to performance in these machines, and are
largely determined by major architectural decisions about the aggressiveness and customization of the node and network. For recent and
upcoming machines, theg (gap) parameter that measures node-to-network bandwidth does not appear to be a bottleneck. Conventional wis-
dom is that latency is the dominant factor in determining the performance of a DSM machine. We show, however, that controller occu-
pancy—which causes contention even in highly optimized applications—plays a major role, especially at low latencies. When latency hiding
is used, occupancy becomes more critical, even in machines with high latency networks. Scaling the problem size is often used as a tech-
nique to overcome limitations in communication latency and bandwidth. We show that in many structured computations occupancy-induced
contention is not alleviated by increasing problem size, and that there are important classes of applications for which the performance lost by
using higher latency networks or higher occupancy controllers cannot be regained easily, if at all, by scaling the problem size.

1 Introduction
For systems with more than a small number of processors, distributed shared memory (DSM) multiprocessors are converg-

ing to a family of architectures that resemble the generic system shown in Figure 1.1. This architecture consists of a number of
processing nodes connected by a general interconnection network. Every node contains a processor, its cache subsystem, and a
portion of the total main memory on the machine. It also contains acommunication controller, which is responsible for manag-
ing the communication between it and other nodes. The shared address space provides ease of programming, and the distrib-
uted memory and interconnect provide the increased bandwidth needed for performance and scalability. Our interest in this
paper is in a specific class of DSM machines: those that support communication and coherent replication at the fixed granular-
ity of cache lines.

There are various ways to build cache-coherent DSM machines, arising from differences in desired performance and cost
characteristics and in the extent to which one wants to use commodity parts and interfaces rather than build customized hard-
ware. We assume the use of a commodity microprocessor, cache subsystem and main memory in this paper. The major sources
of variability are in the network and the communication controller, which together constitute the communication architecture
of the multiprocessor.

Candidate networks vary in their latency and bandwidth characteristics as well as in their topologies. They range from low-
latency, high-bandwidth MPP networks, all the way to commodity asynchronous transfer mode (ATM) networks. On the con-
troller side, there are two important and related variables. One is the location of the communication controller in the process-

Figure 1.1. Convergent DSM architecture

DRAM µPµPMain
Memory

Network

2nd-Level
Cache

2nd-Level
Cache

DRAM µP

MAGIC

µPMain

Comm.
Controller

Memory

MAGIC
Comm.

Controller

2nd-Level
Cache

2nd-Level
Cache

2

ing node. The communication controller can be located in the cache controller, in the memory subsystem, or on the I/O bus.
The closer to the processor we locate the controller, the greater the performance, but the less we can leverage off commodity
parts for the processing node. The other design variable is how specialized the controller is for the tasks it performs; for
instance, it may be a hardware finite state machine, a customized special-purpose processor that runs protocol code in response
to events, or an inexpensive off-the-shelf general-purpose processor.

Because of their differences in design cost, all of these types of systems are interesting. Current and proposed architectures
for fine-grained distributed shared memory take different positions on the above tradeoffs. The unanswered question is how
the performance characteristics of the network and controller affect how well the machines will run actual parallel programs.
That is, as we move from more tightly-coupled and specialized systems to less tightly-coupled and more commodity-based
systems, how much effectiveness in parallel performance do we lose over a wide range of computations? This is the question
we address in this paper, by studying a range of important computations and interesting communication architectures through
a combination of analytical modeling and detailed simulation.

We characterize the communication architectures of DSM multiprocessors by a few key parameters that are similar to those
in the logP model [CKP+93]. An abstract model is of course simplistic from the perspective of an actual architecture, since it
does not capture many of the details of real machines. We shall set up our architectural context and discuss some of the more
detailed issues in the next section. Section 3 describes the framework and methodology we use to study the effectiveness of
different types of DSM architectures. Section 4 and Section 5 present and analyze our results, and Section 6 concludes the
paper.

2 Architectural Context
As in thelogP model, we abstract the multiprocessor communication architecture of a parallel machine in terms of four

parameters. Thel parameter in our model stands for the network latency from the moment the message enters the network
from a source node to the moment it arrives at its destination node,o is the overhead of sending a message, g is the gap (recip-
rocal of node to network bandwidth through the network interface), andP is the number of processors. The only difference
between our model and thelogP model is in theo parameter. In thelogP model,o represents the overhead of a message or
communication, which is the time during which the processor is busy initiating or receiving a message and cannot do anything
else. In most DSM machines, however, protocol processing is off-loaded to a separate communication controller, and the pro-
cessor is free to continue doing independent work while the controller is occupied1. Theo parameter in our DSM model, then,
stands for theoccupancy of the communication controller per protocol action or message; that is, the time for which the con-
troller is tied up with one action and cannot perform another.

We fix the number of processorsP at 64 in this paper. The three parameters that characterize the communication architec-
ture—latency, occupancy, and bandwidth or gap—all have complicated aspects to them, and we make certain simplifying
assumptions. Let us first discuss each parameter individually, before placing our range of variations of these parameters in the
context of realistic machines.

Latency: The latency of a message through the network depends, among other things, on how many hops the message trav-
els in the network topology. For the moderate-scale machines that we consider, the overhead of getting the message from the
processor into the network and vice versa usually dominates the topology-related component of the latency seen by the proces-
sor. We therefore ignore topology, and assume that the network transit time from one node to another is always the same.

Occupancy: The occupancy that the controller incurs for a request affects performance in two ways. First, it contributes
directly to the latency of the current request because the request must pass through the controller. Second, it can contribute
indirectly to the latencies of subsequent requests, through contention for the occupied controller. Occupancy may be more dif-
ficult to represent as an abstract parameter than network latency for two reasons. First, we have to decide which types of trans-
actions invoke actions on the controller and hence incur controller occupancy. Second, while occupancy in real machines often
depends on the type of the transaction, we want to represent it by a single parametero. We now examine these issues sepa-
rately.

Clearly, all events related to internode communication and protocol processing incur controller occupancy, including local
cache misses that need data from another node, references from the processor that require the communication of state changes
to other nodes, and incoming requests and replies from the network containing data and protocol information. The question is
whether the controller should also handle local cache misses that do not generate any communication. In this paper, we assume
a bypass path to local memory for these misses, so that they need not invoke the controller [RLW94, SFL+94]. We also

1. This is not specific to DSM machines; even in message-passing architectures the message handling can be off-loaded to a communication co-processor or
controller, as in the Intel Paragon.

3

assume that the state lookup that determines whether or not a miss needs to invoke the controller is free, and hence does not
contribute to the latency of the miss.

In a real machine, particularly one in which the communication controller runs software code sequences for protocol pro-
cessing, the occupancies of the controller are often different for different types of protocol actions. We make the following
assumptions about occupancy. When the communication controller is simply generating a request into the network or receiv-
ing a reply from the network it incurs occupancyo. When the communication controller is the home of a network request it
incurs occupancy2o, because it has to retrieve data and/or manipulate coherence state information [HKO+94]. In this case the
memory access occurs in parallel with the operation of the controller. If the state lookup at the home reveals that the requested
line is dirty in the home node’s cache, the communication controller incurs an extra occupancyC. If the requested line is dirty
in a third processor’s cache, the home node forwards the request to that processor and the communication controller at that
node incurs an occupancy of2o+C. The only other time occupancy is incurred is when the communication controller at the
home node is servicing a write and must send invalidations to all nodes that are sharing the data. In this case the controller
incurs an additional occupancy of one cycle per invalidation that it sends.

Bandwidth or gap: Another important parameter related to the communication architecture is the node-to-network band-
width, which determines how fast data can be transferred through the network interface, i.e. between the communication con-
troller and the network itself. We ignore the gap parameter in the main discussion in the paper, and simply compute the node-
to-network bandwidth requirements of the individual applications in Section 4.3. We ignore gap because the node-to-network
bandwidth we assume (400MB/s peak, which corresponds to MPP networks on next-generation machines) is large enough to
never be a performance bottleneck in our experiments. For coherence messages that do not carry data, the occupancy of the
communication controller always dominates our gap limitation. For messages that carry data, 400MB/s node-to-network band-
width can theoretically become the bottleneck before controller occupancy for the two lowest occupancies we examine. How-
ever, we never observed the symptomatic filling of network interface buffers in practice, both because a given processor allows
only a limited number of outstanding requests, and since transactions that do not involve data are usually interspersed with
data requests.

Given these assumptions aboutl, o and,g, let us examine the path of a read miss to a line that is allocated on a remote node
and is clean at its home. The request travels through the communication controller on the requesting node (o), traverses the
network (l), travels through the communication controller at the home where the request is satisfied (2o), traverses the network
again (l), and finally travels back through the communication controller at the source node (o). Including the fixed external
interface delays into and out of each controller (kin, kout) leads to a total round-trip latency as seen by the processor (without
any contention) ofkin + o + kout + l + kin + 2o + kout + l + kin + o + kout for the miss, or 2l + 4o + 6k if we assumekin = kout. If
the line were dirty at the home node’s cache, there would be an extra fixed cost ofC at the home for retrieving the data from
the cache. For a line that is dirty in the cache of a third processor (not the requestor or the home), the latency would bekin + o
+ kout + l + kin + 2o + kout + l + kin + 2o + C + kout + l + kin + o + kout, or 3l + 6o + C + 8k.

 The network latencyl and the controller occupancyo are the variables in the above costs. We study a range of values for

each variable (instantiated as L1, O1, and multiples of these), as shown in Table 2.1, covering a variety of interesting architec-
tural alternatives. We have used reasonable estimates to characterize the latencies and occupancies of these architectural alter-
natives, though of course each alternative could be customized or improved. Our latenciesl vary from tightly-coupled, low-
latency MPP networks, through high-latency physically distributed MPP networks, all the way to commodity networks com-

Table 2.1. Machine Configurations and their Abbreviations

Controller Occupancy
(system cycles)

Network Latency
 (system cycles)

25

MPP

50-200
Distributed

 MPP

400
Aggressive

 ATM

800
Today’s
ATM

< 7

Hardwired Controller
L1, O1

L2, L4, L8

 O1
L16, O1 L32, O1

14-28

Customized Co-processor

L1,

 O2-O4

L2, L4, L8

O2-O4

L16,

 O2-O4

L32,

 O2-O4

56

General-purpose Co-processor on Memory Bus
L1, O8

L2, L4, L8

O8
L16, O8 L32, O8

112

General-purpose Co-processor on I/O Bus
L1, O16

L2, L4, L8

O16
L16, O16 L32, O16

4

posed of ATM switches2. Small values of occupancy o represent communication controllers which are tightly-integrated, hard-
wired state machines [ACD+91, KSR92, LLG+92]. Aso increases the controller becomes less hardwired and more general-
purpose, from specialized co-processors [KOH+94], through inexpensive off-the-shelf processors on the memory bus, to an
off-the-shelf processor located on the I/O bus of the main processor. The cycle counts used in Table 2.1 and the remainder of
this paper are in terms of 100 MHz system cycles, i.e. the clock speed of the controller and the rest of the node, not that of the
main processor. The entries in Table 2.1 correspond to specific values in our range of latencies and occupancies. The L1, O1
point is our base architecture, with a network latency of 25 system cycles or 250ns, and a controller occupancy of 7 system
cycles3. The other entries are multiples of these base values.

With this context established, we now present our framework for studying the effects of varyingl ando on system perfor-
mance over a range of important parallel computations.

3 Framework and Methodology

3.1 How We Approach the Problem
Our goal is to understand the impact of latency and occupancy on the effectiveness of a DSM system, and thus understand

how much we lose as we relax the aggressiveness of our architectures along these dimensions. The first question we must
resolve is how to evaluate the effectiveness of an architecture for an application when parameters likel ando are varied. One
possibility is simply to examine how the performance of the architecture on a fixed problem size degrades as l and/oro are
increased. This may be the most important question to one who really cares about that particular application and data set. It
also provides useful insights, which is why we study it in this paper. However, it is not our main indicator of architectural
effectiveness since the results depend greatly on the problem size that is used4.

The impact of communication performance on overall system performance depends not only on the structure of the com-
munication but also on the ratio of computation to communication. Also, the impact of communication depends on whether
communication really is the important performance bottleneck to begin with, or whether the bottleneck is something else like
load imbalance. For a given number of processors, both these issues—the computation-to-communication ratio, and what the
dominant bottleneck is—usually depend on the problem size that is used. Larger data sets usually improve both the computa-
tion-to-communication ratio and the load balance, and hence allow a machine to deliver better parallel performance or speedup
relative to a uniprocessor implementation.

Thus, if an application with a given problem size delivers good parallel performance on an aggressive architecture but not
on one that uses a commodity controller and network, this does not in itself mean that the less aggressive communication
architecture is inappropriate for that application. There may be a problem size for which the less aggressive architecture per-
forms well too, and perhaps another problem size for which it performs almost as well as the aggressive architecture. The
question is how large are these problem sizes relative to the base problem size, and are they still realistic or interesting. Thus,
we believe that the best way to cast the effectiveness question is:Given an application, a number of processors, and values for
l and o that characterize the network and controller, what is the minimum sized problem that can deliver a desired level of par-
allel performance?

The question that remains is the choice of the “desirable” level of performance. Our measure of parallel performance is the
parallel efficiency of an execution; that is, the speedup of the parallel execution over a sequential implementation of the appli-
cation on a uniprocessor, divided by the number of processors used (64). Typically, the larger the efficiency the larger the prob-
lem size needed for a given combination ofl ando. Thus, the efficiency level we choose is an important determinant of the
constant factors in the expression for the required problem size. Furthermore, it can also affect the growthrate of the required
problem size withl ando, if changing the desirable efficiency level changes the relative importance of different performance
bottlenecks. For example, for an efficiency level of 30%, the dominant bottleneck to overcome by increasing problem size may
be communication, but for a 95% efficiency level it may be load imbalance. The bottlenecks also may not behave in predict-
able ways as problem size or efficiency level change, particularly for irregular applications. In most cases, however, if the
dominant bottleneck does not change, then the chosen level of efficiency will not affect the growth rate of the required problem
size but only the starting point. We assume a desired parallel efficiency of 60% in this paper.

2. Although our highest value of latency corresponds to the latency of an ATM switch, it does not represent actual ATM networks because the 400 MB/s
bandwidth we assume is much higher than current ATM bandwidth.
3. We also experimented with a controller occupancy of 3 cycles, and the results were essentially the same as those for a controller occupancy of 7 cycles.
4. The problem size is determined by many application parameters, including the size of the data set, the number of time-steps, and the accuracy of the com-
putation. These parameters themselves have different impacts on computation-to-communication ratio. We focus on data set size when we refer to problem
size, and we specifically address other parameters at the end of the paper.

5

Given the large communication latencies on DSM machines, it is natural to try to hide these latencies when possible.
Latency can be hidden by various techniques, all of which exploit the availability of additional bandwidth and require that the
processor allows multiple outstanding references. To hide write latency, we assume that the architecture supports a relaxed
consistency model. Read latencies are typically more difficult to hide, and it is not clear how successfully communication
latencies for read misses will be hidden in practice. Where applicable, we use two versions of our applications: one that tries to
hide read latency with software-controlled prefetches that we insert in the application by hand, and the other that does not.

3.2 Simulation Environment
The results presented in this paper are gathered from a detailed memory simulator that interfaces to the Tango Lite event-

driven reference generator [Golds93]. The simulator models contention in detail within the communication controller, between
the controller and its external interfaces, at main memory, and for the system bus. The input and output queue sizes in the con-
troller’s processor and network interfaces are uniformly set at 16 entries. We assume processor interface delays of 1 cycle
inbound and 4 cycles outbound, and network interface delays of 8 cycles inbound and 4 cycles outbound. The total round trip
interface delay (k) encountered on a remote clean miss is 29 system cycles. We assume that the latencies through the interfaces
remain fixed as controller and network characteristics are varied. We also fix the access time of main memory DRAM at
140 ns (14 system cycles), a fairly aggressive number. Fixing the interface delays and the memory access time is realistic, and
allows us to focus on the performance of the communication architecture.

We assume a fast, next-generation main processor that can issue up to three memory references every 100 MHz system
cycle. Because the processor controls its own secondary cache, we assume that it takes 15 system cycles for the controller to
retrieve state information from that cache when necessary. This is the value ofC used in our simulations (see Section 2). The
caches are 1 MB in size, two-way set associative, and have a line size of 128 bytes. We also assume that the processor has both
prefetch and prefetch exclusive instructions. In our processor model a load miss stalls the processor until the first double-word
of data is returned, while prefetch, prefetch exclusive, and store misses will not stall the processor unless there are already ref-
erences outstanding to four different cache lines. While this upper bound of only four outstanding cache lines can limit the
amount of latency that a processor can hide with bandwidth, it is nonetheless more aggressive than the current situation in
commodity microprocessors.

3.3 Applications

The applications we use in our study are summarized in Table 3.1.The programs were chosen because they represent a vari-
ety of important scientific computations, including both kernels and complete applications, and they have different communi-
cation patterns and requirements. Barnes is representative of the class of hierarchical N-body methods, which are used in the
domains of astrophysics, electrostatics, and plasma physics, among others. Ocean is representative of many computational
fluid dynamics applications on regular grids. Water is representative of a wide range of computational chemistry applications
which compute particle interactions based on a cutoff radius. FFT forms the computational core of a wide variety of applica-
tions, including image and signal processing as well as climate modelling. The most common need for large dense LU factor-
ization is in radar cross-section problems; however, for our purposes dense LU factorization is very similar to more widely
used sparse matrix factorization techniques (such as blocked Cholesky factorization [Roth93]), and of various other matrix
factorization and eigenvalue methods. Finally, Radix is a widely used sorting algorithm. Descriptions of the applications can
be found in: Barnes [HS94]; Radix and Ocean [WSH94]; Water [SWG+94]; FFT and LU [RSG93]. The applications are quite
highly optimized to improve communication performance, and particularly to reduce spurious hot-spotting or contention
effects that adversely impact occupancy. The codes for the applications are taken from the SPLASH-2 application
suite [SWG+94], although Radix was modified to use a tree data structure (rather than a linear key chain) to communicate
ranks and densities efficiently.

Table 3.1. Applications and Communication Patterns

Application Description Communication Pattern
Barnes Barnes-Hut hierarchical N-body simulation irregular, hierarchical

Ocean Multigrid large scale ocean simulation nearest neighbor iterative, hierarchical

Water Molecular dynamics simulation structured, many-to-many

FFT Radix Six-Step Fast Fourier Transform regular, all-to-all, blocked matrix transpose

LU Blocked dense LU decomposition structured, one-to-many

Radix Integer radix sort irregular, all-to-all

n

6

4 Results for a Fixed Problem Size
We have said that the best way to look at how latency and occupancy impact the effectiveness of DSM architectures on a

given application is to determine how the problem size necessary to achieve a given level of efficiency changes with latency
and occupancy. However, it is also useful to examine how the parallel efficiency of an application changes withl ando for a
fixed problem size; namely one that yields the desired level of efficiency on our base architecture. Understanding how latency
and occupancy affect the base problem lends important insight into how these parameters of the communication architecture
interact, and into how much each contributes to performance degradation. Combined with our understanding of the applica-
tions, this also guides our search for larger problem sizes to retain the desired efficiency.

4.1 Intuition: What Should We Expect?
As l ando increase for a given problem size, parallel efficiency clearly should decrease. But can we predicthow it decreases

for the different applications? The time taken by a parallel application can be broken down into two components: local compu-
tation, including cache and local memory accesses, and communication. Communication cost can be further broken down into
the cost due to latency and the cost added by contention for a resource of limited bandwidth (non-zero occupancy). Assuming
perfect load balancing of both computation and communication, and that local caching effects stay the same for uniprocessor
and multiprocessor problems, the parallel efficiency is determined by the following formula:

whereTcomp is the uniprocessor computation time,Vcomm is the volume of communication (number of communication misses
incurred on all processors), andTL andTC are the average stall times due to latency and contention, respectively, for each com-
munication.

For a fixed problem size and number of processors, bothTcomp andVcomm are constant.TL varies linearly withl ando. The
remaining question is how the contention component,TC, varies withl ando. If controller occupancy contributes only to
latency and has no contention component (TC = 0 for allo in the above formula), then an increase in occupancy is indistin-
guishable from holding occupancy constant and making a corresponding increase in network latency. We definecommunica-
tion latency as the round-trip latency, assuming no contention, for a remote miss that is satisfied by the main memory of the
home node (computed as 2l+4o+6k in Section 2). On a graph of parallel efficiency versus communication latency, ifTC were 0
then all points in thel, o design space would fall on the same curve. The exact shape of the curve can be gleaned from Eq. 4.1,
once the constant factorsTcomp andVcomm are known. Now suppose occupancy causes contention for the controller as well. As
o increases, the contention worsens and the parallel efficiency becomes worse than it would have had the occupancies stayed
the same but network latency been increased correspondingly. The efficiency versus communication latency curve for a larger
occupancy would therefore be below that for a lower occupancy. The impact of the contention component of occupancy is
likely to be larger when network latencies are smaller, which means that the curve will start to flatten at smaller latencies.
However, as latency increases, the effect of contention should diminish, and eventually the curve should approach the curves
for lower occupancies.

To understand the performance impact ofl ando, we seek the answers to the following questions: (i) starting from the base
architecture, how does increasing network latency degrade performance for the base problem size, both with and without
prefetching; and (ii) to what extent does controller occupancy cause contention in addition to contributing latency, both with
and without prefetching, and how does this contention affect parallel efficiencies for realistic architectures with different occu-
pancies and latencies. Other interesting questions that we answer in the process are: What is the problem size needed to obtain
60% parallel efficiency on the base architecture, which represents an aggressive next-generation multiprocessor, both with and
without prefetching; and what are the node-to-network bandwidth requirements for the base problem size?

4.2 A Case Study
In this section we outline the framework for our fixed problem size results in the context of a single application. As a case

study, we choose to present our results for FFT because it is a simple, well-understood program that illustrates the framework
we use to analyze all our applications. For both the prefetched and non-prefetched versions of the program, we examine the
results of varying latency and occupancy for a fixed problem size, obtained through both analytical modelling and detailed
simulation. Deriving analytical models and validating them with data obtained from detailed simulations can lead us to a more
fundamental understanding of the effects and interactions of latency and occupancy than simply observing the results obtained
from simulation. Many of the important insights emerge in the course of this case study. In Section 4.3 we present results for
all our applications, and compare and contrast them with those obtained here.

(4.1)
Tcomp

Tcomp Vcomm TL TC+()×+

7

4.2.1 Results from Analytical Modelling
We first try to model the non-prefetched version of FFT. The communication phase in FFT consists of multiple blocked

matrix transposes, where in each transpose a processor reads parts of the columns of a source matrix from other processors,
and writes the rows of a locally-owned destination matrix. If we assume no contention, modelling the transpose phase is
straightforward. We simply compute the number of cache lines a processor needs to read, multiply it by the communication
time, and add the computation time. This model is sufficient for low occupancies, because then occupancy does not cause
much contention. The model becomes less accurate for high occupancies, particularly at low latencies, up to 40% off at a net-
work latency of L1 and a controller occupancy of O16 (recall the architectural alternatives in Table 2.1). Figure 4.1(a) shows
how this model, calledno contention, compares to the actual execution time obtained by simulation for two different occupan-
cies, O4 and O16. In this graph, as in all graphs in the paper, we plot parallel efficiency versuscommunication latency, which

was defined in Section 4.1. Communication latency is different from network latency or thel parameter, which is the one-way
latency of a message in the network itself. The leftmost point on every curve corresponds to the communication latency
assuming the base value ofl and the current value of occupancyo.

The actual results for high occupancies and low latencies suggest that occupancy indeed contributes to contention even
without prefetching. To model contention, we use a queueing model to determine the average number of requests that are wait-
ing for the communication controller when a request arrives. The simplest queueing model assumes that there is a maximum of
one remote read request that the controller has to handle, together with its own processor’s read request, because reads are
blocking and the processors are kept in synch. We found, however, that a model that only takes read misses into account (not
shown in Figure 4.1) does not do much better than theno contention model. The model performs poorly because data copying
in all but the first transpose phase causes invalidations to processors that previously read those data in the prior transpose
phase. The invalidations consume occupancy, and we must include them in the model. If the invalidations are assumed to
occur uniformly during the transpose phase, we get thesmooth invals model, which is still 15% off with the O16 controller at
low latencies. It is only when the queueing model is modified to take the burstiness of coherence traffic (resulting from the
interactions of multi-word cache lines with the patterns of reading and writing data in the transpose phases) into account, that
it matches the simulations well, as shown by thebursty invalscurve in Figure 4.1(a).

Although it is possible to create a model that accurately predicts the behavior of the FFT, this model proved surprisingly
difficult to generate in light of the relatively simple structure of the computation. The prefetched version of the transpose phase
is even more complex to model, because processors prefetch data from one processor while they are still communicating with
another. Clearly if modelling contention and invalidations is necessary when there are no prefetches, it is even more important
when there are, as Figure 4.1(b) shows. The best model we found for the prefetched version sets an upper bound on the num-
ber of messages a controller may receive by assuming it handles requests by at most two other processors at any time. Unfor-
tunately, it is not as accurate as the best non-prefetched model for all occupancies.

In both the prefetched and non-prefetched versions it is the occupancy-related contention effects that make accurate model-
ling difficult (the divergence of the simple models in Figure 4.1 gets worse with increasing occupancy and better with increas-
ing latency). The key property that enables us to model the non-prefetched version of FFT well is that we are able to set a tight
limit on the number of messages the controller has to handle in a fixed amount of time. It is difficult to set a similar limit in the
other less easily analyzed applications.

Figure 4.1. FFT modelling results for both the (a) non-prefetched and (b) prefetched versions

� O4: no contention
� O4: smooth invals

 O4: bursty invals
� O4: actual
� O16: no contention
� O16: smooth invals

 O16: bursty invals
� O16: actual

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��
�

�

�

�

�� �

�

�

�

� O4: no contention
� O4: smooth invals

 O4: bursty invals
� O4: actual
� O16: no contention
� O16: smooth invals

 O16: bursty invals
� O16: actual

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6
|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency
 P

ar
al

le
l E

ffi
ci

en
cy �� �

�

�

�

�� �
�

�

�

�� �
�

�

�

�
�

�

�

�

�

�� � � �

�

�� � � �

�

8

4.2.2 Simulation Results for the Base Problem Size
Both to validate our model and to obtain the constant factors in the computation-to-communication ratio, we now look at

our simulation results for FFT in more detail.

Without Prefetching: Figure 4.2(a) graphs parallel efficiency vs. communication latency for our base FFT problem size
(256K points)5. The curves generally have the form predicted in Section 4.2.1. The first interesting result is that larger occu-
pancies lower the curves, indicating that the contention component of occupancy is indeed important, even without prefetch-
ing. The curves also begin to flatten aso is increased, which indicates that the controller starts to saturate.

Note that all curves nearly converge at high values ofl, implying that at today’s ATM latencies controller occupancy does
not have a large impact on overall performance for this problem size without prefetching. Conversely, for a range of MPP and
distributed MPP network latencies, controller occupancy is a critical determinant of overall performance. What may be sur-
prising are the values of controller occupancy at which the curves begin to diverge at lowl. The difference between the O1 and
O2 curves for the smallest value ofl is small (6%), but the difference from O2 to O4 is greater (13%), and gets progressively
larger from O4 to O8 (general-purpose processor on memory bus; 25%) and from O8 to O16 (general-purpose processor on
I/O bus; 44%).

With Prefetching: Figure 4.2(b) shows that with prefetching, the curves are no longer concave. In fact, they are almost lin-
ear with communication latency and flatten out aso increases. Unlike the non-prefetched case, the curves no longer converge
because the contention component of occupancy affects overall performance even at high network latencies. Prefetching
improves performance more at lowo and moderate l than it does at higher values ofo and l. At high l, we cannot hide all the
network latency, and beyond a point increases in latency hurt the prefetched case at as quick a rate as the non-prefetched so the
curves take on similar shapes. At higho, the controller becomes a bottleneck, as it is unable to match the increased bandwidth
needs of prefetching. To support prefetching in DSM machines then, it is crucial to keep the occupancy of the controller low.

Let us look at the graphs from the perspective of a systems architect. If we had a network with latencies like today’s ATM
networks, how much does the occupancy of our communication controller affect overall performance? For this problem size,
the answer is not much if we do not use latency hiding techniques, but significantly if we do. With prefetching, O1 is 2.32
times better than O16 at latency L1, and 1.49 times better at latency L32. On the other hand, if we could reduce our network
latency in half (reach the current goal of ATM networks) how much performance would we gain? The answer here depends on
the occupancy of the controller. A machine with a controller occupancy of O1 makes a 56% improvement in parallel efficiency
as network latency is decreased from L32 to L16, while a machine with controller occupancy of O16 makes a 33% perfor-
mance improvement. While the relative gains in performance are quite high, the absolute performance of both of these systems
is still low compared to the base architecture.

Now suppose we have a low-latency (L1) MPP network. Beyond a very efficient customized controller on the memory bus
(O2), controller occupancy is crucial to performance both with and without prefetching. For low occupancy controllers, going

5. For FFT, the required problem size for 60% efficiency on 64 processors is small enough in our most aggressive architecture that artifacts of its interactions
with low-level architectural parameters (such as cache line size) throw it off the growth rate curve. We therefore use an efficiency of 80% for FFT, though the
growth rates would have been the same if we had used 60% with different low-level architectural parameters that did not cause these artifacts.

Figure 4.2. FFT base problem size results for both the (a) non-prefetched and (b) prefetched versions

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3
|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

��
�

�

�

�

�� � � �

�

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�� �

�

�

�

9

to a higher-latency network also hurts performance significantly, though with prefetching the performance impact is smaller.
Once the controller is a general-purpose processor (on the I/O or even memory bus), increasing network latency does not sig-
nificantly affect performance. Note that starting from a very efficient (L1, O1 or O2) machine, doubling controller occupancy
hurts more than doubling network latency. As designers of tightly-coupled machines, if the cost considerations for doubling
the two parameters are similar, we might favor keeping occupancy low and sacrificing some network latency.

So we see that for FFT, without latency hiding controller occupancy is critical at low network latencies but not at high
latencies, while with prefetching it is critical at all latencies. Since high-latency networks make it all the more important to
hide latencies if possible, occupancy is in effect critical at all values of network latency (of course, occupancy would become
less critical if the network bandwidth were very low as well). An interesting result is that it is the contention component of
controller occupancy, not its latency component, that dominates its contribution to performance degradation, both with and
without prefetching. We find that for most of our applications, for controller occupancies above O2—which represents an effi-
cient, customized co-processor—70%-95% of the performance degradation due to increasing occupancy is attributed solely to
its contention component for all values of network latency. We will now show that these trends are consistent across many
classes of applications, and will discuss how our other applications corroborate the detailed results or differ from them.

4.3 Results
For each of the applications, Table 4.1 first shows the minimum problem size needed to achieve 60% efficiency on the base

architecture. The table also shows the per-processor communication bandwidth requirements for that problem size (including
all protocol messages). The bandwidth numbers are presented in megabytes divided by total execution time, not just that of the
communication phases. Note that the bandwidth numbers in Table 4.1 are moderate, and in all cases are much less than our

node-to-network bandwidth of 400 MB/s (even with burstiness, we find network bandwidth not to be a bottleneck, as men-
tioned earlier). Bandwidth requirements will generally decrease as problem sizes are increased.

Following the framework developed in Section 4.2, we now present base problem size results for all of our applications. We
compare these results with those we have already seen for our FFT case study.

Radix: The results for Radix shown in Figure 4.3 are similar to FFT, with a few notable exceptions. Like FFT, without
prefetching all the curves almost converge by today’s ATM latencies (our rightmost points). While the O1 and O2 curves are

Table 4.1. Minimum Problem Sizes and Per-Processor Bandwidth Requirements for the Base Architecture

Non-prefetched Prefetched

Application Minimum Problem Size Bandwidth (MB/s) Minimum Problem Size Bandwidth (MB/s)

Barnes 8192 particles 7.4 N/A N/A

Ocean 258x258 grid 40.3 258x258 grid 46.4

Water 512 molecules 10.9 N/A N/A

FFT 64K points 50.4 64K points 50.5

LU 768x768 matrix 19.3 768x768 matrix 21.3

Radix 2M keys, radix 256 83.7 1M keys, radix 256 82.3

Figure 4.3. Radix results for the base problem size for both the (a) non-prefetched and (b) prefetched versions

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8
|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�
�

�

�

�

�

�� � � � �

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�� �

�

�

�

�� �
�

10

still very close together, the O8 curve is much flatter than it is in FFT, and the O16 curve is almost totally flat. This indicates
that in Radix contention matters more than it does in FFT, particularly at low network latencies.

In the prefetched version of Radix, we again see a linearization of all the curves although less than in prefetched FFT (i.e.
prefetching is not as successful in Radix as it is in FFT). Two key prefetching trends continue in Radix: prefetching helps
much more at lower values ofo, and the curves do not converge to a point at L32, indicating that it is still critical to keep occu-
pancy low when prefetching, even with ATM latencies.

LU: The results for LU (not shown) are also very similar to those for FFT. One significant difference for both prefetched
and non-prefetched LU is that the performance is less sensitive to both latency and occupancy. The reason is that LU has a
high computation-to-communication ratio, and suffers from significant load imbalance for the base problem size, so its perfor-
mance is less dependent on communication costs.

Ocean: Ocean, which performs many iterative nearest-neighbor computations on regular grids, depends more on network
latency than any of the previous applications, though it depends substantially on occupancy as well (Figure 4.4). This is espe-
cially true at higher controller occupancies. The reason is that unlike the previous applications, Ocean cannot take full advan-
tage of spatial locality when it communicates data, leaving it especially sensitive to changes in network latency. Prefetched
Ocean cannot hide enough of the latency, so the prefetched curves are also somewhat concave.

Barnes and Water: Figure 4.5 shows the results for Barnes and Water. Neither application includes prefetching, because
the high degree of temporal locality (and irregularity in Barnes) makes it difficult to determine what to prefetch and when. For
Barnes, the O1 and O2 curves are identical. The O4 curve is different only for the lowest values ofl, and the curves do not
begin to diverge until O8. Again, the curves all converge at high network latency. Of all the applications, these two have the
least performance variation across the design space. In particular, they are the least occupancy-bound of all the applications.

Figure 4.4. Ocean results for the base problem size for both the (a) non-prefetched and (b) prefetched versions

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�� �

�

�

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6
|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency
 P

ar
al

le
l E

ffi
ci

en
cy

�
�

�

�

�

�

�

�

Figure 4.5. Base problem size results for (a) Barnes and (b) Water

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8
|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�
�

�

�

�

�

�
�

�

�

 O1
 O2
� O4
 O8
� O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

��

�

�

�

�

11

As we expected, increasing network latency uniformly decreases overall performance across all the applications. Though
there are some differences in the applications, particularly Barnes and Water, the surprising result is that consistently across all
applications the contention component of controller occupancy has a significant performance effect, particularly at low values
of network latency. In addition, the point at which the curves begin to flatten occurs at relatively small values of occupancy,
typically either O4 or O8, and by O16 (general-purpose processor on the I/O bus) the curves are almost flat. Prefetching is
often very effective at improving performance, but requires low occupancy controllers. It is also significant that even when
prefetching, all of these applications have very low node-to-network bandwidth requirements.

5 Results for Increasing Problem Size
In the previous section we saw how parallel efficiency changed as we varied both network latency and controller occupancy

for the fixed, base problem size. In designing DSM machines with high latencies or occupancies, we hope that these machines
can be made to run at high parallel efficiencies simply by running somewhat larger problems. The question is how the problem
size must be scaled to maintain 60% efficiency at higher values of latency and occupancy, and at what point do these problem
sizes become unrealistic. In the results we present, we speak of problem size as being the size of the application’s data set.
However, we should keep in mind that in most real scientific applications the execution time grows more rapidly than the data
set size for a variety of reasons [SHG93], and we shall comment on this fact as well.

To determine the problem size needed to attain a given efficiency, we need to know not only how the amount of computa-
tion and communication (TcompandVcomm) scale with problem size (recall Eq. 4.1), but how the latency and contention costs
of the average communication (TL andTC) scale as well. Clearly,TL does not vary with problem size. The hope when using a
high-occupancy controller is that the contention componentTC decreases as problem size increases. The question is whether
this is true, or whetherTC increases or is independent of problem size. In Section 5.1 we once again examine the problem
through a case study of FFT. Section 5.2 presents the results of increasing problem size for all of our applications.

5.1 Case Study
Consider for example FFT. The growth rate of computationTcomp with the number of pointsn (the problem size) is

O(n log n). The growth rate of communicationVcomm is O(n). To maintain a fixed efficiency as the average communication
costTL+TC increases by a factor of s, we must increase the problem size at a rate that keeps the ratio of computation time to
communication time constant. IfTC is not a function of problem size, then this simply means we must keep the computation to
communication ratio (log n) constant, which requires an increase inn by an exponential factor of2s.

Through simulation we gathered efficiency results for non-prefetched and prefetched FFT at two problem sizes: our base
problem size and one that is four times larger. We look at the cross product of O1, O8, O16 and L1, L4, L16, which represent
what we believe are realistic machine configurations (see Table 2.1). Increasing the problem by a factor of four did not
increase the efficiency much, either with or without prefetching.

An important result is that at all occupancies, the average communication time remains constant in both the non-prefetched
and prefetched versions of FFT. This means that the effects of contention do not decrease with an increase in problem size.
Although this seems counter-intuitive given that the overall computation-to-communication ratio increases, there is a clear
explanation as to why it happens. In many structured applications, communication is isolated in different phases from local
computation. This separation has been incorporated in existing models of structured parallel programming such as the Bulk
Synchronous Processing (BSP) model [Valiant90]. As a result, although the overall computation-to-communication ratio over
the whole application increases with problem size,within the communication phases the ratio remains constant as problem size
grows. Since contention depends on the rate or burstiness of communication, and that rate is independent of problem size, it
follows that contention (TC) is independent of problem size as well. Thus, FFT indeed requires an exponential increase in
problem size to overcome the effects of increased latency or occupancy. Higher occupancies cause more contention, increasing
the value of the exponent substantially.

This insight, thatTC like TL is independent of problem size, allows us to predict the required problem sizes for FFT asl and
o change, as long as we know howTL andTC change withl ando. Since FFT communicates through reads, we can use the
average remote read miss time from the simulation results or our model in Section 4.2.1 to estimateTL + TC. The simulations
also provide us with the constants for the computation time. Optimistically assuming perfect load balancing, Table 5.1 shows
the minimum problem size needed to reach 60% efficiency for the nine selected combinations ofl ando. Of these, we were
able to simulate the required problem size for an occupancy of O1 and latencies of L1 and L4. The other numbers listed in
Table 5.1 are predicted values, although the trends and contention effects have been validated.

Without Prefetching: It is clear from the table that increasing latency causes an exponential increase in the required prob-
lem size. The contention component of occupancy also has a big impact on the required problem size for FFT, even without
prefetching. For example, if the O8 controller had the same contention componentTC as the O1 controller, but the communica-

12

tion latency corresponded to O8, the problem sizes for O8 in Table 5.1 would have been from 64 times smaller at L1 to 16
times smaller at L16. For O16, the problem sizes would have been 4096 times smaller at L1 and 1024 times smaller at L16.

With Prefetching: For the samel ando, the minimum problem size needed is much smaller than for the non-prefetched
version, and depends much less on latency. However, once the latency becomes too large to be hidden, the growth rate is expo-
nential in the amount that cannot be hidden. Contention still plays a critical role in determining the required problem size. With
the same contention component of the O1 controller, the O8 controller would only need problem sizes 4 to 16 times smaller
than those listed in Table 5.1. The O16 controller is far worse off: It would need a problem 16384 to 65536 times smaller.

For both versions of FFT, the problem size needed to achieve the desired efficiency at high controller occupancies is unrea-
sonably large. The same is true of the non-prefetched version at high network latencies. Compromising the aggressiveness of a
communication architecture, then, makes it be extremely difficult to achieve high parallel efficiencies for FFT.

5.2 Results for Other Applications
Radix: Radix, both with and without prefetching, is a more difficult application to retain good efficiency on than FFT,

because the computation-to-communication ratio over theentire application is constant. This means that unless contention
decreases, increasing the problem size should not increase the efficiency. We find that as the problem size increases, contention
actually becomes worse, and then levels off fairly quickly. Contention worsens because the dominant communication in Radix
is through writes (in a permutation), and these writes are bursty. As the problem size approaches the total amount of cache
memory in the machine, it becomes increasingly likely that a given write will cause a cache line to be written back to the
home, which is usually remote. This in effect doubles the number of messages that the communication controller at the home
has to handle in the same amount of time. The situation does not get any better past this point, and in fact the irregularity of the
communication causes some nodes to become hot-spots as problem size increases. Without prefetching, only the base architec-
ture reached 60% efficiency. Even with prefetching, only the O1 and O2 controllers manage to reach 60% efficiency with the
fastest network, and only the O1 controller can sustain 60% efficiency when a distributed MPP network is used.

LU: LU scales much better than either Radix or FFT. One reason is that the computation-to-communication ratio in LU
grows linearly in the problem size (O(n3) computation versusO(n2) communication). LU therefore requires much smaller
increases in problem size to reduce relative communication costs. The other is that the main bottleneck for LU on an L1, O1
machine is load imbalance and not communication. Increasing the problem size improves load balance quickly as well.

Like FFT and Radix, LU also communicates data in structured phases that have a constant computation-to-communication
ratio. Consequently, contention does not decrease with increasing problem size, allowing us to predict the required problem
size for machines with larger latencies and occupancies. Table 5.2 summarizes the results. For each entry, the value in paren-
theses is the ratio of the required data set size to that for an L1, O1 machine. Note that the computationtime for LU scales a
factor ofn faster than the data set. This means that the time required for the “desirable” LU to complete grows more quickly
than the table indicates. The time on an L16, O16 machine would be 133 times that on an L1, O1 machine without prefetching
and 9 times with prefetching, even though the data set size required is only 26 times and 4.4 times larger, respectively.

Ocean: Ocean, which uses nearest-neighbor iterative computations including multigrid, also has a computation-to-commu-
nication ratio that scales linearly with problem size and a better load balance than LU. As Figure 5.1 shows, both the non-

Table 5.1. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched FFT

Network Latency

Controller
Occupancy

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 216 218 244 216 216 216

O8 222 228 258 218 218 220

O16 240 246 276 230 230 232

Table 5.2. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched LU

Controller
Occupancy

Network Latency

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 8002 (1.0x) 12502 (2.4x) 29002 (13x) 7002 (1.0x) 8002 (1.3x) 12002 (2.9x)

O8 13502 (2.8x) 18002 (5.1x) 34502 (19x) 8502 (1.5x) 9502 (1.8x) 13502 (3.7x)

O16 20002 (6.3x) 24002 (9.0x) 41002 (26x) 10002 (2.0x) 11002 (2.5x) 15002 (4.6x)

13

prefetched and prefetched versions of Ocean scale much better than the previous applications. An important observation is that
although even the higher occupancy curves increase substantially in efficiency with larger problem sizes, they still do not
assume the shape of the lower occupancy curves. Once again, this is because Ocean also has structured communication, so
contention does not decrease with increasing problem size. Table 5.3 shows the problem sizes required for 60% efficiency.

Unlike LU, in Ocean both the data set size and the execution time nominally grow as O(n2) in the grid dimension. However,
the implications of latency and occupancy for execution time are nonetheless more severe than for data set size. This is
because increasing data set size also requires scaling other parameters (such as the accuracy used in the multigrid solver and
the number of times-steps), which increase execution time further. In fact, the numbers for data set size in Table 5.3 are them-
selves optimistic, since a larger number of grid points causes more time to be spent in the multigrid equation solver, which has
the highest communication to computation ratio and the worst load imbalance in the application.

Finally, the effect of contention on required problem size is much less for Ocean than it is for FFT. For example, for both
versions of Ocean the required problem size for the O8 and O16 controllers would have been at most 4 times smaller if they
had the sameTC as an O1 controller. Like FFT, the effect of contention is greater in the prefetched version of the code.

Barnes: Unlike the previous applications, Barnes does not have separate phases of communication and computation
(though there are more structured versions of the application, written for message passing machines, that do [Salmon90]). As
problem size increases, more computation is done between communications, so contention decreases. Since the computation-
to-communication ratio also depends on the distribution of particles, predicting the problem size required for 60% efficiency is
difficult. However, similar hierarchical N-body applications have an expected ratio that is linear in the problem size [Katz89].
This suggests that scaling hierarchical N-body applications to retain a desired efficiency should be relatively easy, if communi-
cation is the primary bottleneck. Unfortunately, the bottleneck is typically load imbalance, and it is difficult to predict how that
improves with problem size since there are different computational phases with different levels of imbalance. Doubling the
problem size for Barnes improved performance somewhat at higher occupancies, but not much. However, for the sizes of
problems that are run on machines today, we expect that all of the machine configurations we study should perform quite well.

Water: Table 5.4 summarizes the minimum problem sizes required for Water. Water also has a computation-to-communi-
cation ratio that scales linearly with data set size. The effect of contention on required problem size is less in Water then it is in
all the other applications. In fact, at ATM latencies the O8 controller achieves 60% efficiency at the same problem size whether
or not it has its inherent value ofTC or it has theTC of an O1 controller. Contention is only slightly more important at lower

Table 5.3. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched Ocean

Controller
Occupancy

Network Latency

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 2582 (1.0x) 5142 (4.0x) 12822 (25x) 2582 (1.0x) 3862 (2.2x) 6422 (6.2x)

O8 6422 (6.2x) 8982 (12x) 16662 (42x) 6422 (6.2x) 6422 (6.2x) 7702 (8.9x)

O16 12822 (25x) 14102 (30x) 20502 (63x) 10262 (16x) 10262 (16x) 11542 (20x)

Figure 5.1. Efficiency in Ocean at two different problem sizes for both the (a) non-prefetched and (b) prefetched versions

 large O
 large O8
� large O16

 base O1
 base O8
� base O16

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|
1100

|
1200

|
1300

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�
�

�

� �

�

 large O
 large O8
� large O16

 base O
 base O8
� base O16

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|
1100

|
1200

|
1300

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

� �

�

� �

�

14

network latencies. Thus, Water and Barnes are examples of occupancy-related contention not always being critical. However,
note that the execution time for Water grows as the square of the data set size shown in Table 5.4.

Overall, significant increases in problem size are necessary for the lower-performance networks and controllers to achieve
the desired efficiency, although the amount of increase varies depending on the specific type of application. There are many
important classes of applications (transform methods, sorting) for which the efficiency lost by a less aggressive architecture—
in latency or occupancy—is extremely difficult or impossible to regain by increasing problem size. In most of the applications,
contention owing to the occupancy of the controller played an important role in determining the required growth in problem
size, and the amount of contention was not reduced by increasing problem size. Finally, the implications of increasing latency
and occupancy for execution time, which may be most important, are often more severe than those for data set size.

6 Conclusions
DSM machines can be characterized in terms of four fundamental parameters: network latency, controller occupancy, node-

to-network bandwidth, and the number of processors. Using a fixed number of processors (64), and a high bandwidth intercon-
nect, we evaluated the performance impact of latency and occupancy over a range of representative scientific applications. Our
results showed that it is possible to achieve good parallel efficiency on machines with low-occupancy, hardwired or special-
purpose communication controllers and low-latency MPP networks. As expected, network latency impacted overall perfor-
mance, but its importance diminished with high-occupancy controllers, or when applications employed latency hiding mecha-
nisms. In addition, the bandwidth requirements for the applications we studied were low in comparison with the node-to-
network bandwidth of current MPP networks.

Our main result, however, is that the occupancy of the communication controller is critical to good performance in DSM
machines. For machines with tightly-coupled MPP networks we found that controller occupancy has a large performance
impact regardless of whether or not applications incorporated latency hiding techniques. For machines with loosely-coupled
networks, we showed that without latency hiding, occupancy did not matter to overall performance. But with latency hiding,
controller occupancy once again became a performance bottleneck. Since machines with high-latency networks will need to
incorporate latency hiding whenever possible to obtain good performance, these results show that it is important to use low-
occupancy communication controllers at any network latency.

Moreover, it was not the latency component of the higher occupancy controllers that caused performance degradation, but
rather the contention component, even without latency hiding. This contention component proved difficult to model analyti-
cally, especially for applications that included latency hiding. We also found that several important classes of applications
communicate in “bulk synchronous” phases where the computation-to-communication ratio is constant. As a result, increasing
the problem size did not alleviate contention.

Finally, our results showed that for many classes of applications, it is extremely difficult for architectures with higher values
of network latency or controller occupancy to achieve high parallel efficiency. That is, the problem size needed to maintain the
desired efficiency quickly becomes unreasonable. There are applications that attain the desired efficiency with reasonable data
set sizes, although for many of these applications the execution time scales much faster than the required data set size.

The tendency among DSM designers has been to focus on latency and network bandwidth as the important performance
issues in the communication architecture. Our results demonstrate that the occupancy of the communication controller is just
as important to overall performance, if not more so. Designers should therefore pay careful attention to controller occupancy
when making decisions about using commodity parts in their communication architectures.

Acknowledgments
This work was supported by ARPA contract DABT63-94-C-0054. We would like to thank Steven Woo for his work on the

SPLASH-2 application suite. We would also like to thank Anoop Gupta, Jeffrey Kuskin, and David Ofelt for their comments
on early drafts of this paper.

Table 5.4. Minimum Problem Size Required for 60% Parallel Efficiency for Water

Controller
Occupancy

Network Latency

L1 L4 L16

O1 512 (1.0x) 896 (1.8x) 1792 (3.5x)

O8 1152 (2.3x) 1536 (3.0x) 3072 (6.0x)

O16 3072 (6.0x) 3072 (6.0x) 6144 (12.0x)

15

References
[ACD+91] Anant Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor. MIT/LCS Memo TM-

454, Massachusetts Institute of Technology, 1991.

[CKP+93] David Culler et al. LogP: Toward a realistic model of parallel computation. InProceedings of the Principles and Practice of
Parallel Processing, pages 1-12, 1993.

[Golds93] Stephen Goldschmidt. Simulation of Multiprocessors: Accuracy and Performance. Ph.D. Thesis, Stanford University, June
1993.

[HKO+94] Mark Heinrich et al. The Performance Impact of Flexibility in the Stanford FLASH Multiprocessor. InProceedings of the 6th
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 274-285, San
Jose, CA, October 1994.

[HS94] Chris Holt and Jaswinder Pal Singh. Hierarchical N-Body Methods on Shared Address Space Multiprocessors.SIAM Confer-
ence on Parallel Processing for Scientific Computing, February 1995, to appear.

[Katz89] Jacob Katzenelson. Computational Structure of the N-body Problem.SIAM Journal of Scientific and Statistical Computing,
pages 787-815, July 1989.

[KOH+94] Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor. InProceedings of the 21st International Symposium on Computer
Architecture, pages 302-313, Chicago, IL, April 1994.

[KSR92] Kendall Square Research. KSR1 Technical Summary. Waltham, MA, 1992.

[LLG+92] Daniel Lenoski et al. The Stanford DASH Multiprocessor.IEEE Computer, 25(3):63-79, March 1992.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Memory. InProceed-
ings of the 21st International Symposium on Computer Architecture, pages 325-336, Chicago, IL, April 1994.

[Roth93] Edward Rothberg. Exploiting the Memory Hierarchy in Sequential and Parallel Sparse Cholesky Factorization. Ph.D. Thesis,
Stanford University, January 1993.

[RSG93] Edward Rothberg, Jaswinder Pal Singh and Anoop Gupta. Working Sets, Cache Sizes, and Node Granularity for Large-Scale
Multiprocessors. InProceedings of the 20th Annual International Symposium on Computer Architecture, pages 14-25, San
Diego, CA, 1993.

[Salmon90] John K. Salmon. Parallel Hierarchical N-body Methods. Ph.D. Thesis, California Institute of Technology, December 1990.

[SFL+94] Ioannis Schoinas et al. Fine-grain Access Control for Distributed Shared Memory. InProceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 297-306, San Jose, CA,
October 1994.

[SHG93] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. Scaling parallel programs for multiprocessors: methodology and
examples.IEEE Computer, July 1993.

[SWG+94] Jaswinder Pal Singh et al. The SPLASH-2 Suite of Parallel Applications, Technical Report to appear, Stanford University.

[Valiant90] Leslie G. Valiant. A Bridging Model for Parallel Computation. InCommunications of the ACM, 33(8):103-111, August 1990.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The Performance Advantages of Integrating Block Data
Transfer in Cache-Coherent Multiprocessors. InProceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 219-229, San Jose, CA, October 1994.

