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            Abstract 

 

 Mitochondria play a large role in cellular energy metabolism and regulation of cell cycle. 

A change in or loss of mitochondrial metabolism, termed “mitochondrial dysfunction” has been 

identified as a hallmark of many different metabolic diseases and disorders, including diabetes, 

obesity, cardiovascular disease, aging, and cancer. Cancer is a prevalent and complex disease, 

characterized by the abnormal growth and spread of cells. One theory of cancer, called the 

“Warburg Effect” classifies cancer as having partial mitochondrial dysfunction accompanied by 

multiple genetic mutations. Under this theory, cancerous cells reduce their reliance on 

mitochondria and achieve cellular energy requirements through aerobic glycolysis. Previous 

studies have demonstrated that mitochondrial biogenesis, an increase in mitochondrial mass or 

number, can circumvent metabolic disorders and diseases, termed metabolic reprogramming. 

Previous studies have shown that leucine has a unique signaling role in adipocytes and skeletal 

muscle cells. Specifically, leucine signaling stimulates mitochondrial biogenesis, which increases 

cellular respiration and enhances energy partitioning in these cells. Cellular energy metabolism is 

such that adipocytes increase fat oxidation, and this energy stimulates protein synthesis within 

muscle cells. In consideration of the multiple impacts of leucine on metabolic diseases, such as 

obesity, leucine treatment was extended to a cancerous cell line that exhibits the Warburg effect. 

The results from this research confirm that leucine was able to stimulate mitochondrial 

biogenesis in these cells. Further, stimulation of mitochondrial biogenesis in this cancerous cell 

line has no impact on decreasing proliferation and regulating cell cycle. 
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  Cancer is a prevalent and complex disease, characterized by the abnormal growth and 

spread of cells (1-3). In 2010, malignant cancer was the 2nd most common cause of death of men 

and women living in America (1,2). According to the Centers for Disease Control, roughly 77% 

of cancer incidence occurs in older adults over the age of 55 (1). Thus, age has been shown to 

play a role in the development of cancer (1,2). Some factors that lead to cancer formation include 

cellular changes in gene expression and metabolism that result from multiple genetic mutations 

(1-4). Differences in cancerous and normal tissue have been observed (5 -10). Strikingly, both 

aged cells and cancerous cells share similarities in metabolism, where they reduce their reliance 

on mitochondrial function (5,8-10). In normal cells, mitochondria play a large role in regulation 

of cell cycle, oxidative phosphorylation, fatty acid oxidation, amino acid metabolism, reactive 

oxygen species (ROS), and calcium homeostasis (3,11-13). Thus, this change in metabolism, 

termed “mitochondrial dysfunction,” has been identified as a hallmark of many different 

metabolic diseases and disorders, including diabetes, obesity, cardiovascular disease, aging, and 

cancer (5).  Metabolic reprogramming has been shown to circumvent metabolic disorders and 

promote longevity by decreasing risk of age-related disease. Revival of mitochondria, termed 

“mitochondrial biogenesis,” is the focus of metabolic reprogramming (4). 

  Previous studies have shown that the essential branched-chain amino acid, leucine, plays 

a unique signaling role in adipose and muscle tissue. Multiple studies, in vivo and in vitro, have 

shown that leucine stimulates mitochondrial biogenesis and promotes energy partitioning (14-

18).  Considering the role of leucine in modulating mitochondrial abundance and function, the 

purpose of this research was to determine the effects of leucine on mitochondrial biogenesis, cell 

proliferation, and cell cycle regulation within cancerous cells.  
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Overview 

 Cancer is a prevalent and complex disease, characterized by the abnormal growth and 

spread of cells accompanied by multiple genetic mutations (1-2). In addition to these changes, 

one theory of cancer called the “Warburg Effect,” characterizes cancerous cells as having 

mitochondrial dysfunction, or a loss of mitochondrial abundance and function. Cancerous cells 

that exhibit the Warburg effect reduce reliance on mitochondria, and gain energy requirements 

outside of mitochondrial processes (1-4). Mitochondrial dysfunction is recognized as a hallmark 

of metabolic diseases and disorders, such as obesity, diabetes, and aging (5-7). Strategies for 

preventing and overcoming metabolic diseases are centered on restoration of abundant and 

functional mitochondria, termed metabolic reprogramming (5). Dietary and lifestyle strategies 

can impact metabolic reprogramming to restore mitochondria (5,7-8). 

The Role of Mitochondria in Health 

  In normal, eukaryotic cells, mitochondria are important for modulating cellular energy 

metabolism (4,7,8). To maintain its roles in respiration and metabolism, mitochondria house 

biochemical pathways essential for glucose and lipid metabolism. Mitochondria regulate 

respiration through the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), 

whereby cellular-derived reducing equivalents are converted to energy. Accordingly, upkeep of 

abundant, functional mitochondria is fundamental to life (4, 7-9). 

 Mitochondrial functions are regulated, in part, by changes in mitochondrial mass, such 

that decreased mitochondrial number contributes to a loss of function (5,8). “Mitochondrial 

biogenesis” occurs due to some external conditions including low temperature, caloric restriction 

of food/glucose, and physical activity (8).  These conditions have been shown to increase gene 
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expression of transcriptional co-activators. Of these, peroxisome proliferator-activated receptor 

gamma co-activator 1-alpha (PGC-1α) is the best understood, though other co-activators exist 

including PGC-1β, which modulates similar effects. PGC-1α is a transcriptional co-activator that 

increases mitochondrial biogenesis and oxidative phosphorylation through the replication and 

transcription of mitochondrial DNA (mtDNA) (5,8). To accomplish this, PGC-1α binds to 

nuclear respiratory factors 1 or 2 (NRF-1/2) to mediate these effects (8). Mitochondrial 

biogenesis, from overexpressed PGC-1α, is an event that has been shown to precede increased 

respiration within cells in vitro and in vivo (7). Knock-down of both PGC-1α and β in 

differentiated brown adipose tissue and mice lead to impaired ability to stimulate mitochondrial 

processes and result in shorter lifespan/ premature death (7). Additionally, this effect is seen in 

NRF-1 knock-down (5,8). In addition to NRF-1, other DNA binding factors interacting with 

PGC-1α include GA-binding protein (GABP), and peroxisome proliferator activated receptors 

(PPAR)α, δ, and γ. In general, PPARα and PPARδ regulate lipid oxidation, whereas PPARγ 

increases lipid biosynthesis and storage within adipose tissue (5,7-8). 

 Caloric restriction, physical activity, and/or severe cold signal through cAMP, nitric 

oxide (NO), Ca
2+

, or adenosine monophosphate-activated protein kinase (AMPK) to affect PGC-

1α’s transcriptional activity (7). AMPK responds to low cellular energy in the form of AMP in 

the cell. Stimulation of AMPK leads to phosphorylation and enhanced activity of PGC-1α (5,7-

8). Aside from these activators, many things have to occur to create abundant and functional 

mitochondria. In addition to the transcription and gene exchange that occurs inside of the cell, 

mitochondrial membrane biosynthesis must occur (7,8,10). 

 Mitochondrial DNA (mtDNA) is replicated and transcribed in the mitochondria. In 

mammalian cells, mtDNA encodes RNA and protein required for the formation of the ETC (7). 
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This genetic code is essential for maintaining respiration within the cell (5,7). In contrast, most 

of the DNA needed for mitochondrial-dependent oxidative phosphorylation and other 

mitochondrial processes are transcribed in the nucleus of the cell (7).  

 Cell cycle is a highly regulated process consisting of four stages G1, S, G2, and M (5,11).   

Mitochondrial biogenesis and transcription of mitochondria have been shown to occur early in 

the cell cycle, during G1 phase. During G1, cell cycle slows. Progression to S phase will not 

occur without a cellular signal that DNA is correctly encoded (1,7,11). Previous studies have 

shown that functional mitochondria are required for normal cell cycle, especially for the 

progression from G1 to S phase (5,7,10). Notably, mtDNA and NRF-1 have been shown to 

increase during the G1/S phase to G2 phase of cell cycle. In comparison, the S and G2/M phases 

do not require mitochondrial processes (7). Any cell with DNA damage or compromised 

function of oxidative phosphorylation will go into cell cycle arrest for DNA repair via the tumor 

suppressor gene, p53 (12). DNA damage that could not be repaired would be sent to organelle 

degradation through autophagy or apoptosis (5,7,11).  

Role of Glucose in Cellular Regulation 

 Dietary glucose consumption is a key regulator of mitochondrial pathways (5,8).  

Specifically, the level of glucose substrate determines the intercellular signaling between two 

metabolic pathways.  

 The first is the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian 

target of rapamycin (mTOR) signaling pathway. In response to insulin and insulin-like growth 

factor 1 (IGF1), PI3K and Ras become stimulated. Downstream, this stimulates Akt, which 

stimulates mTOR (5,13). Downstream, IGF-1/PI3K/Akt signaling favors cell survival and 

metabolism through the inhibition of forkhead box 01/3a (Fox01/3a), a mediator of normal 
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metabolism, cell cycle arrest, and apoptosis. The IGF-1/PI3K/Akt signal upstream regulates 

mTOR signaling (4). When growth factor and high glucose substrates are present, the signal of 

high energy activates mTOR to initiate gene transcription via hypoxia inducible factor 1α 

(HIF1α), peroxisome proliferator-activated receptor γ (PPAR-γ), and sterol regulatory element-

binding protein 1 and 2 (SREBP1/2) to favor glycolytic, adipogenic, and lipogenic enzyme gene 

transcription, respectively (4,5). These genes antagonize the effects on mitochondrial function 

and abundance (5). 

 On the other hand, stresses such as low energy, reduced glucose and DNA damage are 

communicated through the AMPK/PGC-1α signaling pathway (5). This pathway down-regulates 

glycolytic energy metabolism by blocking mTOR-mediated transcription and translation of 

glycolytic, adipogenic, and lipogenic genes in favor of transcription of genes needed for 

mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation (4,5). AMPK and 

Akt act opposite to modulate metabolism through sensing nutrients within the cell (5). Similar to 

AMPK, silent information regulator transcript 1 (SIRT1) senses low cellular NAD
+ 

levels. 

SIRT1 is an energy sensor dependent upon the low energy abundance of NAD
+
 in the cell (5,6). 

SIRT1 is a class III histone deacetylase that is a stimulator of mitochondrial biogenesis through 

PGC-1α deacetylation (5,13-16). As both sense low cellular energy, SIRT1 and AMPK 

activation can occur simultaneously (5). Thus, they both have been shown to modulate the 

downstream effects of oxidative phosphorylation and fatty acid oxidation (5,15).  

Caloric Restriction as a Model of Lifespan and Healthspan 

  Caloric restriction without malnutrition is the gold standard model of longevity and 

decreased risk of age-related disease in all organisms (5). Models such as yeast, worms, fruit 

flies, mice, non-human primates, and humans have demonstrated the effectiveness of caloric 
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restriction on reducing the incidence of age-related disease to promote lifespan and healthspan 

(5,6,17-20). Healthspan is the span of time that an organism is free of debilitating disease and 

disorder. (5,6). When comparing calorically restricted organisms to their normal consumption 

counterparts, most of the differences are in mitochondrial processes (5,6,19-20). The caloric 

restriction phenotype includes increased respiration, increased functional electron transport 

chain, insulin sensitivity, increased fat oxidation, and decreased ROS production  in vitro and in 

vivo (5,6,17-20).  

 SIRT1 has come to the forefront of age related disease and longevity studies (15,16). 

Research completed in yeast lead to the discovery of Sir2, homolog to SIRT1. Caloric restriction, 

induced through low glucose media, stimulated Sir2 expression and promoted longevity. Further, 

overexpression of Sir2 showed a longer lifespan within yeast, while knockout of Sir2 caused 

premature death (18-20). SIRT1 and AMPK, modulators of food restriction pathways, activate 

PGC-1α to promote mitochondrial function (5). NAD
+
-induced SIRT1 activation has been 

demonstrated to increase fatty acid oxidation, gene expression of ETC subunits, and PGC-1α 

(20). These findings correlate caloric restriction with signaling in the SIRT1/AMPK/PGC-1α 

axis. Thus, healthy mitochondrial metabolism, supported by mitochondrial abundance and 

function, are a hallmark of longevity and healthspan. On the other hand, age-related disease and 

premature death are related to increased, unregulated signaling via PI3K/Akt/mTOR (5,13). 

 But while caloric restriction has been shown to help modulate mitochondrial metabolism 

linked to longevity and heathspan, caloric restriction is difficult to adopt by humans (5,6). 

Accordingly, research to find a caloric restriction mimetic as a therapeutic is widely discussed in 

the literature. Anderson et al postulated that a caloric restriction mimetic would be any 

compound that activated SIRT1/AMPK/PGC-1α signaling (5). Of these, the most commonly 
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reviewed substance is the plant-based polyphenol, resveratrol (5,6,21,22). Previous studies using 

resveratrol have shown that it stimulates mitochondrial biogenesis through its SIRT1 target 

(5,22). Downstream, this leads to fatty acid oxidation and increased respiration (5,21). A human 

visceral adipocyte tissue culture study showed that resveratrol stimulated mRNA expression of 

SIRT1, FOX01, and adiponectin, while down-regulating PPARγ (21). This study demonstrates 

the energy partitioning effects of resveratrol to mediate blocked adipogenesis via increased Fox0 

and decreased PPARγ, while increasing the adipokine, adiponectin, and SIRT1 expression for 

mitochondrial function (21). 

Cancer as a Metabolic Disorder: The Warburg effect 

 Abundant and functional mitochondria play a role in cellular energy metabolism, and 

may be lost in metabolic disorders (1). The theory that cancer is a metabolic disease, or one 

characterized by impaired cellular energy metabolism, is becoming more accepted (1-3). A 

theory that classifies most cancer cells as having partial mitochondrial dysfunction is called the 

“Warburg Effect”. Specifically, the energy metabolism of most cancer cells are achieved through 

aerobic glycolysis/substrate level phosphorylation yielding 2 ATP and lactate, while normal 

cellular energy metabolism is achieved through mitochondrial oxidative phosphorylation 

yielding 30/32 ATP (1). Through substrate level phosphorylation, cancer cells achieve energy 

requirements in an inefficient way, but gain unregulated amounts of glucose and reducing 

equivalents (NADPH) for proliferation (1-3,23). The products of aerobic glycolysis, lactate and 

NADPH, are utilized by neighboring cells to convert them to cancerous cells. It is believed that 

cells that exhibit the Warburg effect switch their metabolism to maintain respiration to avoid 

signaling for an apoptotic cascade (1).  

 While the Warburg effect modulates mitochondrial dysfunction, it is disputed whether 
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cellular mitochondria have a reversible loss of function (1,3). What is certain is that 

mitochondrial genes are mutated and down-regulated, shutting down oxidative phosphorylation 

and the TCA cycle (1,13). Previous studies have determined that unregulated signaling via 

PI3K/Akt/mTOR is a cause for a cell’s switch in energy metabolism (13,24,25). This signaling 

occurs due to the increased ATP and NADH made available through aerobic glycolysis (1). 

Akt/mTOR-dependent signaling has been shown to initiate glycolytic metabolism that shuts 

down mitochondrial function. This has been demonstrated to convert normal cells to aerobic 

glycolytic/Warburg metabolism (24). Another hallmark of cancer cells, multiple genomic 

mutations, cause the loss of tumor suppressors and overexpression of tumor promoters, helping 

the cell achieve energy requirements. It has been demonstrated that, in the presence of high 

glucose, unregulated IGF-1/PI3K/Akt/mTOR signaling will favor transcription of glycolytic, 

adipogenic, and lipogenic genes (22,24). Tumor promotion studies in mice have shown that 

tumor progression occurs in cells that have lost the functionality and ability to generate 

functional mitochondria (1). Accordingly, when the conditions of the Warburg effect are 

applicable, the focus of cancer research is to promote respiration and induction of oxidative 

metabolism through the restoration of mitochondrial abundance and function (1,2,13,14). 

 In addition to glucose, glutamine is a substrate preferred by cancer cells. Glutamine 

degradation, termed “glutaminolysis”, can feed into a cancer cell and give net rise to glucose via 

gluconeogenesis (1,5), generate NADPH through malic enzyme (25), or participate in nucleotide 

biosynthesis (5). Glutamine can be used to synthesize glutamate, to feed directly into the TCA 

cycle via α-ketoglutarate, and is considered a preferred substrate by cancerous cells (1,4,25,26). 

Previous studies have shown that when glucose is deprived, glutamine degradation is up-

regulated; alternatively, when glutamine is restricted, glucose utilization is increased (25). 
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Human advanced cancer patients exhibit glutamine depleted stores (26). Glutamine utilization 

has been shown to be regulated according to the cell cycle. Enzymes that break down glutamine 

are highly expressed in the S phase, and decreases with progression into the G2/M phase (25). 

Additionally, increased and unregulated IGF-1/PI3K/Akt/mTOR mediates HIF-1α transcription 

of glucogenic enzymes including hexokinase and GLUT1 (26).  

 Not all cancer cells exhibit the Warburg Effect, nor is it seen exclusively in cancer cells 

(7,14). The Warburg Effect is also exhibited in pluripotent stem cells, or cells that undergo 

constant replication prior to differentiation into mature cells (3,7). Maturation of stem cells 

occurs in response to growth factors. When examining the differences between stem cells and 

cell lines after differentiation, it was found that stem cells lack fully developed mitochondria, 

exhibited reduced mitochondrial function, and contain less DNA (14). Additionally, stem cells 

exhibit lower oxygen consumption, perhaps due to an increased glycolytic metabolism (4,14). 

Specifically, it was determined that stems cells have an up-regulation in hexokinase enzyme 

transcription but low pyruvate dehydrogenase complex(PDC)-specific enzymes. These enzymes 

are effective in breaking down glucose, but not transporting them to the TCA cycle or ETC (14). 

p53 and Tumor Suppression 

The tumor suppressor gene p53 functions in normal cellular energy metabolism through 

its roles in apoptosis, genetic monitoring, and mitochondrial regulation (1,27-29). Because p53 

has important roles in cell cycle regulation, tight regulatory control of p53 occurs in the cell (30). 

Regulation of p53 expression is maintained through MDM2, a mediator of protein ubiquitination. 

Additionally, p53 activity seems to be regulated through increases of acetylation on lysine 

residues (30,31). Differences in acetylation have been determined for p53’s roles in cell cycle 

regulation (30). For example, a weak p53 signal may lead to senescence, while an abundance of 
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p53 leads to cell cycle arrest (29).   

 It has been noted that p53 is deleted, mutated, or directly deactivated in the majority of 

human cancers (1). This event is accompanied by a decrease in mitochondrial respiration and a 

switch toward aerobic glycolysis (5). In mouse models, p53 deficiency was accompanied by 

decreased mitochondrial metabolism, reduced respiration, and increased ROS production (5). 

Persistent mitochondrial dysfunction leads to p53 suppression in cancerous cells (27). Further, 

p53’s target, TIGAR (TP53-induced glycolysis and apoptosis regulator) down-regulates 

glycolysis by lowering fructose 2,6 bisphosphate (32); in this context, a loss of p53 function 

would augment glycolysis (1). 

 While p53 has a role in regulating cellular respiration, p53’s signaling pathway leads to 

one of three of the following events: autophagy, cell cycle arrest or apoptosis. These three 

signaling pathways are regulated by glucose, growth factors, mTOR signaling, and DNA damage 

(5,13,27). 

 In response to low energy, glucose restriction, and DNA damage, autophagy is induced 

rapidly in normal cells (14). Under these conditions, AMPK is up-regulated, while mTOR is 

down-regulated. This promotes p53-dependent regulation of autophagy to engulf dysfunctional 

cellular organelles through lysosomal processes (14,32). This process, necessary for normal 

cellular turnover, is down-regulated by mTOR (7,13).   

 In response to reversible DNA damage translated through pro-arrest genes and cofactors, 

an accumulation of p53 will initiate cell cycle arrest (11).  Under these conditions, p53 

translocates to the nucleus, where it initiates the transcription of p21 (11,12). Downstream, p21 

expresses a cyclin dependent kinase (CDK) that attaches to accumulating cyclins needed for cell 

cycle progression. The association of CDK 2 decreases bound cyclin A or E to arrest cell cycle. 
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CDK 4/6 attaches to cyclin D. The decrease in cyclin D or E expression cause G0/G1 phase 

arrest, while cyclin A arrest occurs in the S phase (1,30). p21 knockout mice are unable to arrest 

the cell in the G1 phase, while p53 deficient mice made very little p21 (30). 

 p53 also regulates cell cycle through apoptosis via two different pathways: transcription-

dependent apoptosis and transcription-independent apoptosis (1,29,30).  Transcription-dependent 

apoptosis involves p53 translocation to the nucleus, where it initiates apoptotic cofactors and 

transcribes apoptotic genes BAX, PUMA, and NOXA. At the same time, p53 blocks anti-

apoptotic genes, such as survivin (11). On the other hand, p53 regulates transcription-

independent apoptosis through mitochondria. This form of apoptosis involves p53 translocation 

to the mitochondria where it binds to Bcl-2, activates Bax and Bak, and initiates a caspase-

mediated apoptosis (11). This process is unique in that it activates the release of cytochrome c 

from the mitochondria to the cytoplasm for cell death initiation (30). 

SIRT1 and p53 

 The first known non-histone target for SIRT-1 is p53, though other targets exist including 

Forkhead box 0 and PGC-1α (15,16). Regulation of p53 activity occurs through acetylation (30). 

SIRT1 deacteylation of p53 reduces p53 activity, and blocks p53 translocation to the nucleus for 

transcription-independent regulation of cell cycle and cell cycle arrest. When SIRT1 is activated, 

p53-mediated regulation of cell cycle occurs through autophagy or mitochondrial-dependent 

apoptosis to regulate cell cycle (5,30). Due to the negative regulation of p53, SIRT1 has been 

hypothesized to be a tumor promoter within cancer signaling (30). SIRT1 repression of p53 

causes reduced expression of the microRNA (miRNA) 34a, a potential tumor suppressor that 

helps with p53 induction of apoptosis. Interestingly, miRNA34a can down-regulate SIRT1 

expression (30). Additionally, SIRT1 may act as a tumor promoter in cells that exhibit the 
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Warburg effect. SIRT1 knock-down in 3 glioma cell lines was associated with cell cycle arrest in 

the G1 phase and apoptosis via caspase 3 and 7 pathways, while overexpression promoted 

growth and proliferation (34).  These findings are similar to longevity studies that show that 

SIRT1 mediates longer lifespan and knock-down of SIRT1 results in premature death (5,6). One 

study found that SIRT 1 was significantly up-regulated in skin biopsies that were normal, 

premalignant, and tumorous (35). Accordingly, these authors determined that niacin (NAD) 

dietary restriction inhibited SIRT1, and slowed cell differentiation in a skin reconstruction model 

in vitro. These studies demonstrate that SIRT1 expression may be an unwanted event in cell 

signaling of cells that exhibit the Warburg effect. SIRT1 as a tumor suppressor has been reported 

as well. In a study by Lynch et al, an isoform of SIRT1 regulated p53 through acetylation, but 

was repressed by p53 under certain conditions in a mouse model (33).  This study shows that 

SIRT-1 and p53 can regulate each other. 

Leucine’s Modulation on Energetics 

The branched-chain amino acid, leucine, has a unique signaling role in the cellular energy 

metabolism of normal adipocyte and skeletal muscle cells, in vivo and in vitro. In these cells, 

leucine signaling roles include stimulation of mitochondrial biogenesis through SIRT1-mediated 

processes, fatty acid oxidation, and p53 expression (36-41). Previous studies in the Zemel lab 

have demonstrated leucine’s ability to stimulate mitochondrial biogenesis in adipocyte and 

skeletal muscle, and this signaling has an energy partitioning effect within the body that favors 

fatty acid oxidation in adipocytes, while increasing protein muscle synthesis via mTOR 

activation (38,41). Furthermore, leucine promotes and calcitriol suppresses these effects. 

Research from our lab has determined that leucine stimulated increases in mitochondrial mass 

30% in adipocytes and 50% in skeletal muscle cells (37-40). Similarly, leucine signaling was 
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found to inhibit adipocyte storage by suppressing fatty acid synthase (FAS) and PPARγ, while 

stimulating adiponectin release. Instead, skeletal muscle cells utilize energy generated by fatty 

acid oxidation for protein synthesis (39).  

 Recent data demonstrate that leucine’s stimulation of mitochondrial biogenesis is through 

leucine’s metabolite β-hydroxy-β-methylbutyrate (HMB), independent of mTOR (42-44). 

Leucine is metabolized to α-ketoisocaproic acid (KIC) via a transamination reaction. KIC has 

two metabolites, isovaleryl-CoA and HMB. Of these, isovaleryl-CoA is formed most of the time, 

about 85%, while HMB creation occurs ~15%. Roughly 5-10% of leucine is converted to HMB 

after calculating metabolic loss (42,43). Additionally, leucine, HMB, and KIC significantly 

stimulate SIRT1 activity, while the branched-chain amino acid control valine did not (44). 

Leucine has been shown to stimulate SIRT-1 activity, an activator of PGC-1α to initiate 

mitochondrial biogenesis within these cells. These results are accompanied by increased gene 

expression of SIRT1 and the increased mitochondrial component genes, including uncoupling 

protein 2 (UCP-2), PGC-1α, NRF-1, mitochondrial NADH dehydrogenase (mtND1), and nuclear 

encoded subunit (NDUFA) (39,41,44,45). These genes verify that an increase in mitochondrial 

number, rather than mass occur from leucine signaling (40,41).  

 Leucine is well known to stimulate protein muscle synthesis via mTOR-dependent and 

independent mechanisms (42,46,47). Leucine is sensed through mTOR, and participates in the 

ribosomal initiation phase of translation, which encodes mRNA into amino acids for protein 

(24). Leucine is a substrate for mTOR-dependent stimulation of protein muscle synthesis by 

causing the association of the eukaryotic initiation factor-4E (eIF4E) and S6 ribosomal protein 

(24,46).  Under mTOR-independent stimulation, protein muscle synthesis is mediated by 

leucine’s activation of eIF4G (the eukaryotic initiation factor-4G) (46). Previous studies from the 
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Zemel lab have shown that leucine may initiate fatty acid oxidation due to its costly roles in 

protein muscle synthesis (41). Leucine supplementation has been shown to stimulate protein 

synthesis via insulin-independent mechanisms. In rats under long-term food deprivation, diets of 

leucine or leucine + carbohydrate caused increases in insulin. Whereas a leucine + carbohydrate 

diet increased insulin for 60 minutes, leucine’s impact was much smaller and returned to basal 

amounts in 30 minutes. A small increase in insulin may help protein muscle synthesis occur, as 

when pancreatic insulin release was kept at fasting basal levels using a somatostatin clamp, 

skeletal muscle was reduced in this model (46).   

Substrates investigated in Cancer Therapy 

 In addition to our studies that demonstrate leucine’s roles in initiating mitochondrial 

metabolism through the stimulation of mitochondrial biogenesis, fatty acid oxidation, and p53 

signaling, previous studies have shown that leucine supplementation can be helpful in cancer 

therapy (44,45). Leucine and its metabolite HMB have been implicated directly for its roles in 

protecting cancer-induced cachexia in in vivo models. One showed that leucine supplementation 

in animal feed was able to dose-responsively maintain muscle mass in cancer cachectic mice 

(47), a role that may be enhanced with basal insulin conditions needed for the Warburg effect 

(46). These strategies have been adopted in athletic muscle building (24, 46). Further, a growing 

body of data promotes the role of a “Warburg Diet”, better known as a ketogenic diet (1). 

Increased gluconeogenesis is observed in cancer-induced cachexia (46). The ketogenic diet is a 

fat and protein-based diet that has been hypothesized to increase longevity and better outcomes 

within cancer patients (1,23, 46). Under the conditions of the Warburg Diet, the body can 

maintain normal functioning through the use of ketone bodies. Leucine’s metabolites KIC and 

HMB offer a ketone body to promote this metabolism (23,46). Of the cancers researched, brain 
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cancer seems to be the most impacted by glucose restriction (1). Thus, leucine may have a 

protective role and unique signaling role in tumorigenesis.  

  On the other hand, leucine has been showed to be a preferred substrate to cancerous cells. 

In a study using labeled methionine, leucine, and tyrosine, the tumorous uptake of leucine was 

the highest (46). Authors postulate that branched-chain amino acid degradation may donate 

nitrogen needed for biosynthesis of glucogenic amino acids for utilization in aerobic glycolysis 

(46). 

  Despite the numerous unique signaling roles in normal tissue, leucine’s role in protein 

muscle synthesis via mTOR-dependent mechanisms has received the most attention in the cancer 

field. Leucine deprivation and toxicity have been used to study its roles in tumorigenesis. In an in 

vitro study in four melanoma cell lines, leucine deprivation was shown to increase caspase-3-

mediated apoptosis (48). Further, a leucine-deprivation diet in vivo significantly increased 

apoptosis in melanoma xenografts placed in immunocompromised mice (48). On the other hand, 

leucine deprivation in 8 different breast cancer cell lines was unable to stop mTOR/Akt signaling 

(49). One study showed the impact of a toxic dose of leucine on cancer growth.  Leucine at doses 

10 mM and 60 mM were able to induce cell cycle arrest in the G0/G1 phase in glioma cells, but 

not at 1 mM. Further, this data shows the ability of leucine (dose 10 mM) signaling to promote 

cell cycle arrest over alanine, valine, and isoleucine at similar concentrations, but not cause an 

apoptotic event in cells that exhibit the Warburg effect (50). This dose likely exceeds a level that 

is normally achievable through diet. In a supplementation study in healthy young males, leucine 

given at a dose 25 times the estimated average requirement (EAR) (a dose equivalent to 87.5 

grams of leucine in a 70kg male) raised blood leucine levels to 2 mM, well below  the 10 and 60 

mM doses used in the previously described study (51), making them physiologically 
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unachievable. Moreover, leucine doses in excess of fifteen times the EAR lead to elevated blood 

ammonia levels that were considered dangerous (51). These data support that suppression of 

mTOR through leucine deprivation may be beneficial for the treatment of some cancer cell lines, 

but that normal or increased intakes of leucine may protect from muscle wasting.  

  Previous studies have shown that a loss of p53 expression occurs with mTOR activation 

(5,13). A-375 melanoma cells, a cell line that exhibits the Warburg effect, was found to exhibit 

wild-type p53 (52). A study demonstrated that A-375 melanoma cells administered UV radiation 

damage had increased p53 and p21. These cells inhibited replication by 75% and sent roughly 

15% of cells to apoptosis via nuclear-mediated mechanisms (53). Interestingly, nuclear p53 

would be decreased during SIRT1 activity, a signaling role exemplified by leucine (13,30,41). 

Thus, leucine’s signaling roles in these cells may rely on mitochondrial-dependent/ transcription-

independent apoptosis.    

 Accordingly, leucine may have a role in modulating normal energy metabolism through 

its effects on mitochondrial biogenesis and fat oxidation. These effects, combined with 

protection from muscle wasting and p53 mediation of cell cycle, may “reverse” the Warburg 

effect. Leucine’s modulation on energetics may lead to tumor suppressive effects in cancer cells 

exhibiting the Warburg effect by altering cellular respiration through mitochondria. This study 

aims to determine the effects of leucine and HMB treatment on mitochondrial biogenesis in a 

cancer cell line that exhibits the Warburg Effect in vitro. To accomplish this, the cancer cell line 

A375 (melanoma) will be treated with leucine, HMB, valine, and alanine and mitochondrial 

biogenesis will be measured via NAO fluorescence. Mitochondrial biogenesis will be measured 

throughout one replication of cells. In this study, valine serves as a branched-chain amino acid 

control and alanine serves as a non-branched-chain amino acid control. Because these cells use 
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glucose as their primary substrate, this experiment will be repeated in media containing reduced 

glucose. Additionally, this study will determine the effects of leucine and HMB on cell 

proliferation and cell cycle arrest in A375 melanoma cells. To accomplish this, the A375 cell line 

will be treated as previously described. Cell proliferation will be measured via cell number using 

flow cytometry after 1 and 2 doubling times. Cell cycle arrest will be measured for cell number 

via flow cytometry and for cell cycle and gene expression via RT-PCR. Cancer cells will be 

measured for cell cycle regulation via p53, p21, and Cyclin D. 
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Abstract 

  Most cancer cells undergo the Warburg effect, a shift from oxidative to glycolytic 

metabolism accompanied by suppression of p53. We have demonstrated leucine stimulation of 

mitochondrial biogenesis, fatty acid oxidation, and p53 expression in both muscle and fat cells. 

Accordingly, we now sought to determine if leucine stimulates mitochondrial biogenesis and exit 

from cell cycle in A-375 melanoma cells. Because these cells use glucose as their primary 

substrate, cells were grown under both standard (11.1 mM) and reduced (5.5 mM) glucose 

conditions. Increasing glucose reduced mitochondrial mass 50-60%, and accelerated cell 

proliferation by ~20%. Leucine (0.25, 0.5, 0.75, and 1.0 mM) dose-responsively increased 

mitochondrial mass 20-40% (p<0.05) under low glucose; its metabolite beta-hydroxy-beta-

methyl butyrate (50 µM) exerted similar effects, while amino acid controls valine and alanine 

exerted little effect. Treatments were without significant effect under high glucose conditions. 

Despite the increase in mitochondrial mass at low glucose, treatments exerted no effect on cell 

proliferation, p53, p21, or cyclin D. Thus, although both glucose reduction and increased leucine 

stimulate mitochondrial biogenesis, these effects are insufficient to stimulate p53, induce cell 

cycle arrest, or reduce proliferation in A-375 melanoma cells.  

Introduction 

 Cancer is widely accepted as a metabolic disorder, characterized by the loss of functional 

mitochondria needed for normal cellular energy metabolism (1). The “Warburg effect” is a 

theory that classifies most cancer cells as having mitochondrial dysfunction that switches cellular 

energy metabolism from catabolic oxidative metabolism to one of anabolic glycolytic 

metabolism (1,2,3). While glycolytic metabolism provides an inefficient energy source, this 

serves to preserve carbons and reducing equivalents needed for further growth and proliferation 
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(1). In the majority of human cancers, the Warburg effect is accompanied by suppression of the 

tumor suppressor gene, p53. Under normal cellular energy metabolism, p53 is expressed and 

controls glucose utilization and monitors normal cell cycle (2,3,4). Thus, p53 deficiency is 

associated with a metabolic switch away from respiration toward glycolysis (1,3,4,5). When the 

conditions of the Warburg effect are applicable, the focus of cancer research is to restore 

mitochondrial function and abundance (1).  

 A growing body of data from our lab has demonstrated the unique signaling roles of 

leucine in the cellular energy metabolism of normal adipocyte and skeletal muscle cells, in vivo 

and in vitro (6,7,8). In these cells, leucine signaling roles include increased muscle protein 

synthesis via the mammalian target of rapamycin (mTOR) pathway (9), stimulation of 

mitochondrial biogenesis and fatty acid oxidation (7,10) as well as for p53 (6). Recent data 

demonstrate that leucine’s stimulation of mitochondrial biogenesis is dependent upon stimulation 

of SIRT-1 (Silent information regulator transcript 1), a class III histone deacetylase that is 

NAD
+
-dependent (7,8,10). Further, the leucine/SIRT-1 signaling pathway acts through leucine’s 

metabolite β-hydroxy-β-methylbutyrate (HMB)(11,12,13). Leucine has been shown to stimulate 

SIRT-1, an activator of the mitochondrial regulator, PGC-1α (peroxisome proliferator activated 

receptor gamma co-activator 1 alpha), which is associated with the initiation of mitochondrial 

biogenesis and fat oxidation in fat and skeletal muscle cells (5,7,8).  

 The present study examines the effects of leucine and HMB on A-375, a human skin 

malignant melanoma cell line that exhibits the Warburg effect.  Because these cells utilize 

glucose as their primary substrate (1,2,3,4), cells were grown in both standard glucose conditions 

(11.1 mM) and reduced glucose conditions (5.5 mM) which model post-prandial and fasting 

conditions, respectively. This study is predicated on the notion that leucine via mitochondrial 
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biogenesis will reverse the Warburg effect by shifting cellular energy metabolism towards fat 

oxidation, accompanied by stimulation of p53 and its downstream effectors. Accordingly, the 

objective of this project is to (a) determine whether leucine and HMB stimulate mitochondrial 

biogenesis in this cell line, and (b) to determine the tumor suppressive effects of leucine and 

HMB, in this cell line.  

Materials and Methods 

Cell Culture 

 A375 cells, a human skin malignant melanoma cell line (American Type Culture 

Collection) were grown to 100% confluency in either standard glucose conditions or reduced 

glucose conditions containing 10% fetal bovine serum and 1% antibiotics at 37°C in 5% CO2. 

Dulbecco’s Modified Eagles Medium (Glutamax) was used for standard glucose conditions. 

These conditions are hyperglycemic in nature containing 11.1 mM glucose, and reflect a blood 

glucose level similar to that of 200 mg/dL. Cells grown under standard glucose conditions had a 

doubling time of 6 hours, as determined using flow cytometry. These experiments were repeated 

in reduced glucose conditions (5.5 mM), using Dulbecco’s Modified Eagles Medium. This media 

differs from standard glucose conditioned medium only in reduced glucose content. Cells grown 

in reduced glucose conditions had a doubling time of every 9 hours, as determined by flow 

cytometry.  

Treatment of cells 

 Leucine, HMB, valine, and alanine were freshly diluted in standard glucose medium and 

reduced glucose medium before treatment. Cells were counted using a hemocytometer and were 

plated at very low density (36 cells/mL) to prevent overgrowth after adherence. Cells were 
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washed with fresh medium and re-fed with medium containing one of the following treatments: 

0.25, 0.5, 0.75, 1.0 mM leucine, 0.05 mM HMB, 0.5 mM valine, 0.5 mM alanine. HMB served 

as a positive control in this study. Valine and alanine served as negative controls in this study. 

Valine served as a branched-chain amino acid control, and alanine served as a non-branched-

chain amino acid control. Cells were grown in media as an additional control for treatment 

comparison. After treatment, cells were incubated at 37°C in 5% CO2 until harvest.  

Doubling time and Proliferation 

 Doubling time and cell proliferation were assessed using flow cytometry. The 

mitochondrial probe mitotracker green (Invitrogen, Carlsbad, California, USA) was used to 

analyse doubling time and cell number by fluorescence (excitation 490 nm and emission 516 

nm). To prevent mitochondrial toxicity or other structural staining, probes were used according 

to manufacturer’s instructions. Quantitative data was obtained using flow cytometry (BD Accuri 

C6. Franklin Lakes, NJ).  

Mitochondrial mass 

 The mitochondrial probe nonyl-acrydine orange, NAO (Invitrogen, Carlsbad, California, 

USA), was used to determine mitochondrial mass via fluorescence (excitation 485 nm and 

emission 520 nm). First, a dose response curve of leucine was conducted to determine the effects 

of leucine on mitochondrial biogenesis. Leucine at 0.5 mM is achievable physiologically after a 

high protein meal, thus treatments (valine and alanine) were administered at comparable 

concentrations (0.5 mM). It is also noted that roughly 5-10% of leucine is converted to HMB. 

Accordingly, HMB was delivered at a concentration of 0.05 mM, or 10% of leucine. Quantitative 
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data was obtained with a fluorescence microplate reader (Packard Instrument, Downers Grove, 

Illinois, USA). The mean fluorescent intensity was expressed as units per �g of protein.  

Total RNA Extraction. 

 A total cellular RNA extraction kit (Ambion, Inc., Austin, Texas) was used to isolate 

RNA from cells according to the manufacturer’s instructions. The concentration, purity and 

quality of the RNA was assessed quantitatively via the 260/280 ratio (1.7-2.0) and 260/230 ratio 

(close to 2.0) acquired from a ND-1000 Spectrophotometer (NanoDrop Technologies Inc., DE). 

Gene expression. 

 Expression of p53, p21, and cyclin D was measured via real-time polymerase chain 

reaction using an ABI 7300 Real-Time PCR system (Applied Biosystems, Branchburg, NJ) with 

a TaqMan
®
 core reagent kit according to manufacturer’s instructions.  Primers and probes were 

from Applied BiosystemsTaqMan
®
 Assays-on-Demand and used according to manufacturer’s 

instructions.  RNA was diluted in the range of 1.5625-25 nanograms and used to establish a 

standard curve. Expression of each gene was normalized using 18S quantitation, and data for 

each gene is presented as a ratio to 18S. 

Doubling time and time-course of this study 

   The doubling time of A-375 melanoma cells vary, but are usually 6-12 hours (14).  Cell 

doubling time was determined via flow cytometry to best predict cell cycle to determine the 

time-course used in this study. Cells grown under standard glucose conditions had a doubling 

time of 6 hours, while cells grown in reduced glucose conditions had a doubling time of every 9 

hours. Accordingly, to measure cell proliferation, cells were tracked at consistent doubling times. 

Cells grown in standard glucose conditions had doubling time measured at 8 and 16 hours to 
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capture changes after one doubling time in these cells. Similarly, proliferation of A-375 cells 

grown in reduced glucose conditions was tracked at 9 and 18 hours. 

  Mitochondrial biogenesis has been shown to begin early within the G1 phase of cell 

cycle. Accordingly, cell mitochondrial biogenesis was measured in the middle of the cell cycle, 

at one doubling time, and after one doubling time of these cells. In standard glucose conditions, 

mitochondrial biogenesis was measured at 4, 8, and 24 hours. In reduced glucose conditions, 

mitochondrial biogenesis was measured at 6, 9, and 12 hours. To capture a change in gene 

expression, cells were harvested in the middle of cell cycle and at the next doubling time.  

Accordingly, cells grown under standard glucose conditions were harvested at 4 and 8 hours, 

while cells grown under reduced glucose conditions were harvested at 9 and 18 hours.  

Statistical analysis. 

 All treatment group data is shown as a mean ± SEM, with n≥6 in experimental groups. 

Data was evaluated using a one-way ANOVA and Tukey’s post-hoc comparison of experimental 

treatment groups using SPSS software (IBM SPSS Statistics 19. SPSS Inc. Chicago, IL). 

Treatment was considered significant at p≤0.05. 

Results 

Mitochondrial Mass 

 Mitochondrial mass was determined in cells treated with various concentrations of 

leucine (0.25 mM, 0.5 mM, 0.75 mM, and 1.0 mM). Treatments were compared to cells grown in 

media. Leucine treated cells grown in standard glucose conditions (11 mM glucose) showed no 

significant change in mitochondrial mass when compared to cells grown in media (Figure 1A).  

 In contrast, leucine treated cells dose responsively stimulated mitochondrial biogenesis 
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by 20-40% under reduced glucose conditions when compared to the control (Figure 1B). At 6 

hours, all concentrations of leucine significantly stimulated mitochondrial biogenesis (p<0.01), 

and at 9 hours, cells treated with 0.5 mM of leucine, 0.75 mM leucine, and 1.0 mM leucine 

significantly stimulated mitochondrial biogenesis (p<0.01). At 12 hours, cells treated with 0.5 

mM and 0.75 mM leucine significantly stimulated mitochondrial biogenesis. At this timepoint, 

the relative number of mitochondria per cell is reduced due to cells doubling.   

 Figure 1C shows treatments of leucine, valine, alanine, and HMB grown under standard 

glucose conditions and compared to the control. Treatments are expressed as a percent of the 

control. In standard glucose conditions, treatments had no significant induction or reduction in 

mitochondrial mass at 4 and 8 hours (Figure 1C).  

 In reduced glucose conditions, all treatments significantly stimulated mitochondrial mass 

at 6 hours (Figure 1D). At 9 hours, HMB and leucine significantly stimulated mitochondrial 

mass when compared to the control. At 12 hours, only leucine significantly stimulated 

mitochondrial mass when compared to the control (p<0.01).  

  These results demonstrate that in reduced glucose conditions, all treatments and doses 

stimulated mitochondrial mass in these cells at 6 hours. Additionally, leucine treatment at 

physiological concentrations significantly stimulated mitochondrial mass throughout one 

replication of A-375 melanoma cells. 
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Cell number 

  To determine the effects of leucine-stimulated mitochondrial biogenesis on cell 

proliferation, treated cells were grown in standard and reduced glucose conditions. Cell number 

was determined at two consecutive doubling times for these cells. Any significant reduction in 

cell number from the control, and from the first doubling time to the next could indicate a 

significant treatment effect.  

  In standard glucose cells, there was no significant treatment effect at 8 and 16 hours 

(Figure 2A). In reduced glucose A375 cells, there was no significant difference between groups 

at 9 hours and at 18 hours (Figure 2B). These data show that despite leucine and HMB’s ability 

to stimulate mitochondrial biogenesis in reduced glucose conditions, leucine and HMB-treated 

cells had no significant reduction in cell number. 
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Cell cycle Markers 

 Treatments had no effect on cell number. Next, we wanted to see the effects of treatments 

on cell cycle arrest in A-375 melanoma cells.  Treated cells were grown in standard and reduced 

glucose conditions, and mRNA expression for p53, p21, and cyclin D were determined. In 

standard glucose conditions, cells were harvested in the middle of the cell cycle, and at one 

doubling time to capture changes in gene expression throughout one replication of the cell cycle. 

Gene expression for cells grown in reduced glucose conditions was determined at 9 and 18 hours 

to capture the effects of mitochondrial biogenesis on gene expression. 

 In A375 cells grown in standard glucose conditions, there was no significant difference 

between treatment groups for p53 expression at 4 hours and 8 hours (Figure 3A and B).  Figure 

3A shows mRNA counts. These values are set as a percent of the control in Figure 3B. In 

reduced glucose A375 cells, there was no significant impact of leucine or HMB on p53 

expression at 9 hours and 18 hours (Figure 3C and D). Interestingly, at 9 hours, valine-treated 

cells had significantly increased p53 expression when compared to the control (p=0.024). At 18 

hours, valine and alanine had significantly decreased expression of p53 when compared to the 

control (p=0.008). Figure 3C shows mRNA counts, and Figure 3D shows these results as a 

percent of the control.  
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 Mitochondrial biogenesis occurs early in the cell cycle, in the G1 phase. Accordingly, we 

measured cyclin D1 gene expression, a marker of G1 cell cycle arrest, at a timepoint in the 

middle of the cell cycle and after one doubling time of these cells. Significantly reduced cyclin D 

expression at both time points is a measure of reduced cell cycle progression to the S phase.  

  In A375 cells grown in standard glucose conditions, there was no significant impact of 

leucine and HMB treatment on a reduction in cyclin D expression at 4 and 8 hours. The percent 

fold of the treatments above or below the control follows the trend of p53 expression of cells 

grown under standard glucose conditions. Figure 4A shows mRNA counts, while Figure 4B 

shows the treatments as a percent of the control.  

 In reduced glucose conditions, leucine and HMB treatment had no significant impact on 

cyclin D expression at 9 and 18 hours (Figure 4C and D). Figure 4C shows mRNA counts, while 

Figure 4D shows the treatments as a percent of the control. At 18 hours, all treatments reduced 

gene expression of cyclin D, especially alanine (p=0.015), leucine, and valine which reduced 

cyclin D expression by 61%, 37%, and 46%, respectively from control cells.    
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 Gene expression of p21 and SIRT1 were determined in A375 cells grown in reduced 

glucose conditions.  

  In A375 cells grown in reduced glucose conditions, there was no significant impact of 

leucine and HMB on p21 expression at 9 hours. At 9 hours, all treatments produced an increased 

expression of p21 in cells when compared to media control. At 18 hours, all treatments produced 

a decreased expression of p21 in cells when compared to the media control, while alanine, 

leucine, and valine were significantly decreased by 74%, 52%, and 53%, respectively (p=0.005). 

The trends observed in these cells follow that of p53 expression in cells grown in reduced 

glucose conditions. Figure 5A shows mRNA counts, while Figure 5B shows treatments as a 

percent of the control. 

 Figure 5C shows SIRT1 mRNA counts for A375 cells grown in reduced glucose 

conditions at 9 hours. When compared to the control, leucine treated cells exhibited a modest 

increase in SIRT-1 expression at 9 hours, though treatments had no significant impact on SIRT-1 

gene expression (Figure 5D).  
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 These data indicate that treatments were able to stimulate mitochondrial biogenesis under 

reduced glucose conditions, but that leucine and HMB-stimulated mitochondrial biogenesis 

persisted through one replication of A375 cells. Stimulation of mitochondrial biogenesis was 

insufficient to stimulate p53 or subsequent exit from cell cycle in these cells. 

Discussion 

 This study was predicated on the notion that the observed effects of leucine to stimulate 

mitochondrial biogenesis and correct metabolism in normal tissue would be extended to 

cancerous cells exhibiting the Warburg Effect. The results show that when glucose is reduced, 

leucine treated cells were able to stimulate mitochondrial biogenesis throughout one replication 

of A375 cells. However, early in the cell cycle at 6 hours, alanine and valine, amino acids that 

served as negative controls, significantly stimulated mitochondrial biogenesis when compared to 

the control. Additionally, leucine stimulation of mitochondrial biogenesis in these cells was not 

accompanied by a significant decline in cell number, p53-mediated regulation of cell cycle, or a 

metabolic shift. 

 Despite leucine’s potential roles in combating metabolic diseases through the restoration 

of mitochondrial function and abundance (6-11), leucine was without an effect on this cancer cell 

line. The amino acid controls used in this study, alanine and valine are gluconeogenic (15,16). In 

addition to its potential roles in metabolic reprogramming, leucine was hypothesized to impact 

cancer growth due to its previously described signaling roles in normal tissue and classification 

as an exclusively ketogenic amino acid. Leucine’s metabolic products acetoactetate and acetyl 

CoA cannot serve as a substrate for aerobic glycolysis (16). Our findings show that leucine’s 

impact on cell proliferation and mRNA expression of p53, p21, and cyclin D closely resembles 
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that of the negative controls. It has been previously suggested that leucine may be a preferred 

substrate to cancerous cells. In a study using labeled amino acids methionine, leucine, and 

tyrosine, the tumorous uptake of leucine was the highest (15). Authors postulate that while 

leucine may not feed directly into glucose metabolism, branched-chain amino acid degradation 

may donate an amino group needed for biosynthesis of glucogenic amino acids (15).  

   To put these findings into context, we cannot discount leucine’s complex signaling roles 

to act as a substrate to these A375 melanoma cells. First, leucine is well known as a stimulator of 

mTOR-mediated protein synthesis within muscle cells. We have previously demonstrated that 

leucine-stimulated mitochondrial biogenesis was accompanied by p53 expression in normal 

adipocytes. This event was accompanied by a decrease in fatty acid synthase. But, this signaling 

role was not extended to muscle tissue. Instead, leucine stimulated mTOR (7), an event known to 

antagonize the expression of p53 (10). Previous studies have shown that unregulated 

PI3K/Akt/mTOR signaling are required for sustained glycolysis, a role thought to precede a 

metabolic shift toward aerobic glycolysis and further mitochondrial dysfunction in tumorous 

cells (1,10,17,18). One study shows that Akt/mTOR induction converts WM35 melanoma cells 

to glycolytic/Warburg metabolism (18), a role that leucine deprivation does not attenuate (19). 

mTOR participates in a tumorigenic role through the induction and transcription-mediated 

activation of HIF-1α (17). HIF-1α mediates glycolytic gene transcription in the absence of 

hypoxia to increase glycolytic enzymes, GLUT1, and GLUT3 in cancer cells (1-3,20). 

Interestingly, malignant melanoma cells contain GLUT1, and exhibit the Warburg effect (18). 

HIF-1α signaling has been linked to aggressive, metastatic cancers, and serves to keep a constant 

energy supply (1,2,3,10,16). Additionally, mTOR signaling suppresses p53 and p21 signaling 

(18). One study showed that A375 melanoma cells had increased proliferation in response to 
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HIF-induced suppression of p53 (19).  

  Next, leucine’s signaling role for SIRT1-mediated mitochondrial biogenesis may 

negatively affect p53-mediated regulation of cell cycle. We have previously demonstrated that 

leucine’s ability to stimulate mitochondrial biogenesis is SIRT1 mediated; leucine significantly 

stimulates SIRT1 activity and expression in normal tissue, while the branched-chain amino acid 

control valine does not exert a similar effect (13). Our data show that leucine’s ability to 

stimulate mitochondria throughout one replication of A375 cells was accompanied by a modest, 

but not significant SIRT1 mRNA expression. The time that we measured SIRT1 gene expression 

in this study was simultaneous with leucine-stimulated mitochondrial biogenesis, an event that 

SIRT1 activity has been shown to precede (13). SIRT1 is well known to be an energy sensor, 

with its activation dependent upon low energy in the form of NAD
+
 availability (13, 21). At 9 

hours in reduced glucose conditions, a time point in which only leucine and HMB significantly 

stimulated mitochondrial biogenesis in this cell line, only leucine treatment is associated with an 

increase in SIRT1 mRNA expression over the control. Consistent with this finding, when 

compared to the control, only leucine treatment is associated with significantly stimulated 

mitochondrial biogenesis at the subsequent measured time point, 12 hours.  

  Under Warburg conditions, aerobic glycolysis utilizes the pentose phosphate pathway to 

gain NADPH (1-3). This high cytosolic NADPH would be unfavorable for the activation of 

SIRT1. Our data demonstrate that in the absence of hyperglycemic conditions, all treatments 

increase mitochondrial biogenesis, but that leucine dose-responsively stimulates mitochondrial 

biogenesis and these effects last throughout the A375 cell cycle. A previous study demonstrated 

that A375 melanoma cells are one of the few melanoma cell lines to exhibit wild-type p53 (22). 

When A375 melanoma cells were administered with ultraviolet damage, the most common type 
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of damage for this cell line, p53 and p21 expression increased. These cells inhibited replication 

by 75% and sent roughly 15% of cells to apoptosis via nuclear-mediated mechanisms (23). 

Interestingly, the translocation of p53 to the nucleus has been shown to be suppressed during 

SIRT1 activity (4,5). These findings demonstrate that leucine’s stimulation of SIRT1 to mediate 

mitochondrial biogenesis may be an unwanted signaling role in this cell line.   

  The use of standard and reduced glucose medium in this study demonstrates that reduced 

glucose conditions can increase the effectiveness of the treatments when compared to the control. 

Additionally, these data support an impact of dietary glycemic control may on cancers that 

exhibit the Warburg effect, as recently suggested (24). A375 cells utilize glucose as their primary 

substrate, a finding consistent with Akt/mTOR signaling within the cell. Under standard glucose 

conditions, there was no treatment effect of these amino acids. The level of glucose in media has 

been shown to play a role in altering outcomes in vitro in cancer cell lines. Colon, breast, 

prostate, and bladder cancer cell lines grown under hyperglycemic conditions (11 mM) showed 

altered gene expression, including Cyclin A and E, PI3K, protein kinase C α and β, and E-

cadherin favoring cell proliferation, migration, tumor cell adhesion, and survival, while cells in 

reduced glucose (5.5mM) did not show a dramatic up-regulation of these markers. Additionally, 

proliferation was increased when insulin was added to media (25).  

All media used in our study contained all amino acids without the deprivation of any 

nutrient. The amino acids in the media represented those found in an amino pool. Thus, we 

cannot discount the utilization of amino acids that could serve as glycolytic precursors to further 

mediate glycolytic metabolism and proliferation in A375 cells, regardless of amino acid 

treatment.  
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  On the other hand, a small body of data discusses the “Warburg Diet”, a ketogenic diet 

comprised of high fat and protein that is hypothesized to promote better outcomes in cancer 

patients (1). Leucine could be used as a metabolic substrate that could counterbalance Warburg 

metabolism by stimulating mitochondrial biogenesis, fat oxidation, and promoting protein 

muscle synthesis in the surrounding healthy tissues. Under this theory, leucine could have 

beneficial long term effects that would not be apparent in a short term study. 

  Our study has some shortcomings. First, leucine’s effects on metabolic shift were not 

evaluated, such as its role in fat oxidation, reduced lipid storage, mitochondrial function, and 

insulin sensitivity. While previous data from our lab demonstrate leucine’s role in stimulating 

mitochondrial biogenesis in normal tissue is accompanied by mitochondrial function gene 

expression (6-9), these were not assessed in our study. Regardless, these data demonstrate that 

leucine’s stimulation of mitochondrial biogenesis was not accompanied by a significant decline 

in cell number, increase in p53 and p21 mRNA expression, and decline in cyclin D mRNA 

expression. Due to the absence of impact on cell number or restoration of p53 expression, the 

insignificant differences between mRNA of p53, p21, and cyclin D indicate that no metabolic 

shift occurred in response to any treatment in this study.   

Previous studies in A375 melanoma cells have shown that these cells have a relatively 

short doubling time of 6-12 hours (14). Our study relied on flow cytometry to determine 

doubling time and cell proliferation within this cell line. While these results demonstrate no 

significant treatment effects on cell proliferation after one doubling time of these cells, we 

cannot discount the events that may have occurred during the cell cycle and were missed using 

gene expression during our time course. Our use of flow cytometry and mitochondrial mass 

dictated times to harvest these cells and determined the time course of this study. While this time 
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course was an accurate depiction of amino acid signaling roles throughout 24 hours of treatment 

in these cells, this time course could have been inaccurate due to multiple factors. It has been 

noted that increased gluconeogenesis has been documented in cancer patients, and is associated 

with muscle wasting (16). Gluconeogenic amino acids that supply these cells with their primary 

substrate could significantly accelerate cell growth that would not be accurately captured using 

the same time point for all treatments. The concentrations of other amino acids in the media 

invite further investigations on how manipulation could impact this cell line, though the media 

used in this study represents postprandial conditions most commonly viewed in the American 

diet.  

  In conclusion, we have shown that leucine stimulate of mitochondrial biogenesis under 

lower glucose conditions was not accompanied by stimulation of p53 or subsequent exit from 

cell cycle. These findings suggest that while beneficial for protection from age-related disease 

and in cancer–induced cachexia, leucine signaling was unable to reverse the Warburg effect in 

these cells. 
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  The hypothesis that metabolic reprogramming can mitigate metabolic diseases and 

disorders is well accepted. Cancer that exhibits the Warburg effect is hypothesized to be a 

metabolic disorder. We have previously demonstrated the roles of leucine in anti-obesity and 

other metabolic diseases within normal tissue through its unique signaling roles in mitochondrial 

biogenesis, fat oxidation, and oxidative phosphorylation. The present study does not support that 

leucine-stimulated mitochondrial biogenesis will significantly impact cell proliferation, stimulate 

p53 expression, regulate cell cycle, or reverse the Warburg effect within A375 melanoma cells.  

  The finding that leucine’s effects on mitochondrial biogenesis are comparable to that of 

the gluconeogenic, negative controls alanine and valine used in this study were unexpected. 

These results exemplify leucine’s roles as a substrate for cancerous cells. However, these data 

exemplify the impact of glucose in cancerous cell signaling. These results show that a reduction 

and control of glucose has a significant impact on cell growth and proliferation.    
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