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This paper extends previous research on two approaches to human-centred auto-
mation: (1) intermediate levels of automation (LOAs) for maintaining operator
involvement in complex systems control and facilitating situation awareness; and
(2) adaptive automation (AA) for managing operator workload through dynamic
control allocations between the human and machine over time. Some empirical
research has been conducted to examine LOA and AA independently, with the
objective of detailing a theory of human-centred automation. Unfortunately, no
previous work has studied the interaction of these two approaches, nor has any
research attempted to systematically determine which LOAs should be used in
adaptive systems and how certain types of dynamic function allocations should be
scheduled over time. The present research briefly reviews the theory of human-
centred automation and LOA and AA approaches. Building on this background,
an initial study was presented that attempts to address the conjuncture of these
two approaches to human-centred automation. An experiment was conducted in
which a dual-task scenario was used to assess the performance, SA and workload
effects of low, intermediate and high LOAs, which were dynamically allocated (as
part of an AA strategy) during manual system control for various cycle times
comprising 20, 40 and 60% of task time. The LOA and automation allocation
cycle time (AACT) combinations were compared to completely manual control
and fully automated control of a dynamic control task performed in conjunction
with an embedded secondary monitoring task. Results revealed LOA to be the
driving factor in determining primary task performance and SA. Low-level auto-
mation produced superior performance and intermediate LOAs facilitated higher
SA, but this was not associated with improved performance or reduced workload.
The AACT was the driving factor in perceptions of primary task workload and
secondary task performance. When a greater percentage of primary task time was
automated, operator perceptual resources were freed-up and monitoring perfor-
mance on the secondary task improved. Longer automation cycle times than have
previously been studied may have benefits for overall human–machine system
performance. The combined effect of LOA and AA on all measures did not
appear to be ‘additive’ in nature. That is, the LOA producing the best perfor-
mance (low level automation) did not do so at the AACT, which produced super-
ior performance (maximum cycle time). In general, the results are supportive of
intermediate LOAs and AA as approaches to human-centred automation, but
each appears to provide different benefits to human–machine system perfor-
mance. This work provides additional information for a developing theory of
human-centred automation.
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1. Introduction

At this point in time, serious problems associated with automation and numerous
human–machine system errors have been documented (cf. Wiener and Curry 1980,
Moray 1986, Billings 1991, Sarter and Woods 1995). These problems have been
associated with various deficiencies in human operator states, including vigilance
decrements, complacency and loss of situation awareness (SA), which have also
been discussed at length in numerous studies (cf. Endsley 1987, Wiener 1988, Carm-
ody and Gluckman 1993, Parasuraman et al. 1993, Endsley and Kiris 1995, Para-
suraman and Riley 1997). In general, a key underlying factor that has emerged as a
contributor to human performance problems in complex, automated systems control
is human out-of-the-loop (OOTL) performance (see Young 1969, Kessel and Wick-
ens 1982).

Out of the loop performance problems are characterized by a decreased ability of
the human operator to intervene in system control loops and assume manual control
when needed in overseeing automated systems. First, human operators acting as
monitors have problems in detecting system errors and performing tasks manually
in the event of automation failures (Wiener and Curry 1980, Billings 1988, Wickens
1992). In addition, they have a more complex system to monitor. In a review of
automation problems, Billings (1988) noted six major aircraft accidents that could be
traced directly to failures in monitoring automated systems or the flight parameters
controlled by the automated systems.

In addition to delays in detecting that a problem has occurred necessitating
intervention, operators may require a significant period of time to reorient them-
selves to the current state of the system after a failure and develop sufficient under-
standing of the state in order to act appropriately. This delay may prohibit operators
from carrying out the very tasks they are required to perform or diminish the effec-
tiveness of actions taken. Wickens and Kessel (1979, 1981) conducted laboratory
studies demonstrating longer system recovery times and poor response accuracies for
operators who had been removed from control loops in advance of critical events
requiring intervention.

These two types of SA problems (failure to detect and failure to understand the
problem) have been hypothesized to occur through three major mechanisms:

(1) changes in vigilance and complacency associated with monitoring;
(2) assumption of a passive role instead of an active role in controlling the

system; and
(3) changes in the quality or form of feedback provided to the human operator

(Endsley and Kiris 1995).

Each of these factors can contribute to the OOTL performance problem. In addition,
automated systems, by nature of their complexity, also challenge higher levels of SA
(comprehension and projection) during ongoing system operations. The general idea
here is that certain LOAs may lead to OOTL performance and loss of SA. This issue
was explored by assessing the impact of a broad range of LOAs on operator SA in
the experiment as part of this research; however, the adaptive nature of contempor-
ary automated systems was also considered.

To overcome some of the ills created by historically technology-centred
approaches to automation (systems which automate whatever can be automated),
a philosophy of human-centred automation has been proposed (Billings 1991, 1997).
Billings (1997: 4) defined human-centred automation as facilitating a cooperative
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relationship in the control and management of a complex system with potential
benefits for performance. Sheridan (1997) said that human-centred automation
has many alternative meanings ranging from ‘allocate to the human the tasks best
suited to the human, allocate to the automation the tasks best suited to it’, through
‘achieve the best combination of human and automatic control, where ‘‘best’’ is
defined by explicit system objectives’. The meanings presented span from a func-
tion-oriented perspective to a mission-oriented view.

The goal of human-centred automation is to create systems that retain the human
operator in control loops with meaningful and well-designed tasks that operators are
capable of performing well in order to optimize overall human–machine system
functioning. Billings (1997: 4) said that human-centred automation should ensure
that automation does not leave the human with a fragmented and difficult job. It
should define the assignment of tasks to a human and computer in controlling an
automated system such that a team effort is achieved (Endsley 1996, Billings 1997).
High levels of human–machine system performance may be achieved through
human-centred automation by ensuring that the human has the capability to moni-
tor the system, that they receive adequate feedback on the state of the system, and
that the automation functions in predictable ways (Billings 1997: 39), all of which
support achievement of SA. The intention here is not to attempt to fully define how
to create human-centred automated systems (see Billings (1997) for a review), but
rather to explore two separate research thrusts which have been proposed as at least
partial methods for achieving automation designs which meet the goal of human-
centred automation.

Several approaches have been proposed that challenge the traditional division of
human-automation task responsibility in complex systems, specifically automation
of as many tasks as possible and assignment of the human to the role of monitor.
These approaches redefine the assignment of functions to people and automation in
terms of a more integrated team approach. Two orthogonal and possibly comple-
mentary approaches can be defined along the axes of figure 1. One approach seeks to
optimize the assignment of control between the human and automated system by
keeping both involved in system operations. This has been labelled Level of
Automation (LOA) or ‘level of control’ (see Draper 1995). The other recognizes
that control must pass back and forth between the human and the automation
over time, depending upon situational demands, and seeks to find ways of exploiting
this understanding to increase human performance. This has been labelled Adaptive
Automation (AA) or Dynamic Function Allocation (DFA) (cf. Corso and Moloney
1996). One objective of this section is to show how these approaches may be effective
for achieving human-centred automation.

Level of automation refers to the level of task planning and performance inter-
action maintained between a human operator and computer in controlling a complex
system (Billings 1991, Kaber 1997). Sheridan (1997) discussed various degrees of
automation that were defined in terms of the autonomy of complex system informa-
tion sensing and control execution. These degrees dictated the extent to which a
human was involved in system control and the level of computer task aiding. The
LOA approach defines the assignment of system control between a human and
computer in terms of the degree to which both are involved in system operations
(Endsley 1996). It emphasizes the interaction between a human operator and com-
puter. The objective of this approach is to find LOAs that are best suited to human
capabilities and capacities (the general objective of human-centred automation).
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Billings (1991) also defined various LOAs and was concerned with how automation
might perform some portion of activities for (or interact with) humans and aid them
in a course of action. He defined LOAs in terms of the autonomy of functions an
operator would typically control and the capabilities of a system to perform response
execution and to monitor its own action.

Rouse (1988) conceptualized AA as varying degrees of computer assistance in
complex systems control based on the nature of a situation, including task charac-
teristics and the state of the human operator. He proposed structuring human–
automation interaction on the basis of ‘what’ is to be automated, ‘when’ a task is
automated and ‘how’ it is automated. Through empirical study, Rouse (1977) iden-
tified several advantages of AA including support of human performance, dynamic
definition of a coherent task role for operators and the capability to maintain accep-
table human workload levels in system control. Parasuraman et al. (1992) said that
AA represents an optimal integration of automation with the human operator based
on the level of operator workload. They placed an emphasis on the state of the
operator. Scerbo (1996) summarized that under AA, different types of automation
may be initiated and terminated dynamically based on situational demands placed
on the system, inclusive of the operator. Kaber and Riley (1999) provided a con-
temporary definition of AA, saying that it concerns the scheduling of the allocation
of control between a human operator and computer over time, with the intent of
improving human performance as part of complex systems operations or maintain-
ing operator involvement in system control in order to reduce OOTL performance
problems.

The key difference between the AA and LOA approaches is that AA involves
dynamic control allocations (automated or manual, varying over time) and LOA
involves static function assignments (Kaber 1997, Parasuraman et al. 2000), defining
the degree to which a task is automated. Later, a perspective on AA is provided that
has yet to be empirically studied, specifically dynamic allocations of a broad range
of LOAs during task performance. We will first briefly review relevant research
that has been conducted on the LOA and AA approaches and then present the
experiment, which seeks to integrate them by exploring the decision space shown
in figure 1.

1.1. Level of automation as an approach to human-centred automation
Automation does not exist in an all or none fashion. Rather it can be applied to
different aspects of a task in varying degrees, creating different levels of task auton-
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omy (Endsley and Kaber 1999). A number of different taxonomies or hierarchies of
LOA have been developed. In an early seminal work, Sheridan and Verplank (1978)
developed a hierarchy of LOAs in the context of undersea teleoperator control, as
shown in table 1. This hierarchy includes varying allocations for determining options
and selecting among them. The LOAs were differentiated in terms of decision mak-
ing and action selection functions. In addition, the list focuses on what the human
should be told by the system (i.e. issues of information display as well as task
functioning). Sheridan and Verplank’s objective was to define ‘who’ (the human
or computer) has control in a more definitive sense and not to explicitly describe
how an operator and automation might share core information processing functions
in complex system control.

Endsley (1987) developed a LOA hierarchy in the context of the use of expert
systems to supplement human decision making. This hierarchy stipulated that a task
could be performed using:

(1) manual control—with no assistance from the system;
(2) decision support—by the operator with input in the form of recommenda-

tions provided by the system;
(3) consentual artificial intelligence (AI)—by the system with the consent of the

operator required to carry out actions;
(4) monitored AI—by the system to be automatically implemented unless vetoed

by the operator; and
(5) full automation with no operator interaction.

This list is most applicable to cognitive tasks in which operator ability to respond to
and make decisions based on system information (with expert system assistance) is
critical to overall performance. Ntuen and Park (1988) developed a similar five level
taxonomy of automation in the context of a teleoperation system. Both of these
taxonomies can be seen to be similar to selected levels of the Sheridan and Verplank
hierarchy; however, a completely manual level is also considered. The lowest LOA in
Sheridan and Verplank’s hierarchy represented what has subsequently been labelled
direct teleoperation (Draper 1995) and may also involve telerobot control if the
human turns the task over to automation.

Building on this work, Endsley and Kaber (1997, 1999) developed a 10-level
taxonomy of LOA to provide wider applicability to a range of cognitive and psy-
chomotor tasks requiring real-time control within numerous domains, including air
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Table 1. Sheridan and Verplank’s (1978) hierarchy of LOAs.

(1) Human does the whole job up to the point of turning it over to the computer to
implement,

(2) Computer helps by determining the options,
(3) Computer helps to determine options and suggests one, which human need not follow,
(4) Computer selects action and human may or may not do it,
(5) Computer selects action and implements it if human approves,
(6) Computer selects action, informs human in plenty of time to stop it,
(7) Computer does whole job and necessarily tells human what it did,
(8) Computer does whole job and tells human what it did only if human explicitly asks,
(9) Computer does whole job and decides what the human should be told, and
(10) Computer does the whole job if it decides it should be done and, if so, tells human, if it

decides that the human should be told.



traffic control, aircraft piloting, advanced manufacturing and teleoperations. All of
these domains have many features in common, including (1) multiple competing
goals, (2) multiple tasks competing for an operator’s attention, each with different
relevance to system goals, and (3) high task demands under limited time resources.

Four generic functions intrinsic to these domains were identified that form the
basis for this taxonomy:

(1) Monitoring—which includes taking in all information relevant to perceiving
system status (e.g. scanning visual displays);

(2) generating—formulating options or task strategies for achieving goals;
(3) selecting—deciding on a particular option or strategy; and
(4) implementing—carrying out the chosen option through control actions at an

interface.

Ten LOAs were then systematically formulated by assigning these functions to the
human or computer or a combination of the two, as shown in table 2. Below are
high-level descriptions of the various LOAs in the taxonomy intended to introduce
them. Some of these are expanded later in the discussion of the specific experimental
task and conditions, including specification of human and machine activities (per-
formance) at each level.

(1) Manual—The human performs all tasks including monitoring the state of the
system, generating performance options, selecting the option to perform
(decision making) and physically implementing it.

(2) Action support—At this level, the system assists the operator with perfor-
mance of the selected action, although some human control actions are
required. A teleoperation system involving manipulator slaving based on
human master input is a common example.

(3) Batch processing—Although the human generates and selects the options to
be performed, they then are turned over to the system to be carried out
automatically. The automation is, therefore, primarily in terms of physical
implementation of tasks. Many systems, which operate at this fairly low level
of automation, exist, such as batch processing systems in manufacturing
operations or cruise control on a car.

(4) Shared control—Both the human and the computer generate possible deci-
sion options. The human still retains full control over the selection of which
option to implement, however, carrying out the actions is shared between the
human and the system.

(5) Decision support—The computer generates a list of decision options, which
the human can select from, or the operator may generate his or her own
options. Once the human has selected an option, it is turned over to the
computer to implement. This level is representative of many expert systems
or decision support systems that provide option guidance, which the human
operator may use or ignore in performing a task. This level is indicative of a
decision support system that is capable of also carrying out tasks, while the
previous level (shared control) is indicative of one that is not.

(6) Blended decision making—At this level, the computer generates a list of
decision options, which it selects from and carries out if the human consents.
The human may approve of the computer’s selected option or select one
from among those generated by the computer or the operator. The computer
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will then carry out the selected action. This level represents a high-level
decision support system that is capable of selecting among alternatives as
well as implementing the selected option.

(7) Rigid system—This level is representative of a system that presents only a
limited set of actions to the operator. The operator’s role is to select from
among this set. He or she cannot generate any other options. This system is,
therefore, fairly rigid in allowing the operator little discretion over options. It
will fully implement the selected actions, however.

(8) Automated decision making—At this level, the system selects the best option
to implement and carries out that action, based upon a list of alternatives it
generates (augmented by alternatives suggested by the human operator).
This system, therefore, automates decision making in addition to the gen-
eration of options (as with decision support systems).

(9) Supervisory control—At this level, the system generates options, selects the
option to implement and carries out that action. The human mainly moni-
tors the system and intervenes if necessary. Intervention places the human in
the role of making a different option selection (from those generated by the
computer or one generated by the operator); thus, effectively shifting to the
Decision Support LOA. This level is representative of a typical supervisory
control system in which human monitoring and intervention, when needed, is
expected in conjunction with a highly automated system.

(10) Full automation—At this level, the system carries out all actions. The human
is completely out of the control loop and cannot intervene. This level is
representative of a fully automated system where human processing is not
deemed necessary.

It should be noted that the taxonomy represents a wide range of feasible assign-
ments of the four functions of system(s) monitoring and options generation, selec-
tion and implementation to human, computer and human/computer combinations.
There may well be other combinations of these four core functions that were not

specifically listed in the taxonomy; however, these were not deemed to be either
technically or practically feasible (although certainly not ruled out). It was also
stipulated that the order of LOAs presented was not necessarily ordinal on any
factor, but rather was a preliminary assessment of a possible order. This is a key
difference between this taxonomy and the historical hierarchies of LOAs.

Endsley and Kaber’s LOA taxonomy provided several advantages over the
previous ones in that it identified numerous LOA combinations not included in
the other taxonomies. By representing how system monitoring, process planning,
decision making and response execution can all be assigned to a human operator or
computer, or shared between the two, the taxonomy also provides greater detail on

‘who’ (the human or computer) is doing ‘what’ at each LOA, as compared to the
historical hierarchies of degrees of automation. Furthermore, the present list does
not focus only on decision-making and defining authority. The functions it is based
upon are also generic enough to be applicable to a wide variety of domains and task
types. Most importantly, by systematically allocating the basic task components to

the human or computer or a combination of the two, Endsley and Kaber’s taxonomy
provided the key advantage of allowing a careful empirical assessment of which
aspects of automation might be helpful or harmful to human performance in con-
junction with that system.
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More recently, Parasuraman et al. (2000) provided a similar LOA taxonomy that
considered whether each of four functions was automated, including (1) information
acquisition, (2) information analysis, (3) decision selection and (4) action implemen-
tation. The information acquisition, decision selection and action implementation
factors of this model are identical to the monitoring, selection and implementation
features of the Endsley and Kaber taxonomy. This model does not, however,
explicitly consider the option generation (planning) function. Instead, it provides
information analysis as a separate function to be automated. Included in this
aspect of automation are the integration of information into a single value, advanced
displays such as prediction displays or emergent perceptual feature displays and
information displays that present context-dependant summaries of data to the
user. While certainly important for human performance, it remains open to debate
whether displays constitute a type of automation. The Parasuraman et al. (2000)
model does not explicitly provide LOAs, but rather stipulates that each of the four
factors can be automated at differing levels.

While these taxonomies have many similarities and some significant differences,
more importantly for the design of systems is empirical research that provides
designers with some indication of the expected effects of automation design options
presented by considering LOAs for subsequent human–system performance.
Unfortunately, until recently, this type of work has been lacking.

How to specify the ‘best’ LOA does not turn out to be as straight-forward as one
might think, however. For particular applications, Parasuraman et al. (2000) list
human performance, automation reliability and cost associated with outcomes as
appropriate criteria for selection of an LOA for a particular application. However, in
order to effectively use these LOA decision criteria, there must be data available on
system performance or an elaborate iterative design process must be undertaken
involving specification and evaluation of both types and levels of automation in
order to make decisions about which LOAs may be optimal for supporting system
performance. In order to provide broader design guidance and theory on how to
develop human-centred automation, however, one is interested in the effect of LOA
choices on human cognitive processing and performance, independent of particular
applications.

When a system is functioning well, a determination of whether automation is
better than manual control is really a function of how good the automation algor-
ithm is for that particular application, and the expertise of the individual human
operators (level of experience, skills, etc.). It is easy to see that even a fairly modest
system may outperform unskilled or inexperienced operators, but a much more
complex and capable system may be needed to outperform a highly skilled operator.
A similar issue comes into play in comparing performance at intermediate LOAs,
which are comprised of both human performance and automation performance.
From a research standpoint, such comparisons are very limited in use because
they are almost completely specific to the particular application and situation and,
thus, such findings do not generalize well to other systems.

A more useful comparison of LOAs can be found in examining how well the
human–machine system performs, not just when the automation can address a spe-
cific situation, but also when it cannot. The ability of the human operator to detect
and take over under system failure (either through a breakdown or through reaching
particular conditions for which it is not programmed) forms the crux of the OOTL
error problem and, thus, should be central to decisions regarding LOA choices.

Approaches to human-centred automation 9



Situation awareness, workload and trust or confidence level are often measured as
relevant indices of human performance under such circumstances as well as normal
conditions. In addition, the performance of the human in the face of confusing
system input (e.g. mode awareness errors (see Sarter and Woods 1995) or incorrect
system input, should be explicitly considered in determining the effects of LOA
choices on human performance.

Some empirical research has been conducted that specifically examines these
issues across multiple LOAs. Endsley and Kiris (1995) conducted a study involving
a simulated automobile navigation task and found that SA was lowest under full
automation and only partially lower under the intermediate LOAs as compared to
fully manual task performance. They also demonstrated that this lower SA corre-
lated with OOTL performance decrements when the automated aid failed and opera-
tors were forced to perform the task manually. Of the three sources of OOTL
decrement previously posited—vigilance decrements, poor feedback under auto-
mated control or passive vs. active processing—they empirically identified passive
processing as the only likely culprit in this study. Intermediate LOAs were found to
have value in reducing the OOTL deficit, as compared to full automation.

Endsley and Kaber (1997, 1999) proceeded to more fully explore this problem
space in the context of their 10-level LOA taxonomy. They used a dynamic control
task, Multitask# (Kaber and Endsley 1995), which is an abstract simulation of a
radar-monitoring task. It involves multiple simulated targets, which must be elim-
inated prior to reaching their expiration time or colliding with one another. Each
target has different reward points associated with its elimination and penalty points
for failures. Multiple targets compete for operator attention simultaneously; there-
fore, the operators must develop a complex strategy to maximize performance.

During test trials, subjects experienced simulated automation failures or shifts
from the LOA to which they had been assigned to Manual Control. The failures
occurred at random points in time and lasted a short duration. During other trials,
simulation freezes occurred at random times in order to administer SA queries using
the Situation Awareness Global Assessment Technique (SAGAT) (Endsley 1988). In
this way, the impact of simulated automation failures was examined on OOTL
performance problems and LOA effects on SA.

The results indicated that LOA significantly impacted both task performance
and OOTL performance problems. By systematically comparing each LOA, several
significant findings regarding the effects of automation could be determined. First,
performance was enhanced by computer aiding in task implementation (LOAs 2–10;
see table 2); however, it was hindered at the LOAs involving joint human–computer
option generation (LOAs 4–8). Automation providing aiding in the action selection
aspect of the task (LOAs 6, 8 and 9) did not significantly affect system performance
when compared to purely human decision-making. It was also found that perform-
ance at high LOAs (9 and 10) was better than Manual Control performance; how-
ever, it was never as good as when low-level automation was used to provide
assistance in manual implementation aspects of the task, exclusively (LOA 2).
(This can be attributed in part to limitations in the automation algorithm.)

Operator ability to recover from and perform in the event of automation failures
was, however, superior under LOAs requiring some human interaction in task imple-
mentation. Automation strategies that allowed operators to focus on future task
processing (through advanced queueing of tasks) led to increases in time-to-recover
task control following an automation failure and subsequent manual performance
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was worse. Therefore, this type of automation may contribute to OOTL perform-

ance decrements.

Situation awareness and workload were also impacted by LOA; however, lower

operator workload and better Level 2 SA were found at both some of the inter-

mediate and higher LOAs in the taxonomy (LOAs 6, 8, 9 and 10), in part contra-

dicting findings of other research (cf. Endsley and Kiris 1995) that better SA occurs

at intermediate LOAs. However, the study did also find that Level 3 SA was better at

intermediate LOAs. Endsley and Kiris (1995) observed no difference in perceived

workload across LOAs. This discrepancy in results was viewed as a possible effect of

the different experimental tasks used in each study and needs further exploration.

In other research, Kaber et al. (2000) conducted an experiment to examine the

potential benefits of intermediary LOAs to human operator performance, SA and

workload in using a high-fidelity simulation of a telerobot for nuclear materials

handling. Kaber et al. (2000) studied six of the LOAs presented in Endsley and

Kaber’s (1999) taxonomy, including Manual Control (LOA 1), Action Support

(LOA 2), Batch Processing (LOA 3), Decision Support (LOA 5), Supervisory

Control (LOA 9) and Full Automation (LOA 10), representing the range of LOAs

found to impact Multitask# performance. Results indicated that higher LOAs led to

improved performance in terms of time-to-task completion and number of errors

committed under normal conditions. Subjects also reported lower levels of workload

at progressively higher LOAs. In general, the experiment revealed the benefit of

computer implementation of the teleoperation task.

During simulated automation failures, however, subjects functioning at higher

LOAs preceding the failure were slower in reacting to system malfunctions, they

took longer in re-orienting themselves to correct the failure and committed more

errors when assuming Manual Control, as compared to subjects using intermediate

LOAs prior to a failure. The intermediate LOAs permitted a greater degree of

human involvement in the control loop during normal system operations, potentially

increasing subject awareness of system status prior to a failure and promoting faster

recovery times.

Situation Awareness Global Assessment Technique results revealed a significant

impact of LOAs on Level 3 SA (projection of system states), with lower SA occur-

ring under higher LOAs, as in Endsley and Kaber’s (1999) study. Action Support

(computer assistance in the implementation aspect of the task) again facilitated the

highest level of SA, as compared to all other LOAs. This study confirmed many of

the findings of Endsley and Kaber’s (1999) research in a more realistic task, and

the results have significant implications for the design of automation for telerobot

control.

While not exploring the range of LOAs, Moray et al. (2000) recently reported on

a study involving process control simulation that implemented three LOAs included

in Sheridan and Verplank’s hierarchy (levels 5, 6 and 7 (see table 1)), which roughly

correspond to Endsley and Kaber’s LOAs 5, 8 and 10. When system reliability was

good (over 90%), human performance with automation was fairly good (at LOA 5).

When system reliability was poorer, however, human performance suffered. The

performance of the machine in this case was still helpful in terms of carrying out

actions, even though diagnoses were poor and more false plant shutdowns occurred.

They concluded that different LOAs might be needed, depending on the time criti-

cality of the tasks at hand.

Approaches to human-centred automation 11



Finally, Lorenz et al. (2001) compared three LOAs in an automated diagnosis
system: a fault finding guide (low level support), a decision support tool (Endsley
and Kaber’s LOA 5) and a higher level aid (LOA 8). They found improved perform-
ance in participants working with both the medium and higher LOAs, as compared
to the lower LOA group. Perceived workload was not different between the three
LOA groups. Under automation failure, however, the medium LOA group per-
formed the worst. This was attributed to differences in information sampling stra-
tegies that appeared to be induced by the differences in the three conditions. Under
the medium LOA condition, participants were less likely to see information that was
important for diagnosis. This study points to the fact that many issues, other than
the LOA itself, can affect performance. Careful attention to the design of the system
and the feedback provided to the operator are required under any LOA (see Norman
1989).

In general, these studies are supportive of an approach to human-centred auto-
mation that features lower LOAs retaining operators in the control loop. The
research demonstrates that even when full automation of a task may be technically
possible, it may not be desirable if performance of the joint human–machine system
is to be optimized. Intermediate LOAs may be preferable for certain types of tasks
and certain system functions in order to maintain human operator SA at high levels
by allowing them to perform critical functions and, at the same time, to moderate
workload in comparison to that experienced under manual control.

1.2. Adaptive automation as an approach to human-centred automation
As previously mentioned, AA has also been put forth as an approach to human-
centred automation with the objective of reducing OOTL performance problems.
The literature has defined a number of strategies to AA (see Scerbo (1996) for a
thorough review) or for allocating system control between humans and computers,
including:

(1) Critical events—DFAs triggered by occurrence of events critically impacting
system goals (e.g. malfunction) (Hilburn et al. 1993);

(2) Performance measurement—DFAs triggered by degradations in human
monitoring performance below a criterion measure (Parasuraman 1993);

(3) Psychophysiological assessment—real-time assessment of operator workload
(using for example physiological measures—electroencephalogram (EEG)
signals or heart-rate variability) as a basis for decision to automate (Pope
et al. 1994, Byrne and Parasuraman 1996); and

(4) Behavior modelling—DFAs occur to human and computer to achieve pre-
determined pattern of overall system functioning (Rouse et al. 1986).

Similar to the psychophysiological assessment strategy, Hancock and Chignell
(1988) also proposed that a strategy for AA involving comparison of current
and future states of operator workload as well as system performance would be a
desirable basis for DFAs.

Like LOA, assessments have been made of the effect of AA on human operator
performance, SA and workload in complex systems control. In general, research has
demonstrated that AA may be effective for certain complex system task types and
when certain durations of DFAs are used. Early empirical research explored the
behaviour modelling and performance measurement strategies for managing opera-
tor workload and affecting performance by scheduling dynamic allocations of
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manual control and full automation during system performance (i.e. the work con-
sidered a binary approach to AA—only minimum and maximum levels of system
automation were considered even though it is commonly accepted that automation
may vary along a continuum and that there are many levels that could be allocated in
an adaptive system). Specific issues examined by this work have included the optimal
frequency and duration of cycles of automation and manual control, as well as who
(the human or computer) has ultimate authority for managing DFAs over task time.
Parasuraman (1993) studied a performance-based strategy using the Multi-Attribute
flight Task (MAT) Battery. He required subjects to perform the tracking and fuel
management tasks manually during 30-min trials while the systems monitoring tasks
was statically or adaptively automated based on a model of system performance or
how well a subject performed manual monitoring. Parasuraman (1993) found mon-
itoring performance (failure detections) to improve with periodic allocations of
manual control to operators (every 10min for a duration of 10 min) during auto-
mated control, as compared to the static automation condition. The two AA stra-
tegies appeared to be equivalent in terms of performance benefits.

Hilburn et al. (1993) also used the MAT Battery to study an AA strategy invol-
ving either operator or computer managed control allocations. They found that
performance in the tracking sub-task of the MAT Battery was significantly better
when the computer vs operator determined manual and automated control alloca-
tions. Further, AA, in general, was found to produce better monitoring performance
than purely manual monitoring. Hilburn et al. (1993) stated that performance degra-
dations observed during the experiment were due to operators frequently cycling
between full automation and manual control and that excessively short-automation
cycles of 2min compounded this effect.

Contrary to these findings, Scallen et al. (1995) found significant improvements in
tracking task performance when control shifted between manual and automated
modes every 15 s as compared to every 60 s in piloting tasks. However, the dynamic
function allocations in this study followed a pre-determined schedule. The DFAs in
the Hilburn et al. (1993) study were adaptive in nature and based on operator
performance levels.

Negative performance consequences of AA may not be limited to excessively
short control cycles, as long cycle AA has also been shown to cause inefficient
operator performance. Hilburn et al. (1993) presented another experiment in
which AA was applied to the monitoring aspect of the MAT Battery during 120-
min trials, with automated control being allocated every 10min for a duration of
10min. They found operator monitoring under AA to be extremely poor with only
32% of system malfunctions detected, as compared to complete manual monitoring,
which produced a 75% detection rate. That is, AA did not help performance in
comparison to manual monitoring. They stated that operators tended to place
excessive trust in the automation and, when manual control was reallocated, their
abilities were limited due in part to longer duration exposure to automation. The
performance problems with long cycles may be attributable to the OOTL perform-
ance problem, in general, and to complacency and skill decay over extended periods,
more specifically.

Similar to this study, Parasuraman et al. (1996) examined the effect of model- and
performance-based AA on human monitoring performance using the MAT battery
during long-duration trials (three sessions totalling 90 min). They used the tracking
and fuel management tasks and developed an automated engine status task. Under
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the AA strategies, manual control of the engine status task was periodically allocated
based on when monitoring performance was expected to be at its worst (model-based
AA) or if individual monitoring performance in previous automated periods did not
meet criterion levels (performance-based AA). Automation failure detection was
compared across the AA conditions and a static automation condition. In general,
their results revealed that both AA approaches enhanced monitoring performance
over static automation during long duration tests. Taken together with the results of
the Hilburn et al. (1993) study, this research demonstrates that during extended trials
AA may only be superior to manual control and static automation under certain
task conditions.

Some limitations of these studies include a focus on the application of AA to
psychomotor tasks, such as monitoring and tracking and the binary perspective of
AA (studying the allocation of manual control during fully automated operations
and vice versa). More contemporary work has focused on AA applied to cognitive
tasks, the use of the psychophysiological strategy to AA, and the issue of who has
authority over dynamic control allocations. Hilburn et al. (1997) conducted a study
in the context of Air Traffic Control (ATC) to examine whether a critical events
strategy to adaptive allocation of strategic planning advisories could be used to
reduce operator workload and optimize human performance. Experienced air
traffic controllers were required to perform in an ATC simulation with or without
the assistance of an automated tool for managing and controlling arrival traffic. The
automation tool detected planning conflicts or projected separation conflicts and
offered the human operator advice aimed at solving the detected conflicts. Hilburn
et al. (1997) used three automation schemes including constant manual control,
constant automation and the AA condition (under which automation was invoked
only during high traffic conditions). They found that the AA condition resulted in
the smallest increase in mental workload across trials.

Kaber and Riley (1999) explored a performance-based strategy to AA by using a
secondary task measure of workload to facilitate control allocations in a complex
dynamic control task (the primary task). They required subjects to perform the
Multitask# simulation along with a simple, gauge-monitoring task during 10-min
trials. Differences between secondary task performance (gauge monitoring) in the
absence of the primary task, and gauge monitoring as part of the dual-task scenario,
were observed and used as a basis for directing operator managed control allocations
in the primary Multitask#. Adaptive automation involving shifts between manual
control and partial automation (Blended Decision Making (LOA 6)) of the primary
task were mandated for one group and merely suggested for another. Kaber and
Riley found significantly improved manual, primary task performance and enhanced
secondary task monitoring under automation for the mandated-AA group, with the
opposite results occurring for non-mandated AA subjects. The average subject work-
load marginally exceeded an objectively established criterion by using the secondary
task measure to direct AA of the primary task.

These studies demonstrate that the critical events and performance approaches to
AA may be effective for moderating operator workload in various cognitive tasks.
Unfortunately, contemporary studies have not examined the use of such AA strate-
gies to prevent OOTL performance problems, including a loss of operator SA
(Endsley and Kiris 1995). Kaber and Riley’s (1999) work also provided insight
into who should decide whether and when automation should be invoked—the
human or computer. Consistent with other research (see Scerbo 1996), they demon-
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strated that humans might not be the best judges of DFAs. Additional empirical
evidence is needed, however, in order to resolve this question in various contexts,
including psychomotor and cognitive task performance. Moray et al. (2000) also
examined ultimate decision making authority under AA of their process control
simulation (an apartment complex heating system). Operators were posed with
two tasks, including monitoring and controlling a temperature gauge, and monitor-
ing an automated fault-management system (diagnosis and control of leaks and
breaks) that functioned at various levels of reliability (identified above). The tem-
perature control task was always performed manually. With respect to decision
making responsibility for DFAs, they offered that the characteristics of the situation
are key and that there are circumstances (time- and safety-critical) in which over-
riding authority for control allocations must be given to automation. They demon-
strated that under high-time stress conditions (a pipe ‘break’), operator response
time and accuracy is worse and that high-level AA should be implemented for
control and to diagnose whether human intervention is possible.

In general, both historical and contemporary AA research is supportive of a
theory of human-centred automation and defining dynamic changes in control func-
tion allocations between humans and computers based on states of the collective
human–machine system. This research demonstrates that AA may be superior to
other forms of complex system control for certain task types and durations.
Specifically, AA may provide performance benefits to operators involved in mon-
itoring, psychomotor and dynamic control tasks. These benefits appear to result
from maintaining operator involvement in active control and managing workload,
which may serve to prevent OOTL performance problems including complacency,
vigilance decrements and a loss of SA and manual skills.

2. Direction of current study

In general, the results on the effectiveness of AA and LOA approaches to human-
centred automation have been positive, specifically they have demonstrated both
approaches to promote human–machine system performance, moderate operator
workload and facilitate SA. However, to this point in time, no work has considered
how LOA and AA may interact to affect performance or SA. There is a need to
examine the combined effectiveness of intermediate LOAs and adaptive allocation of
LOAs during dynamic control tasks involving cognitive functions in order to define
the role of each in human-centred automation in terms of performance, SA and
workload. Hilburn et al. (1997) evaluated the impact of AA on cognitive function
performance in the context of simulated ATC tasks, but automated assistance was
either active or not and varying degrees of assistance were not considered. The high-
level goal of the experiment as part of this research was to describe the relative effects
of LOA and AA, as well as the interaction of these approaches, on human perform-
ance, SA and workload in a complex system control task.

More specific research needs motivating this work include the fact that all empiri-
cal studies of AA conducted thus far have been limited to the binary perspective of
the concept, including full automation and manual control allocations (e.g. Scallen et
al. 1995, Parasuraman et al. 1996, Hilburn et al. 1997). Few other LOAs have been
examined in AA research, such as allocating supervisory control during manual
functioning or allocating manual control during a batch processing mode.
Furthermore, one only has limited knowledge regarding appropriate frequencies
and durations of dynamic control allocations during experimental tasks. Previous
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research has only evaluated that combination of frequency and duration of DFAs
yielding a half-automated and half-manual task (Hilburn et al. 1993, Parasuraman et
al. 1993).

For example, different durations of automation allocations (e.g. the Full
Automation LOA (10)) have not been systematically examined while holding the
overall frequency of manual control allocations fixed across task time. Excessively
frequent cyclings between manual control and full automation (e.g. every 2 min)
appear to cause deficits in system performance (Hilburn et al. 1993). However, there
also appear to be differences in the effectiveness of AA with extremely short cycles
(less than 1 min) with the longer of these yielding performance improvements
(Scallen et al. 1995). Long cycle times (e.g. 10 min), in general, have been shown
to produce both decrements (Hilburn et al. 1993) and improvements (Parasuraman
1993, Parasuraman et al. 1996). It is possible that generally short-cycle times do not
allow operators to adapt to interface changes in order to perform tasks effectively;
whereas, long-cycle times may reduce the frequency of operator involvement in
system operations (manual control) and possibly lead to OOTL performance prob-
lems, including complacency and vigilance decrements. It is likely that there are also
workload and SA tradeoffs across different DFA schedules, although these have not
been studied. Optimal cycle times remain to be defined.

The present research addressed these needs and current limitations in knowledge
of AA. The work also involved determining which intermediate LOAs, included in
Endsley and Kaber’s (1999) taxonomy, and DFA schedules provide superior per-
formance in a dynamic control task. One important question concerning the inte-
gration of these approaches is what LOAs should be adaptively allocated to during
complex tasks in order to enhance performance and SA? For example, will providing
manual control opportunities to operators during supervisory control of a system
improve overall performance beyond that previously observed with conventional
AA? Furthermore, will different DFA durations, less or greater than 10 min, benefit
performance while holding the frequency of allocations fixed?

At the outset of this research, it was hypothesized that intermediate LOAs would
support operator SA and that short AA control cycles would have a negative impact
on performance. It is also possible that intermediate LOAs, distributing higher-level
information processing functions between the human and computer, may improve
performance as a result of the computer guidance positively influencing operator
task planning. Beyond this, it was speculated that lower levels of automation would
support improved performance, based on Endsley and Kaber’s (1999) previous
results. Based on Endsley and Kiris’ (1995) findings, it was expected that SA
would degrade to a greater extent with AA cycles involving allocation of high-
level automation as a result of operators being OOTL. With respect to the duration
of AA cycles, long cycles were expected to yield improved performance and lower
operator workload, but SA might be degraded, as compared to shorter cycles.

These are specific postulates that were considered in the experiment by compar-
ing model-based AA (control allocations of set durations and timing) with both
manual control and full automation using the dual-task paradigm employed by
Endsley and Kaber (1997, 1999) and Kaber and Riley (1999). (As in Parasuraman
et al. (1996), a model-based approach to AA was used to achieve a pre-determined
cycle of manual and automated performance and to allow for examination of the
performance effects of periodic task automation in a controlled manner.) Other
hypotheses could be formulated regarding the interaction effects of LOA and AA.
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However, no previous research exists upon which to base such hypotheses, other
than the previous research evaluating each approach independently.

3. Methodology

The specific objective of the experiment was to determine whether manual control
allocations during system operations at various LOAs, or allocations of a broad
range of LOAs during manual operations, benefit human–machine system perform-
ance, operator SA and workload in comparison to completely manual control and
fully automated performance. Unlike in Endsley and Kaber’s (1999) study, manual
control allocations in this experiment were not described as automation failures, but
rather opportunities for subjects to augment overall system performance, as might be
the case in introducing human operators to implementations of complex real-world
adaptive systems. It is unlikely that in making AA a reality that manual control
periods as part of DFAs would be characterized as pseudo-automation failures,
although from a conceptual standpoint this may be accurate.

3.1. Subjects
Thirty university students (13 males and 17 females) having 20/20, or corrected to
normal visual acuity, and some personal computer (PC) experience participated in
the experiment for monetary compensation. Subjects ranged in age from 18–40 years
(mean¼ 21.67) and all, but two, were right handed.

3.2. Tasks and experimental conditions
The subjects performed modified versions of the dynamic control and secondary
tasks used by Endsley and Kaber (1999) and Kaber and Riley (1999), including
the Multitask# simulation and gauge-monitoring task. The Multitask# simulation
was automated under a sub-set of the LOAs described in } 1 and presented in table 2,
including Manual Control (LOA 1), Batch Processing (LOA 3), Shared Control
(LOA 4), Blended Decision Making (LOA 6), Supervisory Control (LOA 9) and
Full Automation (LOA 10). These LOAs represent a broad range of automation and
were identified by Endsley and Kaber (1999) as being significantly different in terms
of human performance of Multitask#.

3.2.1. Multitask#: The Multitask# simulation has been used successfully in sev-
eral recent empirical studies (e.g. Endsley and Kaber 1997, 1999, Bolstad and
Endsley, 2000, Clamann et al. 2002) to investigate, for example, the effectiveness
of shared displays for facilitating SA in team operations, and has been validated
as a robust paradigm for evaluating human–automation interaction (i.e. it is possi-
ble to discriminate among many theoretical LOAs in terms of performance, SA
and workload using this task). Here, a detailed description is provided of the char-
acteristics of the task, the operator goal and interface features and functionality.

The simulation presents targets (multiple tasks) to an operator in the form of
square shapes of different sizes and colours on the mock radarscope. The targets
travel at various speeds towards a processing deadline at the centre of the display
(see figure 2). An operator’s goal is to select and eliminate targets (i.e. carry out the
tasks) by collapsing their areas before they reach the deadline or collide with one
another. The specific methods by which target selection and elimination occur
through the interface represent the LOAs in table 2 and are described in detail
below. As targets are collapsed, reward points (see upper-left corner of display)
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are added to a total score (see centre of display). Penalty points are assessed for

target expirations or collisions (also see upper-left corner of display) and deducted

from the total score. The size (small, medium, large) and colour (red, blue, green) of

each target encodes reward and penalty points. The exact point values for each target

are displayed as data tags attached to them. The high-level goals of an operator are

to maximize reward points and minimize penalty points. The speed at which targets

travel and their initial distances from the centre deadline provide information on the

time available for processing a task and are considered to be factors in target selec-

tion. The total travel times for targets ranges from �0.5–1 min.

Endsley and Kaber (1999) computed the minimum and maximum performance

in the simulation as 10 and 60 target collapses in a 60-s period, respectively.

Minimum performance could result if all targets eliminated were large and maximum

performance would occur if all targets processed were small.

Targets followed one of eight approach paths from the edge of the display

towards its centre causing convergent-type movement. Targets could collide on the

same approach path if one was travelling faster than another, or they could collide

on adjacent approach paths as they neared the centre of the display. This feature

added to the task complexity, based on the interaction of the different target char-

acteristics (i.e. speed and size).

In general, Multitask# is a cognitive task involving operator judgements and

projections on the temporal and spatial relations of targets, as well as interpretation

of target characteristics for prioritization for processing and decision-making in

target selection. In order to optimize performance, subjects need to develop a strat-
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egy accounting for tradeoffs among rewards associated with attending to a target
and penalties associated with missing a target or allowing two targets to collide and
assessments of the time available and required for processing tasks.

The different methods for processing targets conformed to those LOAs in
Endsley and Kaber’s (1999) taxonomy, which were selected for assessment as part
of this experiment. The operator interface and the responsibilities of the human and
computer at the test LOAs were as follows:

. Manual control—The operator was required to: (a) continually monitor the
display and the status of competing targets and their relevant attributes, (b)
generate a strategy (processing order) for eliminating targets, (c) select targets
for elimination accordingly by pointing to them with the mouse, and (d) imple-
ment their strategy (process the tasks) by continually depressing the mouse
button over the selected target until it disappeared.

. Batch processing—A target processing order (which was input by the operator)
was also shown in the lower left corner of the display. The operator was
required to (a) generate a strategy for processing targets, and (b) select targets
to be added to the processing order by depressing the numeric keys 1–9 on the
keyboard, which corresponded to numbers tagged to the displayed targets. (A
maximum of nine targets could be presented on the display at any given time.)
The computer implemented the operator’s processing order by automatically
collapsing each target in the list. This LOA, therefore, provided full automa-
tion of the implementation portion of the task.

. Shared control—Four processing orders were generated by the computer
(based on target distance, reward, penalty and speed (see figure 2, left side)),
and were displayed to assist the operator in target selection. Additional gui-
dance was offered by the computer in the form of a magenta dot tagged to the
target (see small, filled circle adjacent to large, dark target in upper-left portion
of radarscope in figure 2) that was currently the ‘best’ choice in terms of all

variables based on an optimization algorithm that considered distance, reward,
penalty and speed (i.e. ((reward—penalty)/(distance/speed))). The operator
was required to: (a) generate a processing strategy, which could be her own
or could be based on the computer guidance, (b) select targets to be collapsed
using the mouse, and (c) implement the strategy (process the targets) by
clicking the mouse button once over the desired target to activate automated
processing. This LOA provided joint human/computer generation of decision
options (strategies) and joint implementation of the human decision.

. Blended decision making—The same information, as provided under Shared
control, was presented along with a column that allowed for a processing order
to be entered by the operator (as under Batch processing). The operator and
computer both generated strategies for eliminating targets (as above); however,
the computer selected the processing order to be implemented. The order
selected by the automation could be over-ridden by the operator at any time
(if she did not agree with the computer’s choice) by depressing the keys A
(distance), B (reward), C (penalty), D (speed) and E (operator) corresponding
to the desired order (see top cells of ‘Processing orders’ matrix in figure 2). The
computer implemented the selected processing order by automatically collap-
sing targets on the list one-at-a-time. Blended decision making provided a
higher LOA by incorporating computer selection with human veto.
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. Supervisory control—This mode offered automation of all functions with
human over-ride capability. Therefore, the computer (a) generated a pro-
cessing strategy by taking into account all target variables, (b) selected targets
for elimination, and (c) implemented the strategy by automatically collapsing
targets one-at-a-time. The operator could intervene in the control process, if
she thought the computer was not efficiently eliminating targets. Operator
intervention was accomplished by depressing a key, which temporarily shifted
(for 1min) the LOA to Blended decision making. The operator could return to
automation of all functions before the end of the temporary shift in LOA by
depressing a second key. This LOA was, therefore, representative of many
supervisory control systems in which the system is mostly automated, but
human monitoring and intervention is expected.

. Full automation—In this mode all functions comprising (a) processing order
generation, (b) target selection, (c) strategy implementation (target elimina-
tion), and (d) system monitoring were performed by the computer. Operator
intervention was not permitted. Therefore, under Full automation the operator
could only observe system performance. (It is important to note that the
automation was only as good as the target-processing algorithm included in
the Multitask# software (see Shared control above). In general, the system was
not capable of identifying or considering potential target collisions in formu-
lating processing plans, which was critical to ensuring all implementation
efforts were worthwhile. Therefore, Full automation allowed for good, but
not perfect, performance.)

Each subject was randomly assigned to one of five groups corresponding to the
automated settings of the simulation, including Batch processing, Shared control,
Blended decision making, Supervisory control and Full automation. The LOAs were
adaptively applied to the task with each level being dynamically allocated in juxta-
position with Manual control according to different pre-determined time schedules.
These schedules and the extent to which each experimental trial was automated are
detailed in the Procedures section.

3.2.2. Secondary gauge monitoring task: The gauge-monitoring task was designed
based on the monitoring sub-task of the MAT battery. It presented a fixed-scale
display with a moving pointer (see figure 3) and required operators to monitor
pointer movements to detect when a deviation occurred from a central ‘acceptable’
region into peripheral ‘unacceptable’ regions. The task was presented on a moni-
tor separate from that used to present the Multitask# simulation and required
subjects to correct for pointer deviations by depressing keys on a keyboard facili-
tating upward or downward motion of the pointer. This task was psychomotor in
nature, involving subject monitoring, condition diagnosis and action. Performance
was recorded as the ratio of the number of unacceptable pointer deviations de-
tected to the total number of deviations (i.e. the hit-to-signal ratio).

The task was presented to subjects as an embedded secondary task; that is, they
were instructed to maintain attention to both the Multitask# simulation and the
gauge monitoring task. The task was included in the experimental scenario to pro-
vide a realistic loading of operators in that human performance with automated
systems usually involves multiple tasks; thus, encouraging reliance on the automa-
tion and possibly complacency. It was also considered as an analogue to many
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ancillary activities associated with radar monitoring in military applications (e.g.
communication with other radar operators� target handoff, etc.).

3.3. Apparatus
The synthetic tasks were presented using two Pentium1-based PCs, two 17-in
graphics monitors, two standard keyboards and a mouse integrated with the system
running the Multitask# simulation. The monitors operated at 60Hz under
1024� 768 resolution with refresh rates of 30 frames/s.

3.4. Experimental design
A mixed between-within experimental design was used in this study. The Multitask#

LOA was manipulated as a between-subjects variable and the time schedule of
manual and automated control allocations was manipulated within-subjects. There
were five settings of LOA, including Batch processing, Shared control, Blended
decision making, Supervisory control and Full automation, as described in } 3.2.1.
There were also five DFA schedules, including one without automation; three sche-
dules dictating ‘low’, ‘medium’ and ‘high’ automation exposure; and one completely
automated schedule. Subjects experienced the various schedules of manual and auto-
mated control in random order.

3.5. Procedures
Subjects were initially familiarized with the procedures and equipment, including the
SAGAT (Endsley 1988) and the NASA Task-Load Index (TLX) (Hart and Stave-
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land 1988). As in Endsley and Kaber’s (1999) study, the SAGAT was used to meas-

ure operator SA by freezing the tasks at random points in time during the experi-

ment, blanking all visual display screens and administering queries concerning both

the current and future states of the system. The SAGAT evaluated subject perception

(Level 1 SA), comprehension (Level 2 SA) and projection (Level 3 SA) regarding

information displayed during the tasks by comparing subject responses to queries on

each level with actual situation data recorded by the PCs running the simulations

(Endsley 1988, 1995). The percentage of correct responses was then calculated for all

queries.

Subjects completed NASA-TLX demand component rankings and then were

trained in Manual control of the Multitask# and the gauge-monitoring simulation.

The instructions to subjects included detailed descriptions of both the Multitask#

and gauge interfaces, as well as the functionality of Multitask# under the various

LOAs. The interface controls were demonstrated to subjects and they were then

permitted to practice the tasks for 20min. A 2-min rest period was provided and

was followed by additional Multitask# and gauge-monitoring training (the duel-task

scenario) for 20min at the LOA to which a subject had been assigned. This training

was followed by a 5-min break.

All subjects were required to complete five 60-min trials, three of which involved

AA, one completely Manual control trial (the DFA schedule without automation),

and one requiring subjects to perform under their assigned LOA for the entire trial

(the maximum automation allocation cycle time). A model-based approach was

taken to AA in this study not only to allow for examination of the effects of periodic

automation on task performance, but to also assess the specific effects of the dura-

tion and frequency of AA allocations. This implementation of AA is consistent with

previous work (Parasuraman 1993, Scallen et al. 1995) and provided for better

experimental control for investigating the desired issues than might have been

achievable with other approaches to triggering DFAs strictly based on operator

states (e.g. performance measurement, psychophysiological assessment, etc.).

Research on the effects of various AA triggering strategies is also important, but

beyond the scope of this work. During the AA trials, subjects performed the task for

pre-defined periods at the assigned LOA interspersed with periods of Manual control

according to one of three DFA schedules (see figure 4). The schedules were designed

to vary the distribution of automation and Manual control during a trial and

included:

(1) Low Automation Allocation Cycle Time (AACT)—involved three allocations

of automation at the assigned LOA, interspersed with Manual control.

Automation allocations occurred at regular intervals of 16min and lasted

for 4min. Therefore, 20% of the trial was automated.

(2) Medium AACT—also involved three allocations of automation at the

assigned LOA with the duration of automation allocation periods set at

8min. The interval between automation allocations was 12min. Forty per

cent of the trial was automated.

(3) High AACT—three allocations of automation at the LOA to which a subject

was assigned were provided. The duration of automation allocations was set

at 12min and an automation allocation occurred every 8min. Therefore,

60% of the trial was automated.
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The Manual control trial represented a schedule when the AACT was set to 0min

(the ‘None’ AACT schedule), meaning no AA allocations were made. The com-

pletely automated trial represented a schedule when the AACT was equal to the

task time of 60min (the ‘Maximum’ AACT schedule), meaning the task was auto-

mated at the assigned LOA for the entire trial period.

Subjects were informed in advance that Manual control was to be augmented by

automation allocations (on effected trials) and that they were to monitor the

Multitask# display carefully to detect and respond to any and all automation

allocations (as indicated by changes in dynamic interface features). However, no

information concerning the frequency or durations of automation allocations

within a trial was provided in order to prevent advanced preparation. All auto-

mation allocations were made salient to subjects by an audio tone and a display

of the name of the LOA assigned, which was provided in a ‘Level of Automation’

data field on the Multitask# display (see figure 2, upper-left corner). Subjects were

required to operate at the designated LOA for the scheduled duration of the AA

period before returning to Manual control, as shown in figure 4.

In addition to the AA allocations, six task freezes were dispersed throughout

each trial to administer SAGAT queries in order to assess the effect of LOA and AA

on SA (also see figure 4). Stops occurred at random points in time, with half occur-

ring during Manual control periods and half during automation periods. When a

freeze occurred, subjects responded to an electronic form of the SAGAT queries. It

included: (1) colour and size identifications for each target (Level 1 SA); (2) four

questions concerning the reward, penalty, speed and distance of targets to the dead-

line (Level 2 SA); and (3) one question concerning which target, of all the targets on

the Multitask# display at the time of the freeze, would reach the deadline next (Level

3 SA). Each stop lasted until subjects completed the queries.
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Subjects were not provided with knowledge of how many freezes were to occur
during a trial or inter-freeze intervals in order to prevent advanced preparation for
the quizzes. It is possible that subjects might have guessed at the number of freezes
and when freezes would occur in later trials, as part of their participation. However,
they could not have been certain of this, as they had no idea the number of freezes
would be the same across trials. Furthermore, the timing of each freeze was ran-
domly determined within the periods of Manual control and automation during a
trial, making prediction of the exact freeze time virtually impossible. Such freezes to
collect SAGAT data (or even the possibility of such freezes) have not been found to
affect subject performance (Endsley 1995, 2000).

Directly following a SAGAT freeze, subjects completed a NASA-TLX demand
component rating form, including mental, physical, temporal, performance, frustra-
tion and effort ratings. In this way, TLX scores were captured to describe workload
over the course of a trial and not simply the average workload perceived at the close
of a trial, as is typically the case with this measure. After a freeze, the task was
resumed until trial completion. All trials were performed in an environmental cham-
ber adjusted to normal room conditions (268C) in order to block-out extraneous
distractions (e.g. noise or interruptions). In total, subjects participated in three
experimental sessions of 2 h and 30min each. The first session was used for training
and a single test trial. The remaining two sessions involved two test trials with a 10-
min rest period between them.

3.6. Data analysis
The primary task performance measures included the number of targets collapsed,
expired and collided and were recorded at 1-min intervals throughout the 60-min
test periods during all 150 trials (five LOAs� six subjects within LOA� five
AACTs) yielding 9000 observations per response. (Given the average frequency/
timing of target collapses, collisions and expirations in the Multitask# simulation,
a shorter interval for data recording would have yielded many samples with zero
observations and most likely would not have increased the accuracy or sensitivity of
our analysis.) Since the target events determined the total reward and penalty points
assessed, the pattern of results on, for example, rewards was identical to the pattern
of results on collapses. Consequently, only analyses of the target event measures are
presented here.

There were a total of 900 data points on each SAGAT query and overall work-
load resulting from the six stops as part of each trial. With respect to secondary task
performance, the rate of error detection was averaged at 4-min intervals across the
150 test trials producing 2250 observations.

All data sets (primary and secondary task performance, SA and workload) were
divided into two sub-sets for analysis, including performance during Manual control
periods and performance at each LOA allocated during the AA trials and the
completely automated trial. All observations were analysed through a two-way
Analysis of Variance (ANOVA) including LOA and AACT as between- and
within-subjects variables, respectively. For the Manual control data, the LOA
level listed represents the LOA that directly preceded a manual performance
period (as this is relevant to SA and OOTL problems in manual performance periods
immediately following).

In order to rectify violations of the underlying assumptions of the ANOVA in the
data sets, transforms were applied to the various response measures according to the
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procedures described by Neter et al. (1990: 142–146), including logarithmic trans-
forms of all Multitask# performance measures and the NASA-TLX overall work-
load score, as well as arcsine transforms on the SAGAT response and secondary task
performance measure. In particular, the performance measures were transformed
due to non-normality of the data as revealed by a significant Shapiro-Wilks test
and a non-linear trend of the sorted residuals against the expected response values
in a normal probability plot. Residual plots against the levels of the various inde-
pendent variables (LOA and AACT) also indicated violations of the constant vari-
ance assumption of the ANOVA. Although the results reported below are on the
transformed responses, all graphs present response means at the various settings of
the predictors in original units in order to promote ease of interpretation and under-
standing (Neter et al. 1990: 147). Finally, correlation analyses were conducted to
establish any significant relationships among the various primary and secondary task
measures.

4. Results

4.1. Primary task manual control performance
Analysis of variance results on the performance data collected during the completely
manual trial and Manual control periods as part of the AA trials revealed no sig-
nificant effects of LOA, AACT or the interaction of these variables on the log
transform of the number of targets collapsed, expired or collided in the Multitask#

simulation. Results of an ANOVA on (1) the arcsine transform of Level 1, 2 and 3
SA, and the rate of error detection in the secondary monitoring task; and (2) the log
transform of NASA-TLX scores collected during these periods also revealed LOA,
AACT and the LOA�AACT interaction to be insignificant in effect. Manual per-
formance was, therefore, not affected by either the LOA or AA approach used in the
primary task. Unlike in Endsley and Kaber’s (1999) study, subjects in this experi-
ment were instructed to view the Manual control periods as opportunities to enhance
overall system functioning. They were not to see them as automation failures. The
lack of a LOA or AACT effect on manual performance may have been due to this
instruction.

The remainder of this section presents results on data collected during automated
performance periods. The figures presenting mean performance, SA and workload at
the various LOAs (figures 5–8) include the means for the None AACT trial and
Manual control periods during the AA trials to allow for illustrative comparison.

4.2. Primary task performance at assigned LOAs
The findings of ANOVAs on all responses observed during subject performance
under each LOA�AACT combination ( p-values) are summarized in table 3.
(Details on the significant F-tests, including degrees of freedom and test statistics,
are included in the text as part of this sub-section and the sub-sections on SA,
workload and secondary-task performance results.) Table 3 reveals significant
main effects and the presence of interactions across the majority of responses includ-
ing target collapses, expirations and collisions, Level 2 SA, NASA-TLX scores and
the hit-to-signal ratio for the gauge-monitoring task.

Results of ANOVAs on the log transform of target collapses ðFð4; 25Þ ¼ 31:11;
p < 0:0001Þ, expirations ðFð4; 25Þ ¼ 8:37; p < 0:0002Þ and collisions ðFð4; 25Þ ¼ 18:22;
p < 0:0001Þ revealed a significant main effect of LOA. The AACT was also signifi-
cant in terms of the number of targets processed ðFð3; 25Þ ¼ 28:1; p < 0:0001Þ. An
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interaction effect was present for the log transform of collapses ðFð12; 75Þ ¼ 26:98;
p < 0:0001Þ and collisions ðFð12; 75Þ ¼ 5; p < 0:0001Þ.

The mean number of targets collapsed increased linearly with increasing auto-

mation cycle time. Duncan’s Multiple Range (MR) test revealed significant differ-

ences ð p < 0:05Þ among the low, medium and high AACT settings, but not between

the high and maximum AACT. The shortest AACT yielded the worst performance.

These findings can be attributed to the computer assistance provided to operators

across the various LOAs during automation allocations.

Low and intermediate automation (Batch processing (LOA 3) and Blended deci-

sion making (LOA 6)) produced, on average, more collapses and reduced the mean

number of targets expirations and collisions, respectively, as compared to high-level

automation (Full automation) and Manual control. In general, target expirations

appeared to vary as an ‘U’ function of LOA with Manual control and Full auto-

mation producing, on average, worse performance. Duncan’s tests on the primary

performance measures revealed each LOA to differ significantly ð p < 0:05Þ from

every other in terms of mean target collapses; all LOAs to differ significantly

ð p < 0:05Þ in terms of expirations, save Shared (LOA 4) and Supervisory control
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(LOA 9); and collisions to differ significantly ð p < 0:05Þ between Batch processing
(LOA 3) and all other levels.

The mean numbers of target collapses across subjects, as a function of the
LOA�AACT interaction, are shown in figure 5. Under all cycle times, collapses
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Figure 6. Plot of mean per cent correct responses to Level 2 SA queries for each
LOA�AACT combination. (Note: MC¼Manual control; BP¼Batch processing;
SHC¼ Shared control; BDM¼Blended decision making; SC¼ Supervisory control; and
FA¼Full automation. Error bars represent �1SD.)

Table 3. Summary of results on analysis of automation performance, SA and workload
data.

Response measure

Predictor variable

AACT ( p) LOA ( p) LOA�AACT ( p)

Target collapses 0.0001** 0.0001** 0.0001**
Target expirations 0.5846 0.0002** 0.0553
Target collisions 0.2741 0.0001** 0.0001**
Level 1 SA 0.4541 0.2648 0.8665
Level 2 SA 0.4268 0.0021** 0.0331*
Level 3 SA 0.7018 0.3387 0.1468
NASA-TLX 0.0011** 0.1971 0.0469*
Rate of error detection 0.0181* 0.2928 0.0003**

* Significant at the � ¼ 0:05 level.
** Significant at the � ¼ 0:01 level.



varied as a function of LOA, with peak numbers at Batch processing (LOA 3) and

Full automation (LOA 10). The mean number of target collisions, like collapses, also

varied with LOA revealing slight peaks at Manual control (LOA 1) and Batch

processing (LOA 3). Duncan’s MR test was conducted on the log transform of

both responses for each LOA�AACT combination. In general, Batch processing

(LOA 3) under the high AACT trials produced superior performance ð p < 0:05Þ
compared to all other conditions. It was possible for operators assigned to the

Batch processing condition to outperform the system operating under Full auto-

mation because the automation algorithm did not consider potential or imminent

target collisions in planning a processing schedule. Therefore, the computer might

have selected and begun to process a target that ultimately collided with another

target. Since Multitask# only permitted processing of one target at a time, this type

of automated selection essentially represented wasted implementation time. The

Batch processing level also produced good performance during medium AACT

trials and the fully automated trial, but performance was never as good as in the

AA trials. Duncan’s test also revealed Shared control (LOA 4) during the fully

automated and low AACT trials to produce significantly fewer ð p < 0:05Þ target

collapses than all other LOA�AACT combinations.

With respect to target collisions, Duncan’s tests indicated that Batch processing

(LOA 3) as part of the high AACT schedule produced the worst performance.

Collision prevention was also poor under Batch processing (LOA 3) as part of the
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other AA trials and the fully automated trial. Next to these conditions, Supervisory
control (LOA 9) as part of the medium AACT schedule produced a significantly
higher, average number of collisions ð p < 0:05Þ than all other LOA�AACT com-
binations. Otherwise, the mean number of target collisions was essentially constant
across Shared control (LOA 4), Blended decision making (LOA 6) and Full auto-
mation (LOA 10) as part of various AA trials and the fully automated trial. Blended
decision making (LOA 6) as part of the low AACT schedule produced the best
performance in terms of preventing target collisions.

4.3. Primary task situation awareness
Results of an ANOVA on a 5� 4 (LOA�AACT) model of the arcsine transform of
Level 1, 2 and 3 SA indicated that LOA was significant in effect ðFð4; 25Þ ¼ 5:68;
p ¼ 0:0021Þ on the average per cent correct responses to task comprehension queries
(Level 2 SA). The LOA�AACT interaction was also present ðFð12; 75Þ ¼ 2:03;
p ¼ 0:0331Þ for Level 2 SA. The per cent correct responses to queries varied with
LOA across AACT and did not fall below chance, which was 20% for each query, in
any of the conditions.

Graphical analysis revealed subject comprehension of target characteristics in
relation to task goals (maximizing reward points and minimizing penalties) to
peak at an intermediate LOA (Shared control (LOA 4) and Full automation
(LOA 10)), while low and high-level automation (Batch processing (LOA 3) and
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�1SD.)



Supervisory control (LOA 9)) produced substantially lower SA. Duncan’s test con-
firmed these observations and indicated Batch processing and Supervisory control to
significantly differ ð p < 0:05Þ from all other levels.

Figure 6 shows the mean per cent correct responses to Level 2 SA queries across
subjects, as a function of LOA�AACT interaction. Operator task comprehension
appeared to peak under Shared control (LOA 4) as part of the low and medium
AACT schedules. When the high automation cycle time setting was used, Full auto-
mation (LOA 10) produced substantially higher SA. It can also be noted from the
graph that Manual control (LOA 1) as part of the completely manual trials produced
higher SA than Manual control during the low and medium AACT trials, but lower
SA than during the high AACT trial. On average, SA during completely Manual
control was never as good as the best SA during Manual Control periods as part of
AA trials (high AACT). Duncan’s MR test confirmed Shared control (LOA 4) at the
low-cycle time and Full automation (LOA 10) at the high-cycle time to produce the
best SA. The mean per cent correct responses to queries were significantly lower
ð p < 0:05Þ under Batch processing (LOA 3) and Supervisory control (LOA 9) during
the AA trials (medium and high AACT schedules) than the average for all other
LOA�AACT combinations.

4.4. Ratings of primary task workload
Results of an ANOVA on the NASA-TLX response indicated a significant main
effect of AACT ðFð3; 25Þ ¼ 5:92; p ¼ 0:0011Þ and a significant interaction of
LOA�AACT ðFð12; 75Þ ¼ 1:91; p ¼ 0:0469Þ. Not surprisingly, NASA-TLX scores
tended to decrease with increasing duration of automation. Duncan’s tests on the
logarithmic transformed TLX scores revealed significant differences ð p < 0:05Þ
among all AACT settings with peak workload occurring under the low-cycle time
and the minimum mean score at the maximum AACT.

The mean NASA-TLX scores across subjects, as a function of AACT and LOAs
are shown in figure 7. In general, workload ratings appeared to peak under Shared
control (LOA 4) during the AA and fully automated trials. Manual control (LOA 1)
performance during the completely manual trials yielded, on average, lower TLX
scores, than Manual control (LOA 1) during the AA trials, specifically when the low
and high AACT schedules were administered. Duncan’s MR test confirmed that
Shared control (LOA 4), in general, produced the greatest perceived workload in
comparison to all other LOA�AACT conditions. Batch processing (LOA 3) as part
of the low AACT schedule also produced significantly higher ð p < 0:05Þ ratings of
workload than all other experimental conditions, save those involving Shared con-
trol (LOA 4). As one might expect, the lowest workload ratings were observed for
Full automation (LOA 10) at the maximum-cycle time, according to Duncan’s tests.

4.5. Embedded secondary task performance
Results of an ANOVA on the 5� 4 (LOA�AACT) model of the arcsine transform
of operator performance in the secondary (gauge monitoring) task indicated AACT
ðFð3; 25Þ ¼ 3:56; p ¼ 0:0181Þ and the LOA�AACT ðFð12; 75Þ ¼ 3:59; p ¼ 0:0003Þ
interaction to be significant in effect. Not surprisingly, error detection rates increased
with increasing durations of automation in the primary task. According to Duncan’s
test, the maximum (100%) automation cycle time of the primary task produced the
greatest number of error detections in the secondary task, while the fewest errors
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were detected during the low AACT schedule and completely manual trials. The

medium and high AACT schedules were not significantly different ð p > 0:05Þ.
Figure 8 shows the mean rate of error detection in the secondary task as a

function of LOA of the primary task and AACT. From figure 8, operator per-

formance in gauge monitoring appeared to peak when the Multitask# simulation

was automated under high-level automation (Supervisory control (LOA 9)) for

medium- and high-cycle times. Duncan’s MR tests revealed that Full automation

(LOA 10) of the primary task as part of the maximum AACT schedule caused the

best performance in the secondary task followed by the use of Batch processing

(LOA 3) during the medium AACT trial. During Manual control (LOA 1) of the

Multitask# simulation, performance in gauge monitoring was, on average, greatest

when the high AACT schedule was followed. This seems logical because of all the

trial schedules involving Manual control (LOA 1), the high AACT schedule pro-

vided computer assistance for the greatest percentage of time on task. Consequently,

operator perceptual resources required by the Multitask# may have been freed-up

more often for detecting errors in the gauge task. Manual control (LOA 1) during

the completely manual trials appeared to produce a lower average error detection

rate than Manual control (LOA 1) as part of the AA trials. Duncan’s test also

revealed Shared control (LOA 4) and Blended decision making (LOA 6) as part of

the low and medium AACT schedules to produce significantly lower ð p < 0:05Þ
mean rates of error detection in the gauge monitoring task than all other

LOA�AACT combinations, save Batch processing (LOA 3) as part of the low

and high AACT schedules.

4.6. Response measure correlation analyses

Pearson-product moment coefficients were determined for all pairs of response

measures observed during the study to determine: (1) whether workload reductions

were accompanied by improvements in SA; (2) whether there were tradeoffs

among the two tasks in terms of performance, SA or workload; and (3) whether

SA on the primary task may have been associated with poor performance in the

secondary task.

Significant relationships of interest to this research occurred among Level 2 SA

queries and NASA-TLX scores ðr ¼ 0:4175; p ¼ 0:0424Þ, and NASA-TLX scores

and the rate of error detection in the secondary task ðr ¼ �0:6993; p ¼ 0:0001Þ. As

workload increased, operator task understanding appeared to improve. This may

have been due to greater subject involvement in the system control loop at inter-

mediate LOAs (e.g. Shared control (LOA 4)) or due to Manual control (LOA 1)

allocations during functioning at high LOAs (e.g. Full automation (LOA 10)) as part

of AA trials. As perceptions of primary task workload increased, operator perform-

ance in gauge monitoring decreased.

There were also significant correlations between Level 2 SA and primary task

performance (the number of target collisions) ðr ¼ 0:4518; p ¼ 0:0267Þ; however,

performance in the secondary task was only weakly correlated with Level 2 SA

(operator comprehension of the states of the primary task). The number of

target collisions permitted by an operator decreased as their understanding of

target information improved. Increased levels of operator SA may have improved

performance.
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5. Discussion

5.1. Primary-task performance

In general, the pattern of performance in the Multitask# simulation under the vari-

ous LOAs replicated the results obtained by Endsley and Kaber (1999), even though

different AA strategies were employed. That is, LOA appeared to be the driving

factor in human–computer performance in the dynamic control task; whereas, auto-

mation cycle time had comparatively little effect, as can be seen in the interaction

plot on target collapses. With reference to the LOA taxonomy in table 2, improve-

ments in performance in terms of the number of targets addressed occurred at LOAs

involving human strategizing (generating and selecting target processing plans) with

computer aiding in the implementation aspect of the task (Batch processing (LOA

3)), as compared to all other levels that added automation to the roles of option

generation and selection (Shared control (LOA 4) and Blended decision-making

(LOA 6)).

As we hypothesized, when low-level automation, Batch processing (LOA 3), was

combined with a greater percentage of time-on-task being automated (the High

AACT condition), it produced better performance. We expected the longer automa-

tion cycles as part of the AA condition to improve performance. Batch processing

(LOA 3) allowed for operator advanced queuing of targets for processing by the

computer vs Blended decision making (LOA 6), which also permitted operator entry

of a target processing order. However, the computer had a role in generating stra-

tegies as well, which may have distracted operators from task performance. The

performance results for Shared control (LOA 4), identified the intermediate level

as the worst among all conditions in terms of target processing. This may reveal the

interaction of the short-cycle automation (the low AACT condition) with the specific

characteristics of the LOA as being problematic. The short control cycles as part of

some AA trials were expected to have a negative impact on performance.

Although Batch processing (LOA 3) may have been effective for eliminating

targets, it also yielded the greatest number of collisions as part of the high

AACT schedule. During advanced queuing of targets for computer processing,

operators may have focused their attention on the goal of maximizing rewards

(processing targets) vs preventing penalties associated with task conflicts. With the

advanced queuing capability, operators may not have been operating in the

‘moment’ and missed critical events because of the automation. It is possible that

automation of certain system information processing functions may cause operators

to be essentially OOTL with respect to certain task processes, while focused

on others.

In agreement with one of our initial hypotheses, compared to Batch processing

(LOA 3), performance improvements in the form of decreases in the number of

target collisions occurred at intermediate LOAs requiring joint human–computer

generation of processing plans (Shared control (LOA 4) and Blended decision-

making (LOA 6)), specifically during the AA trials with low and medium AACT.

Although these LOAs did not support task processing as well as those involving

purely human strategy generation, the computer decision guidance may have caused

operators to behave more conservatively and pay closer attention to penalties associ-

ated with disregarding tasks.
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5.2. Situation awareness
In general, as we hypothesized situation understanding improved under intermediate
level automation (Shared control (LOA 4)), however, contrary to our expectation
based on Endsley and Kiris’ (1995) findings, comprehension also improved under
Full automation (LOA 10), but this was during the AA trials involving periods of
Manual control. Situation awareness in trials only involving Full automation (the
maximum AACT condition) was significantly worse than in the AA trials. In gen-
eral, aspects of our results were similar to both Endsley and Kiris’ (1995) and
Endsley and Kaber’s (1999) findings. Full automation (LOA 10) removed subjects
from the Multitask# control loop; however, the reduced taskload may have freed-up
cognitive resources for information perception and integration in working memory
while keeping task goals in mind (resulting in higher SA under full automation).
Periods of Manual control during the AA trials reacquainted operators with the
current state of the system and increased SA in comparison to completely automated
performance.

Shared control (LOA 4) maintained operator task involvement by requiring
option selection by the operator and collaboration with automation in system mon-
itoring, options generation and implementation. Even higher perceptions of work-
load than those observed may have been offset by providing computer assistance in
these roles.

Batch processing (LOA 3) and Supervisory control (LOA 9) (low and high
LOAs) caused the worst operator SA of target priorities and completion status
across the various AACT conditions. Endsley and Kaber (1999) obtained the
same result for Batch processing (LOA 3) using the Multitask# simulation.
Operator involvement in advanced cueing of targets for processing may have
distracted from their comprehension of current system events, such as target
collisions (task conflicts) and expirations (tasks disregarded). As previously dis-
cussed, operators may have been OOTL in terms of the implementation aspect of
the task and this could have undermined their task comprehension. As hypothesized,
low SA under Supervisory control (LOA 9) and the high AACT condition, in
particular, may be attributed to operator OOTL performance under this condition
combined with stress due to concern with when intervention may be necessary to
optimize performance (e.g. prevent target collisions undetected by the automation).
There did not appear to be evidence of short-cycle automation as part of AA trials
negatively affecting SA as we speculated; however, this effect was observed with the
performance measures.

As stated, the highest Level 2 SA occurred under Full automation (LOA 10) as
part of high-cycle time automation. Interestingly, this LOA�AACT combination is
equivalent to that investigated by Parasuraman (1993), who demonstrated improve-
ments in human performance of the monitoring aspect of the MAT battery, as
compared to fully automated monitoring. This suggests that AA involving full auto-
mation and manual control may yield improved performance with high SA.

Finally, the results on SA during the completely manual trials vs Manual control
periods as part of AA indicate that some AA may always be better than none for
ensuring operator comprehension of current system states. The workload reductions
attributable to the AA allocations may be critical to freeing-up operator cognitive
resources for task concentration and achievement of higher levels of SA. These
results are comparable to the recent findings of Clamann et al. (2002), who also
observed that some AA may always be better than none in terms of performance
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during manual control periods when AA is applied exclusively to specific human–
machine system information processing functions.

5.3. Workload
The automation cycle time appeared to be the driving factor in changes in workload,
whereas the LOA had comparatively little effect, as can be seen in the interaction
plot of NASA-TLX scores. As expected, the long cycle automation as part of the AA
conditions yielded lower operator workload. Interestingly, for the low automation
condition of Batch processing (LOA 3), subjects appeared to perceive advanced
cueing of targets during an entire trial (the maximum AACT schedule) to be more
taxing than periodic Batch processing (LOA 3) combined with manual control dur-
ing the AA trials. That is, full-time monitoring of automation involved more work-
load. This suggests that forms of automation that allow operators to work ahead of
actual system processing over extended time periods may ultimately be perceived as
posing greater workload than adaptive systems providing the same capabilities and
requiring operators to track function allocations. Examples of batch processing
operations include job schedulers in manufacturing systems and pilots operating
with flight management systems.

5.4. Secondary-task performance
In general, secondary monitoring performance improved with an increasing duration
of automation in the primary task; however, the Multitask# LOA was not a driving
factor in secondary task performance. The secondary task measure essentially vali-
dated the results on the NASA-TLX scores. This was not surprising, as substantial
research has demonstrated the validity and reliability of secondary task measures
of workload (see Wickens 1992: 393–396), and was supported by the correlation
analysis revealing a highly significant relationship among NASA-TLX scores and
secondary-task performance.

6. General discussion and conclusions

This work was intended to expand the current understanding of LOA and AA as
approaches to human-centred automation with the objective of optimizing human–
machine system performance. It investigated the interaction of these approaches in
automating a dynamic control task and the implications for operator performance,
SA and workload. The experiment represents basic cognitive engineering research
intended to provide insights into the use of dynamic control allocations across a
broad range of LOAs during complex control task performance for the purposes of
facilitating SA and managing operator workload. The experiment was conducted in
a controlled laboratory setting using abstract simulations in order to develop general
results potentially applicable to a broad range of domains. The work was not
intended to generate results or design guidelines for a specific domain, such as air-
craft piloting or ATC, and, therefore, care should be taken in making applied infer-
ences on the basis of the findings. Further research is needed to explore the
generalizability of these findings to more realistic tasks.

In general, this research is supportive of the use of LOA and AA approaches to
facilitate human–automation interaction and to promote operator performance and
SA through meaningful involvement in systems control. In a dual-task scenario, the
LOA approach appears to have a greater influence than AA on primary-task per-
formance and operator SA, with little effect on perceived workload and secondary-
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task performance. Interestingly, primary task performance was more closely associ-
ated with SA than with workload.

The lack of an effect of LOA on secondary-task performance is likely attributed
to the fact that across the LOAs investigated here, operators always maintained a
role in the dynamic control task, whether it involved options generation, selection
and implementation or monitoring under full automation. Monitoring automation
has been found to involve considerable workload (Becker et al. 1991, Dittmar et al.
1993).

The AA approach, or the definition of a schedule of DFAs, appears to drive
changes in subjective workload and secondary task performance with little effect
on primary task performance and SA. Not surprisingly, when a greater percentage
of primary task time was automated, greater operator perceptual resources were
freed-up for observing secondary task events.

In general, the combined effect of the LOA and AA approaches on Multitask#

and secondary task performance, operator SA and perceived workload was not
‘additive’ in nature. The LOA yielding the best overall performance (Batch pro-
cessing (LOA 3)) did not do so at the AACT producing superior functioning (maxi-
mum automation cycle time—i.e. always automated at the LOA). The best
combination of LOA and AACT involved human strategizing combined with com-
puter implementation (Batch processing (LOA 3)) during high automation cycle
times (12-min on cycle and 8-min off cycle). This indicates that in dynamic, multi-
task environments some human manual performance is useful to overall system
functioning. It was better than fully automated performance, which was also con-
sidered in this research.

The combination of intermediate LOAs (Shared control (LOA 4) and Blended
decision making (LOA 6)) with low and medium automation cycle times (4-min on
cycle and 16-min off cycle, and 8-min on cycle and 12-min off cycle) tended to
produce poor performance. This was counter to our expectation that intermediary
LOAs dictating human-computer collaboration on task functions, such as option
generation and selection, would generally promote performance across the various
automation cycle times. Operators tended to become distracted from task perform-
ance by forms of computer guidance or because they needed to attend to additional
input. Furthermore this guidance may have caused them to become doubtful of their
own strategy, even when it was better. With respect to previous research (Hilburn et
al. 1993, Parasuraman 1993, Scallen et al. 1995) on the effect automation and manual
control cycle durations during AA of complex tasks, it appears that automation
cycles longer than 10-min separated by manual control periods of a shorter duration
may benefit overall system performance.

Although, as hypothesized, fairly low-level automation (Batch processing (LOA
3)) with a high automation cycle time (12-min on-cycle and 8-min off-cycle) pro-
duced superior human–machine system performance, this combination was associ-
ated with poorer SA (operator task understanding) and moderate workload. (This
problem was previously hypothesized to reflect problems with advanced queuing of
tasks at this LOA.) Secondary task performance was also worse under these con-
ditions than for all other LOA and AACT combinations. On the basis of the litera-
ture review (Endsley and Kiris 1995, Endsley and Kaber 1999, Kaber and Riley
1999), the combinations of LOA and AACT expected to yield improved SA and
low workload included intermediate LOAs (e.g. Shared control (LOA 4) and
Blended decision making (LOA 6)) combined with low and medium automation
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cycle times (4-min on cycle and 16-min off cycle, and 8-min on cycle and 12-min off

cycle). These combinations were associated with higher SA, but without reductions

in workload. Secondary task performance was also poor.

In general, the results on SA and workload presented here are consistent with

prior research by Endsley and Kiris (1995), who found better SA at intermediate

LOAs and poorer SA at full automation with no differences in perceived workload

across levels. They are also in agreement with the results obtained by Kaber et al.

(2000), revealing higher SA under low-to-intermediate automation and lower SA

at high LOAs. However, Kaber et al. (2000) did find significant differences in

workload across LOAs as found here, with lower levels occurring under higher

LOAs.

The present investigation demonstrated higher SA at intermediate LOAs, invol-

ving computer aiding in all task roles (options generation and implementation and

system(s) monitoring) except strategy selection (decision making) with no significant

effect of LOA on operator’ perceptions of workload. However, improved SA at

full automation was also observed in this study. This is consistent with Endsley

and Kaber (1999), who found higher SA under high-level automation. Endsley

and Kaber (1999) attributed this to a relatively short trial duration and the

absence of a secondary task in their experimental scenario. Neither of these two

factors occurred in the present experiment, however, indicating the result may

be reliable.

Although fully automated functioning essentially removes operators from the

control loop with the potential of jeopardizing SA, reduced task requirements, in

the form of fewer different roles to maintain, may free-up operator cognitive

resources for processing information in the context of their goals. However, fewer

task requirements does not necessarily dictate a reduction in perceived workload;

which may remain high during high-level automation due to operator system mon-

itoring. This explanation is, however, counter to the findings of Kaber et al. (2000)

on high-level automation. It may be possible that, although their subjects experi-

enced lower workload under full automation, they may not have been attentive to

the task and experienced complacency and vigilance decrements during long-dura-

tion trials (1 h of telerobot control).

These events seem to have an impact on secondary task performance, as well.

That is, even when an high LOA is used for primary task performance, it may not

reduce workload sufficiently to improve secondary task performance due to the

monitoring load imposed under passive conditions.

These conclusions further refine theoretical hypotheses on the usefulness of LOA

and AA approaches to human-centred automation in terms of recommendations for

promoting overall system performance, operator SA and managing workload, and

may be used to expand the theory of human-centred automation. Although LOA

and AA were found to significantly interact in effecting human–machine system

performance, operator SA and workload, the allocation of functions to humans

and automated systems (i.e. the LOA) appears to be far more important to perform-

ance and SA than the amount of time that is spent on a task under automated vs

manual control (AA). Whereas, the schedule of DFAs provided during complex

system operations was confirmed by this study to be a key approach to managing

operator workload, in comparison to manipulating the function allocation scheme

alone.
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6.1. Future research
Based on the results of this study and the literature reviewed, a need exists for further
empirical assessment of LOA and AA strategy effects on human/machine system
performance in real-world dynamic control tasks. Many experimental investigations
of AA (e.g. Parasuraman et al. 1992, 1993, 1996, Gluckman et al. 1993, Hilburn et al.
1993, 1997, Parasuraman 1993, Glenn et al. 1994, Harris et al. 1994, Kaber and Riley
1999, Moray et al. 2000) and LOA (e.g. Billings 1991, Endsley and Kiris 1995,
Endsley and Kaber 1999, Kaber et al. 2000, Moray et al. 2000, Lorenz et al.,
2001) conducted thus far have been performed in the context of simulations.

Adaptive automation, as investigated in this study, was applied using pre-defined
schedules of manual control allocations alternated with automated functioning.
The durations of the automation allocations and the inter-allocation-intervals
were determined in advance of actual operator performance to provide experimental
control. A need exists for empirical examination of both a broader range and finer
division of control allocation cycle times to determine whether extremely long-cycle
AA produces performance benefits. In addition, alternate approaches to DFA have
been put forth including allocations of automation based on dynamic evaluation of
operator workload and performance. These and other methods for applying AA
based on operator physiologic state, as indicated by heart rate, or mental arousal
level, as indicated by EEG signals (e.g. P300) (Pope et al. 1994, Freeman et al. 1999,
2000), need to be systematically compared in terms of the capability to manage
operator workload and facilitate SA.

Future research needs to further explore the complex interactions and tradeoffs
associated with these two approaches to better integrating humans and automation.
A wide range of possibilities exist in this design space, which has, to date, only been
explored at the edges. As more systems become automated, in a wide variety of
domains, better design guidance is needed as to the effects of AA and LOA decisions.
From this research, it appears that each approach offers certain benefits. The exten-
sion of this work to a variety of realistic domains is needed, so that the robustness of
these findings can be further established.
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