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Abstract

Background: In the analysis of large-scale genomic datasets, an important

consideration is the power of analytical methods to identify accurate predictive

models of disease. When trying to assess sensitivity from such analytical methods, a

confounding factor up to this point has been the presence of linkage disequilibrium

(LD). In this study, we examined the effect of LD on the sensitivity of the Multifactor

Dimensionality Reduction (MDR) software package.

Results: Four relative amounts of LD were simulated in multiple one- and two-locus

scenarios for which the position of the functional SNP(s) within LD blocks varied.

Simulated data was analyzed with MDR to determine the sensitivity of the method

in different contexts, where the sensitivity of the method was gauged as the number

of times out of 100 that the method identifies the correct one- or two-locus model

as the best overall model. As the amount of LD increases, the sensitivity of MDR to

detect the correct functional SNP drops but the sensitivity to detect the disease

signal and find an indirect association increases.

Conclusions: Higher levels of LD begin to confound the MDR algorithm and lead to

a drop in sensitivity with respect to the identification of a direct association; it does

not, however, affect the ability to detect indirect association. Careful examination of

the solution models generated by MDR reveals that MDR can identify loci in the

correct LD block; though it is not always the functional SNP. As such, the results of

MDR analysis in datasets with LD should be carefully examined to consider the

underlying LD structure of the dataset.

Introduction

Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two

or more loci [1]. The concept of LD and the statistics used to measure it relate directly

to the frequency of ancestral recombination events which have separated the loci

between which calculations are made. Frequent recombination between loci of genetic

variation will result in linkage equilibrium. Thus it is often the case that when there is

LD, it is due to physically linked genetic variants. LD can also result from population

genetic events such as admixture and natural selection. GWAS take advantage of LD

to be able to identify indirect associations but also suffer from strong LD over large

genomic regions. The problem with LD in genomic data and its ability to confound

analysis is illustrated by the human leukocyte antigen (HLA) locus, which was at the

heart of several early spurious associations with susceptibility to immunological and

infectious diseases as a result of 3 cM of high LD around the locus [2]. This example
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shows how long-range LD can confound analysis methods in their attempt to precisely

identify loci associated with risk for disease.

While there are multiple statistics which can be used to measure the degree of LD

between alleles at two genetic variants, the two which have become most popular in

genetic epidemiology are r2 and D’. Both statistics are based around D, the coefficient

of disequilibrium. The value of D is the product of the frequencies of the alleles of

interest at loci A and B subtracted from the frequency of chromosomes or gametes

carrying both alleles (Figure 1) [1]. D’ is the value of D divided by the absolute value

of the maximum possible value D could take on given the allele frequencies and is

thus a normalized statistic comparable between allelic pairs. The r2 statistic is a corre-

lation coefficient between the two alleles and will only be large if both are similar in

frequency. For D, D’ and r2, a value of zero is expected under the null hypothesis of

no allelic association. While D can be negative or positive, both D’ and r2 range

between zero and one. A value of one for D’ indicates perfect disequilbrium as it

relates to the absence of at least one of the expected haplotypes which would be possi-

ble given the alleles at the two loci. If r2 takes the value of one, it means that the

alleles at the two loci are perfectly correlated and are thus also in perfect disequili-

brium. It is possible to have r2 < 1 given D’ = 1 but not the reciprocal. While the con-

cept of linkage disequilibrium and the statistics used to describe it are specific to

genetics, the phenomenon can more generally be considered as the presence of corre-

lation between variables when thought of in regards to data mining and analysis

methods.

Multifactor Dimensionality Reduction (MDR) is an analysis method designed to

detect multi-locus interactions in large datasets. The MDR algorithm searches exhaus-

tively among a set of categorical variables such as genotypes for interactions up to a

specified order of degree (e.g. 2-way, 3-way). For each interaction model up to the

Figure 1 Statistics used to measure LD. Equations to calculate statistics commonly used to measure the

degree of LD in genetic data.
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specified level of complexity, each intersection of the potential values for the variables

in the model is labeled as high risk or low risk based on the ratio of cases to controls

who possess the intersection of values for the variables under examination (e.g. the

AABB multi-locus genotype). The accuracy of this classification is then used as a

metric of model importance, including the predictive value of the model in unseen

data through the use of N-fold cross validation [3]. The design of the MDR algorithm

renders it capable of detecting even those interactions for which the categorical vari-

ables have no detectable marginal effects. MDR has been used frequently in the field of

genetic epidemiology - in the study of diseases such as Breast Cancer [3-5], Schizo-

phrenia [6], and Type 2 Diabetes [7] - to search for interactions between single nucleo-

tide polymorphisms (SNPs) implicating biological interactions of etiological

significance. The performance of MDR has been examined in the presence of genetic

heterogeneity, phenocopy and missing data but not in the presence of LD [8]. The goal

of this study was to determine the sensitivity of MDR to detect the disease signal of

functional loci in varying amounts of LD. Data ranging from low to high LD amounts

were simulated using a forward-time genomic simulator (Figure 2). Cases and controls

were subsequently drawn to by taking two chromosomes from a pool of simulated

chromosomes and applying a penetrance function describing the probability of disease

given the single- or multi-locus genotype present at the functional variant(s). The func-

tional variants responsible for disease etiology were chosen to satisfy requirements of

LD structure with surrounding SNPs and allele frequency (Figure 3). One hundred

datasets with 1000 cases and 1000 controls were generated for each model. The result-

ing datasets were then analyzed with MDR and the sensitivity of the method was

measured.

Results

Analysis of One-Locus Models

Two single-locus models each with three effect sizes were simulated with genome-

SIMLA and analyzed with MDR. Due to the presence of only small differences in sen-

sitivity between the three effect sizes tested, the mean sensitivity across the effect sizes

Figure 2 Data pools of differing LD amounts. The four different data pools used to generate data. A)

40% LD B) 60% LD C) 80% LD D) 95% LD.
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is used for comparison. The scenario in which the functional SNP is removed from the

dataset prior to analysis was also examined. Results of these analyses are shown in

Table 1. In all amounts of LD, the signal sensitivity did not differ largely between

model types or amounts of LD and was usually above 90 for all effect sizes. The exact

sensitivity, however, varied highly depending on the amount of LD. When 40% or 60%

of the SNPs in the dataset were in high LD with at least one other SNP, the exact sen-

sitivity was nearly equivalent to the signal sensitivity and was greater than 90. When

there was a greater amount of LD, as in the 80% LD and 95% LD cases, the exact sen-

sitivity dropped far below the signal sensitivity. The difference in exact sensitivities

between the one-locus models also became more pronounced. In 80% LD, the signal

sensitivity was 91 over the effect sizes for the case with a SNP at the edge of a block

of LD and 91.7 when the SNP was in the middle of the block. The exact sensitivities

for these same models were 24.3 and 70 respectively. For one-locus models in 95% LD,

the signal sensitivity was 88.7 with a SNP at the edge of a block and 89.3 for a SNP in

the middle of a block while the exact sensitivities were 21 and 0 respectively. The

trends present in the one-locus models are illustrated in Figure 4. In general, the inac-

curacies that detracted from the sensitivity scores in MDR were due to two-locus mod-

els being chosen in place of a one-locus model which was not counted towards

detection sensitivity even if the functional locus was in this model.

When the functional SNP was removed prior to MDR analysis, the results changed

primarily for the models in populations with lower amounts of LD. With this func-

tional SNP removed, it was no longer possible to measure the exact sensitivity and so

only the signal sensitivity was examined. For the 40% LD situation, the mean sensitivity

was 7 and 9.7 respectively when the SNP was located at the edge and middle of an LD

block. In the 60% datasets, signal sensitivities of 62.3 and 95 were observed for detect-

ing a SNP at the edge and middle of a block respectively. When the functional SNP

was removed in 80% LD and 95% LD instances, the signal sensitivities remained the

Figure 3 Description of functional locus scenarios. The five types of scenarios utilized in each

population, where the green arrow indicates the disease susceptibility locus (or loci) and called LD blocks

are outlined in black. A) One SNP in the middle of an LD block. B) One SNP in the center of a block of LD.

C) Two SNPs in an epistatic interaction in separate LD blocks. D) Two interacting SNPs, one in a block of

LD and one outside. E) Two interacting SNPs in the same block of LD.
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same as with the susceptibility locus in place with few small exceptions. With the func-

tional locus dropped before analysis, the reason for decreased sensitivity in low LD

models is due mostly to detection of SNPs with LD to the functional SNP below the

0.90 D’ threshold.

Analysis of Two-Locus Models

Three types of two-locus epistatic interactions were examined: two SNPs in different

blocks of LD, two SNPs in the same block of LD, two SNPs with one SNP inside an

LD block and the other outside of any called block of LD. The instance in which two

SNPs were in the same block of LD was not possible to simulate from the 40% LD

data pool due to the lack of sufficiently large LD blocks. For each model, effect sizes of

5%, 10% and 15% broad-sense heritability were simulated. Each disease model was

purely epistatic, meaning that there should be no detectable marginal effect from either

functional SNP. For all two-locus models, analysis was run as described followed by a

progression of removing one, the other, and finally both functional SNPs. The goal of

this series of experiments is to determine whether or not MDR can detect the underly-

ing genetic signal using LD (i.e. indirect association), or if it is limited in sensitivity to

Table 1 Sensitivity of MDR to detect one-locus disease models

Scenario Relative
LD

Effect
Size

Exact
Sensitivity

Signal
Sensitivity

Signal Sensitivity when Functional
SNP Dropped

SNP at Edge of LD
Block

40% 1.5 OR 86 87 4

2.0 OR 96 96 7

3.0 OR 94 94 10

60% 1.5 OR 85 93 71

2.0 OR 97 99 67

3.0 OR 96 96 49

80% 1.5 OR 23 90 90

2.0 OR 22 91 91

3.0 OR 28 92 92

95% 1.5 OR 14 82 84

2.0 OR 25 90 90

3.0 OR 24 94 95

SNP in Middle of
LD Block

40% 1.5 OR 76 80 14

2.0 OR 92 92 10

3.0 OR 95 95 5

60% 1.5 OR 58 90 92

2.0 OR 75 99 99

3.0 OR 73 93 94

80% 1.5 OR 54 88 87

2.0 OR 72 93 96

3.0 OR 84 94 93

95% 1.5 OR 0 92 92

2.0 OR 0 83 83

3.0 OR 0 93 93

The exact sensitivity, signal sensitivity and sensitivity with functional SNP removed, for MDR to identify a disease signal

in data with 40% to 95% LD under two one-locus scenarios.
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do so. The results of these MDR analyses are shown in Table 2 and trends in the data

are illustrated in Figure 5. The case in which two functional SNPs were separated in

two different LD blocks and the case where only one functional SNP resided in an LD

block displayed similar trends. First, the sensitivity of MDR for most models increased

proportionally with effect size from 5% to 15% heritability but not significantly between

15% and 25% heritability. MDR had high signal sensitivity in both low and high LD

while exact sensitivity dropped in high LD datasets with two loci in separate LD blocks

or only one locus in an LD block. In addition, the ability to detect the disease signals

in absence of the actual functional SNPs increased with the amount of LD in the data-

set. Surprisingly, when the SNP not in an LD block (SNP1) was dropped from high LD

datasets before analysis, there was still considerable signal sensitivity. This phenom-

enon is most likely the result of patterns of long-range LD (not necessarily considered

part of an LD block). With the exception of the models with lowest LD amounts, there

was little difference in the signal sensitivities between analyses with one or both func-

tional SNPs removed. Interestingly in some instances, there was more sensitivity with

both SNPs removed than with the removal of only the second SNP. Once again, in

many cases the drop in signal sensitivity with functional SNPs dropped results from

selection of SNPs in LD below the threshold with the functional SNPs.

MDR analysis of epistatic models in which both functional loci were in the same

block of LD yielded significantly different results and lead to a change in the con-

straints for measuring sensitivity, specifically for this type of model. Even though the

two-locus interactions simulated were purely epistatic and had no main effects, MDR

chose mostly one-locus models as the most accurate predictors. The signal sensitivity

and exact sensitivity were almost always zero as a result (MDR failed to identify the

exact two-locus model or two-locus model from the same LD block). We modified the

constraints so that these one-locus choices were considered a positive signal towards

Figure 4 Sensitivity of MDR for one-locus disease models. The sensitivity of MDR to detect the

functional one-locus model exactly, indirectly, and in the absence of the functional SNP when analyzing

data with 40% LD, 60% LD, 80% LD or 95% LD and attempting to identify a signal in different positions of

a block of LD.
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exact sensitivity if they contained one of the functional loci and signal sensitivity if they

were in LD with one of the functional SNPs with a D’ of greater than or equal to 0.90;

so MDR was not required to simultaneously detect both functional loci in the model.

Models in which a false positive SNP was included in the model were not counted

Table 2 Sensitivity of MDR to detect two-locus disease models

Scenario Relative
LD

Broad-
Sense

Heritability

Exact
Sensitivity

Signal
Sensitivity

Signal
Sensitivity
when SNP1
Dropped

Signal
Sensitivity
when SNP2
Dropped

Signal
Sensitivity
when both

SNPs
Dropped

One SNP in
LD Block
and One
Outside

40% 5% 77 81 22 44 7

15% 100 100 3 31 1

25% 100 100 0 23 0

60% 5% 83 96 91 100 97

15% 97 100 98 100 97

25% 99 100 100 100 100

80% 5% 11 65 63 60 63

15% 77 97 99 84 86

25% 86 98 99 83 86

95% 5% 0 80 63 80 63

15% 0 95 88 95 88

25% 0 89 87 89 87

Two SNPs in
Separa te
LD Blocks

40% 5% 91 97 8 52 1

15% 100 100 3 34 1

25% 100 100 2 26 0

60% 5% 88 98 100 95 96

15% 91 96 100 97 100

25% 94 97 100 95 99

80% 5% 6 64 67 64 67

15% 36 89 92 87 92

25% 49 93 96 93 96

95% 5% 19 79 79 79 79

15% 23 91 91 92 92

25% 28 93 93 94 94

Two SNPs in
Same LD
Block

60% 5% 96 96 96 97 99

15% 97 97 98 96 100

25% 98 98 98 96 100

80% 5% 78 95 95 95 93

15% 17 72 72 72 77

25% 54 91 91 91 93

95% 5% 57 91 91 91 91

15% 29 86 86 86 86

25% 41 94 94 94 94

Detection sensitivity of MDR to identify functional SNPs from 40% to 95% LD amounts in epistatic two-locus models.
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towards detection sensitivity, however. With this taken into account, the trends

observed in the data are similar to those described for the other two model types. The

signal sensitivity of MDR was high in all levels of LD while the exact sensitivity

decreased with increasing LD as was seen before. For the most part, no increase in

detection sensitivity was experienced with higher heritability. The detection sensitivity

for all levels of LD was lower for 15% heritability than for 5% and 25%, which results

from the more frequent selection of two-locus models with a false positive result in

these 15% heritability results. The mean signal sensitivity based on all effect sizes ran-

ged from 97 in 60% LD to 86 and 90.3 in 80% and 95% LD respectively. The exact sen-

sitivity, however, decreased from 97 in 60% LD to 49.7 and 42.3 in 80% and 95% LD.

Removing one of the functional SNPs before analysis did not strongly impact

sensitivity.

Discussion

Linkage disequilibrium (LD) often plays a significant role in guiding both the design

and analysis of genome-wide association studies (GWAS). It is an implicit assumption

of the GWAS that LD exists between a SNP typed in the genotyping assay and the

functional variant causing disease. As a result, GWAS benefits from strong amounts of

LD distributed throughout the genome. On the other hand, excessive LD can lead to

the detection of statistical associations over large genomic regions and preclude easily

narrowing the region surrounding a susceptibility locus. The presence of LD has been

shown to be beneficial to the detection capabilities of certain data mining methods

such as grammatical evolution neural networks [9]. This follows logically from the

need to find signal peaks when not all potential models are tested. As MDR tests all

possible N-way interaction models and does not rely on signal peaks to guide the

search, the circumstances induced by LD are not equivalent. We have found that there

Figure 5 Sensitivity of MDR for two-locus disease models. The detection sensitivity of MDR when

analyzing data with 40% LD, 60% LD, 80% LD or 95% LD and attempting to identify purely epistatic two-

locus models.
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are general trends associated with increasing strength of LD when analyzing data with

MDR. These trends extend to the specific type of model being analyzed and although

the type of model cannot be discerned before analyzing non-simulated data, it is

important to be cognizant of these trends.

Firstly, the detection ability of MDR to identify the correct functional loci decreases

proportionally to the amount of LD surrounding that locus. As the correlation between

the disease susceptibility loci and SNPs surrounding it increases, the surrounding SNPs

are able to predict disease status as well as the functional loci; thus there is equal prob-

ability that any of these loci will be selected by MDR. The result is that the embedded

functional loci are not chosen as many times out of the one hundred datasets. This

phenomenon also explains why higher sensitivity for detecting the disease loci when

they are not directly genotyped is achieved as LD increases. High amounts of LD

around causative loci result in SNPs that effectively tag the functional loci and allow

the signal to be detected. This shows that MDR performs well when detecting the

indirect association expected in a GWAS.

It was initially surprising to observe that MDR would use a one-locus model to pre-

dict disease status in some cases where the underlying etiology was a two-locus epi-

static interaction. It made sense, however, that this phenomenon was only observed in

instances of extensive LD. In such a case, the two functional SNPs were so highly cor-

related that the epistatic multi-locus interaction presents as a single-locus effect during

analysis. The result is that only the genotype at one of the two loci is necessary to

accurately predict disease status. Although it seems unlikely that two functional loci

would be so highly correlated in practice, this is an interesting scenario to consider.

Conclusions

In drawing conclusions from the research presented in this paper, we wish to make

recommendations about the future use of MDR in performing gene-gene interaction

analysis in data with significant amounts of LD among the SNPs. We propose that the

linkage disequilibrium structure surrounding MDR results should be carefully consid-

ered before undertaking a follow-up study. This includes both patterns of D’ and r2. It

has been discovered that MDR will sometimes select SNPs which possess a high D’

with the functional SNP even if the r2 would not be considered to be of significant

strength (Figure 6, 7). Figure 6 shows the r2 and D’ of the single embedded disease

SNP with all single-locus best models chosen during MDR analysis. Figure 7 displays

the r2 and D’ of both functional SNPs participating in epistatic interactions with each

of the SNPs selected by MDR only when the best model chosen was a two-locus

model. SNPs selected with disproportionate D’ and r2 values tend to have a minor

allele frequency (MAF) within 0.1 of the functional locus but the low resulting r2

might preclude the follow-up of the functional locus these SNPs are tagging. This sce-

nario is seen much more often as the size of the genetic effect increases. In such a

case, MDR has a higher probability of selecting tagging SNPs with lower r2 LD values.

We recommend as a result that it might be wise to consider the area around the sig-

nificant SNPs found which have high D’ as well as those areas with high r2, at least for

the purposes of replication. In addition, it might be useful to pick a tagging SNP for

regions with extremely high levels of LD (r2 > 0.90) when performing gene-gene inter-

action analysis with MDR, as this high level of LD could result in different best models
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Figure 6 D’ and r2 for one-locus models chosen by MDR. D’ and r2 between models selected by MDR

and the functional locus in cases where MDR picked a one-locus model. Points with no transparency

indicate a count of at least 20 models.

Figure 7 D’ and r2 for two-locus models chosen by MDR. D’ and r2 between each locus in models

selected by MDR and each of the functional loci in cases where MDR picked a two-locus model. Solid

points indicate a count of at least 20 models.
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being chosen in separate cross-validation intervals during the MDR process. This

would in turn lower the cross-validation consistency of each of the models containing

loci tagging the disease signal and reduce the detection sensitivity from MDR. While

the current large-scale genetic association studies benefit from segments of linkage dis-

equilibrium across the genome, it is important during quality control and analysis to

consider possible detrimental effects of this disequilibrium.

Methods

The genomeSIMLA Simulation Process

The genomeSIMLA data simulation package is a forward-time genomic simulator that

allows for the creation of genomic data with realistic patterns of LD [10,11]. The simulator

works by first creating a definition for the layout of the chromosome with a template. It is

from this chromosome template whereby specific instantiations will be drawn to create

the population. The chromosomes used in genomeSIMLA consist of blocks of biallelic

SNPs and are defined by the user, with variables such as the number of blocks, the num-

ber of variants within each block, and the recombination frequency within and between

such blocks. In this way, a user can establish the number of SNPs in a chromosome as

well as how often crossovers occur between SNPs. A population of chromosomes is cre-

ated by initializing chromosomes with randomized values within the parameter specifica-

tions of the template chromosome. Subsequent to initialization, the population of

chromosomes is advanced through a user-defined number of generations (usually 1000-

1500) with population data being dropped at specified points along the way and changes

to the population occurring based on the growth and recombination functions. Finally, a

penetrance table is applied while drawing chromosomes from the one of the population-

data drops to create case-control datasets. Two chromosomes are drawn from the popula-

tion to determine each individual’s genetic makeup and designations of case or control are

given based on the disease probability function in the penetrance table. The drawing pro-

cess continues until the required number of cases and controls are produced.

Data Simulation

In order to make data pools with varying amounts of LD, genomeSIMLA was recur-

sively run with varying recombination frequency and growth parameters. These recur-

sive runs varied the growth rate of the Richards’ growth curve [12] between 0.02 and

0.04 and the generation of maximum growth between 250 and 900. Recombination

rate within a block of SNPs was also modified between 1 × 10-7 and 1 × 10-4. The

result was a group of 60 data pools, where each pool represents a population of simu-

lated chromosomes. Each chromosome simulated in this study contained approxi-

mately 600 SNPs. Data pools representing 40%, 60%, 80%, and 95% relative LD

(heretofore referred to as 40% LD, 60% LD, 80% LD and 95% LD) were selected for

use in an MDR sensitivity analysis (Figure 2). Relative LD, in this case, is the ratio of

SNPs in LD with at least one other SNP to the total number of polymorphic SNPs. All

definitions of LD blocks utilized the block-calling algorithm innate to the genome-

SIMLA software. SNPs in these representative data pools were chosen on the basis of

meeting requirements of specified allele frequency and the following LD structures (as

shown in Figure 3):
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• One-locus with the functional SNP at the beginning of an LD block

• One-locus with the functional SNP in the middle of an LD block

• Two-locus with one functional SNP in a block of LD and the other outside of a

called block

• Two-locus with both functional SNPs in separate blocks of LD

• Two-locus with both functional SNPs in the same LD block (N/A for 40% relative

LD)

Penetrance functions with effect sizes of 5, 15 and 25% broad-sense heritability were

applied to two-locus models while additive functions with per-allele odds ratios of 1.5,

2.0 and 3.0 were applied to one-locus models. Based upon the probability of disease at

single- and multi-locus genotypes of the chosen functional SNPs given by the pene-

trance functions applied, 100 datasets containing 1000 cases and 1000 controls were

drawn for each disease model and each scenario. To then assess MDR’s potential to

detect the signal of a functional SNP through LD, the functional SNP was removed

from one-locus model datasets and both SNPs were removed in turn, and then

together, from the two-locus disease datasets. Removal of functional loci was con-

ducted subsequent to application of the penetrance function and prior to analysis. This

can be thought of as simulating an indirect association. In total 18,000 datasets were

simulated, including those which were generated by removing functional SNPs.

Data Analysis

Multifactor Dimensionality Reduction (MDR) [3] was used to analyze simulated data.

MDR utilizes a 4-step algorithm designed to detect gene-gene or gene-environment

interactions by reducing the dimensionality of the interaction space. In step 1, a set of

n genetic and/or discrete environmental factors is selected from the pool of all factors.

In step 2, the n factors and their possible multifactor classes or cells are represented in

n-dimensional space; for example, in the case of two biallelic markers with three possi-

ble genotypes, there are nine two-locus-genotype combinations. The ratio of the num-

ber of cases to the number of controls is estimated for each multifactor cell. In step 3,

each multifactor cell in n-dimensional space is labeled either as “high-risk” if the case-

control ratio meets or exceeds some threshold - usually the case-control ratio for the

combined study population - or as “low-risk” if that threshold is not exceeded. In this

way, a model for both cases and controls (or for affected and unaffected sibs) is formed

by pooling high-risk cells into one group and low-risk cells into another group. This

reduces the n-dimensional model to a one-dimensional model (i.e., having one variable

with two multifactor classes–high risk and low risk). In step 4, the prediction error of

each model is estimated by N-fold cross-validation. Here, the data (i.e., subjects) are

randomly divided into N equal parts. The MDR model is iteratively developed for each

possible N-1 partitions of the subjects and then is used to make predictions about the

disease status for the partition of the subjects excluded. The proportion of subjects for

which an incorrect prediction was made is an estimation of the prediction error.

Our simulated data was analyzed with MDR using 10-fold cross-validation exhaus-

tively analyzing all one- and two-locus models. The resulting models were ranked by

cross-validation consistency and balanced accuracy - a metric of the classification and

prediction accuracy averaged over all cross-validation intervals - and the single best
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model was chosen. The exact sensitivity of MDR was judged by the number of times

out of the 100 datasets in which the best model contained all embedded functional

loci. In addition, the signal sensitivity was determined by the number of times which

MDR chose a best model in which the loci were in D’ greater than or equal to 0.90

with the functional loci. The signal sensitivity refers to the ability of MDR to detect

the disease signal, even if the algorithm was unable to pick up the exact functional loci.
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