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Abstract

Controlling the spread of influenza to reduce the effects of infection on a population is an

important mandate of public health. Massmedia reports on an epidemic or pandemic can pro-

vide important information to the public, and in turn, can induce positive healthy behaviour

practices (i.e., handwashing, social distancing) in the individuals, that will reduce the probabil-

ity of contracting the disease. Massmedia fatigue, however, can dampen these effects. Math-

ematical models can be used to study the effects of massmedia reports on epidemic/

pandemic outcomes. In this study we employ a stochastic agent based model to provide a

quantification of mass media reports on the variability in important public health measure-

ments. We also include massmedia report data compiled by the Global Public Health Intelli-

gence Network, to study the effects of massmedia reports in the 2009 H1N1 pandemic. We

find that the report rate and the rate at which individuals relax their healthy behaviours (media

fatigue) greatly affect the variability in important public health measurements. When the mass

media reporting data is included in the model, two peaks of infection result.

Introduction

Controlling the spread of influenza to reduce the effects of infection on a population is an impor-

tant mandate of public health. Influenza control can be achieved through various strategies

including vaccination, the use of drug therapy, hand washing and social distancing—removing

oneself as much as possible from the population [1, 2]. Vaccines and drug therapies, however,

may be ineffective (e.g. resistance to antivirals) or unavailable (i.e. pending development of a new

vaccine). Thus, hand washing and social distancing practices (i.e., ranging frommoderate to

extreme total isolation), which can be used at all times during an infectious disease outbreak are

integral in decreasing the probability of contracting and transmitting infection [1].

Mass media campaigns can be used to provide information on current and effective vaccina-

tion, drug therapy and social distancing measures [1]. Public health education campaigns, that
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include informative literature (i.e., pamphlets), posters, newspaper articles and advertisements,

radio and television messages, and social media outlets (i.e., twitter, facebook) are used daily to

inform the public on current health issues. Mass media outlets can aid in dissemination of this

information. Studies of mass media campaigns and healthy behaviour have reported that mass

media campaigns can elicit positive behaviour change and even prevent negative behaviour

change in individuals [3–9]. It is therefore concluded that mass media campaigns should be

used to inform the public so that behaviour change can result [3–10]. It has been shown that

information conveyed by the media is becoming the critical factor as to whether or not a vacci-

nation campaign will succeed [11]. It is believed that the media coverage of the recent SARS

and 2009 H1N1 epidemics had an effect on the total spread of these pathogens [4, 7, 12, 13].

More recently, MERS-CoV, Ebola, and H7N9 have been the subject of many media reports.

Pervasive media coverage of social problems may lead to desensitization to media reports

[14–16]: a diminished emotional responsiveness to a negative or an aversive stimulus after

repeated exposure. This same phenomenon can occur with health events –individuals may be

more likely to take precautions against becoming ill with the first reports of an epidemic or

health threat, but individual sensitivity to disease reports may diminsh with time, and social

distancing practices may be relaxed [15, 17–19], affecting disease transmission. To better con-

trol infectious diseases a better understanding of the effects of mass media on the uptake and

waning of social distancing practices is needed.

Mathematical models can be employed to study the effects of media in an epidemic [19–32].

For example, the effects of media reports (i.e., on disease incidence, hospitalizations, deaths)

can be incorporated as a function f(S, E, I, R) that directly affects the transmission rate in a sus-

ceptible-exposed-infected-recovered (SEIR) epidemiological model [19–27, 32, 33]:

_S ¼ l� f ðS; E; I;RÞbSI � dS

_E ¼ f ðS; E; I;RÞbSI � sE � dE

_I ¼ sE � gI � dI

_R ¼ gI � dR :

ð1Þ

This model has provided the basis of the vast majority of past mathematical modelling studies

of media during an epidemic. In a previous study on the effects of mass media reports on

important public health measures (i.e., peak number of infections, time of peak infection, end

of epidemic and total number of infections), we demonstrated that the variability in these mea-

sures can vary drastically depending on the media function f(S, E, I, R) chosen [33]. In this

study, we then demonstrated that the recommended public health measures to mitigate epi-

demic outcomes were not consistent over different choices of f(S, E, I, R), and we suggested

that models that include a mass media compartment, that better represents population interac-

tions with mass media, should be considered [33]. For example,

_S ¼ l� bSI � dS� gðMÞS

_SM ¼ gðMÞS� dSM

_E ¼ bSI � sE � dE

_I ¼ sE � gI � dI

_R ¼ gI � dR

_M ¼ f ðS; E; I;RÞ � mM ;

ð2Þ

explicity includes a mass media compartment, allowing a sensitivity analysis over biological

assumptions that determine the function f(S, E, I, R). Here, g(M) is a function representing the
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number of mass media reportsM, g(M)Smodels the interaction that individuals have with media

that can change their behaviour, SM is a class of susceptibles that are media aware and are less

susceptible to infection (or entirely protected through healthy and social distancing behaviours),

and μ represents the effects of media fatigue. A further benefit of Eq (2) is that it enables the

inclusion of mass media report data to replace f(S, E, I, R). Studies of the effects of mass media on

epidemic outcomes employing systems of equations similar to Eq (2) exist in the literature [28–

31], however, none of these studies have incorporated mass media data into their analysis. Also,

quantification of the variability surrounding important public health measures has been ignored.

In this study we extend Eq (2) to include more levels of healthy behaviour, and vaccination.

We then study the model in two different ways. First, we employ a stochastic agent-based simu-

lation to study variability in key public health measurements. Second, we incorporate 2009

H1N1 mass media report data from the Global Public Health Intelligence Network (GPHIN)

[34, 35] into the model and study the effects of this data and media fatigue on the pandemic

dynamics in a closed population. From herewithin, we describe all healthy behaviours includ-

ing isolation, limiting contacts and hand washing as ‘social distancing’. Social distancing levels

included in the model are chosen to reflect different degrees of protection that healthy behav-

iour change can provide. Specifically, we include the extremes—no protection and total protec-

tion/isolation, and a moderate protection level. The uptake of social distancing behaviours, and

vaccination are both assumed to be affected by mass media reports [3, 5, 6, 11].

In the following sections we motivate the model and determine the expected variability in

key public health measurements (i.e., peak number of infections, time of peak infection, end of

epidemic and total number of infections). A sensitivity analysis of the model is also completed

so that parameters that most affect the key public health measurements can be determined.

Interestingly, the model parameters representing mass media reports and media fatigue are

identified. When mass media data [34] is incorporated into the deterministic model, a two-

peak pandemic curve results. This curve has similar qualitative characteristics to that observed

over the recent 2009 H1N1 pandemic.

Methods

Model

The model considers fully susceptible (S), social distancing susceptible (S1), isolated susceptible

(S2), vaccinated (V), exposed (E), infectious (I) and recovered (R) populations. The media (M)

is also incorporated as a separate compartment and affects the movement of individuals

between the susceptible and vaccinated classes. The model is as follows:

_S ¼ l� bSI � aSM � nSM þ q
1
S
1
� dS

_S
1

¼ �b
1
S
1
I þ aSM � a

1
S
1
M � n

1
S
1
M þ q

2
S
2
� q

1
S
1
� dS

1

_S
2

¼ a
1
S
1
M � q

2
S
2
� n

2
S
2
M � dS

2

_V ¼ nSM þ n
1
S
1
M þ n

2
S
2
M � dV

_E ¼ bSI þ b
1
S
1
I � sE � dE

_I ¼ sE � gI � dI

_R ¼ gI � dR

_M ¼ rsE � r
1
M :

ð3Þ

A flow diagram of Eq (3) is shown in Fig 1. Briefly, fully susceptible individuals S can be

infected (βI) and can take up precautionary measures motivated by interactions (listening,

reading, watching) with media reports (M), such as vaccination (ν) or social distancing (α).
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Susceptible individuals in the social distancing class S1 can also be infected, but at a lower rate

(β1), and can also take on precautionary measures such as vaccination (ν) and isolation (α1),

motivated by exposure to media reports. It is assumed that isolated individuals (S2) are fully

isolated and cannot be infected, but can be vaccinated (ν) as a result of exposure to media

reports (M). It is assumed that vaccination provides more protection than any level of social

distancing, thus, all vaccinated individuals move to the vaccinated class (V). Exposed individu-

als are produced via infection of susceptible individuals S and S1 and can become infectious (σ).

Infectious individuals can recover from infection (γ). It is assumed that individuals are born

(λ) fully susceptible and that social behaviour can wane (qi, i = 1, 2) which moves individuals

in higher levels of social distancing to lower ones. It is also assumed that individuals can only

die from natural causes (d) (a disease induced death rate is ignored).

Fig 1. Model flow diagram. Flow diagram and schematic of the Agent Based Monte Carlo simulation.

doi:10.1371/journal.pone.0141423.g001
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An increase in media reports can be modelled using various different assumptions. Here, it

is assumed that media reports are proportional to a fraction of incoming infectious cases ρσE

that are symptomatic and/or reported to a doctor [36]. It is also assumed that the effects of

mass media on social distancing behaviours can wane (ρ1) [14, 15, 37, 38]. The relaxation of

social distancing behaviours q1 and q2 also reflect this behaviour.

Note that Eq (3) ignores covariances and higher order moments i.e. it assumes that all

model classes are independent of all others. We include a derivation of Eq (3) in the Appendix

that includes higher order moments. For the current study and parameter values, Eq (3) and

the model provided in the Appendix do not differ significantly (not shown). Thus, we chose

only to present results of Eq (3) here within.

Note that more levels of social distancing can be included in the susceptible populations.

Social distancing can also be included in the exposed and infectious classes. For the purposes of

the current study we chose to include only three levels of social distancing in the susceptible

population—none, moderate, and total isolation. This selection has provided a more analyti-

cally tractable model to study mass media effects on social distancing and vaccination behav-

iours. Furthermore, an optimal number of social distancing levels that would best represent all

social distancing behaviours in susceptible, exposed and infected populations is currently

unknown. An extension of this model to study a ‘continuous social distance’ in all model popu-

lations, instead of discrete stages like that used here, is a course for future work.

Stochastic model

Eq (3) is deterministic and cannot be used to study variability in infection. We have developed

an Agent-based Monte Carlo (ABMC) simulation to study variability in key epidemic measure-

ments when vaccination, social distancing, media and waning behaviour are included. The

ABMC simulation models the population at the level of individual agents where each agent

contains characteristics associated with infection status, birth, death and social distancing mea-

sures. The ABMC simulation moves forward in time using event times: the next time that an

individual changes state within the system. To compare to a system of ordinary differential

equations (ODEs) exponential distributions for all lifetimes are assumed. Table 1 lists the

means of the lifetime distributions, corresponding to the parameters of Eq (3).

Fig 1 shows the different states that an individual can progress through during an epidemic.

The attributes associated with each individual in each model class are listed in Table 1. Briefly,

agents in each of the susceptible, exposed, infectious and recovered compartments are assigned

event times corresponding to each event that allows an individual from that compartment to

change state. To move froward in time the simulation chooses the minimum event time in the

population and performs the corresponding event. It then searches for the next minimum

event time and so on. The model events and mean event times are listed in Table 1.

Parameter Values

Parameter values for Eq (3) can be found in Table 1. These values agree with the influenza liter-

ature and are further informed by the literature surrounding social behaviour responses to

media reports.

It is assumed that individuals experience on average 6 days of infection (1/σ + 1/γ) and can

transmit the infection for approximately 4 days at the end of the infection time period (1/γ = 4

days). The transmission rate of infection β is calculated using the basic reproductive ratio R0

where R0 takes the value 1.5 which lies in the reported range 1.3 to 1.7 [39]. When vaccination

is included in the model, it is employed only during the second wave of infection as vaccination

was not available during the first wave of the 2009 H1N1 pandemic. It is assumed that on

The Effects of Media on Disease Spread and Public Health Measurements

PLOS ONE | DOI:10.1371/journal.pone.0141423 November 3, 2015 5 / 21



average 25% to 40% of the population is vaccinated [40]. The social distancing uptake and

relaxation rate values (αi and qi) are assumed so that the pandemic curve has a similar magni-

tude and length to that observed for 2009 H1N1 in Canada [1, 2, 39–41].

Fig 2 shows data extracted from a study on the ‘newsworthiness’ of influenza H1N1 as

extracted from newspaper homepages across 12 websites from April 29 to May 28, 2009 [16].

The solid line on Fig 2 shows an exponential curve fit to the data points. It is assumed that the

media waning rate ρ1 is equal to the decay rate of this exponential curve fit.

The Government of Canada collects data on emerging public health threats through the

Global Public Health Intelligence Network (GPHIN) [34]. Fig 3 shows the weekly number of

news reports as collected by GPHIN fromMarch 1 to December 27, 2009, broken down by lan-

guage. This data is used to inform the media compartmentM of Eq (3) in a study of the effects

of mass media reports during the 2009 H1N1 pandemic.

Results

Disease free equilibrium (DFE)

The disease free equilibrium (DFE), or uninfected equilibrium, is the equilibrium point at

which no infection exists in the system. The DFE for Eq (3) is

E
0
¼ ðS; S

1
; S

2
;V ; E; I;R;MÞ ¼

l

d
; 0; 0; 0; 0; 0; 0; 0

� �

: ð4Þ

and the total population N = λ/d.

Table 1. Model classes and parameters. See text for more details.

Parameter Definition Value ABMC Ref

S(t) Susceptible individuals Time to move to S1

Time of vaccination

S1(t) Susceptible, social distancing practices Time to move to S

Time to move to S2

Time of vaccination

S2(t) Susceptible, isolated Time to move to S1

Time of vaccination

E(t) Exposed individuals Time of progression to infectiousness

I(t) Infectious individuals Recovery time

Time to infect a susceptible

R(t) Recovered individuals

V(t) Vaccinated individuals

M(t) Media reports

R0 Basic reproductive ratio 1.3, 1.7 [39]

βi Contact transmission rate for Si class 3.712 × 10−5 (person-day)−1 Exponential distribution, mean 1

b
calculated

σ Transition rate from exposed to infectious 1

6�1=g
day−1 Exponential distribution, mean 1

s
[39]

γ Recovery rate 1

4
day−1 Exponential distribution, mean 1

g
[39]

αi Social distancing uptake uptake rate for Si class 0.04, 0.004 day−1 Exponential distribution, mean 1

ai
assumed

νi Vaccination rate from ith socially distanced 10−5 − 0.002 day−1 Exponential distribution, mean 1

ni
[40]

qi Relaxation rate of social distancing practices in Si 0.001 − 0.06 day−1 Exponential distribution, mean 1

q
assumed

ρ Fraction of infectious cases reported 0.01 Exponential distribution, mean 1

r

ρ1 Media waning rate 0.015 day−1 Exponential distribution, mean 1

r1
calculated

doi:10.1371/journal.pone.0141423.t001
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Basic Reproductive Ratio

The basic reproductive ratio, R0, is defined as the number of new infectious individuals pro-

duced by one infectious individual when introduced into a fully susceptible population. Gener-

ally, if R0 < 1, a disease will die out, but if R0 > 1, the pathogen will spread in the population.

There are various methods that can be used to calculate R0 [42]. Using the survivor function

and the next generation methods [42] to calculate R0 for Eq (3), we obtain

R
0
¼

bS
0

ðgþ dÞ

s

ðsþ dÞ
ð5Þ

where S0 = λ/d from E0. This is an intuitive result as it applies directly to the underlying pro-

cesses of transmission and progression through the different stages of infection. Here, the first

term corresponds to the production of an exposed individual through transmission of infection

from an infected individual to a susceptible, and the second term gives the probability that a

Fig 2. Media fatigue.Data describing media fatigue is shown (blue) [16]. An exponential curve is fit to the data to determine a media fatigue waning rate
(red). The resulting equation is f(t) = 0.09911 exp − 0.0469t. Right panel: Media reports. Second wave of an epidemic produced from the fitted value for ρ1
from [16] and parameter values in [41]. The x-axis is time in days.

doi:10.1371/journal.pone.0141423.g002
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new exposed individual progresses to the infectious compartment. We note here, that the dis-

ease free equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1 (see

Appendix for proof).

Infected equilibrium

Eq (3) has at least one infected equilibrium if the following equations are satisfied.

V ¼ ðnSþ n
1
S
1
þ n

2
S
2
Þ
rðgþ dÞ

r
1
d

I

E ¼
gþ d

s
I

R ¼
g

d
I

M ¼
rðgþ dÞ

r
1

I

ð6Þ

where

S ¼
l

dR
0

�
b
1
S
1

b

S
2

¼
a
1
rðgþ dÞ

q
2
r
1
þ n

2
rgI þ n

2
rdI þ dr

1

S
1
I

ð7Þ

Fig 3. GPHINmedia data.Media data collected by GPHIN from all media worldwide. The time scale is
weeks with 0 corresponding to March 1, 2009. The solid line is all media data collected, the dotted line is
French and English media data and the dashed line is English language media data.

doi:10.1371/journal.pone.0141423.g003
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and I and S1 satisfy

lþ q
1
S
1
� dS ¼ b

l

dR
0

�
b
1
S
1

b

� �

þ
ðaþ nÞrðgþ dÞ

r1

l

dR
0

�
b
1
S
1

b

� �� �

I

arðgþ dÞS
0
I

R
0
r
1

¼ b
1
I þ

ab
1
rIðgþ dÞ

br
1

þ q
1
þ ða

1
þ n

1
Þ
rIðgþ dÞ

r
1

�
q
2
a
1
rIðgþ dÞ

q
2
r
1
þ n

2
rIgþ n

2
rId þ dr

1

þ d

� �

S
1

ð8Þ

Translation to short term epidemics

For short term epidemics such as influenza, births (λ) and natural death (d) can be ignored

since the total number of births and deaths over the course of the epidemic is very small. In the

following sections it is assumed that λ = 0 and d = 0. The DFE then becomes

E
0
¼ ðN; 0; 0; 0; 0; 0; 0; 0Þ

and

R
0
¼

bN

g

where N is the total population size. There is no infected equilibrium for this reduced system.

Numerical simulations

We considered various scenarios with and without vaccination, social distancing and waning

behaviour. Table 2 lists the values of the key epidemic measurements—peak time, peak magni-

tude, epidemic end, total infected, total vaccinated—resulting from Eq (3) for various combina-

tions of vaccine uptake, media social distancing levels and media waning: (a) social distancing

and vaccination are not considered; (b) extending to include one level of social distancing (i.e.,

α> 0), with no waning in behavioural practices (i.e., q1 = 0 and ρ1 = 0) and vaccination (ν = 0);

(c) extending to include vaccination (ν> 0); (d) adding an isolated class S2 (α1 > 0); (e) adding

media media waning (ρ1 > 0) and movement between social distancing classes through the

relaxation of social distancing practices (q, q1, q2 > 0). In general, these studies demonstrated

Table 2. Simulation results. Each row has results for the ODEmodels and the ABMC for 100 simulations (mean and standard error). (a) Results for a stan-
dard SEIR model; (b) SS1EIRM, including S1 and media reports; (c) SS1VEIRM, including vaccination of S and S1; (d) SS1S2VEIRM, extending to include S2

and vaccination; (e) SS1S2VEIRMw, extending to include media waning.

Model Peak Time (days) Peak Magnitude (I) Epidemic end (day) Total infected (I) Total vaccinated (V)

(a) 40.50 730.63 149.08 6066.50 N/A

40.10 ± 16.77 719.57 ± 234.43 135.98 ± 83.03 6061.20 ± 81.77 N/A

(b) 40.82 704.03 151.81 5967.00 N/A

41.60 ± 9.81 722.60 ± 17.34 187.50 ± 64.90 5838.23 ± 471.67 N/A

(c) 35.50 566.38 112.67 4183.60 3983.40

36.80 ± 4.54 663.34 ± 204.32 113.20 ± 8.77 4313.20 ± 321.60 3874.50 ± 220.50

(d) 19.71 275.03 66.73 1402.48 3524.66

22.24 ± 8.62 293.30 ± 57.92 61.82 ± 8.13 1536.70 ± 441.43 3811.60 ± 435.84

(e) 20.93 182.85 67.72 1403.30 3008.30

21.11 ± 8.48 311.25 ± 55.78 64.99 ± 7.58 1586.30 ± 409.87 3418.90 ± 615.45

doi:10.1371/journal.pone.0141423.t002
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that, as expected, vaccination uptake and social distancing practices will reduce the impact of

an epidemic, and that waning behaviour will lessen these benefits.

Variability in infection

Variability in the key epidemic measurements, as calculated from 100 runs of the ABMC simu-

lation are also shown in Table 2. Overall, the results suggest that public health programs should

be implemented to consider time intervals of 10–50 days for peak infections, and 20–160 days

for the end of the epidemic, depending on the control and social distancing being practiced.

We also see that the variability in the peak magnitude, total number of infections, and total

number vaccinated is affected by these practices—decreases and increases in variability (calcu-

lated using the coefficient of variation = (standard deviation)/mean) can be observed. It is

interesting to note that the addition of public health control measures can increase the variabil-

ity in the total number of infections and vaccinations. This may be due to the fact that individu-

als can move between social distancing classes many times during the epidemic, providing

greater uncertainty in these outcomes of the epidemic. This will affect public health prepared-

ness strategies. It is important to understand what drives this variability, so that public health

programs can focus on certain attributes of an epidemic, so as to minimize the variation.

Sensitivity Analysis

To determine which parameters most affect model the model outcomes, a sensitivity analysis

employing Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients

(PRCC) is performed. These methods are said to be the most efficient methods for performing

sensitivity analysis with variation in multiple parameters simultaneously [43].

The outcomes that are of interest for Eq (3) include the peak time of the epidemic (or time

to the peak), the end time of the epidemic (or length of the epidemic), the peak magnitude of

infectious and exposed individuals, and the total number of infectious individuals. Fig 4 shows

the PRCC values for Eq (3) assuming a constant population size N. This figure shows that R0 is

the most important parameter for each outcome. However, the total number of infections over

an epidemic is also sensitive to changes in the rates at which individuals become infectious (σ)

and recover (γ). The figure also shows that the peak magnitude and the total number of infec-

tions are both sensitive to the media parameter ρ, and the epidemic end time is sensitive to the

media fatigue rate ρ1. Overall, the sensitivity analysis results show that to minimize the effect of

the epidemic, public health programs should strive to (1) reduce transmission (effectively

reducing R0), (2) effectively use drug therapies that can shorten the infectious period (effec-

tively decreasing σ and increasing γ), (3) increase the number of reported cases ρ, and (4) pro-

vide educational programs throughout an epidemic that will help minimize the waning of

positive social distancing practices ρ1. These results demonstrate that role of mass media can

significantly affect the severity and length of an epidemic/pandemic. Thus, attention should be

given to studying how best to use mass media during an epidemic, so that epidemic measure-

ments can be minimized.

Mass Media Data and Media Waning

In the previous sections is was assumed that the mass media level of reporting was proportional

to the number of report symptomatic cases, related to a fraction of incoming infectious cases

ρσE. The structure of Eq (3), however, allows for the incorporation of real mass media data

into the model like that compiled by GPHIN (Fig 3) [34]. Fig 5 shows the results of Eq (3)

when social distancing and waning behaviour are included in the model with (right column)

and without (left column) vaccination and the media data [34]. Here, the English language

The Effects of Media on Disease Spread and Public Health Measurements
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media report levels are used (see Fig 3, dashed line) (top row), and the media data is then

extended to consider various scenarios of media reporting until the end of the pandemic: a con-

stant level equal to the last collected data point (second row), a decay after the final data point

(third row), setting the report level to zero at the end of the data set (fourth row), and setting

the number of reports to zero at the declared end of the pandemic (week 47 [44]). Note that

when vaccination is included in the model (right column), the vaccination rate for each of the

scenarios is between 25% to 40% of the population [2], and vaccination is included only in the

second wave of infection. Fig 5 demonstrates that for all cases, two waves of the pandemic

occur, with the magnitude of the peaks varying by the model assumptions. Interestingly, these

dynamics agree with what was observed in many countries globally during the 2009 H1N1

pandemic—two waves of infection with two distinct peaks were observed in this timeframe.

For a qualitative comparison we plot the total number of confirmed cases in Canada during the

2009 H1N1 pandemic [44] that shows this two wave behaviour (see Fig 6).

Fig 4. Sensitivity analysis. Partial rank correlation coefficients are shown for (a) Peak magnitude; (b) Peak time (c) End time; (d) Total number of infectious
individuals. PRCC coefficients have negative or positive correlations to the public health outcomes of interest. The total population N is assumed to be
constant.

doi:10.1371/journal.pone.0141423.g004
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Fig 5 demonstrates that for all cases, the conclusion of the pandemic occurs in a similar time

frame, but the shortest pandemic time results from keeping the number of reports constant

until the infection is cleared from the population (second row). The similar pandemic curves

for each scenario, even with a change in media behaviour at the end of the GPHIN data could

be due to the fact that the pandemic is almost finished by the time the last media point is col-

lected. i.e., there are not very many individuals left in the population that have not been

affected by the pandemic.

In addition to English, French is another official language in Canada. When the French lan-

guage reports are included in the model similar results are found—two peaks of infection

occur, however, there is a smaller number of total infections due to the fact that there are more

media reports used in the media equation and the total population N being considered was

unchanged.

Fig 5. Infection curves with GPHIN data. In the left panel of this figure the pandemics do not have a vaccine available, in the right panel there is a vaccine
available for the second wave of the pandemic. First row: influenza pandemic curve for the duration for which GPHIN has media data collected. Second row:
media is kept constant at the level of the last weeks data collection after the end of data collection. Third row: media decays linearly after final data point and
is then held at 0. Fourth row: no media reports after the final data reading. Fifth row: Media is kept constant until the declared pandemic end, week 47, then
cut off.

doi:10.1371/journal.pone.0141423.g005
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A further simulation considering the same population size and all media reports in all lan-

guages (Fig 3 solid line) results in a a single small wave of infection (not shown). Again, this is

an intuitive result since the model assumes that if there are more media reports, more individu-

als will uptake social distancing practices and vaccination. However, if we increase the total

population size, which better represents a population that is affected by media reports in all of

the languages tracked by GPHIN, two peaks of infection will result.

Discussion

Mathematical modelling studies of the effects of mass media on an epidemic either include a

specific function that decreases the transmission rate or a mass media compartment [19–32].

In a recent study, we demonstrated that epidemic outcomes can vary greatly depending on the

mass media function chosen, making it difficult to determine any quantification of the variabil-

ity in key epidemic measurements for public health [33]. It was concluded that models that

include a mass media compartment should thus be employed [33]. Mathematical models that

include a mass media compartment also enable the study of media fatigue, and can be further

modified to include actual mass media report data. In this study we developed a model that

includes a media compartment.

Eq (3) includes a mass media compartment, vaccination and two susceptible classes that

practice social distancing at different levels. The model also includes the effects of media fatigue

Fig 6. H1N1 cases. Lab confirmed cases of pandemic H1N1 in 2009 in Canada [44]. There are two waves of
the pandemic.

doi:10.1371/journal.pone.0141423.g006
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and waning social distancing practices. Table 2 demonstrates that social distancing and vacci-

nation benefit a population (a decreased level of infection results). This table also shows, how-

ever, that media fatigue and waning behaviour can lessen the positive benefits of these

intervention measures (last column).

An agent-based Monte Carlo simulation based on Eq (3) was employed to study the vari-

ability in key epidemic measurements that must be considered in public health policies and

planning. Results showed that the expected outcome of the simulations is quantitatively similar

to the solution of deterministic system of ordinary differential equations of Eq (3), but that,

variability in the key epidemic measurements can be quite large (Table 2). This in turn will

affect public health resources and planning.

A sensitivity analysis of Eq (3) demonstrated that the parameters associated with mass

media reports and media fatigue can significantly affect epidemic outcomes. Thus, more time

and effort should be given to the study of the effects of these reports during epidemics/pandem-

ics so that these effects can be accounted for in public health policies and preparedness plans.

In the “MassMedia Data andMediaWaning” section we incorporated mass media data, com-

piled by the Global Public Health Intelligence Network [16, 34], into Eq (3). This study demon-

strated that two waves of infection can occur when the GPHINmass media data is included in

the model. This is an interesting result for two reasons. First, two waves of infection were experi-

enced by many countries globally during the 2009 H1N1 pandemic, including Canada. Second,

previous studies of the two wave behaviour have mainly focused on the effects of school holidays

during the pandemic, which effectively reduced transmission and then increased it again a couple

months later, producing two waves of infection [44–47]. Here, we have shown that media fatigue

can also produce two waves of infection with similar qualitative dynamics to that observed over

the 2009 H1N1 pandemic.

As stated above, models incorporating school closure over the summer months can generate

two waves of infection [47]. Differences in mixing between age groups, demography and

mobility [48], and now, mass media reports and waning behaviour can also contribute to the

two wave phenomenon. It is of interest to determine what the magnitude of these contributions

to the double peak behaviour can be. This is a course for future work. This would also lead to a

study of the optimal use of media reporting in public health [32, 49].

Eq (3) includes two levels of social distancing in the susceptible classes. However, social dis-

tancing behaviours can be interpreted to occur over a continuous scale frommoderate to inten-

sive levels of social distancing. Also, exposed and infectious individuals can also practice social

distancing measures. For example, an infected individual may elect to stay home from work, and

distance themselves from family members in the same household as well. To model continuous

social distancing in all classes we propose a new model employing partial differential equations

that keeps track of all classes of infection over time and social distancing space. Analysis of this

model is current work. In future work, the model will be augmented to include asymptomatic

infections, where individuals are infectious but do not demonstrate symptoms. This will affect

transmission, as social distancing will not be enhanced if infection is asymptomatic, and thus,

mass media messages that encourage social distancing will be ever more important.

Mass media messages can relay information that will induce positive or negative social dis-

tancing practices. Mass media reports can also affect vaccination uptake. For example, the

reporting of the benefits and risks may induce vaccination uptake in some individuals, but

induce vaccine hesitancy in others. A study of the effects of the type of mass media message on

social distancing behaviour is greatly needed, and is a course for future work.

Finally, in this study we focused our work on understanding the effects of mass media data

and media fatigue in the context of the 2009 H1N1 pandemic. Similar studies of other infectious

diseases would also be of interest. MERS-CoV and Ebola in the current day are a specific interest.
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Appendix

Local stability of the disease free equilibrium E0

Theorem 0.1 The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and unsta-

ble if R0 > 1.

The Jacobian matrix for model Eq (3) evaluated at the DFE E0 is

�d q
1

0 0 0 �b S
0

0 �a S
0
� nS

0

0 �q
1
� d q
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0 0 �b

1
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0 0 0 0 0

0 0 0 �d 0 0 0 nS
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ð9Þ

where S0 = λ/d. The eigenvalues ϕ corresponding to the Jacobian matrix evaluated at E0 are:

�
1;2;3 ¼ �d; �

4
¼ �ðq

1
�þdÞ; �

5
¼ �ðq

2
þ dÞ; �

6
¼ �r

1
;

�
7;8 ¼

�s� 2d � g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2sgþ g2 þ 4sbS
0

p

2
:

ð10Þ

The local stability of E0 thus depends solely on the values of ϕ7,8. Rearranging ϕ7,8 < 0 we

obtain

sbl

sgd þ sd2 þ gd2 þ d3
< 1

sbl

dðsþ dÞðgþ dÞ
< 1

R
0

< 1:

ð11Þ

Thus, E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Stochastic differential equations

As an example, we now derive a system of stochastic differential equations for the standard

SEIR model

dS

dt
¼ l� bSI � dS

dE

dt
¼ bSI � sE � dE

dI

dt
¼ sE � gI � dI

dR

dt
¼ gI � dR

ð12Þ
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as derived in [50]. We construct a stochastic differential equation model from the continuous

time Markov chain (CTMC) model for an SEIR model by considering time as continuous on

tε[0,1), the collection of discrete random variables S(t), E(t), I(t), and R(t) for susceptible,

exposed, infectious and recovered classes or states, respectively. Transition probability from

state to state is called the infinitesimal transition probability, the change in time is sufficiently

small that only one event occurs in the time period, and depends only on the state of the system

at the previous time: Markov property. The probability of a transition can be described by

Eq (13),

ProbfDSðtÞ ¼ i;DEðtÞ ¼ j;DIðtÞ ¼ k;DRðtÞ ¼ ljSðtÞ; EðtÞ; IðtÞ;RðtÞg; ð13Þ

where ΔS(t) = S(t + Δt) − S(t). Each of i, j, k, l take on values of only + 1, −1 or 0, because only

one change occurs in sufficiently small Δt, thus o(Δt) is included in the definition of the infini-

tesimal transition probabilities. The probabilities for each change in state are straightforward

to describe from an SEIR model and can be seen in Eq (14).

ProbfDSðtÞ ¼ i;DEðtÞ ¼ j;DIðtÞ ¼ k;DRðtÞ ¼ ljSðtÞ; EðtÞ; IðtÞ;RðtÞg

¼

lDt þ oðDtÞ; ði; j; k; lÞ ¼ ð1; 0; 0; 0Þ

bSðtÞIðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð�1; 1; 0; 0Þ

dSðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð�1; 0; 0; 0Þ

sEðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð0;�1; 1; 0Þ

dEðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð0;�1; 0; 0Þ

gIðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð0; 0;�1; 1Þ

dIðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð0; 0;�1; 0Þ

dRðtÞ þ oðDtÞ; ði; j; k; lÞ ¼ ð0; 0; 0;�1Þ

ð1� ðlþ bSðtÞIðtÞ þ dSðtÞ þ sEðtÞþ

dEðtÞ þ gIðtÞ þ dIðtÞ þ dRðtÞÞÞDt þ oðDtÞ; ði; j; k; lÞ ¼ ð0; 0; 0; 0Þ

oðDtÞ; otherwise:

ð14Þ
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From the equations for the infinitesimal transition probabilities, Eq (14), we can derive the for-

ward Kolmogorov differential equations. From the forward Kolmogorov differential equation

we derive a probability generating function (pgf), a moment generating function (mgf) and

finally the differential equations for the mean and higher order moments.

The derivation for the forward Kolmogorov differential equation from Eq (14), representing

the rate of change of the transitions from state to state follows. The first step is to derive a dis-

crete equation from Eq (14) for sufficiently small Δt for pi,j,k,l(t + Δt), the transition probability,

pi;j;k;lðt þ DtÞ ¼ lpi�1;j;k;lðtÞDt þ bðiþ 1Þkpiþ1;j�1;k;lðtÞDt

þdðiþ 1Þpiþ1;j;k;lDt þ sðjþ 1Þpi;jþ1;k�1;lðtÞDt

þdðjþ 1Þpi;jþ1;k;lðtÞDt þ gðkþ 1Þpi;j;kþ1;l�1
ðtÞDt

þdðkþ 1Þpi;j;kþ1;lðtÞDt þ dðl þ 1Þpi;j;k;lþ1
ðtÞDt

þð1� ðlþ bikþ diþ sjþ djþ gkþ dkþ dlÞÞpi;j;k;lðtÞDt;

ð15Þ
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where pi,j,k,l(t) represents the probability of a susceptible, exposed, infectious and recovered

population of size i, j, k, and l, respectively. Next, pi,j,k,l(t) is subtracted from both sides, the

expressions are divided by Δt, resulting in Eq (16),

pi;j;k;lðt þ DtÞ � pi;j;k;lðtÞ

Dt
¼

P

½lpi�1;j;k;lðtÞS
iEjIkRl þ bðiþ 1Þkpiþ1;j�1;k;lðtÞS

iEjIkRl

þdðiþ 1Þpiþ1;j;k;lS
iEjIkRl

þsðjþ 1Þpi;jþ1;k�1;lðtÞS
iEjIkRl þ dðjþ 1Þpi;jþ1;k;lðtÞS

iEjIkRl

þgðkþ 1Þpi;j;kþ1;l�1
ðtÞSiEjIkRl þ dðkþ 1Þpi;j;kþ1;lðtÞS

iEjIkRl

þdðl þ 1Þpi;j;k;lþ1
ðtÞSiEjIkRl

�lpi;j;k;lðtÞS
iEjIkRl � bikpi;j;k;lðtÞS

iEjIkRl

�dipi;j;k;lðtÞS
iEjIkRl � sjpi;j;k;lðtÞS

iEjIkRl

�djpi;j;k;lðtÞS
iEjIkRl � gkpi;j;k;lðtÞS

iEjIkRl

�dkpi;j;k;lðtÞS
iEjIkRl � dlpi;j;k;lðtÞS

iEjIkRl�

þ
oðDt

Dt
:

ð16Þ

Next take sum over (i, j, k, l) and take lim Δt! 0 and arrive at the forward Kolmogorov differ-

ential equation, Eq (17),

dpi;j;k;lðtÞ

dt
¼ lpi�1;j;k;lðtÞS

iEjIkRl þ bðiþ 1Þkpiþ1;j�1;k;lðtÞS
iEjIkRl

þdðiþ 1Þpiþ1;j;k;lS
iEjIkRl

þsðjþ 1Þpi;jþ1;k�1;lðtÞS
iEjIkRl þ dðjþ 1Þpi;jþ1;k;lðtÞS

iEjIkRl

þgðkþ 1Þpi;j;kþ1;l�1
ðtÞSiEjIkRl þ dðkþ 1Þpi;j;kþ1;lðtÞS

iEjIkRl

þdðl þ 1Þpi;j;k;lþ1
ðtÞSiEjIkRl

�lpi;j;k;lðtÞS
iEjIkRl � bikpi;j;k;lðtÞS

iEjIkRl

�dipi;j;k;lðtÞS
iEjIkRl � sjpi;j;k;lðtÞS

iEjIkRl

�djpi;j;k;lðtÞS
iEjIkRl � gkpi;j;k;lðtÞS

iEjIkRl

�dkpi;j;k;lðtÞS
iEjIkRl � dlpi;j;k;lðtÞS

iEjIkRl:

ð17Þ

Next, replace the deterministic variables i, j, k, l with the state variables of S, E, I, R to arrive at

the probability generating function (pgf) Eq (18)

dP

dt
¼ lðS� 1ÞPðS; E; I;R; tÞ þ bIðE � SÞ

@2P

@S@I
þ sðI � EÞ

@P

@E

þdð1� SÞ
@P

@S
þ dð1� EÞ

@P

@E
þ gðR� IÞ

@P

@I

þdð1� IÞ
@P

@I
þ dð1� RÞ

@P

@R
:

ð18Þ

Here, convert the pgf to the mgf, since the method of derivation of the moment differential

equations is simpler from the moment generating function, defined asM(θ, ϕ, ψ, z, t) = P(S, E,

I, R, t)eSθ + Eϕ + Iψ + Rz. From the probability generating function (pgf), take the total derivative
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ofM(θ, ϕ, ψ, z, t) to get function Eq (19).

@M

@t
¼ lðey � 1ÞM þ bðe��y � 1Þ

@2M

@y@c
þ dðe�y � 1Þ

@M

@y

þsðec�� � 1Þ
@M

@�
þ dðe�� � 1Þ

@M

@�
þ gðez�c � 1Þ

@M

@c

þdðe�c � 1Þ
@M

@c
þ dðe�z � 1Þ

@M

@z
:

ð19Þ

To derive the system of stochastic differential equations for S, E, I, and R, take the derivative

of Eq (19) with respect to the variable that corresponds to the moment required for the differ-

ential equation; for example, if E[S] is required, take the partial derivative of Eq (19) w.r.t θ and

evaluate the results at (θ, ϕ, ψ, z) = (0,0,0,0),

dE½S�

dt
¼ l� bE½SI� � dE½S�; ð20Þ

depending on the higher order moment E[SI] = E[S]E[I] + cov(S, I). If cov(S, I) = 0, the ordi-

nary differential equation is returned and the state variables of the system are independent.

Obviously this cannot be solved explicitly, as it is not closed, differential equations for the

higher order moments must be considered, in an attempt to solve the equation. Take the deriv-

ative of Eq (19) w.r.t S and I, and end up with

dðE½SI�Þ

dt
¼ lE½I� � bE½IIS� � 2dE½SI� þ sE½SE� � gE½SI�: ð21Þ

It is obvious that this equation contains the third order moment. The system of stochastic dif-

ferential equations is

dE½S�

dt
¼ l� bE½SI� � dE½S�

dE½E�

dt
¼ bE½SI� � sE½E� � dE½E�

dE½I�

dt
¼ sE½E� � gE½I� � dE½I�

dE½R�

dt
¼ gE½I� � dE½R�

dE½SS�

dt
¼ lþ 2lE½S� þ bE½SI� � 2bE½SSI� þ dE½S� � 2dE½SS�

dE½EE�

dt
¼ bE½SI� þ 2bE½SEI� þ sE½E� � 2sE½EE� þ dE½E� � 2dE½EE�

dE½II�

dt
¼ sE½E� þ 2sE½EI� þ gE½I� � 2gE½II� þ dE½I� � 2dE½II�

dE½SI�

dt
¼ lE½I� � bE½IIS� � 2dE½SI� þ sE½SE� � gE½SI�

dE½EI�

dt
¼ bE½IIS� � sE½E� � sE½EI� þ sE½EE� � 2dE½EI� � gE½EI�

dE½SE�

dt
¼ lE½E� � bE½SI� � bE½SEI� þ bE½SSI� � 2dE½SE� � sE½SE�:

ð22Þ

To choose which higher order moment equations to explicitly define, look at which 2nd order
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moments appear in the equations of the first order moments. Next look at which equations of

2nd order moments appear in the already existing 2nd order moment equations. Since there

are no 2nd order moments involving E[R], there is no 2nd order moment equation for E[R].

The solution of Eq (22) is almost identical to the solution of Eq (3) (not shown). Thus, for

the purposes of this study we move forward considering Eq (3) only.
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