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With Verlinde’s recent proposal which says that gravity can be identi�ed with an entropic force and considering the eects of
generalized uncertainty principle in the black hole entropy-area relation we derive the modi�ed equations for Newton’s law of
gravitation,modi�edNewtonian dynamics, and Einstein’s general relativity.�e corrections to theNewtonian potential is compared
with the corrections that come from Randall-Sundrum II model and an eective �eld theoretical model of quantum general
relativity. �e eect of the generalized uncertainty principle introduces a √area type correction term in the entropy-area relation
whose consequences in dierent scenarios are discussed.

1. Introduction

One of the greatest achievements in theoretical physics is the
realization that black holes are well-de�ned thermodynamic
objects with entropy and temperature [1–5]. Hawking [4, 5]
has derived that a Schwarzschild black hole emits a thermal
radiation whose temperature depends on the mass� of the
black hole and is given by � = 1/8��. Also Bekenstein has
shown that a black hole has a well-de�ned entropy and is
proportional to the area of the black hole horizon given by
the entropy-area relation

�BH = �4�2� . (1)

Here � is the cross-sectional area of the black hole horizon
and �� is the Planck length. Recently there has been much
interest devoted to the leading order quantum corrections
of the black hole entropy-area relation. Entropy accounts
for the number of microstates of the system as it has a
de�nite statistical meaning in thermodynamics. Sakharov is
the originator of the idea of emergent gravity [6]. Jacobson
[7] was the �rst to view Einstein’s equation as an equation of
state. Together with the second law of thermodynamics and
the fact that entropy is proportional to the horizon area he
derived the Einstein’s equations. Later several studies were
carried out to understand the deeper underlying connection
between horizon thermodynamics and Einstein’s equation.

Padmanabhan showed that for a wider class of theories the
gravitational �eld equations on the horizon can be reduced
to the �rst law of thermodynamics arguing the Einstein’s
equation to be a thermodynamic entity [8]. �is novel idea
was also later introduced in modi�ed theories of gravity
[9]. For a brief review on the demonstration of the idea in
other scenarios we refer to [10–16]. �e development in the
lines discussed here refers to the point that thermodynamic
properties can be associated with the horizon and gravity can
be thought of as an entity whose origin is statistical in nature.

Recently Verlinde [17] introduced a very interesting
proposal to understand the thermodynamic origin of gravity.
According to him the changes in information which is
associated with material bodies is the prime cause of gravity
which is an entropic force.�is even demands an explanation
of the Newton’s law of inertia and the equivalence principle
may suggest that the origin of the law of inertia is entropic
in nature. In his approach Newton’s second law of motion
can be recovered if one considers the idea of entropic force
which is an eective macroscopic force which originates due
to the statistical tendency of the increase in entropy. Also we
have to consider the Unruh temperature which is the tem-
perature experienced by an observer in an accelerated frame
(� = ℏ
/2����). Another observation is the recovery of the
Newton’s law of gravitation and its relativistic generalization
to the Einstein’s equation. For that the approach considers the
idea of entropic force along with the equipartition of energy
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and the holographic principle. �ough a thermodynamic
interpretation of gravity can be given with the equipartition,
argument even in nonrelativistic limit was established earlier
[18]. Many authors recently focused on the understanding of
the entropic force and [19–22] outline the literature.

In Verlinde’s formalism he de�ned the Newton’s constant through the relation

� = ��3ℏ , (2)

where � is the total number of bits and this relation follows
from the holographic principle. Although he showed that this can actually be related to the Newton’s constant, following
the holographic principle it is a natural assumption that the
number of bits is proportional to the area �. In a theory of

emergent space area is de�ned in this form. Now as �2� =
ℏ/�3 where �� is the Planck length we get� = �/�2�. As the
Bekenstein-Hawking entropy-area relation is �BH = �/4�2� we
have� = 4�.

Dierent theories of quantum gravity (e.g., [23–29]) have
predicted the following form for the entropy of a black hole:

� = �4�2� + �0 ln(
�4�2�) + const. (3)

�0 is a model dependent parameter and �� is the Planck
length. �e speculation that the Heisenberg’s uncertainty
principle could be aected by the presence of gravity was
done byMead [30]. In the strong gravity regime, conventional
Heisenberg uncertainty relation is no longer satisfactory
(though approximately). Later modi�ed commutation rela-
tions between position and momenta commonly known as
the generalized uncertainty principle (GUP) were proposed
by string theory, doubly special relativity (DSR), and black
hole physics with the prediction of a minimum measurable
length [31–40]. Similar kind ofmodi�cation can also be found
in the context of polymer quantization in terms of polymer
mass scale [41]. Importance of the GUP can also be realized
on the basis of simple gedanken experiments without any
reference to a particular fundamental theory [38, 39]. So the
GUP can be thought of as a model independent proposal,
ideally suitable for the investigation of black hole entropy.
�e authors in [42, 43] proposed a GUP which is consistent
with DSR, string theory, and black hole physics. �is GUP is
approximately covariant under DSR transformations but not
Lorentz covariant [40].With the GUP as proposed in [42, 43]
we can arrive at the corrected entropy-area relation for a black
hole which can be written as [44–46]

� ≃ �4�2� + �√
�4�2� + � ln(

�4�2�)

+ ∞∑
�=1/2,3/2,...

��( �4�2�)
−�

+ ∞∑
�=1,2,...

��( �4�2�)
−�

+ const.
(4)

�is is by far the most general form of quantum corrected
entropy-area relation. In [44] black hole thermodynamics

was �rst studied with modi�ed dispersion relations and
generalized uncertainty principle. Recently, many authors
have suggested [47–52] that the GUP implications can be
measured directly in tabletop experiments which will de�-
nitely con�rm the theoretical predictions of some models.
We can get some experimental bound on the deformation
parameters � and �.

So in this paper we will study the eect of this corrected
entropy-area relation in the theory of modi�ed Newtonian
dynamics (MOND). We will also follow Verlinde’s viewpoint
to construct the modi�ed Newton’s law and Einstein’s equa-
tion with the entropy corrected relation of (4). � and �
are model dependent parameters in (4) and there are some
predicted signs and values for � and �. But here we will
consider a general treatment without concentrating on the
values for the parameters. A similar approach was carried
out by authors in [53, 54] where they considered logarithmic
correction to the entropy-area relation [23, 27, 29] and the
power law corrections [55, 56]. In [57] the eect of GUP on
the Newtons law is studied in a dierent approach.

2. Entropic Corrections due to
GUP and the Modified Newtonian
Dynamics (MOND)

In 1983Milgrom [58–60] gave a proposal to modify the New-
tonian dynamics (commonly known as MOND) which can
act as an alternative to nonbaryonic dark matter. A�er real-
izing the mass discrepancies in the galaxy rotation curves he

proposed that for acceleration smaller than 1.2 × 10−10m/s2

Newtonian dynamics needs a modi�cation. Asymptotically
the acceleration due to gravity is 
 = √
�
0, where 
�
is the Newtonian acceleration and 
0 = 1.2 × 10−10m/s2.
MOND cannot be tested within the solar system as the strong
gravitational �eld of the Sun dictates the dynamics. Usually
the MOND acceleration due to gravity 
 is written as


� = 
�( 

0) . (5)

In the asymptotic limit the interpolation function �(
/
0)
admits � = 1 for 
 ≫ 
0 and � = 
/
0 for 
 ≪ 
0 for the
recovery of the Newtonian dynamics in the regime where the
�eld is strong enough. For a review [61] is useful.

In the context of Verlinde’s formalism, gravity theories
have been connected with models of solid state physics, like
the Debye’s model at low temperature [62]. In [63] the one-
dimensional Debye model is shown to give MOND. Some
recent attention also includes the derivation of MOND from
the holographic entropy-area relation [53] and the collective
motion of holographic screen bits [64]. Here bits are related
to the units of information on the holographic screen. In
the critical phenomena of cooling it can be shown that if in
the equipartition relation, the zero energy bits are removed
from the total number, and then we can get the notion of
MOND. But we have to consider a modi�ed equipartition
theorem with the assumption that the division of energy is
not homogeneous on all bits below a critical temperature.
�en along with the holographic principle and the Unruh
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temperature we can recover the theory of MOND [65]. In
the language of critical phenomena this is analogous to the
�rst order phase transition. Following themethods of [65] we
consider the fraction of bits with zero energy with

�0 = �(1 − ���) . (6)

So for � ≥ �� there are no bits with zero energy and the
zero energy phenomena start for � < ��. �is is a relation
for critical phenomena in second order phase transition. �e
number of bits with dierent energy at � < �� is given by

� −�0 = �( ���) . (7)

With the equipartition law of energy we get

� = 12 (� ���)�, (8)

where we have considered �� = 1. Now with � = ��2 we get
�2 = 2��2��� , (9)

where� is the emergent mass which can be considered to be
at the center of the space enclosed by the holographic screen.
Now we have the Unruh temperature (� = ℏ
/2��) which is
associated with the acceleration of the frame and with (9) we
get

�
2 = 8�2�2ℏ2 ��2��. (10)

We have discussed earlier how entropy is related to � as
entropy is proportional to the number of bits. Here we use
the entropy corrected relation of (4) and modifying � = 4�
we write

� = ��2� + 4�√
�4�2� + 4� ln

�4�2�

+ 4�( �4�2�)
−1/2

+ 4�( �4�2�)
−1

.
(11)

With � = 4��2 and using (11) we rewrite (10) as


2(4��2�2� )[1 + ���√�� + ��2���2 ln{��
2

�2� }

+ ��3��3/2�3 +
��4��2�4] = 8�2�2ℏ2 ��2��.

(12)

We also mention that we considered only the leading order
terms in the entropy-area relation of (4). With a little algebra
and considering 
0 = (2��/ℏ)�� we can �nally arrive at


( 

0) =
��2 [1 −

���√�� − ��2���2 ln{��
2

�2� }

− ��3��3/2�3 −
��4��2�4] .

(13)

Here we have only �rst order terms of �, �, �, and �. �is
equation is the entropy corrected equation for the modi�ed
Newtonian dynamics.

3. Entropic Corrections due to GUP
and the Newton’s Law of Gravitation

Bekenstein’s entropy-area relation [3] came from the argu-
ment that if a particle is within theComptonwavelength from
a black hole horizon then it is a part of the black hole. �ere
will be an increase in mass and area of the black hole and
the relevant change is identi�ed with one bit of information.
With this motivation Verlinde postulated that the entropy
associated with the information at the boundary is given by

Δ� = 2� when Δ% = ℏ&� . (14)

Here we have considered �� = 1. If we assume that the change
in entropy is linear to Δ% then we can rewrite (14) as

Δ� = 2�&�ℏ Δ%. (15)

�is idea is analogous to osmosis across a semipermeable
membrane. As the membrane carries a temperature � so the
particle will experience an eective entropic force

'Δ% = �Δ�. (16)

�is force is attractive. A nonzero force leads to a nonzero
acceleration and acceleration is related to temperature by
Unruh eect. If we now assume that the total energy � of the
system is divided evenly over � bits then the temperature is
given by the equipartition law of energy

� = 2�� . (17)

With � = ��2 we get
� = 2��2� . (18)

So with (15), (16), and (18) we have

' = 2��2� 2�&�ℏ . (19)

As mentioned earlier we will study the entropy corrected
version of this equation. So with the entropy corrections
which are incorporated in � (11) we can write the entropic
force equation as

' = �&�2 [1 − ���√�� − ��2���2 ln{��
2

�2� }

− ��3��3/2�3 −
��4��2�4] ,

(20)
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with � = 4��2. If � = � = � = � = 0 this is the Newton’s law
of gravitation. �e Newtonian potential turns out to be

* (�) ∼ �&� [1 − ���2√�� − 2��2�9��2
− ��2�3��2 ln(��

2

�2� ) + O (�3�)] .
(21)

�ismodi�cation ofNewton’s law is similar to the predictions
came from Randall-Sundrum II model [66]. �e model has
one uncompacti�ed dimension with length scale �	. But here
the sign of the prefactor of the correction is dierent. If we
would have considered the entropy corrected relation of [46]
then this sign ambiguity would not have come. In the RS
braneworld scenario the Newtonian potential is calculated as
[67]

* (7) ∼
{{{{{{{{{

1� [1 +
4�	3�� − ⋅ ⋅ ⋅ ] for �	 ≫ �,

1� [1 +
2�2	3�2 − ⋅ ⋅ ⋅ ] for �	 ≪ �, (22)

where �	 is the characteristic length scale of the theory.
�e signi�cant prediction of [67] is that gravity is �ve-
dimensional at short distances. �is comparison of the
modi�ed Newton’s law of gravitation with respect to the
RS II model was �rst pointed out in [68]. �e modi�ed
entropy-area relation that we have used is a consequence of
the GUP and the question can be raised that whether the
GUP modi�cations predict the same results as that of RS II
model for short distance physics. Although Newton’s 1/�2
force law is the only law of gravitation up to 0.13mm [69, 70]
it is still unknown whether the law is valid at much lower
scales. Here it is possible to put an upper bound on � from
the RS II characteristic length scale �	. If the tension 1/�	
of the brane is small enough compared to the Planck mass
then the correction to the Newtonian potential would help
us to distinguish RS II model from other extradimensional
models. �	 is constrained by present short distance tests

of gravity which predict �	 < 11 × 10−06m [71, 72]. If
we use this bound on �	 and compare with the �rst order
correction of (21) we get an upper bound on the deformation

parameter � which is <1029. �is bound is not sensitive for
phenomenological purposes as this intermediate length scale

should be≤1017; otherwise it would have been observed as the
electroweak length scale is ∼1017�� [42, 43]. Also the current

experimental bounds on � are ≤1017, 1010, and 1011 from
position measurement, Hydrogen Lamb shi�, and electron
tunneling, respectively [47–50, 73, 74]. On the other hand
in 5D heterotic M-theory if the 5-dimensional fundamental

mass is of the order of grand uni�cation scale (1016GeV) then
the corrections to the Newtonian potential would be relevant
at �	 ∼ 10−26m[75]. Now correction of this order if compared
to the �rst order correction of (21)would give an upper bound

for the parameter � which is <109.

It is also interesting that if we consider the scattering of
two heavy masses&1 and&2 in a gravitational potential, the
nonrelativistic potential gets some corrections. We can write

* (7) ∼ &1&27 [1 + 3 (&1 + &2)7�2 + 41�2�10�72] . (23)

�is is the Donoghue potential [76–80]. �e �rst correction
term is the classical post-Newtonian correction and the last
correction is purely quantum. For the derivation one has to
treat quantum general relativity as an eective �eld theory.
�e last correction term of the Donoghue potential does not
�t well for the phenomenological purposes but it de�nitely
shows a well behaved classical limit.�e �rst correction term
of the potential is not considered as a quantum correction
as for a small test particle &2 this is similar to the time
component F00 of the Schwarzschild metric which is the
source of the static gravitational potential [80]. In the process
to get (21)Newton’s law arose naturally with the consideration
that space is emergent through a holographic scenario [17].
But (23) is an artifact of treating quantum general relativity as
an eective �eld theory. Here also we see that the predictions
of an emergent theory of gravity with the eects of the gen-
eralized uncertainty principle are similar to that of quantum
general relativity. However, it is not surprising that any theory
of quantum gravity comes with an intrinsic length scale and
the low energy eective theory is plagued with corrections
associated with the length scale.

4. Entropic Corrections due to
GUP and the Einstein’s Equation

In the earlier section we have considered nonhomogeneous
cooling of bits which restricted the distribution of energy
equally on all bits of the holographic screen below a critical
temperature. In turn we get a modi�ed equipartition law of
energy and we derive MOND in presence of the eects of
generalized uncertainty principle. In this section we further
investigate the eects of the results derived earlier on the
Einstein’s �eld equations. With the assumption that the
holographic principle holds and considering the fact that each
single bit of information occupies a unit cell one can write

� = ��2� , where �2� = ℏ�3 . (24)

�is is four times the Bekenstein-Hawking entropy which

says �BH = �/4�2�. So that we can write

� = 4�. (25)

Considering the entropic corrections due to GUP (11) we can
write

G� = 1�2� [1 +
���√� + 4��2�� − 4��3��3/2 −

16��4��2 ]G�. (26)
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�is is the bit density on the screen. If the energy associated
with mass� is divided over all bits and each bit carries mass(1/2)� due to the equipartition law we have

� = 12 ∫
 �G�. (27)

�e local temperature � on the screen is given by

� = ℏ2�J�K�∇�M, (28)

where J� is the redshi� factor as � is measured from in�nity.
So (27) is written as

� = 14� ∫


J�∇M ⋅ [1 + ���√� + 4��2�� − 4��3��3/2 −

16��4��2 ]G�,
(29)

where we have considered � = 1. �is equation is the
modi�ed Gauss law in general relativity and the right hand
side represents the modi�ed Komar mass. �e �rst integral
of (29) is the Komar mass� and

� = 14� ∫


J�∇M ⋅ G�. (30)

Now this relation can be written in terms of the Ricci tensor��� and theKilling vector N� [17, 81] where one uses the Stokes
theorem and the Killing equation for N� : ∇�∇�N� = −���N�.
Finally one can get

� = 14� ∫
Σ
���K�N�G*. (31)

So we rewrite (29) as

� = 14� ∫
Σ
���K�N�G*

+ ��4� ∫


J�∇M ⋅ [ �√� + 4���� − 4��2��3/2 −

16��3��2 ]G�,
(32)

whereΣ is the three-dimensional volumebounded by �which
is the holographic screen and K� is the normal. Also� can be
written as a volume integral of the stress energy tensor ���,
where

� = 2∫
Σ
(��� − 12�F��) K�N�G*. (33)

So with (32) and (33) we can write the entropy corrected
Einstein’s equation as

∫
Σ
[��� − 8�(��� − 12�F��)] K�N�G*
= −�� ∫



J�∇M ⋅ ( �√� + 4���� − 4��2��3/2 −

16��3��2 )G�.
(34)

If � = � = � = � = 0 we get the usual Einstein’s equa-
tion. Here we have surface corrections which came as a
consequence of the correction to the density of bits on the
holographic screen. In a spherically symmetric static space
time with a little algebra �nally we can get the entropy
corrected Einstein’s equation as

��� = 8�(��� − 12�F��) (1 + ��) , (35)

where

�� = ��2� ( �√� + 4���� − 4��2��3/2 −
16��3��2 ) . (36)

For large horizon area the equation reduces to usual Einstein’s
equation.

5. Discussion

Gravity may be identi�ed to be associated with entropic
force and a thermodynamical system may well describe a
gravitational system. �is idea came from the thermody-
namical interpretation of gravitational �eld equations. A
holographic screen is assumed to contain the information of
the volume enclosed by it and the information is divided in
bits. So according to Verlinde it is natural to assume that the
number of bits is proportional to the area of the holographic
screen. On the other hand, all approaches to quantum gravity
support the idea of existence of a minimal observable length
of the order (or some order) of Planck length. Also it is
conjectured that the standard commutation relations at short
distances would be modi�ed. In [42, 43] a form of the
generalized uncertainty principle was proposed which is
consistent with doubly special relativity (DSR), string theory,
and black holes physics with the prediction of a maximum
observable momentum and a minimal measurable length.
As an immediate eect of the quantum gravity corrections
incorporated through the GUP the entropy-area relation of
a black hole gets modi�ed. So it leads to a modi�cation in
the number of bits of information on the holographic screen
as discussed in Verlinde’s approach. Verlinde’s approach is
found to be consistent if one obtains modi�cations to the
Newton’s law from the log corrected entropy-area relation as
the modi�cations have the same form as that of the lowest
order quantum corrections of perturbative quantum gravity
[53].

In this paper we have generalized the entropic force law
as introduced by Verlinde via a phenomenological interpre-
tation of the generalized uncertainty principle. Considering
the eects of generalized uncertainty principle in the black
hole entropy-area relation here we have derived the modi�ed
equations for Newton’s law of gravitation, modi�ed Newto-
nian dynamics, and Einstein’s general relativity. �e leading
order correction of the modi�ed potential in the Newton’s
law of gravitation surprisingly agrees with the short distance
Newtonian potential as predicted by Randall-Sundrum II
model. As the RS II model has an uncompacti�ed extra
dimension so it would be interesting to investigate whether
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the GUP eects can predict the same as that of the extra
dimensional theories. It is also interesting to note that the
corrections to the Newtonian potential which we get are
similar to the Donoghue potential which is a consequence of
treating quantumgeneral relativity as an eective �eld theory.
We found that the corrections due to an emergent theory of
gravity with the eects ofminimal length are similar to that of
quantum general relativity.�is is quite evident as any theory
of quantum gravity is accompanied by an intrinsic length
scale which manifests itself as the coe�cient of leading order
corrections in low energy phenomena. Here with Verlinde’s
approach we observe that the GUP motivated entropy-area
relation modi�es Newton’s law with modi�cations that are
similar to dierent order of quantum eects as evidenced in
perturbative quantum gravity. Later we derived the modi�ed
Einstein’s �eld equation in the same framework which for
large horizon areas reduces to the usual Einstein’s �eld
equation.
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