
The Effects of Multitasking on Operations Scheduling

Nicholas G. Hall ∗

Joseph Y.-T. Leung †

Chung-Lun Li ‡

∗ Fisher College of Business, The Ohio State University, Columbus, Ohio 43210; hall.33@osu.edu

† Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey 07102;

leung@cis.njit.edu

‡ Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong; chung-lun.li@polyu.edu.hk; Corresponding author

This is the peer reviewed version of the following article: Hall, N.G., Leung, J.Y.‐T. and Li, C.‐L. (2015), The Effects of Multitasking on Operations
Scheduling. Prod Oper Manag, 24: 1248-1265, which has been published in final form at https://doi.org/10.1111/poms.12331. This article may be used
for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

This is the Pre-Published Version.

Abstract

This paper considers a typical scheduling environment that is influenced by the behavioral

phenomenon of multitasking. Under multitasking, the processing of a selected job suffers from

interruption by other jobs that are available but unfinished. This situation arises in a wide variety

of applications; for example, administration, manufacturing, and process and project management.

Several classical solution methods for scheduling problems no longer apply in the presence of mul-

titasking. The solvability of any scheduling problem under multitasking is no easier than that of

the corresponding classical problem. We develop optimal algorithms for some fundamental and

practical single machine scheduling problems with multitasking. For other problems, we show that

they are computationally intractable, even though in some cases the corresponding problem in

classical scheduling is efficiently solvable. We also study the cost increase and value gained due to

multitasking. This analysis informs companies about how much it would be worthwhile to invest

in measures to reduce or encourage multitasking.

Keywords: scheduling, multitasking, polynomial time algorithm, cost and value of multitasking.

1 Introduction

The behavioral phenomenon known as multitasking can be observed numerous times each day.

Multitasking is defined as “The performance of multiple tasks at one time” (Merriam-Webster

Online 2014). So widespread is this phenomenon that Salvucci and Taatgen (2011) comment, “In

some cases, it almost seems that people have a compelling need for multitasking . . .”

Several research studies suggest that multitasking is both frequent and costly. O’Leary et

al. (2006) find that hospitalists spend 21% of their time working on more than one activity. G. Wein-

berg, as quoted in theSalmonFarm (2007), estimates that adding a second task results in a 20%

loss of productivity, and adding a third task increases this loss to almost 50%. Järrehult (2012)

uses a numerical example to show how multitasking can increase project time by over 60%. A case

study (Realization 2014) of 45 organizations with multitasking reduction programs estimates the

median improvement in productivity at 59.8%. Extrapolating these results globally suggests an

annual cost of $450 billion from multitasking. Also, Suddath (2012) quotes the IT research and

consulting firm Basex as estimating the annual cost of multitasking at $1 trillion globally.

An early criticism of human multitasking is offered by Philip Stanhope, 4th Earl of Chesterfield

(1694–1773), in a 1740s letter to his son, “There is enough time for everything in the course of the

day, if you do but one thing at once, but there is not enough time in the year, if you will do two things

at a time” (Stanhope 1847). More recently, multitasking in personal interactions and in technology

applications is the subject of frequent social commentary (Rosen 2008). This paper, however,

studies the effect of multitasking on the efficiency of administrative and manufacturing systems,

and process management applications. An important example of the last, where multitasking is

frequently observed, is project management (Klastorin 2004, Kerzner 2013).

Discussions of the motivations for human multitasking can be found in the literature of be-

havioral psychology, operations management, cognitive engineering, and project management. Jez

(2011) provides an integrative review of the multitasking literature. We identify five principal

motivations for multitasking in administrative and business processes:

1. A need to feel or appear productive.

2. A need to demonstrate progress on different tasks or treat task owners equitably.

3. Anxiety about the processing requirements of waiting tasks.

1

4. A need for variety in work.

5. Interruption by routine scheduled activities.

In the following paragraphs, we discuss each of these motivations for multitasking in turn, and

provide some supporting references.

An important motivation for multitasking is a need to feel productive, or to appear to be

productive to one’s co-workers. Huff (2007) quotes an interview subject about multitasking, “I

enjoy it. I like the feeling of accomplishment I get when I can do two or three things to completion

at the same time.” She attributes the frequency of multitasking to pride. Damian (2009) reports

a psychology study which indicates that many people believe, albeit sometimes erroneously, that

they are good at multitasking. Cantor (2010) reports that many job listings identify an ability

to multitask effectively as an important job attribute. Hence, once hired, employees multitask in

anticipation of being appreciated for doing so.

The need to report progress on different tasks or to treat task owners equitably can be a powerful

motivation for multitasking, especially in project management applications. Elder (2006) discusses

situations where each task has an owner, and the owner typically makes frequent inquiries about

progress on the task. Multitasking is an immediate consequence of such business pressures (Mor-

genstern 2004). Rand (2000) describes multitasking as an important aspect of project management

that needs to be controlled. Leach (1999) discusses the prevalence and negative consequences of

multitasking in project management.

Another significant motivation for multitasking is anxiety about the processing requirements

of the waiting tasks. One source of anxiety is uncertainty about when the waiting tasks will be

scheduled (Morgenstern 2004). This anxiety can sometimes be mitigated by the development of a

detailed schedule. A second source of anxiety is concern about a lack of information (Morgenstern

2004). Relevant information that may be missing includes how difficult, or how time consuming,

the waiting tasks will turn out to be once they are started and more information on them becomes

available. Hence, multitasking of one or more of the waiting tasks in effect serves as a sampling

procedure that may mitigate this type of anxiety.

Regarding the need for variety, boredom while working on a single task is a major factor in

motivating multitasking. The blog Get More YouTube Views (2010) comments “Most people have

an attention span of around 10 minutes. This means that after 10 minutes they will start feeling

2

bored, annoyed, angry or anxious and will automatically switch to something different in order to

relieve the stress.” What they switch to is typically a different task that is waiting. Cantor (2010)

provides a similar perspective, “Multitasking is the art of distracting yourself from two things you’d

rather not be doing by doing them simultaneously.” She also identifies boredom as one of the major

causes of multitasking.

Finally, many business processes rely on routine activity that interrupts a continuing schedule.

Examples include spending the first part of the day answering e-mail, or performing end-of-day file

backup and maintenance. As a result of such activities, a primary task that is scheduled over several

days is necessarily interrupted. Jett and George (2003) study the consequences of interruptions,

including scheduled breaks, for organizational activities. At a more operational level, Fuhrmann

and Cooper (1985) study queueing systems with random job arrivals and generalized vacations,

which represent time set aside for other activities. Lee (1996) studies a scheduling system where

machines are unavailable due to preventive maintenance. Ma et al. (2010) provide a survey of 85

papers on the closely related topic of scheduling with known machine unavailability times.

Under the five motivations discussed above, multitasking results from a lack of focus on the

currently scheduled work, relative to alternative available work. In none of those cases is multi-

tasking the result of uncertainty in the planning environment. For this reason, our paper models

the effect of multitasking deterministically. There are other potential motivations for multitasking,

for example the random arrival of urgent work (Pinedo 2012), that require stochastic modeling.

Those motivations are not studied as part of the current paper.

Our work is distinguished from classical scheduling in five ways. First, in classical scheduling,

no work is ever processed except as a result of a deliberate decision by a decision maker. However,

in all the above situations, multitasking is inadvertent. Second, in some situations inadvertent

multitasking can add cost, but not necessarily value, to a schedule. However, the psychological

benefit of satisfying “a need to feel or appear productive” or “a need for variety in work,” for

example, can add value to the process by speeding up work. In such situations, multitasking

can generate value as well as improve quality of work (Loeb and Alluisi 1977, Ware and Baker

1977, Craig 1985). Third, in classical preemptive scheduling (Pinedo 2012), a preempting job is

typically processed to completion before resumption of a job which it has preempted, whereas under

multitasking an interrupting job is only partially processed. Fourth, in classical processor sharing

3

models (Gonzalez 1977), jobs are processed simultaneously, whereas under multitasking there is

a transition from one job to another with a switching time. Further, classical processor sharing

is deliberate, whereas multitasking is inadvertent. Fifth, most algorithms for classical preemptive

scheduling fail to deliver optimal solutions in multitasking situations.

This paper evaluates the effects of multitasking in a simple task scheduling environment. This

environment has been extensively studied within the classical scheduling literature, leading to the

development of simple indexing rules and more complex optimal and heuristic algorithms. However,

most of these classical results no longer apply in the presence of multitasking. We develop new

solution procedures for several of the most widely studied classical scheduling problems, under

multitasking. We also consider the extent by which multitasking increases cost or adds value.

This analysis informs companies about how much it would be worthwhile to invest in measures to

eliminate multitasking.

The remainder of the paper is organized as follows. Section 2 describes a small, practical case

study that illustrates the application of scheduling with multitasking. In Section 3, we describe our

notation, formally define the problems to be studied, develop a mathematical model of multitask-

ing, and provide a general observation about problem solvability. Sections 4, 5, 6, and 7 discuss

the solvability of problems with the total weighted completion time objective, the maximum late-

ness objective, the number of late jobs objective, and the weighted number of late jobs objective,

respectively. Section 8 computationally evaluates the increase in cost and value gained due to mul-

titasking for these four problems. Finally, Section 9 provides a conclusion and an extensive list of

suggestions for future research.

2 Case Study

We describe a practical administrative planning scenario that illustrates a scheduling problem with

multitasking.

Planning Scenario

An administrator provides support for the marketing and promotional activities of various depart-

ments at the university where she works. Her major tasks include developing promotional brochures

4

for academic programs, promoting major events, and writing newsletters and annual reports. She

works with a small team of junior staff, who provide her with support, including collection of infor-

mation, liaison with the other departments in the university, and preliminary drafting. To develop

a set of promotional materials, her team members spend their time preparing the materials and

then pass the prepared materials to her for finalization. During this preparation process, she needs

to communicate and meet with the team members regularly so that they deliver a quality product.

Each major task has a due date at which the materials will be published. The administrator’s

performance is based on meeting her due dates.

Need for Multitasking

The administrator normally works on one major task at a time. However, while doing so, she also

needs to spend some time on each unfinished (i.e., waiting) task communicating with her team. To

implement this, every time she switches from one primary task to another, she gives some time to

review the team’s progress of all the waiting tasks and provide feedback to them.

Data Requirements

(i) Each major task requires between 10 and 60 work hours, with quite predictable duration based

on the tasks’ repetitive nature and the administrator’s past experience with similar tasks.

(ii) Every time the administrator reviews the waiting tasks, she spends about 0.25 hours discussing

the progress of each waiting task with her team members, then spends another 2 hours working

on each waiting task by herself.

(iii) However, if most of the waiting task is already completed, she does not spend additional time

working on it until that task is ready for her to finalize. As a rule of thumb, once she has spent

50% of her time on a waiting task, she stops working on it herself, but spending 0.25 hours

reviewing the task with the team is still necessary.

In Section 3, following the multitasking literature, we describe the meeting time of 0.25 hours

per waiting task as a “switching time,” and the 2 hours of working time as an “interruption time,”

and we also provide notation for the above data requirements.

5

3 Model Description and Properties

Our scheduling environment with multitasking can be described as follows. There is a given set of

tasks that need to be processed by a work center. When a task is being processed, it is interrupted

by other unfinished tasks that are available for processing. In order to present this model using

classical machine scheduling terminology, we refer to the work center as a “machine” and the tasks

as “jobs.”

We let N = {1, 2, . . . , n} denote a given set of jobs. Job j has a processing time pj > 0, and in

some of the problems we consider also a due date dj ≥ 0 and a weight wj > 0, for j = 1, 2, . . . , n. We

let P =
∑n

j=1 pj and W =
∑n

j=1 wj. For simplicity, we assume that pj and wj are integer-valued. A

single machine is available for processing the jobs, and all jobs are available for processing at time

0. The machine can process only one job at a time. Whatever job is scheduled at any point in time

is denoted as the primary job. We refer to jobs that are available, and not yet fully processed, as

waiting jobs. Under multitasking, when a job is being processed, it is unavoidably interrupted by

the waiting jobs. We let Sj ⊂ N denote the set of jobs that are waiting when job j is the primary

job. We note that Sj may include jobs that have already been partially processed while interrupting

other jobs. The partial processing of a job that occurs while it interrupts other jobs need not be

repeated. Preemption of a primary job is not allowed, except as a result of multitasking. Hence,

a primary job is always completed before another job becomes the primary job. Thus, every job

needs to be selected as the primary job exactly once. Therefore, the only decision that needs to be

made is a job sequence σ in which the jobs of N appear as primary jobs.

In order to model the process by which the waiting jobs interrupt the primary jobs, we introduce

two assumptions. The first assumption is that the time during which the waiting job interrupts

the primary job, which we refer to as the interruption time, is independent of the characteristics of

the primary job. The second assumption is that the amount of time during which no job is being

processed while the primary job is scheduled, which we refer to as the switching time, depends only

on the number of waiting jobs. Both these assumptions are justified from the empirical literature

of multitasking in the remainder of this section.

Let i ∈ Sj be a waiting job when j is scheduled as a primary job. Let p′i denote the remaining

processing time of job i at the start of a period when job j is scheduled as a primary job. The

6

amount of time for which job i interrupts job j, i.e., the interruption time, is given by gi(p
′
i), where

gi(·) is an arbitrary nonnegative function such that 0 ≤ gi(p
′
i) < p′i. As mentioned above, this

portion of processing of job i need not be repeated when job i becomes a primary job. When

primary job j is being processed, it also incurs an overhead f(|Sj|), i.e., the amount of switching

time for handling the interrupting jobs, where f(0) = 0. Since during this switching time no useful

work is performed, the makespan of the schedule is increased by f(|Sj|) for each primary job j, and

hence is longer than the total processing time of all the jobs. Thus, the total amount of interruption

during the processing of job j is f(|Sj|)+
∑

i∈Sj
gi(p

′
i). This multitasking function is flexible enough

to scale its two components relative to each other as required. We refer to f(·) and gi(·) as the

switching function and interruption function, respectively.

We allow f(|Sj|) to be positive, zero, or negative. A negative switching time represents the

situation where the value of interruption dominates the overhead. With respect to the function

gi(p
′
i), we define hi(l), 0 ≤ l ≤ n − 1, to be the remaining processing time of job i after it has

interrupted l primary jobs. Thus, hi(0) = pi, hi(1) = pi − gi(pi), hi(2) = hi(1) − gi(hi(1)), . . . ,

hi(n−1) = hi(n−2)−gi(hi(n−2)). We assume that gi(·) is defined in such a way that hi(l)+f(k)

is a positive value for all 0 ≤ l ≤ n − 1 and k ≥ 0. This assumption ensures that the remaining

processing time of job i is positive when it becomes a primary job and when the switching time is

included.

Returning to the case study described in Section 2, we are now able to specify a switching

function f(|Sj|) = (0.25)|Sj|, where each time unit is 1 hour, and an interruption function gi(p
′
i) = 2

if p′i ≥ (0.5)pi, and gi(p
′
i) = 0 otherwise.

We now justify our multitasking function directly from the empirical literature of multitask-

ing (Chisholm et al. 2000, Rubinstein et al. 2001, Czerwinski et al. 2004, González and Mark

2004, Altmann and Trafton 2007, Iqbal and Horvitz 2007). This literature is grounded in informa-

tion technology and health care applications, both of which introduce application-specific factors.

Within information technology applications, multitasking functions are influenced by the relative

levels of cognitive complexity, for example the amount of creativity and reasoning required, of the

primary and waiting jobs. Within health care applications, multitasking functions are influenced

by distraction during interruption, for example when the interrupting task is itself interrupted.

Since our objective is to model generic applications that are not specific to a particular industry,

7

we do not model these application-specific factors.

However, the empirical literature of multitasking also identifies two factors that potentially

apply across various applications. The first factor is the amount of the task remaining to complete

(Iqbal and Bailey 2006), which we operationalize as the remaining processing time of the primary

task at the time when interruption occurs. The second factor is the potential distraction during

interruption (Grundgeiger et al. 2010), which we operationalize as the remaining processing time

of the interrupting task. The above two works apply these factors as independent variables in

multiple linear regression models to predict the resumption lag, which is the time between the end

of processing of the interrupting jobs and the resumption of processing of the primary task. These

factors are used in the design of our above multitasking function.

Regarding the statistical significance of the remaining processing time of the primary job in

predicting interruption time, we make use of two empirical results. First, the length of the in-

terruption has a very strong correlation with the length of the resumption lag (Grundgeiger et

al. 2010). Second, the remaining processing time of the primary job is not a significant predictor

of the length of the resumption lag (Iqbal and Bailey 2006). Combining these two results, we infer

that the remaining processing time of the primary job is not a significant predictor of the length of

interruption. This conclusion is supported by Iqbal and Bailey (2006), who comment that the cost

of interruption “depends more on the characteristics that reflect current and prospective allocation

of mental resources (workload) than on those that reflect temporal position . . .”

Recall that p′i is the remaining processing time of waiting job i at the moment when job j

becomes a primary job. Various assumptions are possible about the relationship between p′i and the

interruption time. For example, in classical preemptive scheduling (Pinedo 2012), the interrupting

job is processed to completion. Alternatively, in round-robin scheduling (Coffman et al. 1970), the

interrupting job is processed for a fixed amount of time that is independent of the characteristics

of that job. The empirical literature of multitasking provides some related results. Grundgeiger et

al. (2010) identify a very strong statistical relationship both between the amount of interruption

and the resumption lag, and between the amount of potential distraction and the resumption lag,

where the p-value is < 0.001 in both cases. Combining these two results, we infer a very strong

statistical relationship between the amount of potential distraction and the interruption time. In

the generic applications we consider, the amount of potential distraction is represented by the

8

remaining processing time of the interrupting task, p′i. Therefore, we use the remaining processing

time of the interrupting task as a major predictor of interruption time, and define gi(·) as a function

of p′i.

Recall that we have defined the switching time as an unproductive time during which no job

is being processed. The existence of switching time is well recognized in the literature (Speier

et al. 1999, Rubinstein et al. 2001, Seshadri and Shapira 2001, Dobson et al. 2013). In a generic

application, switching time is essentially a “fixed setup time” for the unloading or shutdown and the

loading or startup of a job. Hence, our multitasking function models the total switching time f(|Sj|)

during the processing of primary job j as depending only on the number of switches incurred during

that processing, one for each waiting job. As discussed above, in some applications, multitasking

can add value to the process. For example, when workers need to demonstrate progress on different

tasks or to treat task owners equitably, putting the primary job on hold temporarily and processing

part of a waiting task can increase worker satisfaction and processing efficiency. We model this

“value of interruption” as a reduction in switching time. That is, our switching time equals the

shutdown/startup time of a job minus the value of interruption obtained from job switching. We

permit the switching time to be negative. This allows the possibility that the value of interruption

exceeds the shutdown/startup time of a job.

In view of this discussion, our above multitasking function depends on both the number and

the remaining processing times of the interrupting jobs, but not on the remaining processing time

of the primary job. Further, both switching time and interruption time are general functions, in

order to model a wide variety of applications. Also, we allow jobs to have either positive or zero

interruption time, and either positive, zero, or negative switching time.

The following example and accompanying figure illustrate our multitasking function.

Example 1: n = 3, (p1, p2, p3) = (2, 4, 10), f(|Sj|) = |Sj|, g1(p
′
1) = (0.1)p′1, g2(p

′
2) = (0.1)p′2, and

g3(p
′
3) = (0.1)p′3. Suppose we process job 1 first, followed by job 2 and then job 3. If there is no

multitasking, then the completion times of jobs 1, 2, and 3 are 2, 6, and 16, respectively, as shown in

Figure 1(a). If there is multitasking, then job 1 completes at time p1 + |{2, 3}|+(0.1)p2 +(0.1)p3 =

2 + 2 + 0.4+ 1 = 5.4. Here, p1 is the processing time of job 1; |{2, 3}| is the switching time; (0.1)p2

is the amount of interruption by job 2; and (0.1)p3 is the amount of interruption by job 3. Job 2

9

completes at time 5.4 + (0.9)p2 + |{3}|+ (0.1)(0.9)p3 = 5.4 + 3.6 + 1 + 0.9 = 10.9. Here, (0.9)p2 is

the remaining processing time of job 2; |{3}| is the switching time; and (0.1)(0.9)p3 is the amount

of interruption by job 3, which has a remaining processing time of (0.9)p3 before job 2 becomes a

primary job. Job 3 completes at time 10.9 + (0.9)(0.9)p3 = 10.9 + 8.1 = 19, where (0.9)(0.9)p3 is

the remaining processing time of job 3. The schedule is depicted in Figure 1(b).

� � � � � � � � � 	 �
 � � �
 � � � � 	 � � � � � � � � �

� � � � � � � � � 	 �
 � � � � � 	 � � � � � � � � �

� � �
� � � � � � �

� � � � � � � � � � � �

! " # $
% & ' ('

") $ * " ! + $

�
� � � , � - , � .

! " # / # $& 0 % 1 2 3 4 5 0 (3
% 6 1 2 (% 1 7 (7

" * 8 9 / ! $5 0 % 1 7 3 * " : 8 ! / + $

� � � � � �
�

 � � � � -� � � � ; , � < =
� � � � � �

�
 � � �� - � � � =

� > � � ? � � � � � ��
� � � � � � � � � � � �

�
� � � , � - , � .

� > � � ? � � � � � ��
� � � � � � � � � � � �

Figure 1: Schedules Without and With Multitasking.

In our model, each job has its own general g(·) function which depends on the characteristic of

the job. We now discuss some practical example functions. For some waiting job i, we may have

gi(p
′
i) = 0, which means that job i is not processed at all when another primary job is scheduled. If

gi(p
′
i) = 0 and f(·) ≡ 0, then job i never interrupts other jobs. If gi(p

′
i) = 0 and f(·) 6≡ 0, then job

i does delay other jobs while it is waiting for processing, but it only contributes to the switching

time. This represents a practical situation where the worker needs to spend time maintaining the

waiting job i. This time might be spent, for example, answering inquiries from the owner of job i

about the status of the job, or filing extensions to extend the waiting time. However, there is no

processing of any portion of job i during the processing of the primary job. For another job i, we

10

may have gi(p
′
i) = c, where c is a positive constant such that nc < pi. In this case, job i always

interrupts other jobs by a constant amount while it is waiting for processing, as in Coffman et

al. (1970). Another possible interruption function is gi(p
′
i) = Dp′i, where 0 < D < 1 is a constant,

as demonstrated in Example 1. In this case, a fixed proportion of the waiting job is processed

during the processing of the primary job. This function enables equitable treatment of the waiting

tasks. As confirmation of the practical relevance of our model, we now relate it closely to two

studies of interruptions within the operations management literature.

First, Seshadri and Shapira (2001) consider the management of a long-term process, where

interruptions arise from the need to maintain several short-term processes. All processes show

improvement at a known rate when attended, but decay at a different known rate when unattended.

Within the context of our model, we may view the short-term processes as interrupting jobs.

Seshadri and Shapira (2001) derive, in Lemma 1 of their paper, a formula for the amount of

interruption that is necessary to sustain a given short-term process. This formula is a special case

of our function gi(·).

Second, Dobson et al. (2013) study a service process with three stages: investigation, backroom

testing, and further investigation and conclusion. Applications arise in hospital emergency depart-

ments and various professional services. Customers within the system, who are analogous to our

waiting jobs, interrupt the investigator’s work. The authors model the rate of interruption as pro-

portional to the number of customers in the system, which is equivalent to |Sj| in our model. Thus,

their model is consistent with both our switching function f(|Sj|) and our interruption function

∑

i∈Sj
gi(p

′
i).

In any feasible schedule σ, we let Cj(σ) denote the completion time of job j. We define the

lateness of job j as Lj(σ) = Cj(σ) − dj. We let Uj(σ) be a binary variable that indicates whether

job j is late or on-time; thus, Uj(σ) = 1 if Cj(σ) > dj, and Uj(σ) = 0 otherwise. Whenever the

schedule being considered is clear from context, we omit the argument σ.

When f(·) ≡ 0 and gi(·) ≡ 0 for all i, a scheduling problem with multitasking reduces to the

corresponding classical scheduling problem. This implies the following result.

Remark 1 If the recognition version of a classical scheduling problem without multitasking is bi-

nary (respectively, unary) NP-complete (Garey and Johnson 1979), then the recognition version of

11

the corresponding problem with multitasking is also binary (respectively, unary) NP-complete.

We consider the minimization of four objective functions: the total weighted completion time

∑n
j=1 wjCj, the maximum lateness Lmax = max1≤j≤n{Lj}, the number of late jobs

∑n
j=1 Uj, and

the weighted number of late jobs
∑n

j=1 wjUj. All four are among the most widely studied and

best practically motivated objectives within the scheduling literature (Brucker 2007, Pinedo 2012).

Using the three-field α | β | γ notation of Graham et al. (1979), the classical versions of these

scheduling problems are denoted by 1 ||
∑

wjCj , 1 || Lmax, 1 ||
∑

Uj, and 1 ||
∑

wjUj, respectively.

We use “mt” in the β field to denote a multitasking environment.

The following indexing rules from classical scheduling theory are useful in our work. A shortest

weighted processing time (SWPT) sequence schedules the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥

wn/pn (Smith 1956). An earliest due date (EDD) sequence schedules the jobs such that d1 ≤ d2 ≤

· · · ≤ dn (Jackson 1955).

4 Total Weighted Completion Time

In this section, we consider the total weighted completion time objective, i.e., problem 1 | mt |
∑

wjCj .

For the classical 1 ||
∑

wjCj problem, the SWPT rule generates an optimal schedule (Smith 1956).

However, in the presence of multitasking, this rule is not generally optimal. For example, con-

sider the following instance, which is an extension of Example 1: n = 3, (p1, p2, p3) = (2, 4, 10),

f(|Sj|) = |Sj|, g1(p
′
1) = (0.1)p′1, g2(p

′
2) = (0.1)p′2, g3(p

′
3) = (0.1)p′3, and (w1, w2, w3) = (10, 19, 1).

The SWPT schedule is (1, 2, 3), with a cost of w1C1 + w2C2 + w3C3 = (10)(5.4) + (19)(10.9) +

(1)(19) = 280.1. However, an optimal schedule is (2, 1, 3), with a cost of w2C2 + w1C1 + w3C3 =

(19)(7.2)+ (10)(10.9)+ (1)(19) = 264.8.

We now describe an efficient optimal algorithm for problem 1 | mt |
∑

wjCj. The algorithm

schedules the jobs backwards. We use the variable k to indicate the number of jobs that have

already been scheduled. After a job is scheduled, k is incremented by one. We let R denote the

list of jobs that have been scheduled. When the algorithm terminates, R gives the final sequence

of jobs. At each iteration, among all the unscheduled jobs, we select a job i with the smallest

wi/[hi(n − k − 1) + f(k) +
∑

y∈R gy(hy(n − k − 1))] value. In the denominator of this formula,

12

the first term represents the remaining processing time of job i. The second term represents the

switching time during the processing of job i, which is a function of the number of interrupting

jobs, k = |R|. The third term represents the total amount of interruption by the jobs of R, which

depends on their remaining processing times. We let J denote the set of jobs that have not yet

been scheduled. To reduce the running time of the algorithm, we first compute hi(j), which stores

the remaining processing time of job i after it has interrupted j primary jobs, for 1 ≤ i ≤ n and

0 ≤ j ≤ n − 1. The details of the algorithm are given below, where the symbol “||” denotes the

concatenation operator that appends one list to another.

Algorithm WC

1. J := {1, 2, . . . , n}, R := (), k := 0.

2. For i ∈ J do

(a) hi(0) := pi.

(b) For j from 1 to n − 1 do

hi(j) := hi(j − 1)− gi(hi(j − 1)).

3. z := 0.

4. For y ∈ R do

z := z + gy(hy(n − k − 1)).

5. i := argminl∈J {
wl

hl(n−k−1)+f(k)+z
}, with ties broken arbitrarily.

6. J := J \ {i}, R := (i)||R, k := k + 1.

7. If |R| < n, then go to Step 3.

8. Schedule the jobs, with multitasking, in the order in which they appear in R.

Theorem 1 Algorithm WC finds an optimal schedule for problem 1 | mt |
∑

wjCj in O(n2) time,

if the f(·) and gj(·) functions can each be computed in constant time.

Proof. It suffices to consider only schedules with no idle time preceding any job. By contradiction,

suppose there exists an optimal schedule σ in which there is a pair of adjacent jobs i and j such

that i is processed before j, and

wi

hi(n − k − 1) + f(k) +
∑

y∈R gy(hy(n − k − 1))

<
wj

hj(n − k − 1) + f(k) +
∑

y∈R gy(hy(n − k − 1))
,

13

where R is the set of jobs scheduled after j, and k = |R|. We interchange jobs i and j to obtain

another schedule σ′. Let t denote the start time of job i in schedule σ. Note that there are n−k−2

jobs processed before job i. We have

Ci(σ) = t + hi(n − k − 2) + f(k + 1) + gj(hj(n − k − 2)) +
∑

y∈R

gy(hy(n − k − 2)).

On the right hand side of the above equation, the second term is the remaining processing time of

job i, and the third term is the switching time of the k + 1 jobs in R ∪ {j}. The fourth and the

fifth terms are the interruption due to job j and the interruption due to the k jobs scheduled after

job j, respectively. Similarly, we have

Cj(σ) = t + hi(n − k − 2) + f(k + 1) + gj(hj(n − k − 2)) +
∑

y∈R

gy(hy(n − k − 2))

+ hj(n − k − 1) + f(k) +
∑

y∈R

gy(hy(n − k − 1)),

Cj(σ
′) = t + hj(n − k − 2) + f(k + 1) + gi(hi(n − k − 2)) +

∑

y∈R

gy(hy(n − k − 2)),

and

Ci(σ
′) = t + hj(n − k − 2) + f(k + 1) + gi(hi(n − k − 2)) +

∑

y∈R

gy(hy(n − k − 2))

+ hi(n − k − 1) + f(k) +
∑

y∈R

gy(hy(n − k − 1)).

Observing that hy(l) = hy(l−1)−gy(hy(l−1)), for 1 ≤ y ≤ n and 0 < l < n, we have Cj(σ) = Ci(σ
′).

Moreover, after processing jobs i and j, the remaining processing times of each job in R are identical

in schedules σ and σ′. Hence, the completion time of any job, other than jobs i and j, does not

change between the two schedules. Thus, we have

∑n
l=1 wlCl(σ)−

∑n
l=1 wlCl(σ

′) = [wiCi(σ) + wjCj(σ)]− [wiCi(σ
′) + wjCj(σ

′)]

= wj[hi(n − k − 1) + f(k) +
∑

y∈R gy(hy(n − k − 1))]

− wi[hj(n − k − 1) + f(k) +
∑

y∈R gy(hy(n − k − 1))]

> 0.

Hence,
∑n

l=1 wlCl(σ) >
∑n

l=1 wlCl(σ
′), contradicting the assumption that σ is an optimal schedule.

Therefore, Algorithm WC finds an optimal schedule. Our job interchange argument generalizes

14

that of Smith (1956), and works because the total switching time is unchanged as a result of the

interchange.

Step 1 of the algorithm requires constant time. Step 2 requires O(n2) time. Steps 3–7 are

repeated n times. Step 3 requires constant time. Steps 4 and 5 each require O(n) time. Steps 6

and 7 require constant time. Thus, Steps 3–7 require a total of O(n2) time. Since each of the n

primary jobs can be interrupted up to n − 1 times, Step 8 requires O(n2) time. Hence, the overall

running time of the algorithm is O(n2).

5 Maximum Lateness

In this section, we consider the maximum lateness objective, i.e., problem 1 | mt | Lmax. Observe

that both the on-time jobs and the late jobs are eventually processed, and before they become

primary jobs these two types of jobs are indistinguishable from each other. Hence, we assume that

both on-time and late jobs can interrupt other jobs. For the classical 1 || Lmax problem, the EDD

rule generates an optimal schedule (Jackson 1955). The following result states that this scheduling

rule remains optimal in the presence of multitasking.

Theorem 2 For problem 1 | mt | Lmax, there exists an optimal schedule that uses the EDD rule,

with no inserted idle time.

Proof. Since Lj(σ) is a nondecreasing function of Cj(σ) for all j, there exists an optimal schedule

with no inserted idle time. Suppose, to the contrary, that there exists an optimal schedule σ that

does not follow the EDD rule. Then, there must exist a pair of adjacent jobs i and j such that i

is processed before j and di > dj. We interchange job i with job j to obtain another schedule σ′.

Let t denote the start time of job i in schedule σ. Let R denote the set of jobs scheduled after job

j in σ, and let k = |R|. The calculation of the job completion times below is similar to that in the

proof of Theorem 1. We have

Ci(σ) = t + hi(n − k − 2) + f(k + 1) + gj(hj(n − k − 2)) +
∑

y∈R

gy(hy(n − k − 2)),

Cj(σ) = t + hi(n − k − 2) + f(k + 1) + gj(hj(n − k − 2)) +
∑

y∈R

gy(hy(n − k − 2))

+ hj(n − k − 1) + f(k) +
∑

y∈R

gy(hy(n − k − 1)),

15

Cj(σ
′) = t + hj(n − k − 2) + f(k + 1) + gi(hi(n − k − 2)) +

∑

y∈R

gy(hy(n − k − 2)),

and

Ci(σ
′) = t + hj(n − k − 2) + f(k + 1) + gi(hi(n − k − 2)) +

∑

y∈R

gy(hy(n − k − 2))

+ hi(n − k − 1) + f(k) +
∑

y∈R

gy(hy(n − k − 1)).

Observing that hy(l) = hy(l − 1) − gy(hy(l − 1)) for each 1 ≤ y ≤ n and 0 < l < n, we have

Cj(σ) = Ci(σ
′). Moreover, after processing jobs i and j, the remaining processing times of each

job in R are identical in both schedules. Hence, the completion time of any job, other than jobs i

and j, does not change between the two schedules. Thus,

Lj(σ)− Lj(σ
′) = [Cj(σ) − dj] − [Cj(σ

′) − dj] = Cj(σ)− Cj(σ
′) = Ci(σ

′) − Cj(σ
′) ≥ 0.

In addition,

Lj(σ) − Li(σ
′) = [Cj(σ)− dj] − [Ci(σ

′) − di] = di − dj > 0.

Hence, max{Li(σ), Lj(σ)} ≥ max{Li(σ
′), Lj(σ

′)}, which implies Lmax(σ
′) ≤ Lmax(σ). Repeating

this interchange, we transform σ into an EDD schedule σ′ with optimal cost, which contradicts

our assumption that an EDD schedule is not optimal. Our job interchange argument generalizes

that of Jackson (1955), and works because the total switching time is unchanged as a result of the

interchange.

Theorem 2 implies that an optimal sequence for problem 1 | mt | Lmax can be found in O(n logn)

time. However, constructing an optimal schedule, including the start times of the primary jobs,

requires O(n2) time, if the f(·) and gj(·) functions can be computed in constant time.

6 Number of Late Jobs

In this section, we consider the objective of minimizing the number of late jobs, i.e., problem

1 | mt |
∑

Uj. We assume that late jobs are processed at the end of the schedule, instead of being

discarded. As in Section 5, we assume that late jobs can interrupt other jobs. We first state a

property of an optimal schedule.

Lemma 1 For problem 1 | mt |
∑

Uj , there exists an optimal schedule in which all on-time jobs

are scheduled in EDD order, followed by all late jobs in arbitrary order, with no inserted idle time.

16

Proof. Since Uj(σ) is a nondecreasing function of Cj(σ) for all j, there exists an optimal schedule

with no inserted idle time. For a given instance of the problem, let E denote the set of on-time jobs

and T the set of late jobs. A pairwise interchange argument shows that there exists an optimal

schedule where all the jobs of E precede all the jobs of T . Thus, the total amount of interruption

of the jobs of E by the jobs of T is independent of the sequence of the jobs of T . Consequently, the

number of jobs of E is also independent of the sequence of the jobs of T . Hence, without loss of

generality, the jobs of T can be scheduled in arbitrary order. It remains to sequence the jobs of E.

To ensure that the maximum lateness of the jobs of E is zero or negative, it suffices to sequence the

jobs of E in such a way that their maximum lateness is minimized. Therefore, from Theorem 2,

there exists an optimal schedule where the jobs in E are scheduled by the EDD rule.

The classical 1 ||
∑

Uj problem can be solved in O(n logn) time using the Hodgson-Moore

algorithm (Moore 1968). However, in the presence of multitasking, the problem is NP-hard.

Theorem 3 The recognition version of 1 | mt |
∑

Uj is binary NP-complete.

Proof. See the online Appendix.

Although problem 1 | mt |
∑

Uj is NP-hard in general, it is solvable in polynomial time for

some important special cases, for example the case where gi(p
′
i) = c for all i, and the case where

gi(p
′
i) = Dp′i for all i. We now present an O(n logn) time algorithm, Algorithm U, for the case

where gi(p
′
i) = Dp′i for i ∈ N and 0 < D < 1, while f(|Sj|) can be positive, zero, or negative for

any nonempty Sj ⊂ N .

Consider the interruption function gi(p
′
i) = Dp′i. Let job Ji be a waiting job. The first time it

interrupts a primary job, the amount of interruption is Dpi. After the interruption, the remaining

processing time of job Ji is pi − Dpi = (1 − D)pi. The second time it interrupts a primary job,

the amount of interruption is D(1−D)pi. After the second interruption, the remaining processing

time of job Ji is (1 − D)pi − D(1 − D)pi = (1 − D)2pi. Similarly, the kth time it interrupts a

primary job, the amount of interruption is D(1−D)k−1pi, and the remaining processing time after

the interruption is (1 − D)kpi.

Algorithm U described below is a generalization of the Hodgson-Moore algorithm. We let L

denote the list of unscheduled jobs sorted in EDD order and, in case of a tie, in SPT order. Jobs

17

are deleted from the front of L, one at a time. We use E and T to denote the sets of on-time and

late jobs, respectively. Initially, E = T = ∅. We use P̂ to denote the total processing time of the

jobs in L, and P ′ to denote the total processing time of the jobs in T . Initially, P̂ = P and P ′ = 0.

Finally, we let k denote the number of on-time jobs scheduled so far.

The algorithm considers each job in L in turn. Suppose the last job completed is job j. If job j

meets its due date, then we consider the next job j +1. Otherwise, we delete the longest completed

job, which may or may not be job j, from the schedule, and then consider the next job j + 1.

Algorithm U

1. L := N . Sort the jobs of L in EDD order, with ties broken by SPT order.

2. E := ∅, T := ∅, P̂ :=
∑

j∈L pj, P ′ := 0, k := 0, t := 0.

3. While L 6= ∅ do

(a) Let j be the first job in L. Remove j from L. P̂ := P̂ − pj. Add j to E.

(b) t := t + f(n − k − 1) + (1− D)kpj + D(1− D)k(P̂ + P ′).

(c) If t ≤ dj, then k := k + 1.

(d) Otherwise, let q be the longest job in E; remove job q from E and add it to T ; t :=

t − f(n − k − 1)− (1− D)kpq − D(1 − D)k(P̂ + P ′); P ′ := P ′ + pq.

4. Schedule the jobs of E, in EDD order, with multitasking. Then, schedule the jobs of T , in

arbitrary order, with multitasking.

For any job subset S ⊆ N , let `(S) denote the completion time of the last job in S if we schedule

the jobs in S in front of the jobs in N \ S according to Algorithm U with no idle time between the

jobs. In order to prove the optimality of Algorithm U, we need the following preliminary result.

Lemma 2 For an instance of problem 1 | mt |
∑

Uj where gi(p
′
i) = Dp′i for i ∈ N , consider the

job subset S and any two jobs k, k′ in S. If pk ≤ pk′, then `(S \ {k}) ≥ `(S \ {k′}).

Proof. Let T = N \ S. Suppose job k is the rth job in S and is removed from S. The resulting

effect on `(S) is as follows:

(i) The total switching time during the processing of the first r−1 jobs in S is reduced by f(n−r).

(ii) The amount of processing time (1− D)r−1pk of primary job k is excluded from `(S).

18

(iii) Since each waiting job i ∈ T interrupts one less job in S and therefore the amount of interruption

by job i is reduced by D(1−D)|S|−1pi, the total amount of interruption caused by the waiting

jobs in T is reduced by
∑

i∈T D(1− D)|S|−1pi.

Further, when job k is removed from S, it is added to T , and hence interrupts the last |S| − r jobs

in S. The resulting effect on `(S) is as follows:

(iv) The total switching time during the processing of the last |S| − r jobs in S is increased by

∑|S|−1
j=r [f(n − j)− f(n − j − 1)].

(v) The total amount of interruption by the last |S| − r jobs in S is increased by
∑|S|−1

j=r D(1 −

D)j−1pk.

Summarizing (i)–(v), we have

`(S \ {k}) = `(S)− f(n − r) − (1 − D)r−1pk −
∑

i∈T D(1− D)|S|−1pi

+
∑|S|−1

j=r [f(n − j)− f(n − j − 1)] +
∑|S|−1

j=r D(1− D)j−1pk

= `(S)− f(n − |S|)− (1 − D)|S|−1pk −
∑

i∈T D(1− D)|S|−1pi,

which is independent of r. Similarly,

`(S \ {k′}) = `(S)− f(n − |S|)− (1 − D)|S|−1pk′ −
∑

i∈T

D(1 − D)|S|−1pi.

Since pk ≤ pk′ , we have `(S \ {k}) ≥ `(S \ {k′}).

We are now ready to prove the main result of this section.

Theorem 4 Algorithm U finds an optimal schedule for problem 1 | mt |
∑

Uj where gi(p
′
i) = Dp′i

for i ∈ N , in O(n logn) time.

Proof. We first prove the validity of Algorithm U. The proof is an extension of a proof of optimality

of Moore’s algorithm (Pinedo 2012, pp. 48–49). It works because Lemma 2 shows that changes to

the schedule length are independent of the position of the discarded job.

Let the jobs be indexed in EDD order. From Lemma 1, we only consider on-time jobs in index

order. A job subset S is said to be feasible if all the jobs in S meet their due dates when they are

scheduled before the jobs in N \ S and are sequenced in index order. For any l ≤ n, set S is said

19

to be l-optimal if it is a feasible subset of jobs 1, 2, . . . , l and if it has, among all feasible subsets of

jobs 1, 2, . . . , l, the maximum number of jobs.

The proof consists of three parts. The first part shows by induction that the job set E created

in Step 3 at each iteration of Algorithm U is feasible. Let Ej be the set E created in the jth

iteration of Algorithm U. Clearly, E1 is feasible. For the induction hypothesis, we assume that

Ej−1 is feasible, where 1 < j ≤ n. We consider the jth iteration of Algorithm U, where job j

is added to E. In Step 3(c) of this iteration, if t ≤ dj, then clearly Ej is feasible. Alternatively,

suppose t > dj. From the induction hypothesis, all the jobs in E \ {j} must meet their due dates

after the longest job q is removed from E. Because pj ≤ pq, by Lemma 2, the completion time of

the last job in E after Step 3(d) is no greater than the completion time of the last job in E before

Step 3(a). Furthermore, dj is no less than dj−1, which is no less than the completion time of the

last job in E before Step 3(a). Thus, job j also meets its due date. Hence, Ej is feasible.

The second part of the proof shows by induction that for any j and l such that 0 ≤ j < l ≤ n,

there exists an l-optimal set which is a subset of Ej ∪ {j + 1, j + 2, . . . , l}, where E0 = ∅. Clearly,

this is true when j = 0. For the induction hypothesis, we assume that there exists an l-optimal set

J ′ such that J ′ ⊆ Ej−1 ∪ {j, j + 1, . . . , l}, where 0 < j < l. We show that an l-optimal set J ′′ can

be created from the jobs in Ej and some of jobs j + 1, j + 2, . . . , l by considering three cases:

Case 1: Set Ej is equal to set Ej−1 plus job j. In this case, we set J ′′ = J ′.

Case 2: Set Ej is equal to set Ej−1, plus job j, minus some job q which is not an element of J ′.

Again, we set J ′′ = J ′.

Case 3: Set Ej is equal to set Ej−1 plus job j minus some job q which is an element of J ′. Since

Ej−1 ∪ {j} is not a feasible set, there exists a job r ∈ Ej−1 ∪ {j} such that r /∈ J ′. We let

J ′′ = (J ′ ∪{r}) \ {q}. Clearly, J ′′ is a subset of Ej ∪{j + 1, j + 2, . . . , l}. Furthermore, the number

of jobs in J ′′ is the same as the number of jobs in J ′. Thus, to show that J ′′ is l-optimal, we need

only show that J ′′ is feasible. Let

Ĵ = J ′ ∩ {j + 1, j + 2, . . . , l} = J ′′ ∩ {j + 1, j + 2, . . . , l}.

It suffices to show the following two properties: (i) The set J ′′ ∩ {1, 2, . . . , j} is feasible. (ii) The

completion time of each of the jobs in Ĵ, when the jobs in Ĵ are scheduled after the jobs in

J ′′ ∩{1, 2, . . . , j}, is no greater than its completion time when the jobs in Ĵ are scheduled after the

20

jobs in J ′ ∩ {1, 2, . . . , j}. Property (i) holds because J ′′ ∩ {1, 2, . . . , j} is a subset of Ej, and from

the first part of the proof the set Ej is feasible. Property (ii) follows from Lemma 2, the fact that

J ′′ differs from set J ′ only in elements r and q, and the fact that pr ≤ pq.

The third part of the proof shows by induction that set Ej is j-optimal for j = 1, 2, . . . , n.

Clearly, Ej is j-optimal for j = 0 and j = 1. Suppose Ej−1 is (j − 1)-optimal. From the second

part of the proof, the set Ej−1 ∪ {j} must contain a j-optimal set. If Ej−1 ∪ {j} is feasible, then

Ej = Ej−1 ∪ {j} and is j-optimal, since Ej−1 is (j − 1)-optimal, and at most one more job can

be on time in Ej relative to Ej−1. If Ej−1 ∪ {j} is not feasible, then the j-optimal set must be a

proper subset of Ej−1 ∪ {j} and must contain as least as many jobs as Ej−1. Clearly, Ej satisfies

this condition and is, therefore, j-optimal.

We now consider the running time of Algorithm U. Step 1 requires O(n logn) time. Step 2

requires O(n) time. The while loop in Step 3 is executed n times. Inside the while loop, the most

time-consuming step is finding a longest job in E. If we maintain the jobs in E as a heap, it takes

O(logn) time to insert a single job or delete a longest job. Step 4 requires O(n) time. Therefore,

the overall running time of Algorithm U is O(n logn).

Remark 2 With a simple modification to the completion time update in Steps 3(b) and 3(d),

Algorithm U solves problem 1 | mt |
∑

Uj for the special case where for all i, gi(p
′
i) = c, and c is a

constant independent of p′i.

7 Weighted Number of Late Jobs

We now consider the objective of minimizing the weighted number of late jobs, i.e., problem

1 | mt |
∑

wjUj. As in Section 6, we assume that late jobs are processed at the end of the schedule

and can interrupt other jobs. It is easy to verify that Lemma 1 remains valid for this problem.

The classical 1 ||
∑

wjUj problem is known to be binary NP-hard (Karp 1972), but is solvable in

O(n min{W, P}) time, where W =
∑n

j=1 wj and P =
∑n

j=1 pj (Lawler and Moore 1969). However,

in the presence of multitasking, the problem is unary NP-hard.

Theorem 5 The recognition version of 1 | mt |
∑

wjUj is unary NP-complete.

21

Proof. See the online Appendix.

Although 1 | mt |
∑

wjUj is unary NP-hard in general, the problem is solvable in pseudo-

polynomial time for some important special cases, for example the case where gi(p
′
i) = c for all i,

and the case where gi(p
′
i) = Dp′i for all i. We now present two pseudo-polynomial time algorithms,

WU1 and WU2, for problem 1 | mt |
∑

wjUj where gi(p
′
i) = Dp′i for all i. Which of the two algo-

rithms is more efficient depends on the problem parameters. Note that the problem is equivalent

to maximizing the weighted number of on-time jobs. Consequently, the first dynamic programming

algorithm has a maximization objective.

Algorithm WU1

Preprocessing

Sequence and index the jobs in EDD order.

Optimal Value Function

Define e(j, k, t) as the maximum possible total weight of on-time jobs in a feasible schedule

that (i) has considered jobs 1, 2, . . . , j, (ii) has scheduled k jobs on time, and (iii) has a total

processing time of scheduled on-time jobs equal to t, for j, k = 0, 1, . . . , n and t = 0, 1, . . . , P ,

where e(j, k, t) = −∞ if no such schedule exists.

Recurrence Relation

e(j, k, t) =











max{wj + e(j − 1, k − 1, t − pj), e(j − 1, k, t)},

if k > 0, pj ≤ t ≤ P , and t +
∑k

i=1 f(n − i) + (P − t)[1 − (1 − D)k] ≤ dj;

e(j − 1, k, t), otherwise.

Boundary Conditions

e(0, 0, t) =

{

0, if t = 0;
−∞, if t > 0;

e(j, k, t) = −∞ if j < k.

Optimal Solution Value

max
k=0,1,...,n; t=0,1,...,P

{e(n, k, t)}.

Lemma 3 If gi(p
′
i) = Dp′i for all i ∈ N , then Algorithm WU1 finds an optimal schedule for problem

1 | mt |
∑

wjUj in O(n2P) time.

22

Proof. Recall that Lemma 1 is also valid for problem 1 | mt |
∑

wjUj . Hence, it suffices to consider

schedules in which the on-time jobs are sequenced in EDD order with no inserted machine idle time.

Consider the subproblem containing only jobs 1, 2, . . . , j, where k out of these j jobs are required

to be on-time, and the total processing time of these k on-time jobs is required to be exactly t. We

can either choose job j to be on-time and processed immediately after the other k− 1 on-time job,

or choose job j to be late. If we choose job j to be on-time, then the total amount of interruption

that job j and the other k − 1 scheduled on-time jobs encounter is (P − t)[1 − (1 − D)k], and the

total amount of switching time that these k on-time jobs encounter is
∑k

i=1 f(n − i). Hence, the

completion time of job j is t +
∑k

i=1 f(n − i) + (P − t)[1 − (1 − D)k]. Therefore, if k > 0, t ≥ pj,

and t +
∑k

i=1 f(n − i) + (P − t)[1− (1− D)k] ≤ dj, then we can either choose job j to be on-time,

in which case the total weight of on-time jobs becomes wj + e(j − 1, k− 1, t− pj); or, choose job j

to be late, in which case the total weight of on-time jobs remains e(j − 1, k, t). Otherwise, we can

only assign job j to be a late job. Thus, e(j, k, t) = max{wj +e(j−1, k−1, t−pj), e(j−1, k, t)} in

the first scenario and e(j, k, t) = e(j − 1, k, t) in the second scenario, as in the recurrence relation.

Hence, Algorithm WU1 compares the value of all possible state transitions with the jobs in EDD

order, and therefore finds an optimal schedule for problem 1 | mt |
∑

wjUj.

To consider the running time of Algorithm WU1, we note that j, k ≤ n and t ≤ P . Since the

recurrence relation requires only constant time, the running time of Algorithm WU1 is O(n2P).

Algorithm WU2

Preprocessing

Sequence and index the jobs in EDD order.

Optimal Value Function

Define e(j, k, u) as the minimum possible total duration of the on-time jobs in a feasible schedule

that (i) has considered jobs 1, 2, . . . , j, (ii) has scheduled k jobs on time, and (iii) has a total

weight of scheduled on-time jobs no less than u, for j, k = 0, 1, . . . , n and u = 0, 1, . . . , W ,

where e(j, k, u) = +∞ if no such schedule exists.

23

Recurrence Relation

e(j, k, u) =























min{(1−D)e(j−1, k−1, u−wj)+f(n−k)+D
∑k−1

i=1 f(n−i)+(1−D)kpj+DP,

e(j − 1, k, u)}, if k > 0, u ≥ wj, and (1− D)e(j − 1, k − 1, u− wj)

+ f(n − k) + D
∑k−1

i=1 f(n − i) + (1 − D)kpj + DP ≤ dj;

e(j − 1, k, u), otherwise.

Boundary Conditions

e(0, 0, u) =

{

0, if u = 0;
+∞, if u > 0;

e(j, k, u) = +∞ if j < k.

Optimal Solution Value

max{u | e(n, k, u) < +∞, for some k = 0, 1, . . . , n}.

Lemma 4 If gi(p
′
i) = Dp′i for all i ∈ N , then Algorithm WU2 finds an optimal schedule for problem

1 | mt |
∑

wjUj in O(n2W) time.

Proof. As in the proof of Lemma 3, it suffices to consider schedules in which the on-time jobs are

sequenced in EDD order with no inserted machine idle time. Consider the subproblem containing

only jobs 1, 2, . . . , j, where k out of these j jobs are required to be on-time, and the total weight

of these k on-time jobs is required to be at least u. We can either choose job j to be on-time and

processed immediately after the other k − 1 on-time jobs, or choose job j to be late. If job j is

on time, the total duration of the on-time jobs is (1 − D)k−1pj + f(n − k) + D[P − e(j − 1, k −

1, u− wj) +
∑k−1

i=1 f(n − i) − (1 − D)k−1pj], where the first term is the remaining processing time

of job j after it has interrupted k − 1 other jobs, the second term is the switching time, and the

third term is the interruption by the remaining jobs during the processing of job j. In this case,

the completion time of job j is

e(j − 1, k − 1, u− wj) + (1− D)k−1pj + f(n − k)

+ D[P − e(j − 1, k − 1, u − wj) +
∑k−1

i=1 f(n − i) − (1 − D)k−1pj]

= (1− D)e(j − 1, k − 1, u − wj) + f(n − k) + D
∑k−1

i=1 f(n − i) + (1− D)kpj + DP.

Thus, if k > 0, u ≥ wj, and (1−D)e(j−1, k−1, u−wj)+f(n−k)+D
∑k−1

i=1 f(n−i)+(1−D)kpj +

DP ≤ dj, then we can either choose job j to be on-time, in which case the total duration of the

on-time jobs becomes (1−D)e(j−1, k−1, u−wj)+f(n−k)+D
∑k−1

i=1 f(n− i)+(1−D)kpj +DP ;

24

or, choose job j to be late, in which case the total duration of the on-time jobs remains e(j−1, k, u).

Otherwise, we can only choose job j to be late. Thus, e(j, k, u) = min{(1 − D)e(j − 1, k − 1, u −

wj) + f(n − k) + D
∑k−1

i=1 f(n − i) + (1 − D)kpj + DP, e(j − 1, k, u)} in the first scenario, and

e(j, k, u) = e(j−1, k, u) in the second scenario, as in the recurrence relation. Hence, Algorithm WU2

compares the cost of all possible state transitions with the jobs in EDD order, and therefore finds

an optimal schedule for problem 1 | mt |
∑

wjUj.

To consider the running time of Algorithm WU2, we note that the values of
∑k−1

i=1 f(n − i),

k = 1, 2, . . . , n, can be predetermined in O(n) time. Note also that j, k ≤ n and u ≤ W . Since the

recurrence relation requires only constant time, the running time of Algorithm WU2 is O(n2W).

Theorem 6 If gi(p
′
i) = Dp′i for all i ∈ N , an optimal schedule for problem 1 | mt |

∑

wjUj can be

found in O(n2 min{W, P}) time.

Proof. The theorem follows directly from Lemmas 3 and 4. Our proof of optimality generalizes

that of Lawler and Moore (1969), and works because the total switching time is independent of the

choice of which subset of jobs with a given cardinality is on time.

Remark 3 With a simple modification to the feasibility condition for the first choice in the recur-

rence relation, Algorithms WU1 and WU2 solve problem 1 | mt |
∑

wjUj for the special case where

for all i, gi(p
′
i) = c, and c is a constant independent of p′i.

8 Cost and Value of Multitasking

In this section, we computationally evaluate the amount by which multitasking increases scheduling

cost or value. This information informs a company about how much it is worth to invest in systems

or processes to reduce multitasking. We consider the total weighted completion time problem, the

maximum lateness problem, and the weighted number of late jobs problem in Sections 8.1, 8.2, and

8.3, respectively.

8.1 Total weighted completion time

We consider the total weighted completion time problem, 1 | mt |
∑

wjCj . To evaluate the average

cost and value of multitasking under this problem, we perform two computational experiments.

25

The first experiment does not consider any value of interruption, and we set f(k) = 0.1 × k.

The second experiment considers the case where the value of interruption exceeds the shutdown

and startup time of a job, hence we set f(k) = −0.1 × k to reflect a positive net value for each

interruption. The remaining parameters are identical in the two experiments. Job processing times

are randomly generated, with each pj being uniformly distributed in {50, 51, . . . , 200}, and each wj

being uniformly distributed in {1, 2, . . . , 10}. We set n ∈ {10, 20, 40, 80}. We introduce a variety

of different interruption functions, as for different customers, and study their combined effect. For

each value of n, we generate 10% of the jobs with gi(p
′
i) = 0, 30% of the jobs with gi(p

′
i) = c,

30% of the jobs with gi(p
′
i) = D

√

p′i, and 30% of the jobs with gi(p
′
i) = Dp′i. To see how the

different values of c and D affect the cost or value of multitasking, we let c ∈ {0.1, 0.2, 0.3, 0.4}

and D ∈ {0.005, 0.01, 0.015, 0.02}. We use the triple (0, c, D) to represent one choice. Thus, we

have four choices: (0, 0.1, 0.005), (0, 0.2, 0.01), (0, 0.3, 0.015), and (0, 0.4, 0.02). We generate 300

instances for each combination of n and (0, c, D), for a total of 300 × 4 × 4 = 4,800 instances for

each experiment.

Let C′
j and Cj denote the optimal completion time of job j in the multitasking problem

1 | mt |
∑

wjCj and the corresponding classical problem 1 ||
∑

wjCj , respectively. Let

avg((
∑

wjC
′
j−

∑

wjCj)/
∑

wjCj) denote the average value of (
∑

wjC
′
j−

∑

wjCj)/
∑

wjCj over the

300 test instances for each (n, 0, c, D) quadruple. The quantity avg((
∑

wjC
′
j −

∑

wjCj)/
∑

wjCj)×

100% estimates the expected percentage cost of multitasking, or value of multitasking if the quantity

is negative. To obtain the optimal total cost
∑

wjC
′
j of the multitasking problem 1 | mt |

∑

wjCj,

we run Algorithm WC. To obtain the optimal total cost
∑

wjCj of the classical model, we apply

the SWPT rule. For the unweighted problem 1 | mt |
∑

Cj, we repeat the above computational

study with wj = 1, for j = 1, 2, . . . , n.

The results in Table 1 for the weighted problem show that, when there is no value of interruption,

the average cost of multitasking ranges from 1.6% to 4.3% for 10 jobs, and from 13.3% to 29.9%

for 80 jobs. The cost of multitasking increases approximately in proportion to the number of jobs.

When there is a value of interruption, the net cost for 80 jobs ranges from 2.5% to 19.1%. The

proportionate reduction in cost due to considering value is much larger for small values of the c

and D parameters. For example, if n = 80, the cost reduces from 13.3% to 2.5% for (0, c, D) =

(0, 0.1, 0.005), compared to only from 29.9% to 19.1% for (0, c, D) = (0, 0.4, 0.02). The percentage

26

avg((
∑

wjC
′
j −

∑

wjCj)/
∑

wjCj) × 100%

(0, c, D) =

(0, 0.1, 0.005)

(0, c, D) =

(0, 0.2, 0.01)

(0, c, D) =

(0, 0.3, 0.015)

(0, c, D) =

(0, 0.4, 0.02)

Weighted problem; n = 10 1.6% 2.5% 3.4% 4.3%

f(k) = 0.1× k n = 20 3.4% 5.4% 7.2% 9.0%

n = 40 6.8% 10.6% 14.0% 17.0%

n = 80 13.3% 19.7% 25.2% 29.9%

Weighted problem; n = 10 0.3% 1.3% 2.2% 3.1%

f(k) = −0.1× k n = 20 0.8% 2.8% 4.6% 6.4%

n = 40 1.5% 5.2% 8.6% 11.7%

n = 80 2.5% 9.0% 14.4% 19.1%

Unweighted problem; n = 10 1.4% 2.2% 2.9% 3.6%

f(k) = 0.1× k n = 20 3.0% 4.5% 5.9% 7.2%

n = 40 5.9% 8.6% 10.8% 12.9%

n = 80 11.3% 15.6% 19.2% 22.2%

Unweighted problem; n = 10 0.2% 1.0% 1.7% 2.4%

f(k) = −0.1× k n = 20 0.5% 2.0% 3.4% 4.7%

n = 40 0.7% 3.4% 5.7% 7.7%

n = 80 0.8% 5.2% 8.7% 11.7%

Table 1: Cost of Multitasking in Problem 1 | mt |
∑

wjCj .

costs of multitasking in the unweighted problem 1 | mt |
∑

Cj are on average 26.2% less than those

in the weighted problem. This is because, in the weighted problem, the jobs with larger weights

tend to be scheduled in the front part of the schedule, which is the part that is most delayed by

multitasking since more jobs are waiting.

8.2 Maximum lateness

Next, we consider the maximum lateness problem, 1 | mt | Lmax. Let L′
max and Lmax denote the

maximum lateness of problem 1 | mt | Lmax and problem 1 || Lmax, respectively. The parameter

settings used are the same as those in Section 8.1, and we generate the due dates of jobs as follows.

Denote d0 = 0. For j = 1, 2, . . . , n, we set dj = dj−1 + Xj with Xj being uniformly distributed in

{50, 51, . . . , 200}. Hall and Posner (2001) provide a justification of this approach and a discussion

of various due date generation methods.

We let avg(L′
max−Lmax) denote the average value of L′

max−Lmax over the 300 test instances for

each (n, 0, c, D) quadruple, and let avg(Lmax) denote the average value of Lmax over these instances.

The computational results over the 4,800 instances described in Section 8.1 are summarized in Ta-

27

ble 2. The quantity avg(L′
max−Lmax)/avg(Lmax)×100% is used as an estimate of the multitasking

cost or value, expressed as a percentage of the expected maximum lateness of the classical model.

We use avg(L′
max−Lmax)/avg(Lmax)×100% instead of avg((L′

max−Lmax)/Lmax)×100% to estimate

the multitasking cost or value, since Lmax may be zero or negative in some test instances.

avg(L′
max − Lmax)/avg(Lmax) × 100%

(0, c, D) =
(0, 0.1, 0.005)

(0, c, D) =
(0, 0.2, 0.01)

(0, c, D) =
(0, 0.3, 0.015)

(0, c, D) =
(0, 0.4, 0.02)

f(k) = 0.1× k n = 10 5.4% 8.0% 10.6% 13.3%

n = 20 14.3% 21.9% 29.6% 37.6%

n = 40 38.3% 59.2% 81.2% 103.0%

n = 80 109.3% 168.0% 224.7% 277.2%

f(k) = −0.1 × k n = 10 −0.4% 2.2% 4.8% 7.5%

n = 20 −0.1% 7.4% 15.0% 23.0%

n = 40 −0.6% 19.2% 40.4% 62.0%

n = 80 3.1% 61.0% 118.5% 172.7%

Table 2: Cost of Multitasking in Problem 1 | mt | Lmax.

The results for the maximum lateness problem in Table 2 show that the increase in multitasking

cost for larger instances is more than proportional to the number of jobs. This indicates that the

cost of multitasking is sensitive to a change in problem size when the scheduling objective is to

minimize job lateness. When there is a value of interruption, the results for low c and D parameter

values demonstrate that a small net benefit from multitasking is possible when the number of jobs

is low. However, this result does not continue as the number of jobs increases, and for 80 jobs

the net cost of multitasking ranges from 3.1% to 172.7%. Increases in the c and D parameter

values produce a less than proportionate increase in the cost of multitasking, but a more than

proportionate increase in the net cost, as a result of the relatively significant value of multitasking

at low parameter values. On average, the value of interruption reduces the net cost of multitasking

by 55.4%.

8.3 Weighted number of late jobs

We consider the weighted number of late jobs problem, 1 | mt |
∑

wjUj. Since the problem is binary

NP -hard for the unweighted case and unary NP -hard for the weighted case, we consider only the

special cases where gi(p
′
c) = Dp′i or gi(p

′
i) = c. The unweighted version of these special cases can be

solved by Algorithm U in Section 6, and the weighted version of these special cases can be solved

28

by Algorithms WU1 and WU2 in Section 7. We conduct two separate experiments, one for the

case where gi(p
′
i) = c and the other for the case where gi(p

′
i) = Dp′i.

The parameter settings in these experiments are the same as those in Section 8.2. Let U ′
j and Uj

denote a binary variable that indicates whether job j is late in problem 1 | mt |
∑

wjUj and problem

1 ||
∑

wjUj , respectively. As in Section 8.2, the quantity avg(
∑

wjU
′
j −

∑

wjUj)/avg(
∑

wjUj) ×

100% is used as an estimate of the multitasking cost or value.

Table 3 presents results for both the weighted and unweighted number of late jobs problems.

We first discuss the weighted problem. When there is no value of interruption and gi(p
′
i) = Dp′i, the

average cost of multitasking ranges from 7.3% to 33.5% for 10 jobs, and from 241.4% to 1021.9%

for 80 jobs. The corresponding results when gi(p
′
i) = c are from 2.4% to 4.8% for 10 jobs, and from

61.5% to 164.4% for 80 jobs. In both cases, the increase in multitasking cost for larger instances is

more than proportional to the number of jobs. On average, the value of interruption reduces the

net cost of multitasking by 29.6%.

The average net cost of multitasking in the unweighted problem 1 | mt |
∑

Uj is 19.3% less

than that in the weighted problem, and this difference is greater under the interruption function

gi(p
′
i) = Dp′i. In the weighted problem, job weight and processing time are both important criteria

for deciding whether a job should be on-time or late. In the presence of multitasking, the processing

time becomes a more important criterion, because job interruptions make it harder for the primary

jobs to meet their due dates, hence less priority is given to selecting jobs with smaller weights to

be late jobs. This increases the average cost of multitasking in the weighted case. Moreover, for

the interruption function gi(p
′
i) = Dp′i, the interruption time depends on the lengths of the waiting

jobs, which strengthens this effect.

9 Concluding Remarks

This paper studies the impact of the widely observed behavioral phenomenon of multitasking on a

simple scheduling environment. We provide an illustrative case study, based on an administrative

planning scenario. We consider several of the most important practical scheduling problems, and

for each, where possible, describe an efficient optimal algorithm that allows for multitasking. We

show that one of these efficiently solvable problems, minimizing the number of late jobs, becomes

intractable in the presence of multitasking. Also, for the problem of minimizing the weighted

29

avg(
∑

wjU
′
j −

∑

wjUj)/avg(
∑

wjUj)× 100%

D = 0.005 D = 0.01 D = 0.015 D = 0.02

Weighted problem; n = 10 7.3% 15.1% 24.8% 33.5%

f(k) = 0.1× k n = 20 23.5% 45.2% 68.3% 89.9%

n = 40 70.9% 139.5% 216.8% 292.6%

n = 80 241.4% 502.5% 769.5% 1021.9%

Weighted problem; n = 10 4.3% 12.5% 19.4% 30.0%

f(k) = −0.1 × k n = 20 14.3% 37.7% 55.9% 79.3%

n = 40 41.1% 104.3% 175.8% 252.2%

n = 80 131.9% 365.1% 616.1% 862.1%

c = 0.1 c = 0.2 c = 0.3 c = 0.4

Weighted problem; n = 10 2.4% 3.2% 4.1% 4.8%

f(k) = 0.1× k n = 20 6.3% 9.8% 13.0% 16.2%

n = 40 20.5% 27.7% 37.7% 49.3%

n = 80 61.5% 93.1% 125.8% 164.4%

Weighted problem; n = 10 −0.2% 1.4% 2.2% 2.8%

f(k) = −0.1 × k n = 20 −0.6% 1.8% 3.9% 7.6%

n = 40 −3.0% 3.3% 12.2% 20.2%

n = 80 −9.9% 11.2% 36.6% 66.8%

D = 0.005 D = 0.01 D = 0.015 D = 0.02

Unweighted problem; n = 10 6.1% 12.3% 20.9% 27.7%

f(k) = 0.1× k n = 20 22.6% 43.2% 61.6% 82.9%

n = 40 68.6% 127.2% 191.5% 252.8%

n = 80 213.5% 400.5% 576.5% 737.5%

Unweighted problem; n = 10 3.9% 9.5% 15.9% 24.3%

f(k) = −0.1 × k n = 20 12.7% 32.7% 50.9% 70.8%

n = 40 36.2% 93.9% 154.3% 216.3%

n = 80 111.9% 290.4% 461.4% 623.0%

c = 0.1 c = 0.2 c = 0.3 c = 0.4

Unweighted problem; n = 10 1.7% 3.1% 3.6% 4.5%

f(k) = 0.1× k n = 20 6.4% 9.4% 11.8% 15.6%

n = 40 22.9% 29.7% 37.9% 47.7%

n = 80 67.7% 91.6% 120.2% 149.1%

Unweighted problem; n = 10 −0.8% −0.3% 0.8% 2.5%

f(k) = −0.1 × k n = 20 −2.0% 0.7% 2.4% 5.9%

n = 40 −5.5% 0.3% 9.0% 16.9%

n = 80 −18.0% 4.1% 28.2% 54.4%

Table 3: Cost of Multitasking in Problem 1 | mt |
∑

wjUj.

number of late jobs, there are pseudo-polynomial time algorithms for the classical scheduling model,

and yet no such algorithm exists in the presence of multitasking, unless P = NP. Finally, we

30

investigate the impact of multitasking on the total scheduling cost, by means of a computational

study. Our results show that the cost of multitasking is significant for most combinations of instance

size and parameter settings. Hence, it may be worthwhile for companies to invest in systems or

processes to reduce multitasking.

Our work provides several insights to decision makers in administrative, manufacturing, and

process management applications. First, multitasking can create significant and costly interruptions

in scheduling problems. Second, several scheduling problems with multitasking do not respond well

to the use of solution procedures designed for the corresponding classical problems. Hence, new

solution procedures are needed, especially if finding an optimal solution is important. Third,

in some cases, optimal solutions are harder to find than for the corresponding classical model,

which motivates the design and evaluation of heuristic approaches. Fourth, our results on the

cost of multitasking in Section 8 enable a more precise evaluation of the tradeoff among priority,

multitasking, and critical chain (Goldratt 1997) approaches to setting priorities across multiple

projects. Fifth, our discussion of the cost or value of multitasking informs companies about how

much it would be worthwhile to invest in systems or processes, in order to eliminate or encourage

multitasking. Finally, since multitasking is an everyday phenomenon in many activities (Rosen

2008), we hope that our work will also contribute to a general understanding of the importance of

focus in such activities.

A number of interesting problems remain open for further research. First, as discussed in Sec-

tion 1, there are additional motivations for multitasking that should be modeled stochastically.

Second, the classical scheduling literature contains a large number of problems that remain to be

studied in the presence of multitasking. Third, our assumption that processing during the inter-

ruption of other jobs need not be repeated can be varied; either partial or complete repetition of

processing can be motivated by practical issues. Fourth, our work assumes that no interrupting job

is completed before it becomes a primary job, and it would be valuable to consider an alternative

model where this assumption is relaxed. Fifth, we consider a general but not universal model

of the interruption function. While our definition is apparently a natural one, there are alterna-

tives. For example, there may be specific applications where the interruption time depends on the

characteristics of both the primary job and the waiting jobs. Sixth, the effects of multitasking

on quality and creativity have not been studied for business processes. Indications are that such

31

issues may be significant (Elder 2006, Jez 2011). Seventh, scheduling problems with multitasking

represent a completely open area for the study of approximability issues, for example the design

of heuristic performance analysis and approximation schemes for intractable problems (Schuurman

and Woeginger 2007). Eighth, our work motivates the development and evaluation of practical

measures to reduce or increase multitasking by the waiting jobs. Such measures include ensuring

physical separation of the waiting jobs, imposing administrative controls on those jobs, and design-

ing appropriate incentives that encourage focus on the scheduled job (Babauta 2007) or encourage

multitasking. Ninth, our work identifies a link between operations research and behavioral psychol-

ogy; apart from the well established link for queueing systems, such links are rare, and this new

link should be explored further. Finally, our work motivates further research to evaluate the costs

incurred by multitasking, relative to other priority approaches, in managing multiple projects. In

conclusion, we hope that our work will encourage research on these important and practical issues.

References

Altmann, E.M., J.G. Trafton. 2007. Timecourse of recovery from task interruption: Data and a

model. Psychonomic Bulletin & Review 14(6): 1079–1084.

Babauta, L. 2007. How NOT to Multitask—Work Simpler and Saner. Available at http://zenhabits.

net/how-not-to-multitask-work-simpler-and/ (accessed date November 18, 2014).

Brucker, P. 2007. Scheduling Algorithms, 5th edition. Springer, Berlin.

Cantor, J. 2010. Five reasons we multitask anyway. Psychology Today: Conquering Cyber Over-

load, May 31. Available at http://www.psychologytoday.com/blog/conquering-cyber-overload

(accessed date November 18, 2014).

Chisholm, C.D., E.K. Collison, D.R. Nelson, W.H. Cordell. 2000. Emergency department work-

place interruptions: Are emergency physicians “interrupt-driven” and “multitasking”? Aca-

demic Emergency Medicine 7(11): 1239–1243.

Coffman, E.G., R.R. Muntz, H. Trotter. 1970. Waiting time distributions for processor-sharing

systems. Journal of the Association for Computing Machinery 17(1): 123–130.

Craig, A. 1985. Field studies of human inspection: The application of vigilance research. S. Folkard,

T.H. Monk, eds. Hours of Work: Temporal Factors in Work-Scheduling, Chapter 12. Wiley,

32

Chichester, 133–145.

Czerwinski, M., E. Horvitz, S. Wilhite. 2004. A diary study of task switching and interruptions.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04),

pp. 175–182.

Damian, I. 2009. Multitasking: Working beyond your limits. Free Mind and Speech, January 29.

Available at http://freemindandspeech.blogspot.com (accessed date November 18, 2014).

Dobson, G., T. Tezcan, V. Tilson. 2013. Optimal workflow decisions for investigators in systems

with interruptions. Management Science 59(5): 1125–1141.

Elder, A. 2006. The five diseases of project management. White paper, No Limits Leadership,

Inc. Available at http://www.nolimitsleadership.com/images/The%20Five%20Diseases%20of

%20Project%20Management.pdf (accessed date November 18, 2014).

Fuhrmann, S.W., R.B. Cooper. 1985. Stochastic decompositions in the M/G/1 queue with gener-

alized vacations. Operations Research 33(5): 1117–1129.

Garey, M.R., D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York.

Get More YouTube Views. 2010. Multitasking Effects Revealed. Available at http://www.

getmoreyoutubeviews.com/2010/04/multitasking-effects-revealed/ (accessed date November 18,

2014).

Goldratt, E.M. 1997. The Critical Chain. The North River Press, Great Barrington, MA.

Gonzalez, M.J. 1977. Deterministic processor scheduling. ACM Computing Surveys 9(3): 173–204.

González, V.M., G. Mark. 2004. “Constant, constant, multi-tasking craziness”: Managing multiple

working spheres. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI ’04), pp. 113–120.

Graham, R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan. 1979. Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics

5: 287–326.

Grundgeiger, T., P. Sanderson, H.G. MacDougall, B. Venkatesh. 2010. Interruption management in

the intensive care unit: Predicting resumption times and assessing distributed support. Journal

of Experimental Psychology: Applied 16(4): 317–334.

33

Hall, N.G., M.E. Posner. 2001. Generating experimental data for computational testing with

machine scheduling applications. Operations Research 49(7): 854–865.

Huff, C. 2007. Focus. American Way, November 1, 34–36.

Iqbal, S.T., B.P. Bailey. 2006. Leveraging characteristics of task structure to predict the cost of

interruption. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI ’06), pp. 741–750.

Iqbal, S.T., E. Horvitz. 2007. Disruption and recovery of computing tasks: Field study, analy-

sis, and directions. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI ’07), pp. 677–686.

Jackson, J.R. 1955. Scheduling a production line to minimize maximum tardiness. Research Report

43, Management Science Research Project, University of California at Los Angeles.

Järrehult, B. 2012. Can multi-tasking result in more than 60% longer project time? Available

at: http://www.innovationmanagement.se/2012/08/14/can-multi-tasking-result-in-more-than-

60-longer-project-time/ (accessed date November 18, 2014).

Jett, Q.R., J.M. George. 2003. Work interrupted: A closer look at the role of interruptions in

organizational life. Academy of Management Review 28(3): 494–507.

Jez, V. 2011. Searching for the meaning of multitasking. Norsk konferanse for organisasjoners bruk

av informasjonsteknologi (NOKOBIT 2011), pp. 157–166.

Karp, R.M. 1972. Reducibility among combinatorial problems. R.E. Miller, J.W. Thatcher,

eds. Complexity of Computer Computations. Plenum Press, New York, 85–103.

Kerzner, H.R. 2013. Project Management: A Systems Approach to Planning, Scheduling, and

Controlling, 11th edition. Wiley, Hoboken, NJ.

Klastorin, T. 2004. Project Management: Tools and Trade-Offs. Wiley, Hoboken, NJ.

Lawler, E.L., J.M. Moore. 1969. A functional equation and its application to resource allocation

and sequencing problems. Management Science 16(1): 77–84.

Leach, L.P. 1999. Critical chain project management improves project performance. Project Man-

agement Journal 30(2): 39–51.

Lee, C.-Y. 1996. Machine scheduling with an availability constraint. Journal of Global Optimization

9(3–4): 395–416.

34

Loeb, M., E.A. Alluisi. 1977. An update of findings regarding vigilance and a reconsideration of

underlying mechanisms. R.R. Mackie, ed. Vigilance: Theory, Operational Performance, and

Physiological Correlates. Plenum Press, New York, 719–749.

Ma, Y., C. Chu, C. Zuo. 2010. A survey of scheduling with deterministic machine availability

constraints. Computers & Industrial Engineering 58(2): 199–211.

Merriam-Webster Online. 2014. Multitasking. Merriam-Webster, Incorporated. Available at:

http://www.merriam-webster.com/dictionary/multitasking (accessed date November 18, 2014).

Moore, J.M. 1968. An n job, one machine sequencing algorithm for minimizing the number of late

jobs. Management Science 15(1): 102–109.

Morgenstern, J. 2004. Making Work Work: New Strategies for Surviving and Thriving at the Office.

Simon & Schuster, New York.

O’Leary, K.J., D.M. Liebovitz, D.W. Baker. 2006. How hospitalists spend their time: Insights on

efficiency and safety. Journal of Hospital Medicine 1(2): 88–93.

Pinedo, M.L. 2012. Scheduling: Theory, Algorithms, and Systems, 4th edition. Springer, New

York.

Rand, G.K. 2000. Critical chain: the theory of constraints applied to project management. Inter-

national Journal of Project Management 18(3): 173–177.

Realization. 2014. The effects of multitasking on organizations. Available at: http://www.

realization.com/pdf/Effects of Multitasking on Organizations.pdf (accessed date November 18,

2014).

Rosen, C. 2008. The myth of multitasking. The New Atlantis 20: 105–110.

Rubinstein, J.S., D.E. Meyer, J.E. Evans. 2001. Executive control of cognitive processes in task

switching. Journal of Experimental Psychology: Human Perception and Performance 27(4):

763–797.

Salvucci, D.D., N.A. Taatgen. 2011. The Multitasking Mind. Oxford University Press, New York.

Schuurman, P., G.J. Woeginger. 2007. Approximation schemes—A tutorial. Working paper, Tech-

nical University of Eindhoven, The Netherlands. Available at http://www.win.tue.nl/∼gwoegi/

papers/ptas.pdf (accessed date November 18, 2014).

35

Seshadri, S., Z. Shapira. 2001. Managerial allocation of time and effort: The effects of interruptions.

Management Science 47(5): 647–662.

Smith, W.E. 1956. Various optimizers for single-stage production. Naval Research Logistics Quar-

terly 3(1–2): 59–66.

Speier, C., J.S. Valacich, I. Vessey. 1999. The influence of task interruption on individual decision

making: An information overload perspective. Decision Sciences 30(2): 337–360.

Stanhope, P.D. 1847. The Letters of Philip Dormer Stanhope, Earl of Chesterfield. Ed. Lord

Mahon. Richard Bentley, London.

Suddath, C. 2012. My life as an efficiency squirrel. Bloomberg Businessweek, October 29 – Novem-

ber 4, 4302: 88–89.

theSalmonFarm. 2007. Guest blogger on “I don’t have a poor attention span! I’m multitasking.”

Available at: http://thesalmonfarm.org/blog/p/370 (accessed date November 18, 2014)

Ware, R., R.A. Baker. 1977. The effect of mental set and states of consciousness on vigilance decre-

ment: A systematic exploration. R.R. Mackie, ed. Vigilance: Theory, Operational Performance,

and Physiological Correlates. Plenum Press, New York, 603–616.

36

