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a b s t r a c t

This article investigates the interaction between different techniques for depth

compression and view synthesis rendering with multiview video plus scene depth

data. Two different approaches for depth coding are compared, namely H.264/MVC,

using temporal and inter-view reference images for efficient prediction, and the novel

platelet-based coding algorithm, characterized by being adapted to the special

characteristics of depth-images. Since depth-images are a 2D representation of the 3D

scene geometry, depth-image errors lead to geometry distortions. Therefore, the

influence of geometry distortions resulting from coding artifacts is evaluated for both

coding approaches in two different ways. First, the variation of 3D surface meshes is

analyzed using the Hausdorff distance and second, the distortion is evaluated for 2D

view synthesis rendering, where color and depth information are used together to

render virtual intermediate camera views of the scene. The results show that—although

its rate-distortion (R-D) performance is worse—platelet-based depth coding outper-

forms H.264, due to improved sharp edge preservation. Therefore, depth coding needs to

be evaluated with respect to geometry distortions.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Multiview video (MVV) representations enable new

applications such as free viewpoint video (FVV) and 3D

television (3DTV) [17]. The main characteristic of 3DTV is

to offer a 3D depth impression of the observed scenery.

FVV on the other hand is characterized by providing

the user the ability to interactively select an arbitrary

viewpoint in the video scene as known from computer

graphics. Both technologies do not exclude each other, but

rather can be combined into one system. A common

characteristic of such technologies is that they use MVV

data, where a real world scene is recorded by multiple

synchronized cameras.

A popular format for 3DTV uses a conventional

monoscopic color video and an associated per pixel depth-

image. For this, MPEG specified a standard for efficient

compression and transmission [10,11]. In the context of

MVV, this format is combined with MVV to form a

multiview video+depth (MVD) format, consisting of

multiple color videos with associated depth data. Since

MVD representations cause a vast amount of data to be

stored or transmitted to the user, efficient compression

techniques are essential for realizing such applications.

Previous work in this field presented various solutions for

multiview video coding (MVC), mostly based on H.264

with combined temporal and inter-view prediction, as
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well as different approaches for depth-image coding, like

transform- or wavelet-based depth compression. As a first

step towards standardization of technologies for 3DTV

and FVV applications, a new standard addressing algo-

rithms for MVV data compression—MVC—is currently

developed by the Joint Video Team (JVT) of VCEG and

MPEG, which is scheduled to be finalized in 2008. As a

second step, MPEG started an ad hoc group explicitly on

3D video recently, focusing on FVV and 3DTV systems

from a normative point of view, including representation,

generation, processing, coding and rendering of MVD data.

Depth-images are a 2D representation of the 3D scene

surface and for 3DTV and FVV applications the depth

information of MVD data is used for rendering virtual

intermediate views of the scene, while for the original

camera views only the color information from MVV is

sufficient. Therefore, we evaluate the effect of geometry

distortions caused by depth-image compression for both

3D scene geometry and rendering quality of MVD data. In

this article, we propose a novel coding algorithm that is

adapted to special characteristics of depth-images [15], as

well as a view synthesis rendering method for evaluating

the impact of coding artifacts produced by different

coding approaches [13].

This article is organized as follows. Section 2 is about

multiview depth compression. Beside H.264-based depth

coding, the specific characteristics of depth-images are

analyzed and the novel platelet-based depth coding

algorithm is introduced. Section 3 is about the 3D scene

representation of depth-images and the evaluation of

geometry distortions. In Section 4, view synthesis render-

ing for MVD data is explained, especially its application to

evaluate the effects of depth compression. Section 5

presents the results of coding, mesh distance and render-

ing experiments.

2. Multiview depth video compression

The MVD format consists of several camera sequences

of color texture images and associated per sample

depth-images or depth maps as illustrated in Fig. 1.

Depth-images are a 2D representation of the 3D surface

of the scene. Practically, the depth range is restricted to a

range between two extremes znear and zfar, indicating the

minimum and maximum distance, respectively, of the

corresponding 3D point from the camera. By quantizing

the values in this range, the depth-image in Fig. 1 is

specified, resulting in a grayscale image.

A sequence of such depth-images can be converted into

a video signal and compressed by any state-of-the-art

video codec. Since depth-images represent the scene

surface, their characteristics differ from texture images.

Encoding depth-images with video codecs that are

highly optimized to the statistical properties and human

perception of color or texture video sequences, might still

be efficient, but result in disturbing artifacts. This requires

novel algorithms for depth compression to be developed,

that are adapted to these special characteristics. There-

fore, after introducing multiview depth video coding

based on H.264 in Section 2.1, we evaluate the character-

istics of depth video in Section 2.2, which led to the novel

platelet-based depth-image coding algorithm, presented

in Section 2.3.

2.1. H.264-based depth coding

The most efficient algorithm to date for single-view

video compression is H.264/AVC [12,22]. Hence, it typi-

cally serves as a starting point for modern MVC, where a

3D scene is captured by a number of cameras. Since some

of the cameras share common content, a coding gain can

be achieved with multiview coding in comparison to

single-view coding, when exploiting the statistical depen-

dencies between the camera views in addition to temporal

statistical dependencies within each sequence. Although

multi-camera settings in practice range from simple 1D

linear and arched arrangement to complex spatial position

distribution patterns, the underlying multiview coding

structure can still be mapped onto that basic 2D temporal/

inter-view array. This approach was followed by multi-

view compression proposals that finally led to a standar-

dization project for an amendment to H.264/AVC for MVC.

An H.264/MVC coder basically consists of multiple

parallelized single-view coders. Therefore, they both use

similar temporal coding structures, were a sequence of

successive pictures is coded as intra (I), predictive (P) or

bipredictive (B) pictures. For I pictures, the content is only

predicted from the current picture itself, while P and B

picture content is also predicted from other temporal

reference pictures. One approach for further improving
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Fig. 1. Example for the MVD format with texture images (left) and corresponding depth-images (right). A typical depth-image frequently contains regions

of linear depth changes bounded by sharp discontinuities.
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coding efficiency is the use of hierarchical B pictures [18],

where B pictures can be references for other B pictures

and thus creating a B picture hierarchy, as shown for

temporal predictionwith three hierarchical levels in Fig. 2.

Here, the distance between so called key pictures (black)

is 8 so that we refer to a group of pictures (GOP) size of 8.

For MVC, the single-view concepts are extended, so

that a current picture in the coding process can have

temporal as well as inter-view reference pictures for

motion-compensated prediction [14]. An example for

an H.264/MVC coding structure with five linearly

arranged cameras and GOP size of 8 is shown in Fig. 2.

This coding structure illustrates how the advantages of

hierarchical B pictures are combined with inter-view

prediction, without any changes regarding the temporal

prediction structure. For view ‘‘Cam 1’’, the prediction

structure is identical to single-view coding and for the

remaining views, inter-view reference pictures are addi-

tionally used for prediction (red arrows).

When using H.264 video coding techniques for depth-

image compression, multiview sequences of depth-images

of an MVD data set are converted into YUV 4:0:0 format

video signals. The resulting multiview depth video

sequences can then be encoded and decoded like conven-

tional color (or texture) videos, applying either H.264/AVC

for simulcast coding or H.264/MVC for multiview coding

of a multiview depth video data set.

2.2. Rate-distortion analysis of piecewise-smooth depth-

images

In this section, considering the smooth properties of

depth-images, we propose to approximate, i.e., model,

depth-images by piecewise smooth functions. First, we

discuss the rate-distortion functions (or rate-distortion

behavior) of two different compression algorithms to

encode piecewise smooth functions: a transform-based

encoder and a tree segmentation-based encoder. Second,

comparing both rate-distortion functions, we show that a

tree segmentation-based encoder yields a more attractive

rate-distortion (R-D) behavior (when compared to a

transform-based encoder). As a result, a tree segmenta-

tion-based coding algorithm provides a suitable method

to encode piecewise smooth depth-images.

The characteristics of depth-images differ from ordin-

ary color images. Since a depth map explicitly captures

the 3D structure of a scene, large parts of typical depth-

images depict object surfaces. As a result, the input

depth-image contains large areas of smoothly changing

grey levels. In contrast, at the object boundaries, the depth

map exhibits abrupt changes, i.e., sharp edges. Therefore,

following these observations, we propose to model depth-

images by piecewise smooth functions. The problem of

approximating and compressing piecewise smooth signals

was first addressed using a wavelet transform. In [1], it

was show that the R-D behavior of such a transform-based

encoder can be written as

DðRÞ�d1R
�2a þ d3

ffiffiffi

R
p

2�d4
ffiffi

R
p

(1)

where R and D(R) correspond to the rate and the rate-

distortion functions, respectively. The first term models

the R-D behavior of the smooth pieces in the image. This

R-D behavior cannot be substantially improved. However,

the R-D behavior at the signal-discontinuity (the second

term in the previous equation) can be further improved.

More specifically, the R-D behavior can be improved by

using a tree segmentation-based coding algorithm. A tree

segmentation-based coding algorithm recursively decom-

poses the input image into blocks of variable sizes and

approximates each block by a selected modeling function.

In [20], it was mathematically shown that the R-D

behavior of a tree segmentation-based coding algorithm

decays as

DðRÞ�c42
�c5R (2)
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Fig. 2. H.264/MVC coding structure with inter-view prediction (red arrows) and temporal prediction (black arrows) using hierarchical B pictures for 5

cameras and a GOP size of 8 pictures.
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Comparing both previously introduced rate-distortion

functions, it can be inferred that the R-D function of a tree

segmentation-based coding algorithm features a faster

decaying R-D behavior (when compared to the R-D

function of a transform-based encoder). Note that this

result holds for piecewise smooth images. Therefore, a

coding gain can be obtained by encoding piecewise-

smooth depth-images by using a tree segmentation-based

coding algorithm. As a first step toward tree segmenta-

tion-based coding algorithms, several tree segmentation-

based reconstruction algorithms have been proposed.

These algorithms can be classified by the modeling

function used to approximate each image block in the

image. One modeling function, the ‘‘Wedgelet’’ [6] func-

tion, is defined as two piecewise-constant functions

separated by a straight line. This concept was originally

introduced as a mean of detecting and reconstructing

edges from noisy images, and was later extended to

piecewise-linear functions, called ‘‘Platelet’’ [23] func-

tions. In the following section, we focus on the compres-

sion of piecewise-smooth depth-images using the

previously introduced Platelet functions.

2.3. Platelet-based depth coding

Considering our compression framework, we adopt the

‘‘Wedgelet’’ and ‘‘Platelet’’ signal decomposition method.

In this way, we follow the idea developed in [20] to

encode texture images using piecewise polynomials as

modeling functions. The proposed algorithm models

smooth regions of the depth-images using piecewise-

linear functions separated by straight lines. To define the

area of support for each modeling function, we employ a

quadtree decomposition that divides the image into

blocks of variable size, each block being approximated

by one modeling function containing one or two surfaces.

The quadtree decomposition and the selection of model-

ing function are then optimized such that a global rate-

distortion trade-off is realized.

2.3.1. Depth-image modeling

In this section, we present a novel approach for depth-

image coding using the piecewise-linear functions pre-

viously mentioned. The idea followed is to approximate

the image content using modeling functions. In our

framework, we use two classes of modeling functions: a

class of piecewise-constant functions and a class of

piecewise-linear functions. For example, regions of con-

stant depth (e.g. flat unslanted surfaces) show smooth

regions in the depth-image and can be approximated by a

piecewise-constant function. Secondly, planar surfaces of

the scene, like the ground plane and walls, appear as

regions of gradually changing grey levels in the depth-

image. Hence, such a planar region can be approximated

by a single linear function. To specify the 2D-support of

the modeling functions in the image, we employ a

quadtree decomposition that hierarchically divides the

image into blocks, i.e., nodes of different size. In some

cases, the depth-image within one block can be approxi-

mated with one modeling function. If no suitable

approximation can be determined for the block, it is

subdivided into four smaller blocks. To prevent that many

small blocks are required along a diagonal discontinuity,

we divide the block into two regions separated by a freely

placed, slanted line. Each of these two regions is coded

with an independent function. Consequently, the coding

algorithm chooses between four modeling functions for

each leaf in the quadtree:

� Modeling function f̂1: Approximate the block content

with a constant function.

� Modeling function f̂2: Approximate the block content

with a linear function.

� Modeling function f̂3: Subdivide the block into two

regions A and B separated by a straight line and

approximate each region with a constant function

(a wedgelet function).

f̂ 3ðx; yÞ ¼
f̂ 3Aðx; yÞ ¼ g0A ðx; yÞ 2 A

f̂ 3Bðx; yÞ ¼ g0B ðx; yÞ 2 B

8

<

:

� Modeling function f̂4: Subdivide the block into two

regions A and B separated by a straight line and

approximate each region with a linear function (a

platelet function).

f̂ 4ðx; yÞ ¼
f̂ 4Aðx; yÞ ¼ y0A þ y1Axþ y2Ay ðx; yÞ 2 A

f̂ 4Bðx; yÞ ¼ y0B þ y1Bxþ y2By ðx; yÞ 2 B

8

<

:

2.3.1.1. Estimation of model coefficients. The objective of

this processing step is to provide the model coefficients

that minimize the approximation error between the ori-

ginal depth signal in a block and the corresponding

approximation.

For f̂1, only one coefficient a0 has to be computed.

Practically, the coefficient a0, that minimizes the error

between f and f̂1, simply corresponds to the mean value of

the original data. Secondly, it was indicated earlier that we

use a linear function f̂2 to approximate blocks that contain

a gradient. In order to determine the three coefficients b0,

b1 and b2 of the linear function f̂2(x,y) ¼ b0+b1x+b2y, a

least-squares optimization is used. For the wedgelet f̂3 and

platelet f̂4 functions, we have to determine not only the

model coefficients, but also the separating line. For this

reason, the coefficient estimation is initialized by testing

every possible line that divides the block into two areas.

This step provides a candidate subdivision line and two

candidate regions A and B. Subsequently, the wedgelet and

platelet coefficients are computed over the candidate

regions using the average pixel value and a least-squares

minimization, respectively.

The decision for each modeling function is based on a

rate-distortion decision criterion that is described in the

following section.

2.3.2. R-D optimized bit-allocation

In this section, we aim at providing details about

the bit-allocation strategy that optimizes the coding in a
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rate-distortion sense. Considering our lossy encoder/

decoder framework, our aim is to optimize the compres-

sion of a given image to satisfy a R-D constraint. In our

case, there are three parameters that influence this trade-

off: (1) the selection of modeling functions, (2) the

quadtree decomposition and (3) the quantization step-

size of the modeling-function coefficients. Thus, the

problem is to adjust each of the previous parameters such

that the objective R-D constraint is satisfied. The three

aspects will be individually addressed below.

To optimize these three parameters in an R-D sense,

the adopted approach is to define a cost function that

combines both rate Ri and distortion Di of the image i.

Typically, the Lagrangian cost function

JðRiÞ ¼ DiðRiÞ þ lRi (3)

is used, where Ri and Di represent the rate and distortion

of the image, respectively, and l is a weighting factor that

controls the R-D trade-off. Using the above Lagrangian

cost function principle, the algorithm successively per-

forms three independent parameters optimizations: (1) an

independent selection of modeling functions; (2) a

quadtree structure optimization and (3) the quantizer

step-size selection. Let us address all three aspects now.

2.3.2.1. Modeling function selection. First, we assume that

an optimal quadtree segmentation and quantizer step-size

is provided. Since the rate and distortion are additive

functions over all blocks, an independent optimization can

be performed within the blocks. Therefore, for each block,

the algorithm selects the modeling function that leads to

the minimum coding cost. More formally, for each block,

the algorithm selects the best modeling function f̃ in an

R-D sense according to

f̃ ¼ argmin
f̂ j2ff̂ 1 ;f̂ 2 ;f̂ 3 ;f̂ 4g

ðDmðf̂ jÞ þ lRmðf̂ jÞÞ, (4)

where Rm(f̂j) and Dm(f̂j) represent the rate and distor-

tion resulting from using one modeling function f̂j,

respectively.

2.3.2.2. Quadtree decomposition. To obtain an optimal

quadtree decomposition of the image, a well-known ap-

proach is to perform a so-called bottom-up tree-pruning

technique [5]. The algorithm can be described as follows.

Consider four children nodes denoted by N1, N2, N3 and N4

that have a common parent node which is represented by

N0. For each node k, a Lagrangian coding cost ðDNk
þ

lRNk
Þk 2 f0;1;2;3;4g can be calculated. Using the La-

grangian cost function, the four children nodes should be

pruned whenever the sum of the four coding cost func-

tions is higher than the cost function of the parent node.

When the children nodes are not pruned, the algorithm

assigns the sum of the coding costs of the children nodes

to the parent node. Subsequently, this tree-pruning tech-

nique is recursively performed in a bottom-up fashion. It

has been proved [5] that such a bottom-up tree-pruning

leads to an optimally pruned tree, thus in our case to an

R-D optimal quadtree decomposition of the image.

2.3.2.3. Quantizer selection. So far, we have assumed that

the coefficients of the modeling functions are scalar

quantized prior to model selection and tree-pruning.

However, no detail has been provided about the selection

of an appropriate quantizer. Therefore, the problem is to

select the optimal quantizer, denoted q̃, that meets the

desired R-D constraint. We propose to select the quantizer

q̃ out of a given set of possible scalar quantizers {q2,yq8},

operating at 2–8 bits per level, respectively. To optimally

select the quantizer, we re-use the application of the

Lagrangian cost function and select the quantizer q̃ that

minimizes the Lagrangian coding cost of the image

q̃ ¼ argmin
ql2fq2 ;...;q8g

DiðRi; qlÞ þ lRiðqlÞ (5)

Here, Ri(ql) and Di(Ri,ql) correspond to the global rate Ri
and distortion Di(Ri) in which the parameter ql is added to

represent the quantizer selection. To solve the optimiza-

tion problem of Eq. (5), the image is encoded using all

possible quantizers and the quantizer q̃ that yields the

lowest coding cost Ji(Ri,q̃) ¼ Di(Ri,q̃)+lRi(q̃) is selected.

Finally, the parameter l, that controls the desired R-D

trade-off, has to be determined. To calculate l, a well-

known approach is to perform a bisection search of the

parameter, such that l yields the highest image-quality

for a specific bitrate [16]. Practically, the values for l range

from 20 to 1000, increasing in a logarithmic fashion.

2.3.3. Predictive coding of parameters

In this section, the entropy coding of our coding

algorithm is described.

2.3.3.1. Quadtree structure. The quadtree is transmitted

top-down, where for each node, a binary flag indicates

whether this node is subdivided or not. This decision is

coded with an arithmetic encoder with fixed probabilities.

The probability that the node is subdivided is depending

on the number of neighboring nodes at the same tree-

level that are also subdivided. The neighborhood context

contains the left, the top-left, and the neighboring top

block, such that the number of subdivided neighbors is

between 0 and 3. In the example of Fig. 3, the number of

subdivided neighbors is two.

2.3.3.2. Coding mode. The coding mode for each block in

the quadtree is coded with an input-adaptive arithmetic

coder. Fixed probabilities are not suitable here, since the

selection of coding modes depends on the bitrate (more

complex models for higher bitrates).

2.3.3.3. DC coefficients. The DC coefficients of all input

blocks are highly correlated. For this reason, we predict

their value from previously coded blocks and only code

the residual value. More specifically, we consider the three

blocks that are adjacent to the top-left pixel in the current

block. The predictor is formed by the median of the

DC coefficients of these three blocks. If a neighboring

block is subdivided into twomodels and hence has two DC
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coefficients, we use the DC-coefficient of the region that is

adjacent to the top-left pixel of the current block. If

the current block is represented with two functions, the

predictor is used for both. Note that this scheme always

works properly, whatever coding modes have been used

for these blocks. In the example in Fig. 3, the DC coeffi-

cients of the regions 1-B, 2, and 3-A would be used to

build the predictor for block X. The distribution of the

residual signal after prediction subtraction is non-

uniform. Consequently, coding of the residual value is

carried out with an input-adaptive arithmetic encoder.

2.3.3.4. AC coefficients. The AC parameter corresponds to

the first-order parameters of the functions f̂2 and f̂4. For f̂4,

this means y1A, y2A, y1B and y2B. These four parameters and

the two parameters for function f̂2 are non-uniformly

distributed. This implies the use of a variable-length

coder. Therefore, the four parameters were coded with an

input-adaptive arithmetic encoder as well.

2.3.4. Algorithm summary

The algorithm requires as an input the depth-image

and a weighting factor l that controls the R-D trade-off.

The image is first recursively subdivided into a full

quadtree decomposition. All nodes of the tree are then

approximated by the four modeling functions f̂1, f̂2, f̂3, f̂4. In

a second step, the coefficients of the modeling functions

are quantized using one scalar quantizer ql. For each node

of the full tree, an optimal modeling function f̃ can now be

selected using Eq. (4). Employing the tree-pruning

technique described in Section 2.3.2, the full tree is then

pruned in a bottom-up fashion. The second step of the

algorithm (i.e. the coefficient quantization) is repeated for

all quantizers qlA{q2,y,q8} and the quantization that

leads to the lowest global coding cost is selected (see

Eq. (5)). Subsequently, for each leaf of the tree, the

quantized zero-order coefficients are predicted using the

neighboring values as explained in Fig. 3 and because

the residual values are non-uniformly distributed, they are

coded arithmetically. Note that the first-order coefficients

satisfy a Laplacian distribution. If it would be a fixed

Laplacian distribution, we could have ‘‘simply’’ used a

fixed probability table. However, we do not know the

exponential coefficient value. For this reason, we encode

these coefficients using an adaptive arithmetic encoder.

Note that the R-D optimization is based on fixed-length

codes to enable a fast computation. The final bitrate is

lower since the parameters are further compressed with

an arithmetic encoder. The prediction scheme presented

in the previous section together with subsequent arith-

metic encoding yields 0.5–1.5 dB of gain for a fixed bitrate.

3. 3D scene surface representation

This section discusses the relation between depth-

images and 3D scene geometry as well as the evaluation of

geometry distortions caused by depth coding artifacts.

The depth-images that come with MVD data are a 2D

representation of the 3D scene surface from the corre-

sponding camera perspective. Therefore, a depth-image

can be transformed into a 3D representation via perspec-

tive projection [7,8]. For a camera C the relation between a

point X̄ in 3D scene coordinates and a point x̄ in camera

coordinates can be described as follows.

x̄ ¼ P̄ X̄

X̄ ¼ P̄
�1

x̄ (6)

with x̄ ¼ (x,y,z,1)T, X̄ ¼ (X,Y,Z,1)T. P̄ is the 4� 4 projection

matrix, which is defined by the camera extrinsic and

intrinsic parameters as

P̄ ¼ K̄ Ē ¼ K̄ ½R̄jt̄�. (7)

Here K̄ is the 4� 4 intrinsic and Ē is the 4� 4 extrinsic

matrix, containing the rotation matrix M̄ and the translation

vector t̄ of C relative to the world coordinate system. K̄ and Ē

contain the intrinsic and extrinsic parameters that are

obtained from camera calibration [21]. Camera calibration

represents a fundamental element for capturing MVV

sequences besides further processing steps like synchroniza-

tion or color balance of the multiple cameras. For a

depth-image the continuous camera coordinates of x̄ are

transformed into image coordinates, resulting in the discrete

pixel position (u,v) and the assigned depth value d. Unlike the

pixel position, the depth value is logarithmically quantized to

keep more details in foreground regions of the 3D scene.

By projecting all pixels of a depth-image into 3D scene

space, a point cloud is generated, consisting of regularly

sampled feature points of the 3D scene surface. In the field

of computer graphics, these 3D scene points are also

known as vertices and rendering techniques from com-

puter graphics can be used to render such point clouds.

However, mesh representations are much more frequently

used in computer graphics, thus software and hardware

for rendering is highly optimized for processing meshes.

We now describe how connectivity is added to the

vertices of our depth-image-based point cloud, resulting

in a 3D surface mesh representation. Typically, such

meshes consist of triangle primitives. In the case of

ARTICLE IN PRESS

Fig. 3. Illustration for parameter encoding. The grey block X is currently

being coded. DC-predictors are formed from the three numbered blocks

(median of DC-coefficient of 1-B, 2, and 3-A).

P. Merkle et al. / Signal Processing: Image Communication 24 (2009) 73–8878



depth-images the connectivity can easily be generated

from the pixel raster, but two restrictions should be

observed: first, the number of triangles should be kept

small for efficient storage, processing and rendering of the

mesh and second, foreground objects should not be

connected with the background along their edges to avoid

spanning the surface over unconnected regions of the

scene. The algorithm for mesh construction starts with

dividing the depth-image into blocks of 32�32 pixel size

and generates the mesh for each of these in an iterative

refinement process. If all pixels of a block have the same

depth value, the corresponding triangles are coplanar, the

iteration stops and the vertices of the four corner pixels

can be connected as two triangles. Otherwise, the block is

subdivided into four sub-blocks and each one is again

checked for coplanarity. If this recursion reaches the

minimum block size of 2�2 pixels all triangles are

added to the mesh connectivity, except those with a

depth value difference above a certain threshold. This

keeps foreground objects separated from the background.

Appropriate values for the threshold are relatively low

(e.g. a depth value difference of 5 for 8-bit depth pixels), in

order to ensure a reliable separation. Note, that for

logarithmically quantized depth values a certain threshold

represents different distances in 3D scene space.

Such 3D surface meshes generated from depth-images

are the basis for an evaluation of the geometry distortions

caused by depth coding artifacts. The depth coding

algorithms presented in Section 2 lead to distortions or

artifacts in the compressed depth-images, where the

depth value d of certain pixels differs from the original

value. Projecting distorted depth-images into the 3D scene

space leads to geometry distortions. Consequently, the 3D

surface mesh from a compressed depth-image differs from

the original undistorted one. Evaluating the impact of

coding artifacts in terms of geometry distortions means to

measure the distance between these two meshes. For this

purpose we employ the method described in [9]. This

method measures the error between surfaces using the

Hausdorff distance and is well-known from quality

evaluation of mesh compression techniques. Due to the

described correlation between depth-images and surface

meshes, depth-image coding can be seen as a special case

of mesh compression and consequently this method is

applicable to evaluate the geometry distortions caused by

depth-image coding artifacts.

4. View synthesis rendering

Applications like 3DTV and FVV are realized from MVV

plus depth via view synthesis rendering. View synthesis

rendering is a technique for generating arbitrary inter-

mediate views from a 3D representation of the scene [3,4].

The effect of depth compression needs to be evaluated

with respect to the quality of rendered virtual views,

because depth information is only useful for generating

intermediate camera views, but not for showing the

original camera view. This section first explains view

synthesis rendering and second defines a quality measure

for virtual views rendered with compressed depth.

4.1. Virtual camera, geometry and texture blending

The basic concept of view synthesis rendering with

MVD data is to use pairs of neighboring original camera

views in order to render arbitrary virtual views on a

specified camera path between them. Here rendering

means to map or transform 3D information into 2D by

applying camera projection. As described in Section 3 for

original camera views, the geometrical relation between

points in 3D scene space and 2D image space is defined by

the projection matrix, which is derived from the camera

calibration parameters. Therefore, the initial step for view

synthesis rendering is to define a virtual camera CV. Given

two original cameras C1 and C2 with their extrinsic

matrices Ē1 and Ē2, the extrinsic matrix ĒV of the virtual

camera is derived as follows. First, the position of the

virtual camera is calculated by linear interpolation

t̄V ¼ ð1� aÞ t̄1 þ a t̄2 a 2 ½0;1�, (8)

where a is the virtual view weighting factor and t̄1 and t̄2
are the translation vectors of C1 and C2. By varying a
between 0 and 1 any position on the linear camera path

between C1 and C2 can be defined for CV. Beside the

translation vector an extrinsic matrix contains a rotation

matrix R̄ ¼ ½r̄x r̄y r̄z�. Unlike the translation, R̄V needs to be

calculated by spherical linear interpolation (Slerp) [19].

Spherical linear interpolation originates from computer

graphics in the context of quaternion interpolation

and has the characteristic that the resulting coordinate

system of the virtual camera remains orthonormal. As an

example, the x coordinate rotation vector r̄VX is calculated

from the two original cameras’ x coordinate rotation

vectors r̄1x and r̄2x, using the same virtual view weighting

factor a as for translation.

r̄Vx ¼
sinðð1� aÞyxÞ

sinðyxÞ
r̄1x þ

sinðayxÞ
sinðyxÞ

r̄2x, (9)

where yx is the angle between r̄1x and r̄2x. The y and z

coordinate rotation vectors are then calculated accord-

ingly. Thus our virtual camera is derived from the two

original cameras, with extrinsic matrix ĒV for translation

and rotation. For the used datasets, the intrinsic matrix K̄

is the same for all original and virtual cameras such that

no interpolation is required.

The second step for view synthesis rendering is to

project the input depth maps of C1 and C2 into 3D scene

space. According to the description in Section 3 the inverse

projection matrix is used to calculate the 3D vertex position

for each pixel in the depth map, resulting in a 3D point

cloud for C1 and C2 that represents the scene surface from

the two original cameras’ perspectives. Since the MVD

representation uses color textures with associated per pixel

depth maps, the value of the corresponding texture color

pixel can be assigned to each of the 3D vertices. The result

of this operation is a so-called particle cloud for C1 and C2,

where each particle consists of a 3D vertex and its color.

The third step for view synthesis rendering is to

individually project the particle cloud of each camera

into the virtual camera view CV with the projection matrix

P̄V calculated from the extrinsic and intrinsic matrix

derived in the first step. To avoid overwriting foreground
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with background information, a depth buffer is used here.

The result of this operation are two pairs of depth with

associated texture color images with the same resolution

as the original images of C1 and C2, but showing the scene

from the perspective of CV. Due to pixel quantization in

the last step of the projection, rounding error artifacts in

terms of small holes of one pixel size occur in the resulting

images. These artifacts are reduced by applying an

adaptive filtering technique that detects these rounding

error artifacts and iteratively fills them with the informa-

tion of weighted neighboring pixels.

The fourth step for view synthesis rendering is texture

blending, which basically means to overlay the two

texture images into one output image. We apply a

technique called view-dependent texture blending, where

depth and perspective information is used to render a

consistent color output for synthesized views along the

camera path between the original cameras. For each pixel

TV in the texture color output image the depth information

of the corresponding pixel in both projected depth-images

is analyzed, resulting in three possible scenarios:

� Both depth pixels have a zero value, indicating that due

to disocclusion no depth information is present at this

position. These output pixels remain empty and are a

matter of post-processing.

TV ðu; vÞ ¼ 0

� One of the depth pixels has a non-zero value. This is

the typical disocclusion case, where background areas

of the scene can be seen from one original camera

perspective, but are occluded by foreground objects in

the other. In this case the output pixel is filled with the

texture color of the non-zero depth pixel.

TV ðu; vÞ ¼
T1ðu; vÞ d1ðu; vÞa0; d2ðu; vÞ ¼ 0

T2ðu; vÞ d1ðu; vÞ ¼ 0; d2ðu; vÞa0

(

� Both depth pixels have a non-zero value. This is the

most frequent case with view synthesis rendering

and the two corresponding texture color values are

mixed by using the virtual view weighting factor a for

view-dependent texture blending.

TV ðu; vÞ ¼ ð1� aÞ T1ðu; vÞ þ a T2ðu; vÞ

Altogether the described view synthesis rendering

algorithm allows the rendering of any virtual camera view

of the 3D scene, with smoothly blended textures, along the

path between the two original input camera views by

simply varying the virtual view weighting factor a.

4.2. Rendering quality evaluation

For classical video coding the quality of different

approaches is usually evaluated as the R-D performance

by comparing compressed with uncompressed versions of

the input data. Since depth-images are a 2D representa-

tion of the 3D scene surface they are utilized for rendering

virtual intermediate views, while at original camera views

the original texture contains all the information. There-

fore, the effect of depth coding artifacts needs to be

evaluated further with respect to the rendering quality of

virtual camera views. Based on the view synthesis

rendering algorithm described in the previous section

we introduce a quality measure for virtual intermediate

views (Fig. 4).

The impact of compression on video sequences is

measured by calculating the PSNR for the compressed and

thereby distorted picture with respect to the original

uncompressed picture. This approach can be adapted to

view synthesis rendering with compressed depth data as

depicted in Fig. 5. Two original cameras (black) are used to

generate a virtual camera view (white). The problem with

evaluating the effect of depth coding for synthesized

views is the lack of a ground truth to compare the results

with. Therefore the corresponding synthesized view from
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Fig. 4. Platelet-based depth-image compression and decomposition

(‘‘Breakdancers’’ sequence at 0.05 bits per pixel with a PSNR of 42.7 dB).

Fig. 5. Evaluation of view synthesis rendering quality with compressed

depth video.
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uncoded data is defined as a reference (Fig. 5, top). The

reference is rendered from uncompressed original depths

and original textures. In a second step, the same view

is rendered from the compressed depth-images with

original textures (Fig. 5, bottom). This view is distorted

by the depth coding artifacts and their impact on the

rendering quality can now be analyzed by comparing the

reference picture with the distorted one in terms of

objective and subjective quality. For objective evaluation

the final step is to calculate the PSNR between the two

images for view synthesis rendering with and without

compressed depth data.

5. Experimental results

We conducted the experiments for two MVD test data

sets named ‘‘Breakdancers’’ and ‘‘Ballet’’, both consisting

of eight linearly arranged camera views. From both test

data sets the first 25 frames were used.
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5.1. Depth coding results

For the coding experiments the depth sequences were

compressed for each camera view at different qualities.

First these multiview depth videos were encoded and

decoded with a standard conforming H.264/AVC coder as I

pictures. This coding method is used as a reference for the

two advanced coding algorithms. In a second experiment

the same multiview depth video test data sets were

encoded and decoded using H.264/MVC with typical

settings for MVC, like variable block size, a search range

of 796, CABAC enabled and rate control via Lagrangian

techniques. The third experiment used the Platelet-based

coder presented in Section 2.3. These three experiments

allow us to compare the properties of the different

approaches regarding bitrate efficiency as well as distor-

tion and coding artifacts.

Fig. 6 shows the depth compression results in terms of

R-D performance. H.264/MVC clearly outperforms H.264/

AVC Intra as well as Platelet-based depth coding, because

of additionally utilizing both temporal and inter-view

reference pictures for prediction. Note, that the current

implementation of the Platelet-based coder only uses

intra prediction. Accordingly reference coding was done

with H.264/AVC restricted to intra prediction. Except for

very low bitrates H.264/AVC Intra coding outperforms

the Platelet-based coding approach in terms of PSNR

performance. The reason is that H.264 as an international

video coding standard is optimized for bitrate efficiency

to a great extent. Comparing H.264/MVC to the reference

results clearly indicates the advantages video coding takes

of using temporal and inter-view reference pictures for

motion-compensated prediction. Especially for ‘‘Ballet’’

where a coding gain of 4dB is achieved. In addition to

these objective results Fig. 7 shows examples for the

subjective quality at a very low bitrate, highlighting the

typical coding artifacts for the two evaluated coding

algorithms, namely blurring and ringing for H.264 and

angular shaped edges and flattened surfaces for Platelet-

based.

5.2. Mesh distance results

The mesh distance experiments were realized with a

tool named MESH [2], which is a fast implementation of

the Hausdorff distance measure approach described in

Section 3. For the experiments we used the decoded

depth-images from the coding experiments presented in

the previous section. From these coding results three

ratepoints for low, medium and high quality were chosen,

which are indicated by the markers in the diagrams

of Fig. 6. They are selected from the range of R-D

coding results as typical representatives—one for the

upper and one for the lower range limit plus one

intermediate. Due to the different content and thereby

R-D performance the values of the ratepoints vary for

different test sequences.

The geometrical distortion is measured as the average

RMS value of the Hausdorff distance over the complete

mesh surface between the meshes from a coded and the

corresponding uncoded depth-image. Therefore a lower

value indicates that depth-image coding artifacts produce

less geometry distortion of the mesh surface, with 0

indicating identical surfaces. Because the Hausdorff dis-

tance is in general not symmetrical, meaning that the

distance from mesh A to mesh B is unequal to the distance

from mesh B to mesh A, both distances are calculated and

the higher one is defined as the symmetrical Hausdorff

distance.

The diagrams in Fig. 8 shows the symmetrical

Hausdorff distance over the coding bitrate as the average

value for all 25 frames of all eight cameras. Comparing

these results to the R-D performance for depth-image

coding in Fig. 6 leads to the conclusion that Platelet-based

coding performs better in terms of geometry distortion.

Especially for the ‘‘Breakdancers’’ sequence Platelet-based

coding has about half the Hausdorff distance of the two

H.264-based coding methods. Although Platelet-based

coding is outperformed by H.264/MVC for middle and

high bitrates of the ‘‘Ballet’’ sequence in absolute values,

the difference in Hausdorff distance between both
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Fig. 7. Examples for typical depth coding artifacts: Original uncompressed (left), H.264-based (middle) and Platelet-based (right).

P. Merkle et al. / Signal Processing: Image Communication 24 (2009) 73–8882



methods is surprisingly small with respect to the large

difference in coding PSNR values. This evaluation high-

lights, that the typical coding artifacts of H.264-based

coding lead to considerably higher geometry distortions

than those of Platelet-based coding.

5.3. Rendering results

In this section we present the results of the view

synthesis rendering quality experiments as described in

Section 4.2. For this purpose we used the depth coding

results presented in Section 5.1 with the three rate-

points for low, medium and high quality. Note that the

markers in the diagrams of Fig. 6 correspond to these

ratepoints. For each ratepoint a series of virtual views

was rendered along the camera path of each pair

of neighboring cameras for each of the three coding

approaches, using a virtual view weighting factor

a step-size of 0.1. This was done for each timepoint of

the 25 picture long sequences.
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Fig. 9 shows the results of the experiments on view

synthesis rendering quality with compressed depth data.

Each diagram contains the results for one ratepoint of

one MVD test sequence. The horizontal axis represents the

virtual camera path along the original cameras, while

the vertical axis shows the resulting PSNR(Y) of the three
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coding approaches H.264/AVC Intra, H.264/MVC and

Platelet as the average value over the 25 picture long

sequences. The characteristic of the curves highlights the

general effect of geometry distortions on view synthesis

rendering. The errors in rendered virtual view increase

with the distance between original and virtual camera
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view. Thus, the lowest rendering quality is observed for

virtual views at half distance between the two original

cameras. Table 1 additionally compares the performance

differences of the three coding approaches that result

from coding on and rendering, respectively. For each

of the three ratepoints the average PSNR difference

relative to H.264/AVC Intra was calculated, once from

the coding experiments results and once from the view

synthesis rendering quality results. These results indicate

that Platelet-based coded depth video always achieves a

higher rendering quality than the reference coding

method, although the coding quality is worse. For the

‘‘Breakdancers’’ sequence Platelet-based coding even

outperforms H.264/MVC, while for ‘‘Ballet’’ H.264/MVC

achieves the highest rendering quality of all approaches

due to the significant gain in coding PSNR. In return this

means that Platelet-based coding would clearly outper-

form H.264 in virtual view rendering quality, if comparing

compressed depth-images with equal PSNR instead of

equal bitrate.

Besides the objective results rendering output exam-

ples are presented in Fig. 10. The image on the left is

rendered from original, uncompressed color and depth

data and shows a detail for a foreground object which

is delimited from the background by a sharp edge.

The other images show the same detail rendered with

H.264/AVC Intra, Platelet-based and H.264/MVC com-

pressed depth-images at a low bitrate. According to the

objective results these examples highlight the effect

of the different types of coding artifacts produced

by H.264-based and Platelet-based coding. Due to the

blurring and ringing artifacts the object boundaries in the

two examples rendered with H.264 coded depth are fuzzy.

In contrast the example for Platelet-based depth coding
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Fig. 10. Detail examples for depth coding artifacts with view synthesis rendering. ‘‘Ballet’’ sequence at low bitrate rendered from original texture plus

(from left to right) original depth, H.264/AVC Intra coded depth, Platelet coded depth, and H.264/MVC coded depth.

Table 1

Comparison of DPSNR for coding and virtual view rendering for low, middle and high bitrates.

Ballet Platelet-based H.264/MVC

Bitrate (kbps) 260 590 790 260 590 790

DPSNR (dB) coding �1.304 �2.637 �2.705 4.423 3.884 3.538

DPSNR (dB) rendering 1.477 1.838 1.750 2.338 2.633 2.401

Breakdancers

Bitrate (kbps) 200 420 900 200 420 900

DPSNR (dB) coding �0.081 �0.926 �1.006 1.388 0.134 0.162

DPSNR (dB) rendering 1.155 1.063 1.162 0.568 0.008 �0.004

DPSNR shows the average difference in PSNR results between H.264/AVC Intra and Platelet-based and between H.264/AVC Intra and H.264/MVC depth

coding.
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shows that the object boundaries are preserved very well.

Compared to the original the edges are more angular

shaped and some rendering artifacts from flattened

surfaces can be seen.

6. Summary and conclusions

The article presents a comparative study on the

interaction of multiview depth video compression and

view synthesis rendering for MVD data. Two approaches

for depth compression were introduced, namely H.264/

MVC and Platelet-based coding. H.264/MVC is the latest

extension to the H.264 video coding standard, character-

ized by achieving the best R-D performance for multiview

color video from temporal and inter-view prediction. The

other approach is Platelet-based coding, a novel depth

coding algorithm, characterized by being adapted to the

special characteristics of depth-images. For better com-

parability of these two approaches H.264/AVC Intra was

chosen as a reference method, combining intra only

prediction like Platelet-based and H.264 like MVC coding.

A comparison of the R-D performance turned out that

H.264/MVC is the most efficient coding method due to

inter prediction. Moreover Platelet-based coding is also

outperformed by the reference method since H.264 is

optimized for bitrate efficiency to a great extent. In

contrast to color video, depth coding artifacts lead

to geometry distortions in the 3D representation of a

depth-image that propagate into rendered virtual views.

Therefore two approaches for analyzing the effect of

geometry distortions caused by depth coding artifacts

were presented. First is a method for generating 3D

surface meshes from depth-images, including a quality

measure for the similarity between meshes from com-

pressed and uncompressed depth based on the Hausdorff

distance. The second approach evaluates how the different

types of depth coding artifacts influence the quality of

rendered virtual views. For this purpose view synthesis

rendering with geometry projection and texture blending

is introduced, including a method for evaluating compres-

sion effects. In contrast to the R-D performance, the

experimental results for the mesh distance as well as the

view synthesis rendering evaluation clearly indicate that

Platelet-based coding performs best, due to its ability to

preserve sharp object boundaries and edges. This leads to

the conclusion that Platelet-based coding enables higher

rendering quality than H.264-based coding, because of

being adapted to the special characteristics of depth-

images. For improving the rate efficiency the approach

may be extended by inter prediction in the future. There is

evidence that a multiview optimized Platelet compression

technique could show further gains, taking into account

that Platelet-based coding outperforms H.264/AVC

and the improvement of H.264/MVC over H.264/AVC.

Consequently the development of advanced depth coding

algorithms in the context of MVD needs to optimize

the performance with respect to geometry distortions,

especially the quality of rendered virtual views. This

requires future research to address joint compression

and rendering algorithms as well as appropriate quality

metrics.
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