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Fig. 12. Paddle trajectory x in the “rally task.”

we can see that a given stroke movement of the paddle is accurately
achieved by the input determined using the proposed method.

VI. EXPERIMENTAL RESULTS

A. Experimental Results of the “Ball Controlling Task”

We evaluated the capability of controlling the flight duration of the
returned ball with the acquired maps. We fixed the desired landing point
as x = �1100 [millimeters], y = 300 [millimeters] and set the desired
flight duration as 0.5 [seconds] and 0.7 [seconds], alternatively. We can
see from Figs. 8 and 9 that the robot achieves the different ball trajec-
tory with the same landing position by controlling the flight duration.

B. Experimental Results of the Rally Task With a Human

We also demonstrate the robot rally with a human (Fig. 10). The
“rally task” means the table tennis rally that people generally play.
We consider it as the repetition of “ball controlling task” described
above. In the experiment, a human hit a ball toward the robot at random
and the robot returned the ball with a fixed duration of flight (dthr =
0:55 [seconds]) to a desired landing point (prx = 1550 [millimeters],
pry = 0:3 � �pbhy) for the opponent’s easy hitting, where �pbhy is a
predicted impact point.

Figs. 11 and 12 show a part of the ball and paddle trajectories
on the x–y plane in the rally where the waiting position of the
paddle is x = 900 [millimeters], y = 0 [millimeters]. We can
see that the robot returns the ball to the point the opponent can
hit easily by changing the impact point back and forward, right
and left. You can see a short movie of “rally task experiment” at
http://robotics.me.es.osaka-u.ac.jp/MiyazakiLab/ Research/ping-
pong/.

VII. CONCLUSION

We have described an approach for a robot to perform the table tennis
task based on two kinds of memory-based learning, one of which ac-
curately achieves the stroke movement of the paddle and the other of
which determines the paddle conditions at the impact point so as to re-
turn the ball to a desired landing point with a specified flight duration.
Experimental results including rallies with a human opponent also have
been reported.
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The Effects of Partial Observability When
Building Fully Correlated Maps

Juan Andrade-Cetto and Alberto Sanfeliu

Abstract—This paper presents an analysis of the fully correlated
approach to the simultaneous localization and map building (SLAM)
problem from a control systems theory point of view, both for linear and
nonlinear vehicle models. We show how partial observability hinders
full reconstructibility of the state space, making the final map estimate
dependent on the initial observations. Nevertheless, marginal filter sta-
bility guarantees convergence of the state error covariance to a positive
semidefinite covariance matrix. By characterizing the form of the total
Fisher information, we are able to determine the unobservable state space
directions. Moreover, we give a closed-form expression that links the
amount of reconstruction error to the number of landmarks used. The
analysis allows the formulation of measurement models that make SLAM
observable.

Index Terms—Estimation, localization, mapping, mobile robots, simul-
taneous localization and map building (SLAM).

I. INTRODUCTION

The study of stochastic models for simultaneous localization and
map building (SLAM) in mobile robotics has been an active research
topic for over 15 years. One of the main difficulties in providing a ro-
bust solution to the SLAM problem resides in the fact that it is a fully
correlated state estimation problem. That is, the state space constructed
by appending the robot pose and the landmark locations is fully corre-
lated, which is a situation that produces partial observability. Moreover,
the modeling of map states as static landmarks yields a partially con-
trollable state vector.

The study of fully correlated estimation due to geometric constraints
was originally addressed by Durrant-Whyte [1]. Within the Kalman
filter (KF) approach to SLAM, seminal work by Smith and Cheeseman
[2] suggested that, as successive landmark observations take place, the
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correlation between the estimates of the location of such landmarks in a
map grows continuously. This observation was ratified by Dissanayake
et al. [3] with a proof showing that the estimated map converges mono-
tonically to a relative map with zero uncertainty. They also showed how
the absolute accuracy of the map reaches a lower bound defined only
by the initial vehicle uncertainty and proved it for a one-landmark ve-
hicle with no process noise.

In the KF approach to SLAM, neither the vehicle nor the landmarks
are ever precisely reconstructed and thus the need to maintain all of the
vehicle-to-landmark and landmark-to-landmark correlations. This situ-
ation poses a scaling problem, and current efforts in SLAM are tailored
at tackling it by estimating a map of relations, in which the absolute
vehicle estimate is not part of the state vector [4], by maintaining an
interconnected set of local coordinate frames, or by decorrelating state
estimates via covariance inflation [5], among other solutions.

Explicit solutions to the continuous time SLAM problem for a one-
dimensional (1-D) vehicle were presented by Gibbens et al. [6] and
Kim [7]. Both works give closed-form expressions for the asymptotic
value of the state error covariance P. Kim observed that, for the case
when not all landmarks are observed at all times, the asymptotic value
on the determinant of P reaches a constant value greater than zero.
Gibbens et al., on the other hand, observed that the rate of convergence
ofP is proportional to the number of landmarks used n, in the form of
the total Fisher information IT = n

1
��2w per unit time (with �2w the

sensor variance). Moreover, they show that the asymptotic value ofP is
independent of the plant variance. The expression used for IT is derived
from a simple likelihood function, one that does not contain the fully
correlated characteristics of the measurement model. In Section II, we
derive a new expression for the total Fisher information in SLAM, from
the maximization of a likelihood function at the value of the state x
that most likely gave rise to the observed dataZk . The analysis yields a
closed-form solution that shows, explicitly, the unobservable directions
of the map state.

In Section III, we show that the filter typically used in SLAM is
marginally stable; in general, which is an undesirable feature in state
estimation, making the final steady state of the filter dependent on the
initial noise parameters, but guaranteeing the existence of at least one
psd solution to the Riccati equation for the steady-state covariance.

General expressions for the controllable and observable subspaces
in SLAM are derived in Section IV and later simplified in Sections V
and VI for a 1-D vehicle (the monobot), and for a planar wheeled ve-
hicle, respectively. We prove, in the end, that the angle between these
two subspaces is determined only by the total number of landmarks in
the map. The result is that, as the number of landmarks increases, the
state components get closer to being reconstructible. We show experi-
mentally that the average error in state estimation is proportional to the
number of landmarks used.

Partial observability makes impossible a full reconstruction of the
map state vector, with typical measurement models, regardless of the
vehicle model chosen. In Section VII, we show how partial observ-
ability in SLAM can be avoided by adding a fixed external sensor to
the state model or, equivalently, by setting a fixed landmark in the en-
vironment to serve as global localization reference. Full observability
guarantees a steady flow of the information about each state component
and prevents the uncertainty (error state covariance) from becoming un-
bounded if, for example, covariance inflation is to be used in the quest
for decorrelation [8].

II. TOTAL FISHER INFORMATION

Under the Gaussian assumption for the vehicle and sensor noises, the
KF is the optimal minimum mean-square error estimator. Also, mini-

mizing the least-squares (LS) criteria E[~xk~x
>
k jZ

k], is equivalent to
the maximization of a likelihood function �(x) given the set of obser-
vations Zk , that is, the maximization of the joint probability density
function (pdf) of the entire history of observations [9]

�(x) =

k

i=1

p(zijx; Z
i�1) (1)

where x is the augmented map state (vehicle and landmark estimates),
andzi is the entire observation vector at time i. Given that the above pdfs
are Gaussian, and thatE[zi] = Hxiji�1, the pdf for each measurement
inSLAMisp(zijZi�1) = N(~ziji�1;0;Si),whereH is theobservation
matrix, and Si = E[~ziji�1~z

>
iji�1] is the innovation covariance.

In practice, however, it is more convenient to consider the log-like-
lihood function ln�(x). The maximum of ln �(x) is at the value of
the state x that most likely gave rise to the observed data Zk and is
obtained by setting its derivative with respect to x equal to zero, which
gives

rx ln �(x) =

k

i=1

H
>
S
�1
i ~ziji�1: (2)

An intuitive interpretation of the maximum of the log-likelihood
is that the best estimate for the state x, in the LS sense, is the
one that makes the sum of the entire set of Mahalanobis distances

k

i=1
~z>iji�1S

�1
i ~ziji�1 as small as possible, which is a measure that

is consistent with the spatial compatibility test described in [10].
LetPr;0j0;Q, andR denote the initial vehicle, plant, and sensor co-

variances, respectively. The Fisher information matrix, a quantification
of the maximum existing information in the observations about the state
x, is defined as the expectation on the dyad of the gradient of ln �(x),
that is, J = E[(rx ln �(x))(rx ln �(x))>]. Taking the expectation
on the innovation error in the preceding equation gives the sum

J =

k

i=1

H
>(HPH> +R)�1H: (3)

It is easy to verify that, in the linear case, this expression for the total
Fisher information is only a function of Pr;0j0;Q, and R. If, on the
other hand, the EKF is used, the JacobianH in (3) should be evaluated
at the true value of the states x0; . . .xk . Since these are not available,
an approximation is obtained at the estimates xiji�1. The pre- and post-
multiplyingH is, in this context, also known as the sensitivity matrix.

A necessary condition for the estimator (the KF) to be consistent in
the mean-square sense is that there must be an increasing amount of
information about the state x in the measurements. That is, as k !1,
the Fisher information must also tend to infinity. Note how, as the total
number of landmarks grows, the total Fisher information also grows,
directly relating the number of landmarks to the amount of information
available for state estimation in SLAM.

Solving for the kth sum term in J for the monobot (a 1-D vehicle
with landmarks located along the mere axis of motion)

Jk =
&ij �&&&

�&&&> S
�1
k

(4)

where &ij is the ijth entry in S�1k , and &&& = [ &1i; . . . ; &ni]. Un-
fortunately, it can be easily shown, at least for the monobot case, that
the first row (or column) of J is equivalent to the sum of the rest of the
rows (or columns), producing a singular total Fisher information ma-
trix. Citing Bar-Shalom et al. [9]: “a singular Fisher information ma-
trix means total uncertainty in a subspace of the state space, that is, the
information is insufficient for the estimation problem at hand.” SLAM
is unobservable. This is a consequence of the form of the JacobianH,
i.e., of the full correlation in SLAM. Zero eigenvalues of H>S�1H
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are an indicator of partial observability, and the corresponding eigen-
vectors give the unobservable directions in state space.

So, for example, for a one-landmark monobot, the innovation vari-
ance is the scalar s = �2r � 2�rf�r�f + �2f + �2w , and, since H =
[�1; 1], the Fisher information matrix in (3) evaluates to

J =
1 �1

�1 1

k

i=1

1

si
: (5)

The unobservable direction of the state space is the eigenvector as-
sociated with the null eigenvalue of J; we denote it for now as EKerO

(the name will be clear soon) and it evaluates to

EKerO =
1

1
: (6)

III. STEADY-STATE BEHAVIOR OF SLAM

Let the linearized SLAM state model be

xk+1 = Fxk +Gvk (7a)

zk+1 = Hxk+1 +wk+1: (7b)

Moreover, letK be the Kalman gain matrix. In SLAM, the matrixF�
KH is semistable, i.e., it has a unit circle eigenvalue [11]. Thus, the
one-step-ahead form of the prediction for the error state dynamics

~xk+1jk = (F�KH)~xkjk�1 +Gvk �Kwk (8)

is bounded in the steady state by a constant value, subject to the filter
initial conditions.

The steady-state error covariance matrix is given by the solution of
the one-step-ahead Riccati equation

P = (F�KH)P(F�KH)> +GQG
> +KHRH

>
K
> (9)

which, by the same reason, converges at least to one psd solution. For
the linear case, the solution of (9) is a function of Pr;0j0;Q;R and
the total number of landmarks n. Note, however that, for the nonlinear
case, the computation of the Jacobians F and H will in general also
depend on the steady-state value of x.

For a linear robot with perfect data association and constant vehicle
and sensor variances, the computation ofK = PH>(HPH>+R)�1

could be performed offline. That is, the asymptotic behavior of P and
its rate of convergence are always the same, regardless of the actual
motions and measurements.

IV. CONTROLLABLE AND OBSERVABLE SUBSPACES

To see what part of the state space is compromised by full corre-
lation, we now develop closed-form expressions for the bases of the
controllable and observable subspaces in SLAM and relate them to the
total number of landmarks used. The controllability matrix for the plant
in 7(a)–(b) is

C = [G FG . . . F
dimx�1

G]: (10)

The dimensionality of the controllable subspace, spanned by the
column space of C, is rankC = dimxr , regardless of the number of
landmarks in the map. Obviously, the only controllable states are the
ones associated with the vehicle motion. The observability matrix of
our system becomes

O =

H

HF
...

HFdimx�1

: (11)

The rank of O indicates the dimensionality of the observable
subspace, which, in turn, is spanned by the row space of O.
rankO = dimx�dim x

(i)
f , with x

(i)
f any landmark in x. That

is, all but one landmark size of the state vector x is reconstructible.

V. RELATIONSHIP BETWEEN SUBSPACES: THE MONOBOT

Consider the case of the one-landmark monobot. By substituting the
resulting expressions for the model Jacobians, the controllability and
observability matrices reduce to

C =
1 1

0 0
; O =

�1 1

�1 1
: (12)

The controllable subspace has a basis of the form (q; 0)>, clearly
indicating that the only dimension in the state space that can be con-
trolled is the one associated with the motion of the robot. The observ-
able subspace on the other hand, with basis (r;�r)>, shows how the
observed robot and landmark locations are fully correlated. The unob-
servable subspace is the orthogonal complement of ImO> and has a
basis (r; r)>. An expression for it was already derived from the anal-
ysis of the total Fisher information matrix and is given in (6). The name
EKerO indicates that it is a basis for the null space of O.

A measure of the error incurred while trying to reconstruct the
state x from correlated observations is given by the angle between
these two subspaces. For the one landmark monobot, the angle
is � = 6 ImCImO> = �=4. The angle � indicates how close
noise-driven observations are from fully revising the robot part of the
state space.

What happens if we add more landmarks to the environment? Will
the vehicle and landmark location estimates improve or degrade? Will
we be able to achieve an uncoupled reconstruction of the entire state
space? The answer to the above questions is “improve” but “no.”

Consider the two-landmark monobot case. A possible set of bases
for the controllable and observable subspaces are

EImC =

1

0

0

; EImO =

1 1

�1 0

0 �1

(13)

and the angle between these two subspaces can be computed as the
smallest nonnull singular value of the product of their orthonormal
bases. � = 6 ImCImO> = 163�=832. Following this procedure, we
computed the value of � for a three-landmark monobot model, fur-
ther reducing to � = �=6. Also, as we add more landmarks to the
map, the angle between the observable and controllable subspaces re-
duces monotonically. Fig. 1(a) shows experimentally the decrease in
� as landmarks are added to the map. Such monotonic reduction in
� suggests that our measurement noise-driven corrections to the map
state estimate would reconstruct the vehicle localization estimate closer
to the actual value of the vehicle pose.
Theorem 1: In the case of a linear 1-D robot, the angle between

the controllable and observable subspaces in the KF-SLAM algorithm
depends only on the total number of landmarks used n and is given by
� = arccos n=(n+ 1).

Proof: Generalizing (13) to the n-landmark case, a set of pos-
sible bases for the controllable and observable subspaces are given by

EImC = [q] = (
1

0n�1
), and EImO = [r1 . . . rn] = (

11�n

�I
),

respectively. Let p be the projection of EImC onto EImO .
p is easily computed as the sum of the individual projec-
tions of q onto each element ri of the basis of the observable
subspace, i.e., p = n

i=1(q
>ri)=(r

>
i ri)ri Substituting the

basis of the controllable subspace gives the reduced expression
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Fig. 1. (a) ImCImO . Angle between the observable and controllable subspaces. (b) Reduction of the average monobot localization error x �x with
respect to the number of landmarks used. The results correspond to a Monte Carlo simulation over 100 SLAM runs. The dotted lines show the extent of the data
for the entire set of runs, and the boxes contain marks at the lower, median, and upper quartiles.

p = (1=2) n

i=1
ri = (1=2)

n

�1n�1
Finally, the angle be-

tween p and q, and consequently between the two subspaces, is
� = arccos(p>q)=(kpkkqk) = arccos n=(n+ 1).

As the number of landmarks grows, the observable subspace gets
closer to the controllable part of the state space (the vehicle localization
states). limn!1 � = 0. It is unrealistic, however, to have an infinite
number of landmarks, and a compromise has to be made between the
possibility of including as many landmarks as possible and the amount
of information that new observations give. Also, one has to bear in mind
that, as more and more landmarks are added to the map, their associated
measurement noise is also added.

It has been argued that the performance of any SLAM algorithm
would be enhanced by concentrating on fewer, better landmark obser-
vations [6]. That is certainly true, as little gain (little reduction in �) is
attained when going from 25 to 125 landmarks compared to the move
from 1 to 5 or 5 to 25.

In Fig. 2, we have plotted the results of using the original fully cor-
related KF approach to SLAM for a monobot that starts at location
xr;0j0 = �1m and moves along a straight line with a temporal sinu-
soid trajectory returning to the same point after 100 iterations. Land-
marks are located at xf = 1m. A plant noise model proportional to
the motion command and a measurement noise model proportional to
the distance from the sensor to the landmark are used. The dotted lines
indicate 2� bounds on the state estimates.

The effects of partial observability manifest the dependence on the
initial conditions. Note how both the vehicle and landmark mean lo-
calization errors do not converge to zero. Their steady-state value is
subject to the error incurred at the first observation. That is, the filter is
marginally stable (the matrix F�KHF has a pole in one [11]).

However, a Monte Carlo simulation over 100 SLAM runs showed
filter unbiasedness, which is a property of optimal stochastic state esti-
mation (KF). That is, the average landmark localization error over the
entire set of simulations was still zero, thanks to the independence of
the initial landmark measurement errors at each test run.

The steady-state error for the robot and landmark localization is less
sensitive to the initial conditions when a large number of landmarks
are used. The reason is the same as for the Monte Carlo simulation, the
observations are independent, and their contribution averages at each
iteration in the computation of the localization estimate. The results
of the Monte Carlo simulation are shown in Fig. 1(b), depicting the

effect of the increase in the number of landmarks on the average vehicle
localization error.

VI. RELATIONSHIP BETWEEN SUBSPACES: PLANAR ROBOT

The reconstructibility issues presented for the linear and 1-D robot
of the previous section nicely extend when studying more complicated
platforms. Consider a planar robot, a nonlinear wheeled vehicle with
three degrees of freedom, and an environment consisting of two-dimen-
sional (2-D) point landmarks located on the floor.

The dimensionality of the controllable subspace is dimxr = 3, and,
for the specific case in which only one landmark is available, a basis
for the controllable subspace is simply

EImC =
I

02�3
:

The dimensionality of the observable subspace is, for this particular
configuration, rankO = 3. This last result is easily verified with simple
symbolic manipulation of the specific expression for the state model in
[12]. Possible bases for ImO> and for the null space of O (the unob-
servable subspace) are

E
ImO =

1 0 0

0 1 0

0 0 1

�1 0 0

0 �1 0

EKerO =

1 0

0 1

0 0

1 0

0 1

:

Theonly independentlyobservablestate is theoneassociated to the robot
orientation�.Theotherfourstates, theCartesiancoordinatesoftherobot,
and landmark locationsspanaspaceofdimension2.Evenwhen ImC and
ImO> bothspan 3,weseethat theinequalityImC 6= ImO> stillholds,
as in the case of the monobot. That is, the observable and controllable
subspaces for the one-landmark three-degree–of–freedom robot SLAM
problem correspond to different three-dimensional (3-D) subspaces in
5, and their intersection represents the only fully controllable and ob-

servable state,which, for thisparticular vehiclemodel, is the robotorien-
tation. Once more, a measure of the reconstruction error incurred when
estimating the vehicle pose from correlated observations is given by the
angle between these two subspaces.

Resorting again to a singular value decomposition for the computa-
tion of a pair of orthonormal bases for ImC and ImO>, we have that,
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Fig. 2. Full-covariance KF SLAM for a monobot in a sinusoidal path starting at x = �1 m, during 100 iterations. The noise-corrupted sinusoidal vehicle
trajectory is indicated by the darkest curve in the first column of plots. In the same column, and close to it, is a lighter curve that shows the vehicle location estimate
as computed by the filter, along with a pair of dotted lines indicating 2� bounds on such estimate. The dark straight lines at the 1-m level indicate the landmark
location estimates, and the lighter noise corrupted signals represent sensor measurements. Also shown are a pair of dotted lines for 2� bounds on the landmark
location estimates. The second column of plots shows the vehicle localization error and its corresponding covariance, also in the form of 2� dotted bounds. The
last column shows the same for the landmark estimates.

for the one-landmark planar robot case, � = �=4. For a two-land-
mark map, � = 163�=832, for a three-landmark model, � = �=6,
and, as we add more and more landmarks to the environment, the angle
between the controllable and observable subspaces reduces monotoni-
cally, in exactly the same manner as in the case of the monobot.

Theorem 2: In the case of a nonlinear planar robot with three DOF,
the angle between the controllable and observable subspaces in the
EKF-SLAM algorithm depends only on the total number of landmarks
used n and is given by � = arccos n=(n+ 1).

Proof: Thanks to the orthogonality of the four fundamental sub-
spaces, the angle between the observable and controllable subspaces is
exactly the same as the angle between their complementary subspaces.
That is, � = 6 KerC>KerO. The controllable subspace has rank
dimxr = 3, regardless of the number of landmarks; and the size of the
basis for the observable subspace would depend onn. Now the roles are
reversed. The dimension of EKerC grows with respect to the number

of landmarks but maintains a very simple form EKerC = [
03�2n

I
].

The null complement of the observable subspace, on the other hand,
has a fixed number of columns (just two), and it can be easily
shown by inspection that EKerO = [ I 02�1 I � � � I ]>2�(3+2n).
These are precisely the directions along which our state space is

unobservable, clearly showing that, in the EKF-SLAM model, the
Cartesian coordinates of the robot and landmark locations are all
fully correlated. The angle between these two subspaces is again
given by the smallest singular value of an orthonormalized version of
the product EKerC

>
EKerO , in which EKerC = UC�CV

>
C , and

EKerO = UO�OV
>
O . That is,U>CUO = 1=

p
n+ 1[ I � � � I ]>2n�2,

and � = arccos�min(U
>
CUO) = arccos n=(n+ 1).

VII. FULL OBSERVABILITY

In Section II, we characterized the unobservable subspace in SLAM
as the subspace spanned by the null eigenvectors of the total Fisher in-
formation matrix. Furthermore, we showed in Sections IV–VI how the
unobservable part of the state space is precisely a linear combination
of the landmark and robot pose estimates. In order to gain full observ-
ability, we propose to extend the measurement model. We present two
techniques to achieve this. One is to let one landmark serve as a fixed
global reference, with its localization uncertainty independent of the
vehicle pose. The second proposed technique is the addition of a fixed
external sensor, such as a camera, a GPS, or a compass, that can mea-
sure all or part of the vehicle location state at all times, independent of
the landmark estimates. Both techniques are based essentially on the
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Fig. 3. Full-covariance fully observable KF SLAM for a monobot in a sinusoidal path starting at x = �1 m, during 100 iterations. The global reference is
located at the origin.

same principle. Full observability requires an uncorrelated measure-
ment Jacobian or, equivalently, a full rank Fisher information matrix.

A. A Fixed Global Reference

The plant model is left untouched, i.e., xk+1 = xk + uk + vk , and
the measurement model takes now the form

z
(0)
k

zk
=

�1 01�n

�1n�1 I
x+

w
(0)
k

wk

: (14)

One of the observed landmarks is to be taken as a global reference at the
world origin. No map state is needed for it. The zeroth superscript in the
measurement vector is used for the consistent indexing of landmarks
and observations with respect to the original model. It can be easily
shown that the observability matrix for this new model is full rank.

The innovation covariance matrix for the augmented system SO;k is
of size (n + 1)� (n+ 1), and its inverse can be decomposed in

S
�1
O;k =

&O;00 &O;01 . . . &O;0n

&O;01

... Ŝ
�1
k

&O;0n

(15)

where &O;ij is the ijth entry in S�1O;k; &&&O = [ &O;1i; . . . ; &O;1i],
and Ŝ�1k is its submatrix associated with the landmarks that are under

estimation (excluding the anchor observation). The kth element of the
Fisher information matrix sum in (3) is now

JO;k =
&O;ij �&&&O

�&&&>O Ŝ
�1
k

: (16)

Unlike in (4), this form of the Fisher information matrix is full rank.
Moreover, from the properties of positive definite matrices, if JO;k is
positive definite, the entire sum that builds up JO is also positive defi-
nite.

Fig. 3 shows the results of applying full observability to the same
monobot model as the one portrayed in Fig. 2. Note how the steady
state (robot pose and landmark locations) is now unbiased with respect
to the initial state estimates. Furthermore, state covariances are also
smaller than those in Fig. 2.

B. External Sensor

Instead of using one of the landmarks as a global reference, one could
also use a fixed sensor to measure the position of the robot, for example,
by positioning a camera that observes the vehicle at all times. For such
cases, the monobot measurement model may take the form

z
(0)
k

zk
=

1 01�n

�1n�1 I
x +

w
(0)
k

wk

: (17)

The characteristics of the observability matrix, and the Fisher infor-
mation matrix, are exactly the same as for the previous case. This
new model is once more fully observable. The results are theoretically
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equivalent to the previous case. The choice of one technique over the
other would depend on the availability of such external sensor and on
its measurement noise covariance characteristics.

The key point here is that we have proved that full observability,
i.e., zero mean steady-state error, is indeed possible in SLAM without
the need of an oracle (an external sensor) whose reading needs to be
available at all times in order to preserve observability, but by simply
anchoring the first observed landmark to the global reference frame.

As with any sequential innovation KF for a fully observable system,
partial observability occurs until the entire set of observations span-
ning the state space is completed. So, if the anchor landmark is not
observed for a certain period of time, the filter will be reconstructing a
partially observable state estimate. But, when the anchor landmark is
reobserved, the system becomes fully observable again.

Full observability however, cannot be guaranteed if the vehicle loses
permanent sight of the initial anchor. Nevertheless, the effect of partial
observability is precisely the steady-state error (and larger covariance)
due to coupled error at the first iteration of the filter. So, in practice, full
observability need only be guaranteed at the beginning of the filter.

Finally, a good strategy for any local submap approach to SLAM is
to build many local maps, with one attached to each anchor needed
to cover the entire mapped area. In this way, full observability will
guarantee optimal vehicle and landmark localization, with the smallest
possible variances for each submap.

C. Planar Vehicle

The results from the previous section are easily extensible to more
complicated vehicle models, provided the linearization technique
chosen is sufficiently accurate. For example, the measurement model
of a global reference fixed at the origin, for the nonlinear vehicle from
Section VI, is h(0) = �R>t+w

(0), and its corresponding Jacobian
is

H
(0) = [�R> �

_R>t 02�2n]: (18)

The external sensor case is even simpler, h(0) = t+w
(0), and

H
(0) = [I 02�(2n+1)]: (19)

In both cases, the symbolic manipulation of (18) and (19) with
a commercial algebra package, produced full rank observability
matrices. That is, for the planar mobile robot platform used, only
one 2-D global reference, or the use of a sensor that can measure the
xy position of the robot, are sufficient to attain full observability in
SLAM.

VIII. CONCLUSION

We have shown how partial observability hinders full recon-
structibility of the state space in the KF approach to SLAM. Partial
observability makes the final map dependent on the initial obser-
vations. Nevertheless, marginal stability guarantees convergence of
the Riccati equation to a positive semidefinite covariance matrix.
The effects of partial observability can easily be remedied either by
anchoring the map to the first landmark observed or by having an
external sensor that sees the vehicle at all times.

Guaranteeing full observability versus simply neglecting the steady-
state error of the partially observable case has the advantage of pro-
ducing smaller vehicle and landmark covariance estimates.
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