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Phthalates are commonly used as plasticizers in the manufacturing of flexible polyvinyl chlo-
ride products. Large production volumes of phthalates and their widespread use in common
consumer, medical, building, and personal care products lead to ubiquitous human expo-
sure via oral ingestion, inhalation, and dermal contact. Recently, several phthalates have
been classified as reproductive toxicants and endocrine-disrupting chemicals based on
their ability to interfere with normal reproductive function and hormone signaling. There-
fore, exposure to phthalates represents a public health concern. Currently, the effects of
phthalates on male reproduction are better understood than the effects on female reproduc-
tion. This is of concern because women are often exposed to higher levels of phthalates
than men through their extensive use of personal care and cosmetic products. In the
female, a primary regulator of reproductive and endocrine function is the ovary. Specifi-
cally, the ovary is responsible for folliculogenesis, the proper maturation of gametes for
fertilization, and steroidogenesis, and the synthesis of necessary sex steroid hormones.
Any defect in the regulation of these processes can cause complications for reproductive
and non-reproductive health. For instance, phthalate-induced defects in folliculogenesis
and steroidogenesis can cause infertility, premature ovarian failure, and non-reproductive
disorders. Presently, there is a paucity of knowledge on the effects of phthalates on normal
ovarian function; however, recent work has established the ovary as a target of phthalate
toxicity.This review summarizes what is currently known about the effects of phthalates on
the ovary and the mechanisms by which phthalates exert ovarian toxicity, with a particular
focus on the effects on folliculogenesis and steroidogenesis. Further, this review outlines
future directions, including the necessity of examining the effects of phthalates at doses
that mimic human exposure.

Keywords: phthalates, phthalic acid, ovary, female reproductive toxicology, ovarian toxicology, folliculogenesis,
steroidogenesis

PHTHALATES
Phthalates are ubiquitous environmental toxicants to which
humans are exposed on a daily basis (1). They are a group of
synthetic chemicals composed of alkyl diesters of phthalic acid
and are named based on their varying lengths of alkyl chains
(Figure 1). Normally, phthalates in their pure form are colorless,
odorless, oily liquids with high lipophilic properties, and low sol-
ubility in water. Phthalates are predominantly used as plasticizers
in polyvinyl chloride consumer, medical, and building products to
impart flexibility, as matrices and solvents in personal care prod-
ucts, and as excipients in medications and dietary supplements. As
plasticizers, phthalates are present in commonly used items such
as flooring, roofing, carpeting, shower curtains, packaging equip-
ment, food and beverage packaging, automotive parts, and even in
children’s toys. Interestingly, di(2-ethylhexyl) phthalate (DEHP)
is present in common medical devices such as tubing, blood and
intravenous bags, dialysis equipment, and in the manufacturing
of disposable and surgical gloves (2). As matrices and solvents,
phthalates are commonly found in consumer and cosmetic prod-
ucts ranging from hairsprays and perfumes to pesticides and wood
finishes. Further, they are frequently used as adhesives, defoam-
ing agents, and lubricants (3). As excipients, some phthalates are

incorporated in the enteric coating of oral medications and in
dietary supplements ranging from certain fish oils to probiotics
(4, 5). Thus, there are multiple means of phthalate exposures due
to their presence in a wide range of products used by humans on
a daily basis.

Daily exposure to phthalates is also attributed to their wide-
spread production. The global production and use of phthalates
exceeds 18 billion pounds per year, in which the majority of
phthalates are used in polyvinyl chloride products (6). The most
commonly used phthalate is DEHP, which belongs to a group
of phthalates known as dioctyl phthalates. Domestic production
of dioctyl phthalates exceeds 300 million pounds annually (7).
Dibutyl phthalate (DBP) and diethyl phthalate (DEP) are also pro-
duced in high volumes and are among the most commonly used
phthalates in consumer products. Production and importation of
DBP was estimated to be between 10 and 50 million pounds in the
United States in 2006 (8). Further, production of DEP reached 50
million pounds in the United States in 2005 (9).

Phthalates are non-covalently bound to plastics, meaning they
frequently leach from these items into environmental sources such
as in the atmosphere, soil and sediments, and natural water bod-
ies (10–12). Phthalate contamination in the air can range from
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Parent compound Monoester metabolite

Di(2-ethylhexyl) phthalate (DEHP) 

Dibutyl phthalate (DBP) 

Diethyl phthalate (DEP) 

Butyl benzyl phthalate (BBP)

Diisobutyl phthalate (DIBP)

Diisononyl phthalate (DINP) 

Mono(2-ethylhexyl) phthalate (MEHP) 

Monobutyl phthalate (MBP)

Monoethyl phthalate (MEP)

Monobenzyl phthalate (MBzP)

Monoisobutyl phthalate (MIBP)

Monoisononyl phthalate (MINP)

FIGURE 1 | Chemical structures of common phthalates and their
monoester metabolites that are mentioned in this review.

1 to 50 ng/m3, but DEHP is often found at higher levels (up to
3640 ng/m3) (10). Once in the air, phthalates typically bind to
dust particles and are carried back to ground level (7). Phthalates
are also detectible in sediments (0.01–115 mg/kg), agricultural
soil (0.02–264 mg/kg), and urban soil (0.01–30.1 mg/kg) (10).
Urban sewer wastewater is another source of phthalate accumu-
lation in the environment. Median phthalate levels are 3.46 µg/l
in industrial wastewater, 61.3 µg/l in residential wastewater, and
66.0 µg/l in man-made wastewater (10). Further, phthalates are
found in surface water, including freshwater, saltwater, and indus-
trial water, at levels ranging from 0.29 to 1.24 µg/l (10, 13–15).
Based on their presence in natural water bodies, fish and other
aquatic animals are also exposed to phthalates. Although few
studies have measured the levels of phthalates in fish popula-
tions, levels of DEHP and DBP in freshwater fish are 1.8 µg/kg
each (16). Further, levels of phthalates in saltwater biota range
from 0.0022 to 28.7 µg/g, and interestingly, phthalates do not
appear to accumulate in trophic positions (17). Although few
studies have investigated the lifespan of phthalates in the environ-
ment, phthalates are considered fairly stable in the environment
and can persist for quite a long time (7, 18–20). Phthalates in
the air and soil dissolve very slowly, whereas phthalates in sur-
face water dissolve quicker in water with a half-life of 2–3 weeks
(7, 18–20).

The widespread production of phthalates, their use in com-
monly used products, and their presence in the environment leads
to daily human exposure via oral ingestion, inhalation, and dermal
contact. The most common routes of exposure are via oral inges-
tion from food packaging and use of cosmetic products, but high
levels of phthalates are also present in household dust (21, 22).
Based on large production volumes, widespread use, and environ-
mental contamination, biomonitoring data suggest that 75–100%
of the population is exposed to phthalates on a daily basis (23–25).
Thus, exposure to phthalates is ubiquitous in human populations.

Once consumed, phthalates are rapidly metabolized in the gut,
liver, and blood by esterases and lipases. Initially, the phthalate
diester is cleaved to its respective hydrolytic monoester where only
one alkyl chain remains on the phthalic acid backbone, and inter-
estingly, it is often the monoester metabolites that induce toxicity.
Depending on the size of the remaining monoester metabolite,
the alkyl chain can undergo further oxidative metabolism and
ultimately glucuronidation depending on the species (21, 26).
These hydrolytic monoester and oxidative monoester metabo-
lites, in addition to the parent phthalates, are used as biomarkers
to estimate daily human exposure levels (26). Careful attention
to the metabolite used for biomonitoring is essential for accu-
rate estimations of daily exposure levels. For example, it is more
accurate to measure oxidative monoester metabolites from high
molecular weight phthalates, such as DEHP, than it is to mea-
sure the hydrolytic monoester metabolite (26). In one study,
the concentrations of the oxidative monoester metabolites of
DEHP, mono(2-ethyl-5-oxohexyl) phthalate and mono(2-ethyl-
5-hydroxyhexyl) phthalate, were found to be four-fold higher than
the hydrolytic monoester metabolite, mono(2-ethylhexyl) phtha-
late (MEHP) (27). Thus, some metabolites are more sensitive
biomarkers than others.

As mentioned, the vast majority of the population is exposed
to phthalates on a daily basis, but the level of exposure to each
phthalate differs. It is estimated that the average total daily indi-
vidual ambient exposure to DEHP ranges from 0.21 to 2.1 mg/day
for the general population (28–32). Thus, the estimated range of
daily human exposure to DEHP is 3–30 µg/kg/day based on uri-
nary metabolite concentrations; however, measurements of DEHP
in household dust can reach up to 700 mg/kg, potentially increas-
ing exposure levels in certain individuals (22, 29, 33). Koch and
Calafat compiled data from the United States and German pop-
ulations where urinary metabolites were used to estimate daily
exposure levels for other commonly used phthalates, such as
DEP, butyl benzyl phthalate (BBP), DBP, and diisobutyl phtha-
late (DIBP). The estimated range of daily human exposure to DEP
is 2.32–12 µg/kg/day, BBP is 0.26–0.88 µg/kg/day, DBP is 0.84–
5.22 µg/kg/day, and DIBP is 0.12–1.4 µg/kg/day (26). Based on
these exposure levels, phthalates have been identified as top cont-
aminants present in human tissues. As stated above, measureable
levels of phthalates are found in human urine samples tested and
in 95% of human blood samples tested (1, 22, 23, 25, 34). In partic-
ular to reproduction and development, DEHP and its metabolites
are present in 90–100% of amniotic fluid samples from second
trimester fetuses, cord blood samples from newborns, breast milk
from nursing mothers, and even in human ovarian follicular fluid,
indicating their ability to reach the ovary (1, 23, 34, 35).
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Interestingly, certain individuals are exposed to much higher
levels of phthalates than the general population. Not surprisingly,
the levels are much higher in humans occupationally exposed to
phthalates. For example, it was estimated that in the 1980s, over
340,000 and 239,149 workers were exposed to DEHP and DEP,
respectively (36). Further, the exposure level of DEHP to these
workers was between 143 and 286 µg/kg/day (37).

The highest exposures to phthalates often result from med-
ical therapies. Both DEP and DEHP are incorporated in medical
equipment, and DEP and DBP can be found in the enteric coat-
ing of oral medications. Based on its use in medical equipment,
levels of DEHP can reach 8.5 mg/kg/day following blood transfu-
sions, 0.36 mg/kg/day following hemodialysis, and 14 mg/kg/day
following extracorporeal membrane oxygenation procedures in
neonates (38). Additionally, infants in intensive neonatal care units
had levels of DEHP metabolites that were 14 times higher than
infants in a low-intensive unit (39). Based on their use in oral
medications, urinary levels of monoethyl phthalate (MEP), the
monoester metabolite of DEP, and monobutyl phthalate (MBP),
the monoester metabolite of DBP, in women of childbearing age
were over 12 and 200 times higher, respectively, than in a refer-
ence population (40). In another study, urinary measurements of
MBP were 50 times higher in subjects that reported using oral
medications containing DBP than in controls (5).

Important for the topic of this review, women have a phtha-
late exposure profile that is different than that in men. In fact,
females at all ages have increased urinary phthalate metabolite
levels when compared to men at that same age (23). Compared
to males, females have higher levels of MEP, MBP, monoben-
zyl phthalate (MBzP), and MEHP (23). Interestingly, women of
reproductive age have the highest exposure levels of MBP than
any other age/sex group (41). These findings are likely attributed
to the widespread use of phthalates, in particular MBP, in common
cosmetic and personal care products that females use on a daily
basis, including perfume, lotion, nail polish, and hairspray.

Exposure to phthalates is a public health concern because
several have been identified as reproductive and developmental
toxicants and endocrine-disrupting chemicals (EDCs). In females,
chronic occupational exposure to high levels of phthalates has
been associated with decreased rates of pregnancy and high rates
of miscarriage (1, 42). Further, high urinary phthalate levels are
associated with pregnancy complications such as anemia, toxemia,

and preeclampsia in women (43). In laboratory animals, phtha-
lates reduce implantations, increase resorptions, decrease fetal
weights of offspring, and decrease incidence of pregnancy (44, 45).
The mechanisms by which phthalates disrupt these endocrine and
reproductive events remain unknown. Interestingly, the ovary is a
critical regulator of these processes, and the effects of phthalates
on ovarian function remain poorly understood. The next sections
will provide background on the importance of normal ovarian
function for reproductive and non-reproductive health and how
EDCs, like phthalates, can disrupt ovarian function.

THE OVARY
The ovary is the female gonad responsible for reproduction and
is a primary component of the female endocrine system. This
heterogeneous organ is comprised of a surface epithelium sur-
rounding the ovary, an outer cortex region containing ovarian
follicles, corpora lutea, and stroma, and an inner medulla region
containing a vast network of blood vessels, lymphatic vessels,
and nerves. The main functions of the ovary include maturation
and ovulation of the female gamete (oocyte) for fertilization and
secretion of sex steroid hormones necessary for reproductive and
non-reproductive health.

FOLLICULOGENESIS
One of the primary functions of the ovary is the development and
maturation of follicles to allow for ovulation of the oocyte for sub-
sequent fertilization. The ovarian follicle is the functional unit of
the ovary that consists of the oocyte surrounded by two somatic
cell types termed the granulosa cells and the theca cells. Within the
ovarian unit, follicles undergo several irreversible developmental
transitions, and this process of follicular development is known as
ovarian folliculogenesis (Figure 2).

In mammals, the female is born with a finite number of follicles;
thus, the follicular reserve is set at birth and represents a female’s
reproductive potential and reproductive lifespan (46). These folli-
cles are first formed during the later stages of fetal life in the human
and during the early post-natal life in the rodent. The process of
follicle formation is known as germ cell nest breakdown. During
embryonic development, primordial germ cells, which will give
rise to oocytes, migrate from the yolk sac to the genital ridge where
the undifferentiated gonad resides (47). These germ cells, now
termed oogonia, massively proliferate via mitosis and develop in

Primordial

Oocyte

Squamous granulosa cells

Primary 

Cuboidal granulosa cells

Preantral

Theca cells

Antral 

Antral space

Corpus Luteum 

Luteal cells

FIGURE 2 | Ovarian folliculogenesis. The female is born with a finite
number of primordial follicles that can mature through the primary,
preantral, and antral stages of development. The follicle contains the
gamete (oocyte) surrounded by granulosa cells (shown in red) and

theca cells (shown in green), which are somatic cells. Following
ovulation, the antral follicle differentiates into the corpus luteum, and
the granulosa and theca cells become large and small luteal cells,
respectively.
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clusters or nests in which squamous pre-granulosa cells surround
the oogonia (48). Once established in the germ cell nests, mitosis
of oogonia is ceased and meiosis begins. It is here that the oogonia
become oocytes, and the oocytes progress through meiosis until
they are arrested in the diplotene stage of meiotic prophase I (49).

Ovarian follicle assembly then occurs around the sixth to ninth
month of gestation in the human and around post-natal day
3 in the rodent in which the most immature follicle type, the
primordial follicle, is formed (50, 51). For primordial follicle
assembly to occur, the germ cell nests must undergo programed
cell death of oocytes, primarily through regulation of the B-cell
lymphoma/leukemia-2 (BCL-2) family members (52–56) and the
actions of steroid hormone and intraovarian growth and tran-
scription factors (57,58). The interaction of these molecular events
leads to oocyte association with a single layer of flattened, squa-
mous pre-granulosa cells, thus, the formation of the primordial
follicle.

Once the primordial follicle population is established, the folli-
cle is destined to three fates: to remain quiescent for varying lengths
of time to constitute the ovarian reserve, to directly undergo atre-
sia, which is follicular programed cell death via apoptosis, or to
activate into the growing population of follicles to become pri-
mary follicles, a process termed primordial follicle recruitment.
Primordial follicle recruitment is a tightly regulated process con-
trolled by multidirectional communication between the oocyte,
granulosa cells, and surrounding somatic cells that will give rise
to the theca cells. This process is gonadotropin-independent and
relies on paracrine and autocrine regulation by multiple intrin-
sic ovarian growth factors that work through several different
signaling pathways (46, 58–61). Primordial follicle quiescence is
maintained by factors that suppress follicle activation, whereas
primordial follicle recruitment is initiated by factors that activate
development. These stimulatory and inhibitory factors exist in a
balance to maintain primordial follicle survival so that downregu-
lation of inhibitory factors and/or overactivation of stimulatory
factors favor an environment conducive for primordial follicle
recruitment (62).

Once activated, primary follicles contain a larger oocyte that has
initiated growth surrounded by a single layer of cuboidal granulosa
cells. Primary follicles then develop into preantral follicles, also
termed secondary and tertiary follicles that contain the oocyte sur-
rounded by at least two layers of cuboidal granulosa cells and two
outer theca cell layers. Follicles at this stage, because of the presence
of both granulosa and theca cells, are gonadotropin-responsive
and begin synthesizing sex steroid hormones.

Preantral follicles then develop further into antral follicles,
which are the most mature follicle type in the ovary. Antral folli-
cles contain the oocyte surrounded by several layers of cuboidal
granulosa cells with a fluid filled space, termed the antral space,
and two outer theca cell layers.

Each fertile menstrual/estrous cycle requires the presence of
a pre-existing antral follicle population that responds to cyclic
gonadotropins, and this process is termed cyclic recruitment (60).
Therefore, folliculogenesis must remain dynamic to allow for the
continual generation of antral follicles to undergo cyclic recruit-
ment for potential ovulation. As antral follicles continue to mature,
they produce estradiol and their receptivity to the gonadotropins,

follicle-stimulating hormone (FSH) and luteinizing hormone
(LH), increases. The increase in estradiol initiates the LH surge
causing one or multiple follicles to ovulate depending on the
species. Once the oocyte is released, the remaining granulosa and
theca cells differentiate into large and small luteal cells respectively,
and the remaining structure is termed the corpus luteum.

Not all follicles are destined to develop and ovulate, and in
fact, approximately 99% of follicles undergo atresia. At birth, the
human ovary contains approximately two million follicles, but
by puberty, the number of follicles declines to roughly 400,000
due to atretic demise. Further, of the available follicles at puberty,
only about 400 of them will ovulate throughout the reproduc-
tive lifespan, whereas the others undergo atresia (50). Atresia is a
coordinated process of follicle degeneration via hormonally con-
trolled apoptosis (63). Although atresia can occur at all stages of
follicle development, early antral follicles are most susceptible to
death in which apoptosis can occur in both somatic and germ
cells. The regulation of follicular atresia involves a balance of pro-
and anti-apoptotic factors. Specifically, gonadotropins, estrogens,
insulin-like growth factor-I, and interleukin-1β are anti-apoptotic
and help prevent follicles from undergoing atresia (64–70). Con-
versely, tumor necrosis factor-α, Fas–Fas ligand, and androgens
promote apoptosis and ultimately atresia (71–74). The interplay
of these pro- and anti-apoptotic factors primarily converges on
the BCL-2 signaling pathway, with its own pro- and anti-apoptotic
proteins, to regulate atresia (53–56).

OVARIAN STEROIDOGENESIS
Another primary function of the ovary is to produce sex steroid
hormones, a process termed ovarian steroidogenesis. Steroido-
genesis is primarily conducted by the mature antral follicle and
the corpus luteum following ovulation. The process of steroido-
genesis involves the enzymatic conversion of cholesterol to 17β-
estradiol and other necessary sex steroid hormones to regulate
reproductive and non-reproductive health (Figure 3). Prior to the
peri-ovulatory period, the antral follicle increases the synthesis
of estradiol to promote the ovulatory surge of LH. As ovula-
tion approaches, the peri-ovulatory follicle increases production of
progesterone to promote ovulation and formation of the corpus
luteum. Once the follicle has transitioned to the highly vascu-
larized corpus luteum, vast amounts of progesterone as well as
estradiol are produced.

The steroid hormones produced by the ovary act on numerous
target tissues associated with reproductive and non-reproductive
function. For reproductive function, steroid hormones act on
the ovary itself as well as the brain, pituitary, oviduct, uterus,
cervix, vagina, and mammary gland. The actions of these steroid
hormones include maintenance of the reproductive tract; estab-
lishment of a hormonal milieu for ovulation, fertilization, implan-
tation, and pregnancy; and control of menstrual/estrous cyclicity
by utilizing feedback loops in the brain and pituitary. These steroid
hormones also act in non-reproductive tissues such as the brain,
cardiovascular system, adipose tissue, skin, bone, and liver. There-
fore, proper steroidogenesis is required for fertility as well as for
maintenance of cardiovascular, brain, and skeletal health (75–91).

The generation of sex steroid hormones involves several
enzymatic reactions in both the theca and granulosa cells.
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Theca cell Granulosa cell

Basement membrane 

Cholesterol 
STAR

Cholesterol 

Pregnenolone

CYP11A1

DHEA

CYP17A1

Progesterone 

HSD3B

Androstenedione 

CYP17A1HSD3B

Testosterone 

HSD17B

CYP19A1

CYP19A1

Estrone

Estradiol  

HSD17B

Cholesterol 

Pregnenolone

CYP11A1

Progesterone 

HSD3B

FIGURE 3 | Ovarian steroidogenesis. Steroidogenesis is primarily
conducted by the mature antral follicle and the corpus luteum following
ovulation. This process requires both the theca cells and granulosa cells,
and involves the enzymatic conversion of cholesterol to 17β-estradiol and
other necessary sex steroid hormones. The hormones produced by the
ovary are listed in the white text boxes while the steroidogenic enzymes
are listed in blue adjacent to the arrows between hormones.

Specifically, cholesterol can either be transported into the theca
cell cytoplasm via lipoprotein receptors or it can be synthesized de
novo. Cholesterol is then internalized into the mitochondria via
the steroidogenic acute regulatory protein (STAR) (92–94). Cho-
lesterol is then converted to pregnenolone in the mitochondria via
cytochrome-P450 cholesterol side-chain cleavage (CYP11A1) (95,
96). Pregnenolone then diffuses out of the mitochondria and is
transported to the smooth endoplasmic reticulum where it is con-
verted to progesterone or dehydroepiandrosterone (DHEA) via
3β-hydroxysteroid dehydrogenase (HSD3B) or 17α-hydorxylase-
17,20-desmolase (CYP17A1), respectively (97). Progesterone and
DHEA are then converted to the androgen androstenedione again
via CYP17A1 or HSD3B, respectively (96). Androstenedione can
then be converted to either testosterone, another androgen, or
estrone, a weak estrogen, via 17β-hydroxysteroid dehydrogenase
(HSD17B) or aromatase (CYP19A1), respectively (96). Testos-
terone and estrone are then converted to the most potent estro-
gen, estradiol, via CYP19A1 or HSD17B, respectively (96, 97).
Estradiol can be inactivated and metabolized in the ovary to 2-
hydroxyestradiol via CYP1A1/2 and CYP3A4 or it can be broken
down to 4-hydroxyestradiol via CYP1B1 (98, 99).

Interestingly, estradiol cannot be synthesized without the strict
coordination of both theca cells and granulosa cells and the
addition of pituitary-derived FSH and LH. This is why ovarian
steroidogenesis is known as the two-cell, two-gonadotropin the-
ory (100, 101). Theca cells in the early antral follicle only contain
LH receptors (LHRs), and upon receptor binding, LH stimulates
the transcription of theca-derived genes that encode the enzymes
required for the conversion of cholesterol to the androgens (100,
101). Once converted, androgens can diffuse from the theca cells
through the basement membrane, which separates theca cells from

granulosa cells, and into the granulosa cells. In contrast to theca
cells, granulosa cells of the early antral follicle contain only FSH
receptors, and in response to FSH binding, the transcription of
granulosa-derived genes that encode the enzymes necessary for
the conversion of androgens to estrogens is stimulated (100, 101).
This distinct coordination is required because theca cells lack
the CYP19A1 enzyme (which converts androgens to estrogens),
and granulosa cells lack the CYP17A1 enzyme (which converts
pregnenolone and progesterone to androgens). Luteal cells in the
corpus luteum also utilize the two-cell approach to produce prog-
esterone and estradiol (102, 103). As is the case in the antral follicle,
the small luteal cells that are derived from theca cells synthesize
androgens from cholesterol, while the large luteal cells that are
derived from granulosa cells convert androgens to estrogens.

OVARIAN TOXICITY OF ENDOCRINE-DISRUPTING
CHEMICALS
Because of its multifaceted roles, it is important to understand
how ubiquitous EDCs, like phthalates, affect normal ovarian func-
tion, as defects in ovarian function have implications for health
other than fertility. Normal ovarian function is essential for repro-
ductive, cardiovascular, mood, brain, and skeletal health (75–91).
Due to their widespread production, extensive use, and ubiqui-
tous presence in the environment, phthalates have the potential
to target the ovary at all stages of development and in adult-
hood. These toxic effects can lead to premature ovarian failure,
anovulation, infertility, and decreased steroidogenesis (104–107).
Thus, exposure to phthalates can disrupt normal ovarian func-
tion by several different mechanisms, leading to reproductive and
non-reproductive abnormalities.

One way that EDCs can exert ovarian toxicity is through tar-
geting follicles at different stages of folliculogenesis (104–107).
Specifically, chemicals can target the primordial, primary, pre-
antral, or antral populations of follicles, or they can target corpora
lutea. Once a particular population is targeted, the chemicals can
induce atresia and deplete the follicles within that stage, they can
arrest follicles within that stage, or they can promote accelerated
development from that stage (104–107). Each of these potential
outcomes can have detrimental effects on fertility and/or non-
reproductive health. Specifically, EDCs that deplete or accelerate
the development of primordial follicles will cause permanent
infertility caused by premature ovarian failure, or early onset
of menopause (104–107). This is because the primordial follicle
pool is established at birth and is non-renewable (46). Premature
menopause is of concern because it is associated with increased
risks of cardiovascular disease, osteoporosis, and premature death
(75–78, 108–111). EDCs can also target the later stages of fol-
liculogenesis such as the antral follicle (104, 105). Chemicals can
cause atresia of antral follicles or inhibit the growth of antral fol-
licles, leading to estrogen deficiency and anovulatory cycles and
ultimately infertility (104, 105). Similarly, EDCs that affect the
process of luteinization, the developmental transition of a follicle
to a corpus luteum, or the lifespan of the corpus luteum can affect
progesterone production, implantation, and pregnancy, leading to
infertility (104, 105).

Chemicals can also directly interfere with ovarian steroido-
genesis and this can cause reproductive and non-reproductive
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complications. Steroidogenesis can be affected either by depletion
of the antral follicles and/or corpora lutea, or it can be affected
by disrupting the functionality of the steroidogenic units. Specifi-
cally, the loss of antral follicles or corpora lutea from the ovary will
result in a decrease in the available structures that are capable of
producing steroids (104, 105). Further, EDCs can disrupt the func-
tionality of antral follicles by decreasing ovarian mRNA, protein,
and/or activity of the enzymes responsible for generating estradiol
and its precursor sex steroid hormones (104, 105). Additionally,
EDCs can increase mRNA, protein, and/or activity of the enzymes
responsible for metabolizing estradiol; thus, rendering it inactive
(104, 105). The steroidogenic enzymes in the corpora lutea can also
be affected in a similar manner, resulting in inadequate levels of
necessary progesterone and estradiol to support a pregnancy (104,
105). This disruption of hormone production can also alter nor-
mal menstrual/estrous cyclicity. A lack of ovarian-derived steroid
hormones will disrupt the hypothalamus–pituitary–ovarian axis,
leading to infertile anovulatory or oligoovulatory cycles by inhibit-
ing the LH surge and/or altering FSH levels that are responsible
for recruiting a cohort of antral follicles for ovulation (46, 101,
104, 105). Defects in ovarian steroidogenesis are linked to infer-
tility and an increased risk of heart disease, osteoporosis, mood
disorders, and premature death (75–78, 108–111).

Removing or minimizing toxicant exposure may alleviate the
ovotoxic effects, depending on the duration of exposure and popu-
lation of follicles targeted by the chemical (106, 107). For instance,
if an EDC only targets the antral follicle causing ovarian toxicity,
removal of the chemical has the potential to restore ovarian func-
tion (106, 107). This is because the process of folliculogenesis from
the primordial stage to the antral stage was unaffected. Once the
EDC is removed,primordial follicles will develop to the antral stage
as they had done previously, but now the detrimental effect will be
alleviated (106, 107). Reversal of toxic effects is nearly impossible
when the primordial follicle pool is targeted for an extended period
of time. Because the follicular reserve is non-renewable, chronic
exposure to an EDC that causes death of primordial follicles or
accelerates primordial follicle recruitment will lead to permanent
ovarian damage (106, 107). Although removal of toxicant expo-
sure may be beneficial in restoring ovarian function, exposure to
many EDCs including phthalates cannot be completely removed.
This adds to the public health concern of the use of phthalates,
as even minimizing exposure can be a difficult task due to their
ubiquitous use in common consumer products and presence in
the environment.

Understanding the impact on ovarian function from expo-
sure to phthalates is of great importance, particularly because the
general population is constantly exposed to phthalates (23–25).
This importance is compounded in certain populations that are
exposed to high levels of phthalates on a daily basis. These pop-
ulations include patients undergoing medical care with phthalate
containing medical devices and medications, women with careers
in an industrialized environment, and women located near phtha-
late manufacturing and disposal sites (5, 36–41). Often, women
in today’s society postpone childbirth to prioritize career devel-
opment during prime reproductive years. This leads to a longer
period of exposure to phthalates, potentially leading to detrimen-
tal effects on fertility, especially when the female is aging. Because

of the prevalent use and ubiquitous exposure to phthalates and
the importance of the ovary for female reproductive and non-
reproductive health, the goal of this review is to summarize what
is currently known about the effects of phthalates on the ovary and
the mechanisms by which phthalates exert ovarian toxicity, with
a particular focus on the effects of phthalates on folliculogenesis
and steroidogenesis.

EFFECTS OF PHTHALATES ON FOLLICULOGENESIS
EFFECTS OF PHTHALATES ON OOCYTE DEVELOPMENT AND
PRIMORDIAL FOLLICLE ASSEMBLY
Limited studies have investigated the effects of phthalates on fol-
liculogenesis, but there is evidence suggesting that phthalates alter
the formation and/or function of follicles at several stages of devel-
opment. Specifically, phthalates have been shown to disrupt the
earliest stages of folliculogenesis by altering ovarian and oocyte
development. DEHP exposure in Japanese medaka during sexual
development has been shown to inhibit oocyte development (112).
When given in an aqueous solution at 1–50 µg/l from hatching
to 3 months of age, DEHP exposure decreased the percentage of
completely matured oocytes in the ovaries, most likely via an anti-
estrogenic mechanism of action (112). MEHP exposure for 24 h at
250–500 µM has been shown to decrease murine fetal oocyte via-
bility using an in vitro oocyte culture system (113). This decrease
in oocyte survival is attributed to an alteration in oocyte oxida-
tive stress as the mRNA levels of mitochondrial respiratory chain
protein (Nd1) were decreased and the mRNA levels of Cu–Zn
superoxide dismutase (Sod1) were increased in the oocytes fol-
lowing MEHP exposure (113). A decrease in Nd1 mRNA may lead
to an increase in reactive oxygen species (ROS), which are toxic
to the oocyte and are also associated with an increased risk of
infertility (114). The increase in the antioxidant Sod1 mRNA is
most likely a compensatory response in detoxifying the increased
ROS following MEHP exposure. DEHP exposure further affects
oocyte development by causing heritable modifications in DNA
methylation in mouse oocytes (115). When given to pregnant mice
during the length of gestation, DEHP exposure at 40 µg/kg/day
reduced the methylation of CpG sites in the two critical imprinting
genes, insulin-like growth factor 2 receptor (Igf2r) and paternally
expressed gene 3 (Peg3), in the primordial germ cells of the fetal
ovary at gestational day 12.5 and the oocytes of the offspring by
post-natal day 21 (115). Interestingly, the decrease in oocyte DNA
methylation of Igf2r and Peg3 is also evident in the oocytes of
the F2 offspring, suggesting that the effects of DEHP on oocyte
development are heritable (115). Gestational exposure to a single
intraperitoneal injection of DIBP resulted in architectural disar-
ray of follicles in fetal rats (116). Specifically, DIBP exposure at
0.375–1.25 ml/kg increased the numbers of degenerated oocytes
and empty follicles without oocytes, and the blood vessels located
in the stroma of the ovary appeared prominent and congested
(116). MEHP has also been shown to affect ovarian development
in the human. Human ovaries from gestational weeks 7 to 12
were cultured with MEHP at 10-4 M for 72 h and had dysregu-
lated lipid/cholesterol synthesis as evident by an increase in the
mRNA levels of liver X receptor alpha (LXRα) and sterol regula-
tory element-binding protein (SREBP) members (117). Interest-
ingly, oocyte numbers were not affected by MEHP treatment, but
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the same study suggests that phthalate toxicity to the developing
human ovary may be mediated by nuclear receptor signaling (117).
It appears that phthalates disrupt early ovarian and oocyte devel-
opment potentially leading to oocyte death and abnormal ovarian
architecture (112, 113, 116). The mechanisms by which phthalates
alter the earliest stages of ovarian development appear to include
an anti-estrogenic response (112), an increase in oxidative stress
(113), and heritable modifications to the oocyte epigenome (115).

Phthalates have also been shown to affect germ cell nest break-
down and primordial follicle assembly. Newborn mouse ovaries
cultured with DEHP for 72 h at 10–100 µM had an increase in
oocytes contained in the germ cell nest, and there was a decrease in
primordial follicle numbers (118). Thus, germ cell nest breakdown
and primordial follicle assembly were inhibited following DEHP
exposure. Additionally, DEHP exposure increased apoptosis in the
oocytes indicated by an increase in TUNEL positive oocytes and
increased mRNA levels of pro-apoptotic BCL-2-associated X pro-
tein (Bax) (118). Further, DEHP decreased the mRNA levels of
other factors associated with oocyte survival and primordial fol-
licle formation, such as LIM homeobox 8 (Lhx8), factor in the
germline alpha (Figla), spermatogenesis and oogenesis helix-loop-
helix (Sohlh2), and newborn ovary homeobox (Nobox) (118).
Similar to previous reports, DEHP exposure affected oocyte DNA
methylation by inhibiting the demethylation of CpG sites of Lhx8,
a process required for early folliculogenesis (118). These effects
on primordial follicle formation can have lasting effects on fol-
liculogenesis and fertility because primordial follicles serve as the
female’s reproductive potential (46).

EFFECTS OF PHTHALATES ON FOLLICLES ACROSS DEVELOPMENT
Phthalates have also been shown to affect the rate in which pri-
mordial follicles are recruited to the growing population of fol-
licles. In the adult mouse, oral exposure to DEHP for 10 and
30 days at 20 µg/kg/day–750 mg/kg/day accelerates primordial fol-
licle recruitment, evident by a decrease in primordial follicles and
an increase in primary follicles (119). The mechanism by which
DEHP accelerates primordial follicle recruitment is likely via over-
activation of the phosphatidylinositol 3-kinase (PI3K) signaling
pathway, a pathway that regulates primordial follicle survival, qui-
escence, and recruitment. Specifically, DEHP exposure increased
the ovarian mRNA levels of 3-phosphoinositide-dependent pro-
tein kinase-1 (Pdpk1), mammalian target of rapamycin complex 1
(Mtorc1), which are factors that drive primordial follicle recruit-
ment, and decreased the mRNA levels of phosphatase and tensin
homolog (Pten) and tuberous sclerosis 1 (Tsc1), which are factors
that maintain primordial follicle quiescence (119). Additionally,
DEHP exposure for 10 days increased phosphorylated protein
kinase B (pAKT) protein in the whole ovary and in primordial
and primary follicles, and decreased PTEN protein in the whole
ovary, further suggesting that DEHP overactivates ovarian PI3K
signaling to promote the acceleration of primordial follicle recruit-
ment (119). Similar effects on primordial follicle recruitment
were observed following DEHP exposure during early post-natal
life in mice. Following hypodermic injections during early post-
natal life, DEHP at 20–40 µg/kg/day accelerated folliculogenesis
by decreasing primordial follicles and increasing preantral and
antral follicles when the ovaries were observed on post-natal day

15 and 21 (120). Further, when the treated mice were allowed to
breed, the F1 offspring had a similar decrease in primordial folli-
cle numbers when the ovaries were observed in adulthood (120).
MEHP exposure in utero also accelerates folliculogenesis in mice.
Oral exposure to MEHP via gavage from gestational days 17–19 at
100–1000 mg/kg/day resulted in an increase in preantral and antral
follicles in the F1 generation (121). These F1 females exposed to
MEHP in utero also exhibited premature reproductive senescence
by 1 month, likely attributed to the acceleration of folliculogene-
sis evident by the follicle count data (121). Phthalates appear to
accelerate primordial follicle recruitment by decreasing primor-
dial follicle numbers and increasing the numbers of more mature
follicle types, and this effect is consistent across timing and dura-
tion of exposure and the doses of phthalates used. Because the
primordial follicle reserve is non-renewable, the above effects on
primordial follicle recruitment can impact a female’s reproductive
lifespan.

In addition to the effects of phthalates on immature follicle
types, phthalates have also been shown to target and adversely
affect more mature follicles. Exposure to DEHP alone and in com-
bination with benzo[a]pyrene (B[a]P) via oral gavage decreased
the population of primary and secondary follicles, potentially
via induced follicular atresia in adult rats (122). Specifically,
DEHP alone (600 mg/kg/day) and in combination with B[a]P
(10 mg/kg/day) induced granulosa cell apoptosis, resulting in an
increase in the number of atretic follicles across developmental
stages (122). Likewise, in utero and lactational exposure to DEHP
from midgestation to weaning at 405 mg/kg/day increased the
number of atretic preantral follicles in the rat offspring during
adulthood (123). A similar effect of increased atresia in growing
follicles was seen in adult marine medaka. DEHP in an aqueous
solution at 0.1–0.5 mg/l increased the numbers of atretic late-stage
follicles, resulting in reproductive dysfunction following exposure
from hatching to adulthood (124). A reduction in the grow-
ing population of follicles was also observed in DEHP-exposed
neonatal ovaries after transplantation into the kidney capsules of
immunodeficient mice. Specifically, newborn mouse ovaries were
cultured with DEHP for 72 h at 10–100 µM and were then trans-
planted into adult mice to observe if folliculogenesis was impaired.
Contrary to control-treated transplanted ovaries, DEHP-treated
transplanted ovaries had few, if any, growing follicles follow-
ing 21 days post-transplantation (118). Further, preantral follicles
from rats cultured with MEHP in vitro for 10 days at 10–80 µg/ml
had a lower survival rate and decreased rate of development to the
antral stage (125). Likewise, secondary follicles from rats cultured
with MEHP at 100 µg/ml had suppression of follicular develop-
ment accompanied by a decrease in follicular viability and an
increase in granulosa cell apoptosis (126). Prior to development
to the antral follicle stage, phthalates appear to target primary and
preantral follicle to induce atresia at a wide range of doses. This
effect on atresia is likely attributed to phthalate-induced apoptosis
of granulosa cells (122, 126).

Phthalates also target mature antral follicles by adversely
inhibiting their growth and maturation. Much of the work investi-
gating the effects of phthalates on antral follicle growth utilizes the
novel method of the whole antral follicle culture system (127, 128).
Using this method, DBP exposure for 168 h at 1000 µg/ml has been
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shown to inhibit antral follicle growth (129). This inhibition of
antral follicle growth is likely attributed to defects in the cell cycle,
which is necessary for appropriate granulosa cell proliferation
and follicle growth. Specifically, DBP exposure at 1–1000 µg/ml
decreased mRNA levels of cyclin D2 (Ccnd2), cyclin E1 (Ccne1),
cyclin A2 (Ccna2), and cyclin B1 (Ccnb1), and increased the mRNA
levels of cyclin-dependent kinase inhibitor 1A (Cdkn1a) at a time-
point prior to growth inhibition (129). DBP-treated follicles had
greater numbers of cells in the G1 phase, fewer numbers of cells
in the S phase, and a trend for fewer numbers of cells in the G2

phase, further indicating cell cycle arrest following 24 h of culture
(129). These defects in antral follicle growth potentially lead to the
observed increase in atresia in DBP-treated follicles (129). Both
DEHP at 1–100 µg/ml and MEHP at 0.1–100 µg/ml also inhibit
antral follicle growth in vitro. Specifically, both chemicals inhibit
antral follicle growth following 72 h of culture, and this effect per-
sists for the duration of the 96 h culture (130–132). Similar to DBP,
DEHP at 100 µg/ml disrupts the cell cycle by decreasing the mRNA
levels of Ccnd2 and cyclin-dependent kinase 4 (Cdk4), and MEHP
at 10–100 µg/ml disrupts the cell cycle by decreasing the mRNA
levels of Ccnd2, Ccne1, and Cdk4 (131, 132). Further, MEHP expo-
sure at 1–100 µg/ml increased the mRNA levels of pro-apoptotic
Bax and apoptosis-inducing factor, mitochondrion-associated, 1
(Aifm1) and decreased the mRNA levels of anti-apoptotic Bcl2
and Bcl2-like 10 (Bcl2l10), leading to antral follicle atresia (131,
133). Interestingly, DEHP and MEHP likely inhibit antral follicle
growth and induce atresia via a mechanism involving oxidative
stress. Specifically, DEHP at 10 µg/ml and MEHP at 1–100 µg/ml
increased ROS levels in the treated follicles (130, 131). This is
accompanied by reduced expression and enzyme activity of SOD1
following DEHP exposure, and reduced expression and enzyme
activities of SOD1 and glutathione peroxidase (GPX) follow-
ing MEHP exposure (130, 131). Supplementing the DEHP- and
MEHP-treated follicles with estradiol (1–10 nM) or the antioxi-
dant N -acetyl cysteine (NAC; 0.25–1 mM) only partially protects
the follicles from phthalate-induced growth inhibition (130–132),
but estradiol supplementation rescues the antral follicles from
MEHP-induced atresia (133). In additional studies, exposure to
DEHP via oral gavage at 2 g/kg/day reduced preovulatory follicle
size in rats, due to a reduced granulosa cell size and area (134).
Phthalates appear to directly target the antral follicle to inhibit
growth via cell cycle inhibition (129, 131, 132), induce of atresia
(129, 131, 133), and increase oxidative stress (130, 131). Over-
all, the phthalate-induced inhibition of antral follicle growth can
potentially impair ovulation and steroidogenesis (46, 101).

EFFECTS OF PHTHALATES ON OVULATION AND THE CORPUS LUTEUM
The process of oocyte maturation during the peri-ovulatory
period is also affected by phthalate exposure. DEHP exposure in
an aqueous solution at 0.02–40 µg/l in zebrafish inhibited oocyte
germinal vesicle breakdown, which is a process required for the
resumption of meiosis prior to ovulation (135). This effect was
accompanied by an increase in the levels of ovarian bone mor-
phogenetic protein 15 (BMP15) and decreases in the levels of LHR
and membrane progesterone receptors (mPRs), which are factors
that drive oocyte maturation (135). Similar effects were seen using
in vitro maturation assays with bovine oocytes. MEHP exposure

at 5–100 µM to denuded oocytes and cumulus–oocyte complexes
for 22–24 h reduced the number of oocytes that resumed meio-
sis, indicated by an increase in the number of oocytes still in the
germinal vesicle stage, and reduced the number of oocytes that
progressed to metaphase II (136, 137). Bovine oocytes exposed
to MEHP at 50 µM during maturation also had a decrease in
the mRNA levels of CCNA2, acid ceramidase 1 (ASAH1; an anti-
apoptotic factor), and POU domain, class 5, transcription factor
1 (POU5F1; a factor responsible for pluripotency), which poten-
tially led to the observed increased in apoptotic oocytes during
culture (137). These defects in oocyte maturation resulted in
increased instances of poor-quality early embryos (137). Similar
to the bovine model, DEHP exposure at 0.12–1200 µM inhibited
oocyte maturation in the horse following an in vitro maturation
assay (138). Further, ROS levels and apoptosis were increased in
the cumulus granulosa cells (138). Additionally, BBP exposure
at 100 µM to FSH-matured (10 ng/ml) porcine cumulus–oocyte
complexes inhibited cumulus cell expansion, a process required for
normal ovulation, transport through the oviduct, and fertilization
(139). In the mouse, MEHP exposure at 200–400 µM in a matura-
tion assay increased the number of oocytes in the germinal vesicle
stage and decreased the number of oocytes that resumed meio-
sis in metaphase II (140). A similar effect was seen with in utero
and lactational exposure to DEHP in adult female offspring.
Specifically, DEHP exposure through gestation and weaning at
0.05–5 mg/kg/day decreased the numbers of oocytes that reached
meiosis II when the offspring were superovulated as adults (141).
Further, mouse oocytes that were matured in vitro had increased
metaphase II spindle abnormalities following in vivo exposure
to DEHP at 20–40 µg/kg/day, indicating that phthalates have the
potential to alter post-meiotic resumption maturation processes
(120). Phthalates appear to inhibit germinal vesicle breakdown
and resumption of meiosis in multiple different models, and these
effects on oocyte maturation may be detrimental to ovulation and
normal embryonic development.

Along with defects in oocyte maturation, phthalates disrupt
the ovulatory process. Zebrafish exposed to DEHP in an aqueous
solution at 0.02–40 µg/l had a significant reduction in ovulations
likely attributed to a decrease in the mRNA levels of prostaglandin-
endoperoxide synthase 2 (Ptgs2), which is an enzyme required for
one of the final triggers of ovulation following the LH surge (135).
Further, the injection of DEHP inhibits ovulation in rats following
equine chorionic gonadotropin (eCG)-induced ovulation (15–
30 IU). Specifically, DEHP exposure at 500 mg/kg/day decreased
the total number of rats that ovulated in response to eCG treat-
ment, and DEHP exposure reduced the total number of ovulated
oocytes following eCG treatment (142). Likewise, oral exposure to
DEHP via gavage during metestrus at 2 g/kg/day delayed or sup-
pressed ovulation by the first proestrus/estrus in rats (134). In fact,
7 out of 10 rats did not ovulate by vaginal estrus in response to
DEHP treatment (134). These studies suggest that DEHP exposure
is capable of inhibiting ovulation by decreasing the transcription
of LH surge-response genes, even when the ovulatory process is
chemically induced.

Phthalates have also been shown to disrupt the luteal tran-
sition and/or target corpora lutea. Perinatal exposure to DINP
at 20,000 ppm in the rat decreased the number of corpora lutea
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present in adulthood (143). Adolescent rats exposed to DEHP via
oral gavage for 28 days at 150–500 mg/kg/day also had a decrease in
corpora lutea numbers (144). A similar effect of decreased corpora
lutea numbers is seen when DEHP alone (300–600 mg/kg/day)
and in combination with B[a]P (10 mg/kg/day) is administered to
adult rats (122). Because mechanistic studies were not conducted,
it is unknown if the decreases in corpora lutea numbers are due to
an inhibition of ovulation, an inhibition in the luteal transition,
and/or a direct destruction of corpora lutea caused by phthalate
exposure. However, previous studies have shown that phthalates
inhibit ovulation (134, 135, 142).

A few studies suggest that phthalates may alter the function-
ality of corpora lutea. Marmosets exposed to DEHP via oral
gavage from weaning to sexual maturity at 500–2500 mg/kg/day
had abnormally large corpora lutea present in the ovary, which is a
finding often seen in older female marmosets (145). This increase
in corpora lutea size likely causes the observed increase in ovar-
ian weights following DEHP exposure (145). Conversely, adult
sheep treated with DEHP intramuscularly at 25–50 mg/kg/day
had smaller corpora lutea and a decreased luteal phase of the
estrous cycle (146). These data suggest that phthalates have the
potential to disrupt post-ovulatory ovarian processes, but further
work must be done to elucidate the differences observed in the
two studies.

EPIDEMIOLOGICAL LINKS BETWEEN PHTHALATE EXPOSURE AND
ALTERATIONS IN FOLLICULOGENESIS
Very few studies have investigated the link between phthalate
exposure in humans and alterations in folliculogenesis. One study

examined the association of phthalate exposure and prevalence
of polycystic ovary syndrome (PCOS), which is a gynecologi-
cal disorder often associated with infertility and the presence of
large, cystic follicles incapable of ovulating. Interestingly, lower
urinary levels of MEHP, MEP, MBP, and MBzP were associated
with an increased likelihood of PCOS when compared to control
patients and patients with higher levels of these phthalate metabo-
lites (147). Similarly, in the Western Australian Pregnancy Cohort
Study, maternal serum levels of MEP and the sum of all phthalate
metabolites were negatively associated with PCOS in the daugh-
ters (148). However, this study did not investigate the prevalence of
PCOS in the daughters whose mothers had low levels of phthalate
metabolites. In the same study, maternal levels of MEP had a neg-
ative association with anti-Müllerian hormone (AMH), which is a
hormone secreted by granulosa cells of maturing follicles to restrict
primordial follicle activation (148). Based on the paucity of avail-
able information, further epidemiology studies are warranted in
investigating the effects of phthalate exposure on folliculogenesis
in the human.

Ovarian folliculogenesis is an essential process for normal
reproductive and non-reproductive health, and increasing evi-
dence suggests that phthalates have the ability to adversely affect
this process in numerous aspects. Specifically, phthalates have been
shown to disrupt ovarian/oocyte development, accelerate primor-
dial follicle recruitment, target growing follicles, inhibit growth
of antral follicles, disrupt oocyte maturation and ovulation, and
alter post-ovulatory processes (Figure 4). The mechanisms by
which phthalates exert these toxic effects on folliculogenesis
are unknown, but a few studies have begun to elucidate these

Primordial Primary Preantral Antral Corpus Luteum 
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FIGURE 4 | Phthalates disrupt folliculogenesis. This figure is a
summation of the major findings on the effects of phthalates on
folliculogenesis. Text boxes above a particular follicle type outline the

major effects of phthalates at that stage of development, while text
boxes below transition arrows outline the major effects of phthalates
on that developmental transition.
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mechanisms and have shown that phthalates can modulate genes
associated with folliculogenesis (Table 1). It is clear that the
majority of work investigating the effects of phthalates on fol-
liculogenesis focus solely on DEHP and its metabolite MEHP.
Future work should elucidate the mechanisms by which DEHP
and MEHP disrupt folliculogenesis and should incorporate expo-
sures to other commonly used phthalates. Further, the doses used
in the reviewed animal studies rarely encompass the range of
estimated human exposure. It would be advantageous to con-
duct experiments with levels of phthalates that fall within the
range of human exposure, especially considering that phthalates
exhibit non-monotonic dose responses (149, 150). Additionally,

experiments should be conducted to observe if these effects on
folliculogenesis persist throughout the reproductive lifespan and
if these effects directly cause infertility.

EFFECTS OF PHTHALATES ON STEROIDOGENESIS
EFFECTS OF PHTHALATE EXPOSURE ON STEROIDOGENESIS IN VIVO
Gestational exposure to phthalates has been shown to alter
steroidogenesis in female offspring. Oral exposure to MEHP
via gavage from gestational days 17–19 at 100–1000 mg/kg/day
increased the levels of serum FSH and estradiol in female mouse
offspring once they reached adulthood (121). MEHP exposure
in utero also decreased the mRNA levels of Star and Cyp19a1 in

Table 1 | Genes associated with folliculogenesis that are altered by phthalate exposure.

Phthalate (dose) Model (duration of exposure) Effect on gene (reference) Gene name

DEHP (0.02–40 µg/l) Adult zebrafish (21 days) Decreased Ptgs2 (135) Prostaglandin-endoperoxide synthase 2

DEHP (100 µg/ml) Mouse antral follicles (96 h) Decreased Ccnd2 (132) Cyclin D2

Decreased Cdk4 (132) Cyclin-dependent kinase 4

Decreased Sod1 (130) Cu–Zn superoxide dismutase 1

DEHP (10–100 µM) Neonatal mouse (72 h) Increased Bax (118) BCL-2-associated X protein

Decreased Lhx8 (118) LIM homeobox 8

Decreased Figla (118) Factor in the germline alpha

Decreased Sohlh2 (118) Spermatogenesis and oogenesis helix-loop-helix

Decreased Nobox (118) Newborn ovary homeobox

DEHP (20 µg/kg/day–

750 mg/kg/day)

Adult mouse (10 or 30 days) Increased Pdpk1 (119) 3-phosphoinositide-dependent protein kinase-1

Increased Mtorc1 (119) Mammalian target of rapamycin complex 1

Decreased Pten (119) Phosphatase and tensin homolog

Decreased Tsc1 (119) Tuberous sclerosis 1

DEHP (40 µg/kg/day) Fetal and prepubertal mouse,

in utero (length of gestation)

Decreased methylation of Igf2r (115) Insulin-like growth factor 2 receptor

Decreased methylation of Peg3 (115) Paternally expressed gene 3

MEHP (1–100 µg/ml) Mouse antral follicles (24–96 h) Decreased Ccnd2 (131) Cyclin D2

Decreased Ccne1 (131) Cyclin E1

Decreased Cdk4 (131) Cyclin-dependent kinase 4

Increased Bax (131) BCL-2-associated X protein

Increased Aifm1 (133) Apoptosis-inducing factor, mitochondrion-associated, 1

Decreased Bcl2 (131) B-cell leukemia/lymphoma 2

Decreased Bcl2l10 (133) Bcl2-like 10

Decreased Gpx (131) Glutathione peroxidase

Decreased Sod1 (131) Cu–Zn superoxide dismutase 1

MEHP (10–4 M) Human fetus (72 h) Increased LXRα (117) Liver X receptor alpha

Increased SREBP members (117) Sterol regulatory element-binding protein

MEHP (250–500 µM) Fetal mouse oocytes (24 h) Decreased Nd1 (113) Mitochondrial respiratory chain protein

Increased Sod1 (113) Cu–Zn superoxide dismutase 1

MEHP (50 µM) Bovine oocytes (22–24 h) Decreased CCNA2 (137) Cyclin A2

Decreased ASAH1 (137) Acid ceramidase 1

Decreased POU5F1 (137) POU domain, class 5, transcription factor 1

DBP (1–1000 µg/ml) Mouse antral follicles

(24–168 h)

Decreased Ccnd2 (129) Cyclin D2

Decreased Ccne1 (129) Cyclin E1

Decreased Ccna2 (129) Cyclin A2

Decreased Ccnb1 (129) Cyclin B1

Increased Cdkn1a (129) Cyclin-dependent kinase inhibitor 1A
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the ovaries of the adult offspring (121). Estrous cyclicity, a process
controlled by ovarian-derived hormones, was also altered in these
offspring. MEHP-exposed females exhibited a delay in the onset
of cyclicity, and MEHP exposure increased the time spent in estrus
(121). Oral exposure to DIBP via gavage from gestational days 7–
21 at 600 mg/kg/day increased anogenital distance in female rat
offspring, a steroid hormone-regulated process, and increased the
mRNA levels of Cyp19a1 in the ovaries when the offspring were
prepubertal (151). A similar effect of increased anogenital dis-
tance was observed in female offspring following gestational BBP
exposure via oral gavage to rats at 500 mg/kg/day (152). Mater-
nal exposure to DEHP in the diet at 0.05–5 mg/kg/day during the
entire length of gestation through weaning decreased the mRNA
levels of key steroidogenic enzymes and receptors in the ovaries
of adult mouse offspring (141). Specifically, ovaries from the
adult offspring had decreased levels of Cyp19a1, Cyp17a1, proges-
terone receptor (Pgr), FSH receptor (Fshr), and LHR (Lhr) (141).
It is apparent that gestational exposure to phthalates results in
defects in ovarian steroidogenesis across multiple developmental
time-points by decreasing key steroidogenic enzyme levels.

Prepubertal exposure to phthalates has also been shown to dis-
rupt ovarian steroidogenesis. DEHP exposure via inhalation from
post-natal day 22–41 at 25 mg/m3 increased serum levels of cho-
lesterol, LH, and estradiol in female rats following the duration of
exposure (153). When the exposure window was expanded from
post-natal day 22–84, DEHP exposure increased the mRNA levels
of ovarian Cyp19a1, advanced the age of vaginal opening and first
estrous cycle, and increased the number of irregular estrous cycles
(153). The increase in Cyp19a1 likely attributes to the increase
in estradiol levels. Oral exposure to DEHP via gavage for 10 days
at 500 mg/kg/day decreased the serum levels of progesterone and
estradiol, and there was a trend of increased serum LH levels in pre-
pubertal rats (154). Further, granulosa cells from DEHP-exposed
prepubertal rats exhibited a decrease in ex vivo progesterone pro-
duction even following FSH and LH stimulation, which was likely
attributed to a decrease in the required transport of endogenous
cholesterol into the mitochondria to initiate steroidogenesis (154).
The discrepancy in the levels of steroid hormones following phtha-
late exposure is likely attributed to the route of exposure. When rats
were exposed via inhalation, steroid hormone levels were increased
(153). On the contrary, when rats were exposed via oral ingestion,
steroid hormone levels were decreased (154). Further, the timing
of exposure may explain why prepubertal-exposed animals had
increased Cyp19a1 levels (153), but in utero-exposed animals had
decreased Cyp19a1 levels (121, 141).

Additional in vivo studies indicate that phthalate exposure
during adulthood targets the ovary and disrupts steroidogene-
sis. Exposure to DEHP via oral gavage for 8 days at 2 g/kg/day
decreased serum estradiol levels in adult rats (134). This sup-
pression of estradiol led to secondary rises in FSH levels and
was unable to induce the LH surge needed for ovulation
(134). Thus, DEHP exposure caused anovulation in the study
(134). Further, DEHP exposure prolonged the duration of the
estrous cycle in the adult rats (134). A similar study showed
that DEHP exposure via oral gavage at 1000–3000 mg/kg/day
also decreased serum estradiol levels in adult rats (155). In
addition, serum testosterone, progesterone, LH, and FSH were

also decreased following DEHP exposure (155). Similarly, DEHP
exposure via oral gavage for 16 weeks at 500–2000 mg/kg/day
prolonged the duration of estrous cycles, caused apoptosis and
cell cycle arrest in granulosa cells, and decreased serum prog-
esterone levels in adult mice (156). A similar effect on estrous
cyclicity was seen where oral exposure to DEHP for 10 and
30 days at 20 µg/kg/day–750 mg/kg/day increased the amount
of time adult mice spent in the estrous stage (119). Further,
chronic DBP exposure from weaning, through puberty, mat-
ing, and gestation at 500–1000 mg/kg/day increased gestational
ex vivo ovarian estradiol production and decreased gestational
ex vivo ovarian progesterone production in adult rats (157).
Conversely, DEHP exposure via intramuscular injections at 25–
50 mg/kg/day increased plasma concentrations of progesterone in
the adult ewe (146). DEHP exposure also decreased the dura-
tion of the ewe’s estrous cycle and increased the number of
irregular estrous cycles (146). The effects on progesterone pro-
duction and estrous cyclicity are likely attributed to DEHP tox-
icity on the corpora lutea (146). Estradiol- and progesterone-
mediated processes, such as uterine decidualization, are also
affected by exposure to phthalates in the adult rat. BBP, DBP,
and MBP exposure via gastric intubation at 750–1500 mg/kg/day
suppressed uterine decidualization in the adult rat, which is a
required process for pregnancy and is controlled by ovarian-
derived steroid hormones (158–160). Together, these studies pro-
vide evidence that phthalate exposure during adulthood alters
ovarian steroidogenesis.

EFFECTS OF PHTHALATE EXPOSURE ON STEROIDOGENESIS IN VITRO
Several in vitro studies using multiple culture models confirm
and expand upon the ability of phthalates to disrupt ovarian
steroidogenesis. Importantly, some of these studies also provide
essential insight into the mechanisms by which phthalates dis-
rupt steroidogenesis. Isolated ovarian cell cultures have shown that
phthalates directly target specific cell types in the ovary and disrupt
steroidogenesis in animal models. Specifically, MEHP exposure for
48 h at 50–200 µM suppressed estradiol production in rat granu-
losa cells (161–163). The decrease estradiol production from the
granulosa cells was observed even with the supplementation of
testosterone (a precursor for estradiol at 500 nM), FSH (an inducer
and activator of aromatase for the conversion of testosterone to
estradiol at 10 ng/ml), and 8-bromo cyclic adenosine monophos-
phate (a stable cAMP analog, which is a secondary messenger for
FSH signaling in granulosa cells at 1 mM). Thus, MEHP exposure
disrupts estradiol production independent of FSH–cAMP signal-
ing (161). The mechanism by which MEHP suppresses estradiol
in the culture system is via decreased mRNA levels, protein levels,
and availability of aromatase (161, 162). Further, it is likely that
MEHP acts through peroxisome proliferator-activated receptors
(PPARs) to decrease aromatase transcription (163). PPARs are
involved in granulosa cell differentiation, lipid metabolism, and
even in the regulation of aromatase transcription and activity,
and MEHP appears to activate PPARα and PPARγ in the granu-
losa cells to inhibit aromatase transcription (163). Further, MEHP
exposure for 24 h at 100 µM decreased progesterone production
and FSH-induced cAMP accumulation in rat granulosa cells (164).
In contrast, MEHP exposure for 48 h at 100–250 µM in a different

www.frontiersin.org February 2015 | Volume 6 | Article 8 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hannon and Flaws Phthalates alter folliculogenesis and steroidogenesis

study increased basal steroidogenesis in rat granulosa cells, evi-
dent by increases in progesterone and protein levels of STAR
(165). Perhaps the discrepancy in the MEHP-induced defects in
steroidogenesis can be attributed to the dosage and use of dif-
ferent rat strains and the different susceptibilities to phthalate
toxicity across strains. MEHP exposure inhibited steroidogene-
sis in Fisher 344 rat granulosa cells (161–164), but it stimulated
steroidogenesis in Sprague-Dawley rat granulosa cells (165). This
stimulation of steroidogenesis, evident by an increase in prog-
esterone production, was also observed in KK-1 granulosa tumor
cells exposed to MEHP for 24 h at 25–100 µM (166). Using another
cellular model, DEHP exposure for 44 h at 1 µM increased the
production of progesterone in FSH-matured porcine cumulus–
oocyte complexes (139). This effect can potentially disrupt the
final maturation processes of the oocyte following ovulation. In
isolated bovine granulosa cells and isolated luteal cells, DEHP and
MEHP exposure for 72 h at 0.1–10 ng/ml increased the produc-
tion of oxytocin (167). Ovarian-derived oxytocin plays a role in
the regulation of the estrous cycle. These studies show that phtha-
lates have a direct effect on disrupting steroidogenesis in specific
ovarian cell types in multiple animal models. The mechanism by
which phthalates inhibit steroidogenesis in granulosa cells appears
to be via suppression of PPAR-mediated aromatase transcrip-
tion (161–163). The mechanism by which phthalates stimulate
steroidogenesis in granulosa cells appears to be via increased
steroidogenic enzyme levels (165). Future studies should aim
to understand the differences in steroidogenesis in the different
granulosa cell models.

Phthalates have also been shown to disrupt steroidogenesis
in isolated human ovarian cell cultures. Similar to the previ-
ously mentioned study with rat granulosa cells (161–163), MEHP
exposure at 0–500 µM/l decreased the production of estradiol in
human granulosa-lutein cells isolated from women undergoing
in vitro fertilization (168). Likewise, this inhibition of estra-
diol production is independent of FSH–cAMP signaling; thus,
it is attributed to a decrease in the mRNA levels and activity
of aromatase (168). In human luteal cells isolated from corpora
lutea, DEHP, DBP, and BBP exposure for 24 h at 10-6–10-9 M
decreased basal and human chorionic gonadotropin-stimulated
progesterone production (169). In conjunction, DEHP, DBP, and
BBP exposure decreased prostaglandin E2 (PGE2) secretion and
DEHP decreased prostaglandin F2α (PGF2α) secretion from the
luteal cells (169). Further, all three chemicals inhibited luteal
cell release of vascular endothelial growth factor (VEGF) (169).
Prostaglandins and VEGF are regulators of corpora lutea survival.
Specifically, PGE2 and VEGF are luteotrophic factors and PGF2α

is a luteolytic factor. Another study has shown phthalate-induced
defects in immortalized human granulosa cell lines. In detail, BBP
exposure at 1 µM in HO23 cells increased the mRNA and pro-
tein levels of aryl hydrocarbon receptor (AHR), aryl hydrocarbon
receptor nuclear translocator (ARNT), and cytochrome-P450 1B1
(CYP1B1), which are involved in estradiol metabolism, resulting in
reduced cell viability and potential decreases in estradiol, though
this was not directly tested (170). Overall, phthalates appear to
directly disrupt steroidogenesis by decreasing steroid hormone
and steroidogenic enzyme levels in human ovarian cells in a
manner similar to animal studies in vitro.

Expanding on the use of individual cell types, other culture
systems utilizing the entire antral follicle and whole sections of
ovaries have been used to investigate the effects of phthalates
on steroidogenesis. This is important because steroidogenesis is
a multi-cellular process involving both granulosa cells and theca
cells. MEHP exposure for 48 h at 10–100 µg/ml increased the lev-
els of progesterone and decreased the levels of androstenedione,
testosterone, and estradiol in isolated rat secondary follicles (126).
Interestingly, even with the decreases in the three sex steroid hor-
mones, the increase in progesterone promoted an increase in the
combined level of all steroid hormones in response to MEHP
exposure (126). This suggests that MEHP potentially stimulates
steroidogenesis in the secondary follicle, but it inhibits the con-
version of progesterone to androstenedione (126). Further studies
using mouse preantral follicles show that MEHP exposure at 10–
200 µM increased the levels of progesterone, testosterone, and
estrone (127). The discrepancies between testosterone production
in these two studies can possibly be attributed to species differences
and differences in culture methods. Using antral follicles, the most
steroidogenically active follicle type, isolated from mice, DEHP
(10–100 µg/ml) and MEHP (1–100 µg/ml) exposure for 96 h
decreased estradiol production via inhibition of Cyp19a1 tran-
scription (132). This effect on steroidogenesis coincides with the
DEHP- and MEHP-induced inhibition of antral follicle growth,
cell cycle arrest evident by alterations in Ccnd2, Ccne1, and Cdk4
mRNA levels, atresia evident by alterations in Bax, Aifm1, Bcl2, and
Bcl2l10 mRNA levels, and induction of oxidative stress evident by
increases in ROS and altered SOD1 and GPX protein and activity
(130–132). However, it is unknown if the inhibition of steroido-
genesis causes these other toxic events or is a secondary response
to defects in cell cycle progression and/or oxidative stress. Inter-
estingly, supplementing the media with estradiol (1–10 nM) and
NAC (0.25–1 mM), an antioxidant, only partially protected the
antral follicle from DEHP- and MEHP-induced growth inhibition
and Cyp19a1 transcription (130–132), but estradiol completely
rescued antral follicles from MEHP-induced atresia (133). This
likely suggests that the effects of MEHP on estradiol production
precede and promote the incidence of atresia (133). In another
study, DBP exposure for 96 h at 1000 µg/ml decreased estradiol
levels, and exposure for 168 h promoted atresia in cultured mouse
antral follicles (129). Similar to DEHP and MEHP, this effect
on steroidogenesis coincided with DBP-induced (1–1000 µg/ml)
inhibition of antral follicle growth, cell cycle arrest evident by an
increase in the number of follicular cells in the G1 stage and alter-
ations in the mRNA levels of Ccnd2, Ccne1, Ccna2, Ccnb1, and
Cdkn1a, and atresia evident by alterations in the mRNA levels
of BH3 interacting-domain death agonist (Bid) and Bcl2 (129).
These studies suggest that the entire follicle unit is a target for
phthalate-induced disruption of steroidogenesis. Studies using
secondary and preantral follicles have shown an increase in steroid
hormone levels following phthalate exposure (126, 127). Mean-
while, studies using more mature antral follicles have shown a
decrease in steroid hormone levels following phthalate exposure,
and the mechanisms by which phthalates inhibit steroidogenesis
may involve an inhibition of antral follicle growth (129, 132), an
induction of atresia (130–133), an increase in oxidative stress (130,
131), and decreases in steroidogenic enzyme levels (132).
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Similar to the follicle culture, minced ovary cultures, contain-
ing all follicular cell types, have been used to investigate the effects
of phthalates on steroidogenesis. DEHP exposure in vivo altered
the steroidogenic profile of minced rat ovaries cultured for 1 h
depending on the stage of the estrous cycle. Specifically, DEHP
exposure at 1500 mg/kg/day increased the minced ovary produc-
tion of testosterone and estradiol when the rats were euthanized in
diestrus (171, 172). Conversely, when the rats were euthanized in
estrus, cultured minced ovaries produced less estradiol (171, 172).

EPIDEMIOLOGICAL LINKS BETWEEN PHTHALATE EXPOSURE AND
ALTERATIONS IN STEROIDOGENESIS
Exposure to phthalates has been shown to disrupt ovarian
steroidogenesis and steroidogenic-controlled processes. Though
limited, there is epidemiologic evidence that phthalate exposure
is associated with steroidogenic defects. Specifically in the West-
ern Australian Pregnancy Cohort Study, serum from pregnant
women during gestational week 18 was subjected to measure-
ments of phthalate metabolites and hormones and the study found
that several phthalate metabolites have a negative association with

maternal sex hormone-binding globulin, and MEP had a negative
association with AMH in the adolescent daughter (148). Further,
the sum of DEHP metabolites was associated with a trend for
an earlier age at menarche in the adolescent female offspring,
which is a process heavily controlled by ovarian steroid produc-
tion (148). In another study, urinary levels of MEHP and the
oxidative monoester metabolite mono(2-ethyl-5-hydroxyhexyl)
phthalate in mothers were negatively associated with free testos-
terone levels and the free testosterone to estradiol levels ratio in
the cord serum from female human infants (173). Similarly, the
urinary levels of several phthalate metabolites were associated with
decreased serum total testosterone levels in women aged 6–20 and
40–60 years from the National Health and Nutrition Examination
Survey (174). Further, urinary levels of DEHP metabolites and
MBP were associated with decreased testosterone levels in preg-
nant women in the Study for Future Families (175). Conversely,
in utero exposure to MEP and MBzP was associated with increased
testosterone levels in girls at ages 8–13 years from the Mexico
City birth cohort (176). Urinary levels of MEHP and MBzP in
8-year-old girls from Taiwan were also positively associated with
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FIGURE 5 | Phthalates alter steroidogenesis. This figure is a summation of
the major findings on the effects of phthalates on steroidogenesis. Black text
boxes connected to hormones outline the major effects of phthalates on the

levels of that hormone. Blue text boxes connected to steroidogenic enzymes
outline the major effects of phthalates on the mRNA and/or protein levels of
that enzyme.
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increased serum progesterone levels and urinary levels of MBzP
and MBP were positively associated with increased serum FSH
levels (177).

Proper regulation of ovarian steroidogenesis is vital for repro-
ductive and non-reproductive health, and numerous studies indi-
cate that phthalates have the ability to dysregulate steroidogenesis
in multiple aspects (Figure 5). Specifically, phthalates have been
shown to intervene in the production and secretion of multi-
ple sex steroid hormones in both in vivo and in vitro systems
to often lead to a decrease in estradiol levels. Further, phtha-
lates have been shown to directly target several steroidogenic cell
types in the ovary to elicit an adverse effect on steroid hormone
production. These effects on steroidogenesis are likely attributed
to alterations in the transcription of genes that synthesize and
metabolize estradiol (Table 2). Importantly, the effects observed
in animal studies moderately correlate to the effects observed in
human ovarian cell types (161, 162, 164, 168, 169). As is the
case with studies investigating the effects of phthalates on fol-
liculogenesis, future work investigating the effects of phthalates
on steroidogenesis should incorporate exposures to other com-
monly used phthalates to expand upon what is known regarding
DEHP and MEHP, which are the two most extensively stud-
ied phthalates. Further, the doses used in these studies should
fall within the range of estimated human exposure. Most often,
the doses used in the reviewed studies exceed human expo-
sure levels. Because phthalates exhibit a non-monotonic dose
response, the effects of phthalates on steroidogenesis at lower lev-
els may be more toxic and/or have different mechanisms than
at higher levels (149, 150). Additionally, future work should
elucidate the mechanisms by which phthalates disrupt steroido-
genesis, and investigate whether the phthalate-induced disrup-
tion in steroidogenesis leads to infertility and non-reproductive
complications.

SUMMARY AND FUTURE DIRECTIONS
Phthalates are a group of EDCs that target the ovary to adversely
affect the two essential processes of folliculogenesis and steroido-
genesis. This is concerning for public health because phthalates
are used extensively in a wide variety of commonly used items,
resulting in ubiquitous human exposure. Phthalates have been
shown to alter ovarian and oocyte development, target specific
follicle types, alter progression of follicular development, and dis-
rupt the functionality of follicles and corpora lutea. Specifically,
phthalates have been shown to inhibit germ cell nest breakdown
and primordial follicle assembly (118), accelerate primordial fol-
licle recruitment (119–121), inhibit antral follicle growth (129–
132) and final oocyte maturation (120, 135–141) to potentially
inhibit ovulation (134, 142), and induce atresia in follicles across
several stages of development (122–124, 129–131, 133). Further,
increasing evidence suggests that phthalates disrupt the produc-
tion, secretion, and action of several essential sex steroid hormones
via altered mRNA, protein, and activity of multiple steroidogenic
enzymes. These effects most commonly result in decreased estra-
diol levels (126, 129, 132, 134, 154, 155, 161–163, 168, 171, 172);
however, some studies suggest that phthalates stimulate steroido-
genesis (121, 126, 139, 146, 165, 171, 172). Regardless, these effects
on folliculogenesis and steroidogenesis can have lasting effects
on reproductive and non-reproductive health, as both of these
processes are essential for fertility, maintenance of appropriately
timed reproductive senescence, and the regulation of skeletal,
cardiovascular, and brain health.

Further study is warranted in investigating the effects of phtha-
lates on ovarian function. In particular, researchers should expand
upon the dose ranges used in their studies to incorporate doses that
mimic human exposure. The majority of the cited work focuses
primarily on doses that exceed the range of estimated human
exposure. Although these findings are important, observing the

Table 2 | Genes associated with steroidogenesis that are altered by phthalate exposure.

Phthalate (dose) Model (duration of exposure) Effect on gene (reference) Gene name

DEHP (0.05–5 mg/kg/day) Adult mouse, in utero (length of

gestation–weaning)

Decreased Cyp19a1 (141) Cytochrome-P450 aromatase

Decreased Cyp17a1 (141) Cytochrome-P450 steroid 17-α-hydroxylase 1

Decreased Pgr (141) Progesterone receptor

Decreased Fshr (141) FSH receptor

Decreased Lhr (141) LH receptor

DEHP (100 µg/ml) Mouse antral follicles (96 h) Decreased Cyp19a1 (132) Cytochrome-P450 aromatase

DEHP (25 mg/m3) Prepubertal rat (63 days) Increased Cyp19a1 (158) Cytochrome-P450 aromatase

MEHP (10 µg/ml) Mouse antral follicles (96 h) Decreased Cyp19a1 (132) Cytochrome-P450 aromatase

MEHP (100–1000 mg/kg/day) Adult mouse, in utero (gestational

day 17–19)

Decreased Star (121) Steroidogenic acute regulatory protein

Decreased Cyp19a1 (121) Cytochrome-P450 aromatase

MEHP (50–200 µM) Rat granulosa cells (48 h) Decreased Cyp19a1 (166–168) Cytochrome-P450 aromatase

BBP (1 µM) HO23 cells (24 h) Increased AHR (175) Aryl hydrocarbon receptor

Increased ARNT (175) Aryl hydrocarbon receptor nuclear translocator

Increased CYP1B1 (175) Cytochrome-P450 1B1

DIBP (600 mg/kg/day) Prepubertal rat, in utero (gestational

day 7–21)

Increased Cyp19a1 (156) Cytochrome-P450 aromatase
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effects at levels that mimic human exposure would increase the
translational nature of studies. Further, a unique characteristic
of EDCs is that low doses often elicit different or more profound
effects than high doses (149, 150). To expand upon the use of doses
that mimic human exposure, future studies should also consider
realistic routes and lengths of exposure. Humans are predom-
inantly exposed to phthalates via oral ingestion, not gavage, and
are exposed throughout the duration of the day, not a single bolus.
Thus, studies should utilize oral dosing or exposure in the diet
over multiple time-points in the day. Humans are also chronically
exposed to phthalates from gestation through adulthood. There-
fore, studies should investigate the effects of phthalate exposure,
starting in utero and continuing in adulthood, on ovarian func-
tion across all stages of development. Additionally, humans are
exposed to multiple phthalates and other environmental toxicants
daily. The majority of the cited work understandably focuses on
single phthalate exposures, but future studies should incorporate
exposures to phthalate mixtures as well as a mixture of phthalates
and other ubiquitous toxicants. The above suggestions would aid
in translating the findings from animal studies to potential effects
in humans. These future studies should also focus on the mecha-
nisms of phthalate-induced ovotoxicity. Some studies suggest that
phthalates exert toxicity via an estrogenic, anti-estrogenic, oxida-
tive stress response, or PPAR activation depending on the model
system, dose, and exposure window. However, further work must
be done to elucidate the mechanisms by which phthalates disrupt
folliculogenesis and steroidogenesis. This will aid in the treatment
and/or prevention of phthalate-induced reproductive diseases.
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