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Food availability can influence the optimal allocation of time and energy among alternative behaviors such as foraging, courting, 
and competing for mates. If populations differ consistently in food availability, selection may cause geographic divergence in 
allocation strategies. At the opposite extreme, a norm of reaction may evolve such that food intake influences the allocation 
strategy of individuals in the same way in all populations. Between these two extremes, food intake reaction norms may diverge 
genetically among populations. For example, at sites where food is scarce, selection may strengthen the effect of food intake on 
behavior, whereas at sites with abundant food, selection may be weak or even oppose plasticity. We tested these ideas by raising 
male guppies from streams differing in food availability in a common laboratory environment on either low or high food levels, 
and then observing them in the presence of male competitors (from the same population and diet group) and receptive females. 
Males from low-food-availability streams spent more time foraging than males from high-food-availability streams, independent of 
food intake. Compared with males raised on the high food level, males raised on the low food level spent more time foraging and 
were less aggressive towards other males. Courtship display rate increased with food intake but only in males from low-food 
streams. In contrast, males from high-food streams showed greater plasticity with respect to male-male aggression. These results 
generally support the resource availability/behavioral tradeoff hypothesis while also revealing a surprising degree of ontogenetic 
complexity in a relatively simple system. Key words: aggression, alternative reproductive tactic, food availability, food intake, guppy, 
intrasexual competition. 

Sexually mature animals must distribute finite resources 
among activities such as foraging, aggressive competition, 

and courtship. Food intake may affect the optimal partitioning 
of resources to these behaviors by influencing overall physical 
condition (Belovsky et al., 1996; Blanckenhorn et al., 1995). 
Variation in food intake may lead to the evolution of condition-
dependent strategies in which individuals exhibit different 
tactics depending on their energy reserves (Belovsky et al., 
1996; Taborsky, 2001; reviewed by Gross, 1996). Aggressive 
mate-acquisition tactics are particularly risky in terms of energy 
loss, and also in terms of injury, predation, and missed foraging 
or courtship opportunities (Brick, 1998; Hack, 1997; Jakobsson 
et al., 1995; Kelly and Godin, 2001). Thus, the frequency and 
nature of aggressive interactions can be predicted to vary with 
the condition of the participants (Spohn and Moore, 1997; 
Stocker and Huber, 2001). For example, non-territorial male 
damselflies (Calopteryx splendens xanthostoma) either fight for 
access to territories or wait for a territory to become vacant 
(Plaistow and Siva-Jothy, 1996). Waiting is far less successful 
than fighting, but it is the only alternative for males who have 
insufficient fat reserves to engage in combat. 

The study of life history variation along resource availability 
gradients has contributed to our understanding of how 
animals allocate finite resources to somatic growth versus 
reproduction (Bernardo and Agosta, 2003; Guillou and 
Lumingas, 1999; Reznick, 1983). Resource availability gra
dients may similarly be exploited to study behavioral tradeoffs 
(Carroll and Corneli, 1999). Sites with ample food supplies 
may favor aggressive mating tactics, whereas food-limited sites 
may instead favor alternative mating tactics. The optimal tactic 
for a given individual may depend on an interaction between 
its own food intake and the population average. Aggressive 
mating tactics should be less energetically costly in high-
resource-availability environments because the overall energy 

budget of males is larger than in low-resource-availability 
environments. It follows that males should exhibit higher 
overall levels of aggression in high-resource environments and 
greater plasticity (i.e., responsiveness to changes in resource 
availability) in low-resource environments (Komers, 1997). 
Some attention has been given to the geographic relationship 
between resource availability and aggression in a foraging 
context (Dunbrack et al., 1996; Lahti et al., 2002), but very few 
if any studies have examined the relationship between 
resource availability and aggression in a mating context. 
In this paper, we test predictions of the resource availabil

ity/behavioral tradeoff hypothesis in guppies (Poecilia retic-
ulata), a species that occurs naturally along a replicated
gradient in food availability and in which males exhibit 
a range of alternative mating tactics. We carried out a common 
garden experiment in which males from populations differing 
in food availability were raised from birth on two different 
food levels in the laboratory. This experimental design
permitted us to measure, and distinguish between, three
possible effects of food availability on male behavior: (1)
evolved (genetic) responses to food availability at the
population level, (2) effects of food intake on the behavior 
development of individual males (phenotypic plasticity), and 
(3) evolved differences between populations in the plastic 
response to food intake (genotype by environment interac
tion). Before presenting specific predictions, we briefly review 
pertinent information on the study system. 
The mating tactics of male guppies, in increasing order of 

presumed energetic investment, include sneaking copulations 
without courtship, displaying to females prior to copulation 
(courtship), and aggressively inhibiting rival males (Farr, 
1989; Houde, 1997; Jirotkul, 2000; Kelly and Godin, 2001; 
Rodd and Sokolowski, 1995). Aggressive tactics range from 



jockeying for position next to females, to displaying to, 
chasing, and biting rivals (Brooks and Caithness, 1999; 
Houde, 1988). That energetic tradeoffs influence male behav
ior in the short term has been suggested by food deprivation 
studies. Abrahams (1993) showed that males switch from 
foraging to courting in a predictable fashion depending on 
hunger levels, and Griffiths (1996) found that hungry males 
spent less time foraging in the presence of females than in their 
absence. Males raised on chronically low food levels are known 
to mature later and at a smaller size than males raised on high 
food levels (Reznick, 1990), but the long-term effects of food 
availability on male behavior remain unstudied. The objective 
of our study was to examine the evolutionary and develop
mental effects of variation in food availability on the full suite 
of male mating tactics in this species. 
Adaptive phenotypic plasticity can reduce or eliminate 

selection along environmental gradients (reviewed in Price 
et al., 2003; West-Eberhard, 2003). In the present context, if 
male mating tactics have evolved to respond plastically to food 
intake, this could eliminate selection for divergence in mating 
tactics along the food availability gradient. Conversely, adaptive 
divergence between populations in response to an environ
mental factor could eliminate the need for a plastic response to 
that factor (especially if the environmental gradient is steep). 
The implication is that we cannot, a priori, make robust 
predictions about how food availability will affect both the 
development of and population divergence in mating tactics. 
Nevertheless, we can make predictions about the direction of 
these effects, if present. Furthermore, we can predict that if 
populations have not diverged genetically along the food 
availability gradient, then food intake should have the 
predicted plastic effects on mating tactics, and vice versa. With 
these qualifications, our predictions were as follows: 

(1) Genetic	 divergence predictions. Compared to males 
from high-resource-availability streams, males from 
low-resource-availability streams should (a) allocate 
more time to foraging, (b) sneak copulations more fre
quently, (c) court less frequently, and (d) engage in 
less intense male-male aggression. 

(2) Plasticity predictions. Compared to males raised on the 
high food level, males raised on the low food level 
should (a) allocate more time to foraging, (b) sneak 
copulations more frequently, (c) court less frequently, 
and (d) engage in less intense male-male aggression. 

(3) Genotype	 by environment interaction predictions. 
Compared to males from high-resource-availability 
streams, males from low-resource-availability streams 
should be more plastic in their response to food intake 
in the ways listed above. 

METHODS 

Study populations 

The main source of food for guppies in nature is unicellular 
algae (Dussault and Kramer, 1981), the abundance of which is 
largely a function of forest canopy cover. Streams that receive 
more light have larger standing crops of algae, but not 
correspondingly higher densities of guppies, than streams 
that receive less light (Grether et al., 2001). In the high-light, 
high-resource-availability streams, female and juvenile guppies 
grow faster, and males mature at larger sizes, than their 
counterparts in the low-resource-availability streams (Grether 
et al., 2001; unpublished data). 
The fish used in this study were first-generation (G1) 

laboratory descendants of fish collected from 8 to 10 pools in 
each of four streams in the Northern Range of Trinidad in 

June 2000. The streams were chosen during a survey of several 
river drainages conducted in the spring of 2000, based on 
criteria outlined in Grether et al. (2001): (1) intact primary or 
old secondary growth rainforest; (2) relatively homogeneous 
forest canopy cover; (3) separated from streams differing in 
canopy cover or predator assemblage by multiple barriers to 
guppy dispersal, including two or more waterfalls; and (4) no 
predatory fish, except Rivulus hartii. Among streams meeting 
these criteria, we chose two streams representing the available 
extremes in forest canopy cover in each of two stream 
drainages (Aqui River [high resource] and a small tributary of 
the Madamas River [low resource] in the upper Madamas 
drainage [Universal Transverse Mercator Grid coordinates, 
Zone 20: PS 939.2 886.6, PS 950.1 880.0]; Small Crayfish River 
[high resource] and Large Crayfish River [low resource] in 
the upper Quare drainage (PS 970.7 835.2, PS 696.5 832.2]). 
As in Grether et al. (2001), our goal was to compare guppy 
populations exposed to different levels of canopy cover, and 
thus resource availability, without the potentially confounding 
effects of phylogenetic divergence between drainages and 
differential predation. 
To maximize the genetic diversity of fish used in the 

experiment, we obtained offspring for the G1 generation from 
approximately 120 (25 to 35 per population) wild females. 
This represents a potentially much larger number of sires, 
because females mate multiply in the wild and can store 
sperm for up to 8 months (Winge, 1937). 

Food level manipulation 

The laboratory populations were housed at the University of 
California, Los Angeles campus in a temperature-controlled 
(24.0 6 1.5�C water temperature) room at 12 : 12 h photo
period (mixed daylight spectrum fluorescent and incandes
cent light). To prevent the guppies from eating algae, we 
treated the water in their housing aquaria and in the obser
vation aquaria with 2-chloro-4, 6-bis-( ethylamino)-s-triazine 
(Algae Destroyer, Aquarium Pharmaceuticals, Chalfont, Penn
sylvania, USA) and removed any visible algae regularly. Wild-
caught females were individually housed in 8-l tanks, fed 
a standard diet of commercial flake food (Tetramin or Tetra 
Spirulina, depending on the day of the week; Tetra, Blacks
burg, Virginia, USA) twice per day (once per day on weekends) 
and allowed to give birth. Newborn G1 fish were housed in 8-l 
plastic tanks in mixed-sex broods at densities of 1–6 fish per 
tank. Each tank potentially contained offspring from multiple 
females, but offspring did not vary in age by more than 14 days. 

Newborn fish were randomly assigned to either the low-
food or the high-food treatment. Within each treatment, food 
amounts were adjusted to the age and density of fish in the 
tank and were increased as the fish aged, as described below. 
The high food level was approximately as much as guppies of 
a given age are willing to eat on a twice-daily feeding schedule, 
and the low food level was one-third that amount. As the fish 
aged, we increased food levels every 2–3 weeks. On average, 
the low food levels were increased by 12.6% per week over the 
first 20 weeks, by 4.7% per week over weeks 21–40, by 3.2% 
over weeks 41–60, and by 1.5% after week 61 until their use in 
observations. The comparable numbers for the high food 
level are 10.8%, 5.5%, 3.2%, and 1.5%. Because male guppies 
essentially stop growing after reaching sexual maturity 
(Snelson, 1989), we did not increase male food levels after 
20 weeks of age. The diets met the standards of all high-quality 
commercial fish feeds for tropical fish and consisted of 
a mixture of spray-dried white fishmeal (41.8%), wheat-flour 
(47%), vegetable oil (2.0%), vitamin premix (1.0%), and 
gelatin (8.1%). The estimated protein content was 40% and 
the fat content was 10% (Lamon M, personal communication, 



2001). The food level treatment resulted in significant 
differences in male size in males from all four populations 
(ANOVA for standard length [SL]; population, F3,337 ¼ 1.73, 
p ¼ .16; food level, F1,337 ¼ 223.3, p , .0001; population 3 food 
level, F3,337 ¼ 0.88, p ¼ .45; Figure 1). 

Fish were sexed under a dissecting microscope well before 
sexual maturity, at either 13–15 weeks of age (low food) or 
10–12 weeks of age (high food). We anesthetized fish using 
MS222 and looked for black pigment spots near the gonopore 
(females) and skin iridescence or the beginnings of gonopo
dial development in the anal fin (males). After sexing, males 
were housed in 8-l tanks at densities of 1–4 males per tank, 
and females were housed in 38-l tanks at initial densities of 
20 fish per tank (densities of females gradually decreased as 
they were used in the observations). To allow males to have 
courtship experience, we housed one mature stock female 
with each male group for at least 7 days prior to focal 
observations. Females used in the experiment remained 
virgins until they were used in focal observations. 

Focal male observations 

We used an open-aquarium design (Grether, 2000; Houde, 
1997) in which males and females could interact with each 
other during the observations. This design allowed us to 
simultaneously examine male aggressive, courtship, and 
foraging behavior. Observations were conducted in 180-l 
aquaria with natural, multicolored gravel bottoms and plastic 
bubblers connected to undergravel filters. Three such 
observation aquaria were in operation at once; when possible 
males from different populations in the same drainage were 
tested simultaneously. We conducted the tests in a windowless 
room maintained on the same light : dark schedule as the lab. 
The observation aquaria were covered with brown paper on 
three sides, and observations were made from the fourth side. 
Each aquarium was illuminated from the top with one 
daylight-spectrum fluorescent tube. Otherwise, the room was 
dark, to maximize the visibility of the fish to the observer and 
to minimize the visibility of the observer to the fish. 

To minimize the effects of competition for food on 
aggressive interactions (Dunbrack et al., 1996; Magurran and 
Seghers, 1991), we regularly removed visible algae from the 
observation aquaria. In addition, we fed the fish ad libitum 
twice per observation day (15 min prior to the first focal 
observation and immediately after the second focal observa
tion; we conducted three focal observations per male; see 
below). This allowed us to examine the effects of lifetime food 
intake without the potentially confounding effects of short-
term hunger levels. We filtered the water in the aquaria using 
a high-flow-rate charcoal canister filter (Marineland Magnum 
350 convertible canister filter, Moorpark, California, USA) 
after each set of observations, to minimize chemical effects 
(Crow and Liley, 1979) on the behavior of fish in subsequent 
observations. To minimize laboratory effects on aggressive 
behavior, we used first generation descendants of wild-caught 
fish, an even sex ratio (3:3), very low densities of fish per 
observation tank (Houde, 1997; Magurran and Seghers, 
1991), and males that had not been housed together (Grether, 
2000; Houde, 1997). We also attempted to minimize body size 
disparities within male and female groups. Male groups 
consisted of three individuals from the same population 
raised on either low or high food, whose relatedness to each 
other was unknown but who were no more than 14 days apart 
in age. Female groups consisted of three mature virgins from 
the same population as the males. The females were housed 
out of sight of mature males until they were used in the 
observations, so that their behavior could not be influenced by 
prior experience with mature males (Grether, 2000). 

Figure 1 
Standard lengths of male guppies from four Trinidad populations 
reared in the lab on the two food levels. In the Madamas drainage, 
Madamas Tributary (n ¼ 78) is the low-resource-availability stream and 
Aqui River (n ¼ 90) is the high-resource-availability stream. In the 
Quare drainage, Large Crayfish River (n ¼ 90) is the low-resource
availability stream and Small Crayfish River (n  87) is the high-
resource-availability  

¼
stream. Means þ1 SE are shown (except where 

the SE is too small to be shown). 

A trial was initiated by releasing the three males chosen for 
testing into the observation aquarium between 0930 and 1100 h, 
after their color patterns were studied and sketched. Males 
were chosen based on body size similarities and not based on 
color patterns. Male guppies (even full siblings) usually differ 
in the location or presence of color spots, and we therefore had 
no trouble differentiating males based on their color patterns. 
Females were released into the observation aquarium shortly 
after the males. The fish were then fed. On the following 
morning, the fish were fed again and the first observation 
session began at least 15 min after the feeding, between 0930 
and 1100 h. We performed at least three replicate focal 
observations of 5 min per male, alternating between males in 
a predetermined, random order. A minimum of 20 min 
elapsed between consecutive focal observations on a given 
male. Behavioral observations were recorded on a Macintosh 
PowerBook 1400cs computer using an event recorder program 
written in TrueBASIC Silver Edition (code available from 
G. F. Grether upon request). We conducted observations on 
a total of 345 males (Quare drainage: 177 males, Madamas 
drainage: 168 males) and an equal number of females. 
Immediately following their use in observations, males were 
weighed to the nearest 0.1 mg and their SL (the length from 
the anterior-most portion of the jaw to the caudal peduncle) 
was measured using digital calipers (6 0.01 mm readout). 
We recorded the time spent foraging, following females, 

and engaging in interference competition (two or more males 
simultaneously displaying to or following the same female). 
We also recorded the rates of sigmoid courtship displays, 
sneak copulations (forced copulation attempts not preceded 
by display, in which gonopodial contact with the female’s 
ventral surface was visible), dominance interactions (supplant
ing, displaying, chasing, or biting directed from one male to 
another while neither was following or courting a female), 
and escalation of interference competition and dominance 
interactions to displays, chases, or bites between males. 
Dominance interactions were usually distinctly one-sided 
and thus one male could be classified as dominant and the 
other as subordinate. 

Data analysis 

We constructed separate ANOVA models to examine the 
proportion of time males spent foraging, following females, 



Figure 2 
Proportion of time spent foraging during focal male observations by 
males raised on the two food levels, from low- and high-resource
availability streams (n ¼ 345). Means þ1 SE are shown. See Table 1 
for the results of statistical analysis of these data. 

and competing, and the frequency of sigmoid courtship 
displays, sneak copulations, and dominance interactions. We 
also examined the proportion of competition and dominance 
interactions that escalated to chases and/or bites between 
males. For all of the analyses, food level (in the laboratory) 
and stream resource availability (in the field) were treated as 
fixed-effect terms, and male group (the group of three males 
observed together) was included as a random effects term 
nested within stream resource availability and male food level. 
Although we used a constant density of fish and minimized 

size differences between males during the behavior tests, the 
behavior of the males could have been influenced by the size 
distribution or density of fish in the housing tanks. To 
determine whether it was important to take these variables 
into account, we constructed two ANCOVA models for each 
dependent variable, one including the SL and standard 
deviation (SD) of standard-length of males within an obser
vation group as covariates, and the other including housing 
density as a covariate. None of the covariates in these models 
was significant (male SL: all p . .052; SD in male SL: all 
p . .19; housing density: all p . .22 with the exception of the 
sneak copulation rate model, p .050 prior to correction for 
multiple tests). Therefore, we 

¼
present the results of anal

yses excluding male size and housing density. 
We also considered the age of males during the behavior 

tests as a covariate and included age in the final models if 
warranted (males ranged in age from 19 to 113 weeks). In the 
initial models, we included age (i.e., the mean age of males in 
a group) as a covariate if it correlated significantly with the 
dependent variable. The following variables were not corre
lated with age: time spent foraging, time spent following 
females, and the proportion of competition interactions and 
dominance interactions that escalated to chases and bites (all 
r , .10, all p . .07). The following variables were correlated 
with age: courtship display rate (r ¼ �.17, p ¼ .0023), time 
spent in interference competition (r .22, p .0001), sneak 
copulation rate (r 

¼ � ¼
¼ .19, p  .0004), and dominance 

interaction rate (r ¼ .18, p 
¼

¼ .0008), and we therefore 
included age as a covariate in the initial models for these 
variables. Because of chance differences in the males available 
for use in the observations, males from low-resource streams 
were older than males from high-resource streams (ANOVA; 
resource availability: F1,329 ¼ 5.11, p .02; food level: F1,329  
0.18, p ¼ .67). Therefore, for the dependent

¼
 variables that

¼
 

were correlated with age, we used a truncated data set of males 
ranging in age from 37 to 77 weeks in the analyses. For sneak 
copulation rate and dominance interaction rate, the assump
tions of ANCOVA were met (Tabachnick and Fidell, 2001), 
and we constructed models including age as a covariate. 
These analyses revealed no significant age effect (sneak 

Table 1 
Analysis 
of male 

of variation in male guppy foraging behavior as a function 
food level, stream resource availability, and male group 

Time spent foraging 

Food 
Resource availability 
Food 3 resource availability 
Male group (food, resource availability) 

4.751,337; 
4.821,337; 
1.721,337; 
0.204,337; 

.03 

.03 

.19 

.94 

Means are shown in 
(df) were calculated 
the nearest integer. 

Figure 2. 
using the 

Values are Fdf; 
Satterthwaite 

p. Degrees of freedom 
method and rounded to 

copulation rate: F1,299 ¼ 0.20, p ¼ .66; dominance interaction 
rate: F1,299 ¼ 1.38, p ¼ .24). Therefore, we present analyses 
excluding the age covariate. For courtship display rate and 
time spent in interference competition, the data violated the 
assumption of homogeneity of regression slopes, and we 
instead employed a model with age as a categorical variable 
(Tabachnick and Fidell, 2001) with three levels, young (37–48 
weeks), medium (49–56 weeks), and old (57–77 weeks). This 
analysis for courtship display rate revealed no significant age 
category term (F2,276 ¼ 1.81, p ¼ .17). Therefore, we present 
the analysis for this model excluding an age term. 
All data were square-root transformed prior to analysis to 

meet parametric assumptions. We corrected for multiple tests 
within distinct categories of variables (courtship behavior, 
interference competition, and dominance interactions) using 
Bonferroni corrections. All analyses were conducted using 
JMP 3.2.2 (SAS Institute, Inc., Cary, North Carolina, USA). 

RESULTS 

Male age and behavior 

After truncating the age distribution to eliminate age differ
ences between treatment groups (as described above), two 
variables were negatively correlated with age: courtship display 
rate (r ¼ �.24, p , .00001) and time spent in interference 
competition (r ¼ �.29, p , .00001). For time spent in 
interference competition, there was a significant effect of age 
category (F1,276 ¼ 4.27, p , .00001) and a significant age 
category 3 food interaction term (F2,276 ¼ 8.02, p ¼ .0004) 
that resulted because time spent in competition decreased 
with age for high food males but was relatively unaffected by 
age for low food males. 

Genetic divergence in behavior 

Males from the low-resource streams foraged more than males 
from the high-resource streams (Figure 2; Table 1). There was 
no significant effect of population resource availability on the 
other behaviors (Tables 2 and 3). 

Plasticity in behavior 

Males from the low-food treatment allocated significantly 
more time to foraging than males from the high-food 
treatment (Table 1; Figure 2). There was no significant effect 
of the food treatment on sneak copulation rate, courtship 
display rate (Figure 3A), or time spent following females 
(Figure 3B; Table 2). Low-food males from the high-resource 
streams spent more time in interference competition than 
high-food males (Table 3; Figure 4A); however, high-food 
males escalated to chasing and biting significantly more 
frequently than low-food males (Figure 4B). High food males 
also engaged in dominance interactions significantly more 



frequently than low food males (Table 3; Figure 5). However, 
the proportion of dominance interactions that escalated to 
chasing and biting did not differ significantly between food 
treatment groups. 

Genotype by environment interactions 

There was a significant food 3 resource availability interaction 
for courtship display rate, caused by the greater effect of the 
food treatment on males from the low-resource streams than 
on males from the high-resource streams (Figure 3A). There 
was also a significant food 3 resource availability interaction 
for time spent competing and dominance interaction rate 
(Table 3; Figures 4 and 5), because males from the high-
resource streams responded to the food treatment more than 
males from the low-resource streams. 

DISCUSSION 

Food intake strongly influenced the foraging and reproduc
tive behavior of male guppies from the streams we examined. 
Males raised from birth on the low food level spent more time 
foraging, and were less aggressive in a mating context, than 
their high food counterparts. This suggests that males with 
reduced access to food plastically alter their behavior to 
facilitate future reproduction (by foraging) at the expense of 
current reproduction (Abrahams, 1993; Siems and Sikes, 
1998). We found some evidence for genetic divergence 
among populations: males from low-resource streams spent 
more time foraging than males from high-resource streams. 
In addition, we observed differences in the degree to which 
males from different streams altered their behavior in 
response to food intake (i.e., genotype by environment 
interactions). The change in courtship display rate in 
response to food intake was greater for males from the low-
resource streams than for males from the high-resource 
streams, suggesting that males from low-resource streams are 
better able to adjust their mating effort in response to food 
intake. For time spent competing and dominance interaction 
rate, the pattern was reversed, and males from high-resource 
streams were more plastic in their response to food intake. 

Our results support other studies showing a direct impact of 
male food intake on the frequency and nature of male mating 
behavior (Engqvist and Sauer, 2003; Plaistow and Siva-Jothy, 
1996). Male guppies raised on the low food level engaged in 
less frequent escalated interference competition and domi
nance behavior than males raised on the high food level, 
suggesting either that males facultatively adopted aggressive 
mating tactics based on their body condition, or that aggressive 
mating tactics entailed energetic costs that low-food males 
were unable to bear. Interestingly, the food treatment did not 
directly influence other aspects of reproductive behavior (time 
spent following females, sneak copulation rate, courtship 

Table 2 
Analysis of variation in male guppy mating behavior as a function 
of male food level, stream resource availability, and male group 

Sneak Sigmoid Time spent 
copulation courtship following 
rate display rate females 

Food 0.0041,304; .95 0.291,292; .59 2.051,337; .15 
Resource 0.681,304; .41 0.111,292; .74 0.171,337; .68 
availability 
Food 3 resource 0.081,304; .77 7.581,292; .006 0.291,337; .59 
availability 
Male group 4.174,304; .003 1.754,292; .14 1.254,337; .29 
(food, resource 
availability) 

Means are shown in Figure 3. Values are Fdf; p. df were calculated 
using the Satterthwaite method and rounded to the nearest integer. 
With Bonferroni correction for three tests, } corrected ¼ 0.017. 

display rate), so that the investment into reproductive strategies 
depended on the behavior involved. Similarly, increased risk of 
predation reduces aggression, but not courtship or copulation 
activity, in male guppies (Kelly and Godin, 2001). Presumably, 
aggressive mating tactics are the most labile because they are 
less implicitly connected with reproductive success than court
ship and copulation. 
Aggressive mating tactics are also thought to be more costly 

than other reproductive behaviors (Hack, 1997; Jakobsson 
et al., 1995). Males exhibit aggressive mating tactics more 
frequently when competition for females is intense, such as 
when densities are high (Jirotkul, 1999b) or when operational 
sex ratios are more male-biased (Jirotkul, 1999a; Souroukis 
and Cade, 1993). We found that older males and males with 
restricted food intake were less likely to be aggressive, 
consistent with the idea that fighting to gain access to females 
is only profitable for some males under some conditions. 
Empirical studies of guppies have been equivocal about the 
relationship between aggression and reproductive success 
(Brooks and Caithness, 1999; Gandolfi, 1971; Gorlick, 1976; 
Houde, 1988; Kodric-Brown, 1993), possibly because different 
researchers have studied different populations. Controlled 
studies of multiple, non-domesticated guppy populations are 
needed to determine the benefits associated with aggressively 
competing for females in this species. 
One of the goals of the present study was to generate 

predictions for field differences in behavior between males in 
low-resource versus high-resource streams. Field observations 
would also address whether aggressive behavior is an artifact 
of lab settings (e.g., Bruce and White, 1995; Gorlick, 1976; 
Houde, 1997). Unlike territorial fish species (Forsgren et al., 
1996; Giles and Huntingford, 1984), guppies do not usually 

Table 3 
Analysis of variation in male guppy aggressive behavior as a function of male food level, stream resource availability, and male group 

Proportion of dominance 
Time spent Proportion of competitions Dominance interaction interactions that escalated to 
competing that escalated to chases/bites rate chases/bites 

Food 7.371,276; .007 5.211,328; .02 15.751,304; , .001 1.681,80; .20 
Resource availability 0.321,276; .57 1.181,328; .28 3.151,304; .08 1.531,80; .22 
Food 3 resource availability 11.391,276; .0008 0.291,328; .59 7.411,304; .007 0.451,80; .50 
Male group (food, resource 1.9312,276; .032 1.714,328; .15 12.084,304; , .0001 2.754,80; .034 
availability) 

Means are shown in Figures 4 and 5. Values are Fdf; p. With Bonferroni correction for four tests, } corrected ¼ 0.0125. The analysis for time spent 
competing included an age term. df were calculated using the Satterthwaite method and rounded to the nearest integer. 



Figure 3 
Courtship display rate (panel A; n ¼ 300) and proportion of time 
spent following females (panel B; n ¼ 345) during focal observations 
of male guppies from low- and high-resource-availability streams 
raised on the low and high food levels. Means þ1 SE are shown. 
See Table 2 for the results of statistical analysis of these data. 

defend areas of a stream and do not form distinct dominance 
hierarchies in the wild, leading to the argument that overt 
aggression may be uncommon and unimportant for reproduc
tive success in nature (Brooks and Caithness, 1999; Farr, 1975, 

Figure 4 
Proportion of time spent in interference competition interactions 
(panel A; n ¼ 300) and proportion of competitive interactions that 
escalated to chases/bites (panel B; n ¼ 336) as a function of food level 
for male guppies from low- versus high-resource-availability streams. 
Means þ1 SE are shown. See Table 3 for the results of statistical 
analysis of these data. 

Figure 5 
The rate of dominance interactions observed in focal observations, 
in relation to male food level and resource availability (n  312). 
Means þ1 SE are shown. See Table  

¼
3 for the results of statistical 

analysis of these data. 

1989; Houde, 1988). However, female guppies are only 
receptive for a few days of each reproductive cycle, and they 
indicate their receptivity chemically (Crow and Liley, 1979). 
Therefore, the operational sex ratio within a pool is often male-
biased (Houde, 1997), and several males may attempt to court 
the same female, leading to aggressive interference (Brown 
and Godin, 1999; Farr, 1989; Jirotkul, 1999a). In addition, the 
frequency and significance of aggression may vary with 
environmental conditions (Brooks and Caithness, 1999; Rodd 
and Sokolowski, 1995), and studies of low-predation popula
tions suggest that aggression may be important (Ballin, 1973; 
Kodric-Brown, 1992, 1993; but see Houde, 1988). Based on the 
results of our lab study, we predict that males in low-resource 
guppy streams will allocate more time to foraging and engage 
less frequently in escalated interference competition and 
dominance interactions than males in high-resource streams. 

We thank Brie Altenau, Heidy Contreras, Wendy Mayea, and Claire 
Zugmeyer for help with behavioral observations, Chris Anderson for 
comments on an earlier version of the manuscript, and Jenny Fonts 
for statistical advice. Ocean Star International, Inc., generously 
produced and donated the experimental diets. This study was 
supported by National Science Foundation grants IBN-0001309 to 
G.F.G. and IBN-0130893 to G.F.G. and G.R.K. 

REFERENCES 

Abrahams MV, 1993. The trade-off between foraging and courting in 
male guppies. Anim Behav 45:673–681. 

Ballin PJ, 1973. Geographic variation of courtship behavior in natural 
populations of the guppy Poecilia reticulata (Peters) (MSc thesis). 
Vancouver: University of British Columbia. 

Belovsky GE, Slade JB, Chase JM, 1996. Mating strategies based on 
foraging ability: an experiment with grasshoppers. Behav Ecol 7: 
438–444. 

Bernardo J, Agosta SJ, 2003. Determinants of clinal variation in life 
history of dusky salamanders (Desmognathus ocoee): prey abundance 
and ecological limits on foraging time restrict opportunities for 
larval growth. J Zool Lond 259:411–421. 

Blanckenhorn WU, Preziosi RF, Fairbairn DF, 1995. Time and energy 
constraints and the evolution of sexual size dimorphism—to eat or 
to mate? Evol Ecol 9:369–381. 

Brick O, 1998. Fighting behaviour, vigilance and predation risk in the 
cichlid fish Nannacara anomala. Anim Behav 56:309–317. 

Brooks R, Caithness N, 1999. Intersexual and intrasexual selection, 
sneak copulation and male ornamentation in guppies (Poecilia 
reticulata). S Afr J Zool 34:48–52. 

Brown GE, Godin J-GJ, 1999. Chemical alarm signals in wild 
Trinidadian guppies (Poecilia reticulata). Can J Zool 77:562–570. 

Bruce KE, White WG, 1995. Agonistic relationships and sexual 
behaviour patterns in male guppies, Poecilia reticulata. Anim Behav 
50:1009–1021. 



Carroll SP, Corneli PS, 1999. The evolution of behavioral norms of 
reaction as a problem in ecological genetics: theory, methods, and 
data. In: Geographic variation in behavior (Foster SA, Endler JA, 
eds).New York: Oxford University Press; 52–68. 

Crow RT, Liley NR, 1979. A sexual pheromone in the guppy, Poecilia 
reticulata (Peters). Can J Zool 57:184–188. 

Dunbrack RL, Clarke L, Bassler C, 1996. Population level differences 
in aggressiveness and their relationship to food density in a stream 
salmonid (Salvelinus fontinalis). J Fish Biol 48:615–622. 

Dussault GV, Kramer DL 1981. Food and feeding behavior of the 
guppy, Poecilia reticulata (Pisces: Poeciliidae). Can J Zool 59: 
684–701. 

Engqvist L, Sauer KP, 2003. Influence of nutrition on courtship and 
mating in the scorpionfly Panorpa cognata (Mecoptera, Insecta). 
Ethol 109:911–928. 

Farr JA, 1975. The role of predation in the evolution of social 
behavior of natural populations of the guppy, Poecilia reticulata 
(Pisces: Poeciliidae). Evol 29:151–158. 

Farr JA, 1989. Sexual selection and secondary sexual differentiation in 
poeciliids: determinants of male mating success and the evolution 
of female choice. In: Ecology and evolution of livebearing fishes 
(Poeciliidae) (Meffe GK, Snelson FF, eds). Englewood Cliffs, 
New Jersey: Prentice Hall; 91–123. 

Forsgren E, Kvarnemo C, Lindström K, 1996. Mode of sexual selection 
determined by resource abundance in two sand goby populations. 
Evolution 50:646–654. 

Gandolfi G, 1971. Sexual selection in relation to the social status 
of males in Poecilia reticulata (Teleostei: Poeciliidae). Boll Zool 38: 
35–48. 

Giles N, Huntingford FA, 1984. Variability in breeding biology of three-
spined sticklebacks (Gasterosteus aculeatus): problems with measuring 
population differences in aggression. Behaviour 93:57–68. 

Gorlick DL, 1976. Dominance hierarchies and factors influencing 
dominance in the guppy Poecilia reticulata (Peters). Anim Behav 24: 
336–346. 

Grether GF, 2000. Carotenoid limitation and mate preference 
evolution: a test of the indicator hypothesis in guppies (Poecilia 
reticulata). Evolution 54:1712–1724. 

Grether GF, Millie DF, Bryant MJ, Reznick DN, Mayea W, 2001. Rain 
forest canopy cover, resource availability, and life history evolution 
in guppies. Ecology 82:1546–1559. 

Griffiths SW, 1996. Sex differences in the trade-off between feeding 
and mating in the guppy. J Fish Biol 48:891–898. 

Gross MR, 1996. Alternative reproductive strategies and tactics: 
diversity within sexes. TREE 11:92–98. 

Guillou M, Lumingas, LJL, 1999. Variation in the reproductive 
strategy of the sea urchin Sphaerechinus granularis (Echinodermata: 
Echinoidea) related to food availability. J Mar Biol Ass UK 79: 
131–136. 

Hack MA, 1997. The energetic costs of fighting in the house cricket, 
Acheta domesticus L. Behav Ecol 8:28–36. 

Houde AE, 1988. The effects of female choice and male-male 
competition on the mating success of male guppies. Anim Behav 
36:888–896. 

Houde AE, 1997. Sex, color, and mate choice in guppies. Princeton, 
New Jersey: Princeton University Press. 

Jakobsson S, Brick O, Kullberg C, 1995. Escalated fighting behaviour 
incurs increased predation risk. Anim Behav 49:235–239. 

Jirotkul M, 1999a. Operational sex ratio influences female preference 
and male-male competition in guppies. Anim Behav 58:287–294. 

Jirotkul M, 1999b. Population density influences male-male compe
tition in guppies. Anim Behav 58:1169–1175. 

Jirotkul M, 2000. Male trait distribution determined alternative 
mating tactics in guppies. J Fish Biol 56:1427–1434. 

Kelly CD, Godin J-GJ, 2001. Predation risk reduces male-male sexual 
competition in the Trinidadian guppy (Poecilia reticulata). Behav 
Ecol Sociobiol 51:95–100. 

Kodric-Brown A, 1992. Male dominance can enhance mating success 
in guppies. Anim Behav 44:165–167. 

Kodric-Brown A, 1993. Female choice of multiple male criteria in 
guppies: interacting effects of dominance, coloration and court
ship. Behav Ecol Sociobiol 32:415–420. 

Komers PE, 1997. Behavioural plasticity in variable environments. Can 
J Zool 75:161–169. 

Lahti K, Huuskonen H, Laurila A, Piironen J, 2002. Metabolic rate 
and aggressiveness between brown trout populations. Funct Ecol 
16:167–174. 

Magurran AE, Seghers BH, 1991. Variation in schooling and 
aggression amongst guppy (Poecilia reticulata) populations in 
Trinidad. Behaviour 118:214–234. 

Plaistow S, Siva-Jothy MT, 1996. Energetic constraints and male mate-
securing tactics in the damselfly Calopteryx splendens xanthostoma 
(Charpentier). Proc R Soc Lond B 263:1233–1238. 

Price TD, Qvarnstrom A, Irwin DE, 2003. The role of pheno
typic plasticity in driving genetic evolution. Proc R Soc Lond B 270: 
1433–1440. 

Reznick D, 1983. The structure of guppy life histories: the tradeoff 
between growth and reproduction. Ecology 64:862–873. 

Reznick DN, 1990. Plasticity in age and size at maturity in male 
guppies (Poecilia reticulata)—an experimental evaluation of alterna
tive models of development. J Evol Biol 3:185–203. 

Rodd FH, Sokolowski MB, 1995. Complex origins of variation in the 
sexual behaviour of male Trinidadian guppies, Poecilia reticulata: 
interactions between social environment, heredity, body size and 
age. Anim Behav 49:1139–1159. 

Siems DP, Sikes RS, 1998. Tradeoffs between growth and reproduction 
in response to temporal variation in food supply. Env Biol Fish 53: 
319–329. 

Snelson FF, 1989. Social and environmental control of life history 
traits in poeciliid fishes. In: Ecology and evolution of livebearing 
fishes (Poeciliidae) (Meffe GK, Snelson FF, eds). Englewood 
Cliffs,New Jersey: Prentice Hall; 149–161. 

Spohn BG, Moore AJ, 1997. Environmental effects on agonistic 
interactions between males of the cockroach Nauphoeta cinerea. 
Ethology 103:855–864. 

Stocker AM, Huber R, 2001. Fighting strategies in crayfish Orconectes 
rusticus (Decapoda, Cambaridae) differ with hunger state and the 
presence of food cues. Ethology 107:727–736. 

Souroukis K, Cade WH, 1993. Reproductive competition and selection 
on male traits at varying sex-ratios in the field cricket, Gryllus
pennsylvanicus. Behaviour 126:45–62. 

Tabachnick BG, Fidell LS, 2001. Using multivariate statistics, 4th ed. 
Needham Heights, Massachusetts: Allyn and Bacon. 

Taborsky M, 2001. The evolution of bourgeois, parasitic, and 
cooperative reproductive behaviors in fishes. Am Gen Assoc 92: 
100–110. 

West-Eberhard MJ, 2003. Developmental plasticity and evolution. 
Oxford: Oxford University Press. 

Winge O, 1937. Succession of broods in Lebistes. Nature 140:467. 


