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The Effects of Separator Design on the Discharge Performance 
of a Starved Lead-Acid Cell 

T. V. Nguyen 1 and R. E. White* 

Department of. Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122 

Hiram Gu* 

Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055 

ABSTRACT 

A mathematical model of a starved lead-acid cell has been developed to study the dynamic behavior of the cell during 
discharge. Concentrated binary electrolyte theory and a volume-averaging technique were used to model the transport  of 
electrolyte. The model can be used to predict cell voltage and profile of: acid concentration, overpotential, porosity, reac- 
tion rate, and electrode capacity, as functions of time. The effects of separator thickness and its porosity were examined 
with respect to cold-cranking amperage and reserve capacity of the battery. The separator was found to be a significant 
factor governing performance. 

Starved lead-acid batteries are becoming increasingly 
popular in the secondary battery market due to many of 
their potential advantages: zero maintenance,  operation in 
any position, internal gas pressure potentially usable as a 
built-in charge indicator, and low battery profile and 
weight, which is especially attractive in automotive SLI 
(starting-lighting-ignition) applications. A traditional 
flooded-type lead-acid battery contains excess acid to 
compensate for the water loss due to oxygen evolution on 
overcharge. A uni t  ceil of the battery is composed of a posi- 
tive electrode, an acid reservoir, a separator, and a negative 
electrode. A starved lead-acid cell does not have an acid 
reservoir. Instead, a thicker and more porous separator is 
used to prevent physical contact of the positive and nega- 
tive electrodes, serve as an electrolyte reservoir (this gives 
rise to the concept of an immobilized electrolyte), and pro- 
mote oxygen gas transport from the positive electrode to 
the negative electrode for recombination on charging. 

The separator has always been thought to play a critical 
role in the operation of a starved lead-acid battery. Atlung 
and Fastrup (1), extending the work of Turner and Moseley 
(2), developed a mathematical model to study the effects of 
separator design on discharge rate and cell capacity. Their 
model, however, is of the separator alone, with constant re- 
action fluxes used as boundary conditions. We present 
here a detailed mathematical model of the whole starved 
lead-acid cell for discharge, which will allow the analysis 
of the total system and interactions between the com- 
ponen t s -pos i t ive  electrode, separator, and negative elec- 
trode. This model is a modification of an earlier model by 
Gu et al. (3) for the flooded-type cell. With this model, the 
effects of porosity, tortuosity, thickness, and the level of 
electrolyte saturation of the separator, on the discharge 
performance of a starved lead-acid cell, can be studied, in- 
cluding any interactions between the separator and the 
electrodes. 

This paper is organized in the following manner.  In the 
"Model Description" section, detailed formulation of the 
model is given. In  the "Model Output" section, the model 
results are illustrated graphically using an example of a 
CCA calculation. Each plot is briefly discussed regarding 
its significance. In the latter section, the effects due to the 
separator on cold-cranking amperage (CCA) and reserve 
capacity (RC) are evaluated in greater detail. 

Model  Descript ion 
A typical starved lead-acid cell is shown schematically in 

Fig. 1 and consists of the following boundaries and re- 
gions: a lead-grid current collector at x = 0, which is at the 
center of the positive (PbO2) electrode; a positive electrode 
(region 1); a positive electrode/separator interface; a po- 

* E l e c t r o c h e m i c a l  Soc ie ty  A c t i v e  M e m b e r .  
1 Present address: Los Alamos National Laboratory, Los Alamos, 
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rous separator (region 2); a separator/negative electrode in- 
terface; a negative (Pb) electrode (region 3); and the center 
of the negative electrode, where another grid is located 
(x = l). The positive and negative electrodes consist of po- 
rous solid matrices whose pores are flooded by a binary 
electrolyte---concentrated H=SO4 consisting of H § and 
H S O (  in H20 (4). The model is one-dimensional in the x- 
direction, perpendicular to the face of the electrode. Dur- 
ing discharge, the solid species in a starved lead-acid cell 
react with H + and H S O (  as follows 

PbO2cs~ + H S O (  + 3H § + 2e --> PbSO4~ 

+ 2H20 (positive electrode) 

and 

Pb(s~ + H S O (  ---> PbSO~(s~ + 2e- + H + (negative electrode) 

For both electrodes, a solid product of PbSO4 is formed on 
discharge, which changes the porosity and reaction sur- 
face area of the electrodes. 

The one-dimensional macro-homogeneous model for a 
starved lead-acid cell presented here consists of the follow- 
ing explicit dependent  variables: concentration of the elec- 
trolyte c; potential in the solid phase for each electrode ~1; 
potential in the electrolyte d~2; superficial current density 
in the electrolyte i2; and porosity of each porous region e. 
The independent  variables are the spatial coordinate x and 
time t. The governing equations and boundary conditions 
for the three regions in the cell are presented next. 

Center of the positive electrode.--At this boundary (x = 0), 
the boundary  conditions are 

Oc 
- 0 [1] 

ax 

Positive 
Electrode 

- 

Region I 
X=O 

Negative 
Separator Electrode 

Region 2 Region 3 l 
X=l 

[ ]  0 2 Gas 
[ ]  Solid active materials 

[ ]  Separato~ (inert) matedaJ 
[ ]  Electrolyte, H2SO 4 

Fig. 1. A one-dimensional macro-homogeneous model for a starved 
lead-acid cell. 
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i 2 = 0  [2] Interface between region I and region 2.-- 

qbl = 0 [3] 

- 0 [ 4 ]  

(gx 

The center of the positive electrode consists of a metal cur- 
rent  collector sandwiched between two porous electrode 
matrices. Equations [1] and [4] reflect symmetry at this 
boundary. Equation [2] states that, at the center of the posi- 
tive electrode, all the current is in the current collector and 
none is in the electrolyte. Equation [3] is used to designate 
~ to be a 0 V at this boundary. Without this reference po- 
tential, a particular solution cannot be obtained. The fifth 
equation that we used at this boundary  is Eq. [5], as shown 
for region 1, which describes porosity variations. 

Region 1, positive electrode.-- 

Porosity variation 

MWpb02 ~ (9i2 

PPb02 / (gX 

(9�9 1 (_MWeuso4 

Ot 2F \ PPbSO4 

- -  ( 1  - 2 t ~  
(9 In (cf) 

(gx 

Ohm's law in solution 

iz 0~a RT 
- + 

�9 exlK OX F 

�9 exmlff 0~)1 " 
i2 -- PbO2 ~-X -- ~app 

Charge balance 

Material balance 

e ~  ~ oc ~,~ oc I 
= 0~149 ~ 

ax  region 1 u,l. region~ 
[11] 

0�9 1 (MWpbs04 MWpb02_) 0i2 [12] 

Ot 2F  \" PPbSO4 0PbO 2 / ~X region 1 

i2 = iapp [13] 

0~, = 0 [14] 
Ox region 1 

= (fs~te~ep) ~ [15] 
(gX regionl (gX region2 

Equations [11] and [15] satisfy the requirement that the flux 
of the electrolyte, N~, and the superficial current density, i2, 
are continuous across the interface. In other words, 

[5] Ne,region I = Ne,region 2 and i2,regio n 1 = i2,region 2, The constant f~at i~ 
used to specify the fraction of the separator that is filled 
with electrolyte---not occupied by oxygen. Equation [12] 
describes the variation of the porosity with time. Equation 
[13] indicates that all the current at this interface is in the 

[6] electrolyte phase. Finally, Eq. [14] states that the electrode 
solid-phase potential gradient is equal to zero at the inter- 
face because there is no current in the solid phase at this 
point (i.e., all of the current is in the electrolyte phase), 

Region 2, separator.-- 

[7] Porosity 

�9 = fsatesep [16] 

Ohm's law in solution 

1 I (MWpbs~ 
+ c 

�9 O~ = OX \ OX/ 2-F \ OPbSO4 

MWpbo21 

PPbO 2 / 

i2 RT (9 In (cJ) 
= - + ___ [(1 - 2t~ [17] 

~ex2K 0X F ox 

q (9i2 
+ (3 - 2t~ - -  [8] 

] 0x 

Electrode kinetics 

0i2 . ( C / ~ 1  ( Q1 ~;1 

cxp [ OtaiF . A Upho2) ] ] [ - ~ -  ((~)1 -- (~)2 - 

r oclF ]} 
- exp [--R-~- (~, - ~bz - hUpbo2) [9] 

where 

aUebo~ = Upbo2 - Upb [10] 

Equations [5] describes the change in porosity in region 1 
with time due to the conversion of the active solid material 
by the electrode reaction. Equation [6], a modified Ohm's 
law for the electrolyte, states that the current in the elec- 
trolyte is driven by the electric potential and concentration 
gradients. Equation [7] is Ohm's law applied to the solid 
matrix. Equat ion [8] states that the electrolyte concentra- 
tion at any point in space changes with time because of 
electrode reaction, diffusion, and migration. The expo- 
nents  exl  and exml  on the porosity �9 (cf. Eq. [6] and [7]) are 
used to account for the geometry of the porous electrode 
and can be regarded as factors that describe the tortuosity 
of the porous electrode. Equation [9] has been selected to 
represent electrode kinetics. The parameters -~1, aal, and 
ar are related to the symmetry factor of the rate-deter- 
mining step of the electrode reaction. 

Solid-phase potential 

Material balance 

4h = 0 [18] 

OC (92C 
�9 - - = D e  ex2 - -  [19] 

0t (gx 2 

Current in solution 

i2 = iapp [20] 

Equation [16] indicates that the effective porosity of the 
separator available to current flow is fixed by f~at, Equation 
[17] is Ohm's law applied to the electrolyte, The potential of 
the electrode solid phase, (~1, is treated in this region as a 
dummy variable and is set arbitrarily equal to zero (Eq. 
[18]). Equation [19] is a material balance on the electrolyte 
in the separator. Finally, Eq. [20] states that all the applied 
current flows through the solution phase, because we as- 
sume that no conductive solid phase exists in the sepa. 
rator. 

Interface between region 2 and region 3,-- 

0Csatesep)eX2 0C : e ex3 0c [21] 
dX I region 2 0X ~ region 3 

(9,_ 1 (1Vl~TPbSO4 MV~Pb) 0i 2 

0t 2F ~ ~ pp---b 0X region3 

i 2 = iap p 

=0 
(gX region 3 

[22] 

[23] 

[24] 
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03/: region2 0 X  region3 

T h e  e q u a t i o n s  for  t h i s  i n t e r f ace  are  e s t a b l i s h e d  w i t h  t he  
s a m e  r e a s o n i n g  u s e d  at  t h e  i n t e r f ace  b e t w e e n  reg ion  1 a n d  
r eg ion  2. 

Region 3, negative electrode.- 

P o r o s i t y  v a r i a t i o n  

ae 1 (_~PbSO4 MWpI~] 8i2 

Ot 2 F  \ PPbSO4 PPb / OX 

O h m ' s  l aw in  so lu t i on  

i2 0~2 RT 0 In (cJ) 
- + - -  (1 - 2 t ~  eex3K 0 X  F Ox 

C h a r g e  b a l a n c e  

i 2 6exrn30"pb - -  ~--" ?'app 
Ox 

Mater ia l  b a l a n c e  

oc o• , [  

D = (1.75 + 260c)10 -5 exp  7.29 - -  

K = c [ e x p  (1.1104 + 199.475c - 1,6097.781c 2 
t \ 

E l e c t r o d e  k i n e t i c s  

-- amax3?-o3 r e f / - - t  I - - I  
c~X " \Cref/ \Qmax3/ 

e x p  [a~aF AUpb)] (*, - - 

[34] 

3,916.95 - 9,9406c - 72,1860/T_) ] T - [35] 

One  no t i c e s  t h a t  t e m p e r a t u r e  d e p e n d e n c y  is also i n c l u d e d  
[26] in  t h e s e  equa t ions .  

T h e  e q u i l i b r i u m  p o t e n t i a l  AUpbo2 (at 25~ is ca l cu la t ed  
f rom a n  e m p i r i c a l  e q u a t i o n  (4) 

hUpbo2 = 1.9228 + 0.147519 log m + 0'.063552 log 2 m 

[27] + 0.073772 log 3 m + 0.033612 log 4 m [36] 

w h e r e  m is t h e  mo la l i t y  of  t h e  su l fu r ic  acid.  A n o t h e r  em-  
p i r ica l  e q u a t i o n  b a s e d  on  l i t e r a tu re  da t a  at  25~ (4) is u s e d  
to r e l a t e  c to  m 

[28] m = 1.00322 x 10ac + 3.55 x 104c 2 

+ 2 . 1 7 x  10% 3 + 2 . 0 6 x  108c 4 [37] 

A l t h o u g h  D, K, a n d  AUpbo2 a re  d e p e n d e n t  o n  c, t h e y  are  
no t  f o r m u l a t e d  exp l ic i t ly  in  t e r m s  of  c in  t h e  mode l .  In  
o t h e r  words ,  for  e a c h  spa t ia l  n o d e  po in t ,  t h e y  are calcu-  
l a ted  b a s e d  on  t h e  c o n c e n t r a t i o n  d e t e r m i n e d  in  t h e  previ -  
ous  t i m e  step.  

0i2 [29 ]  
+ (1 - 2t~ Ox 

r oc3F ]} 
exp  I--R--T-(~1 - ~b2 - hUpb) [30] 

E q u a t i o n s  [26] t h r o u g h  [30] are  c o u n t e r p a r t s  of  t he  equa-  
t ions  u s e d  for  t h e  pos i t i ve  e l ec t rode  ( region 1). AUpb is de- 
f ined  as Upb - Upb (cf. Eq.  [10]), w h i c h  is zero. I t  is exp l ic i t ly  
e x p r e s s e d  to s h o w  t h e  s imi la r i ty  b e t w e e n  Eq.  [30] a n d  
Eq.  [9]. 

Center of the negative electrode.--At t h i s  b o u n d a r y  (x = / ) ,  
l ike  t h e  o t h e r  b o u n d a r y  at  x = 0, t he  c o n d i t i o n s  are  

~ e  
- 0 [31]  

Ox 

i~ = 0 [32] 

- 0 [33 ]  
Ox 

S i n c e  t h e  so l i d -phase  p o t e n t i a l  was  se t  to  zero at  x = 0, t he  
k ine t i c  e x p r e s s i o n  (Eq. [30]) is u s e d  at  t h i s  b o u n d a r y  to cal- 
cu l a t e  t h e  so l i d -phase  po ten t i a l ,  ~,. E q u a t i o n  [26] m a k e s  u p  
t h e  f if th e q u a t i o n  to  b e  u s e d  here .  

hfumericaI procedure.--The m o d e l  e q u a t i o n s  we re  p u t  in to  
f ini te  d i f f e r ence  f o r m  a n d  so lved  u s i n g  imp l i c i t  s t e p p i n g  
a n d  a n u m e r i c a l  p r o c e d u r e  r e f e r r ed  to as p e n t a d i a g o n a l  
B A N D  (J) (5). T h e  C r a n k - N i c o l s o n  m e t h o d  was  u s e d  for  
t h e  t i m e  i n c r e m e n t .  T h e  m o d e l  c o n v e r g e s  w i t h  discre-  
t i za t ion  e r ro r  O[(ht) 2 + hx)  2] (6). 

Concentration-dependent parameters.--The d i f fus ion  
coeff ic ient ,  D, a n d  conduc t iv i t y ,  K, of  t h e  ac id  are  calcu-  
l a t ed  a c c o r d i n g  to t h e  e m p i r i c a l  e x p r e s s i o n s  of  T i e d e m a n n  
a n d  N e w m a n  (7) 

Model Output 
T h e  m o d e l  ca lcu la te s  t h e  cell  vol tage ,  b a t t e r y  vol tage ,  

a n d  five profi les:  ac id  c o n c e n t r a t i o n ,  e l ec t rode  polar iza-  
t ion,  e l ec t rode  poros i ty ,  r e ac t i on  rate ,  a n d  s ta te-of-charge .  
T h e  b a t t e r y  vo l t age  is ca l cu la t ed  b a s e d  o n  s ix  cells  con-  
n e c t e d  in  ser ies  

12R~id 
Vbattery(t) : 6VceH(t) + Ibatte~ 5R~ + 2Rt + Np~ate-- 1-) [38] 

w h e r e  R~c a n d  Rt are  m e a s u r e d  r e s i s t a n c e  of  t h e  in te rce l l  
c o n n e c t o r  a n d  b a t t e r y  t e rmina l ,  r e spec t ive ly ;  Nplate is t he  

Table I. Parameters used in the base-line calculation 

--Electrolyte-- 
Acid concentration (c~f) 

Transference number  (t~ 
--Positive electrode-- 

Half thickness of plate 
Theoretical capacity (Qmaxl) 
Volume fraction of inert filler 
Maximum specific surface area 

(amaxl) 
Exchange current density (iol.~f) 

= 4.9 • 10 -3 mol/cm 3 
(1.280 sp gr) 

= 0.72 (7) 

s ~cl  
L1, E1 = 

cad dioxide conductivity = 

e x l ,  e x m l  = 

--Separator--  
Thickness of separator = 
Porosity (e~p) = 
ex2 = 
fsat = 

--Negative electrode-- 
Half thickness of plate = 
Theoretical capacity (Qmax3) = 
Volume fraction of inert filler = 
Maximum specific surface area = 

(ama~) 
Exchange current density (ioa.r~e) = 

C(a3, (~c3 
~3, ~3 
Lead conduct iv i ty  (~Pb) 
ex3, exm3 

= 0.08 cm 
= 2620 C/cm 3 
= 0.05 
= 2.3 x l0 s cm2/cm s 

= 3.19 • 10 aA/cm 2 
at - 18~ 

= 3.19 • 10 -7 A/cm z 
at 25~ 

1.15, 0.85 
0.3, 1.5 
500 S/cm (4) 

1.5, 0.5 

0.10 cm 
0.96 
1.50 
0.95 

0.09 cm 
3120 C/cm 3 
0.10 
2.3 • 104 cm2/cm 3 

4.96 • 10 -7 A/cm 2 
at - 18~ 

4.96 • 10 -6 A/cm 2 
at 25~ 

1.55, 0.45 
1.0 • 10 -4, 1.5 
48,000 S/cm (4) 
1.5, 0.5 
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Fig. 2. Electrolyte concentration profiles for 408 mA/cm 2 discharge 
at -18~ Profiles from top to bottom are at time steps of 0, 5, 10, 15, 
20, and 30s, r e s p e c t i v e l y .  

I i 

k - 4  
O9 
o 

o 
a,  

0.6 

0.5 

0.4 

0.3 

0.2 

m: 
O 

CO POS. NEG. 

, I I , I ; 

0.0 0.2 0.6 0.8 1.0 
0.1 f ' 

0.4 

X 

Fig. 4. Electrode porosity profiles for 408 mA/cm 2 discharge at 
-18~ Profiles from top to bottom are at time steps of 0, 5, 10, 15, 
20, and 30s, r e s p e c t i v e l y .  

total number  of plates in each cell; /battery is the discharge 
current in amperes and has a negative value; Vceu(t) is 
(~1,==0 - ~1,x=1); and R~d is the equivalent grid resistance 
due to both the positive and negative grids. The value of 
R~d requires an educated estimate based on experimental 
battery test data and results of a mathematical model of 
the grid geometry (8). 

The results of a s imulat ion--a  high-current cold-crank- 
ing test of 728A at -18~ on a battery with thirteen 13.9-cm 

0.2 

0.1 

�9 ~ "  0.0 
> 

v 

1 
- 0 1  

-0 .2  

-0 .3  

POS. 

, f 

0.0 0.2 

| 

o 

Co 

I ! 

0.4 

X 
Fig. 3. Electrode polarization profiles 

- 1 8 ~  

NEG. 

I , I = 

0 . 6  0.8 1.0 

for 408 mA/cm 2 discharge at 

by 10.7-cm plates in each cell--will be illustrated next. The 
resistances used to calculate the battery voltage are 

R~d = 1.85 x 10 -3 ohm, 
Ric = 1.00 x 10 -4 ohm, and 
Rt = 1.00 • 10 -4 ohm 

Other values used for the calculation can be found in 
Table I. 

The development of the electrolyte concentration profile 
with t ime (Fig. 2) provides us with information on the 

50.0 

40.0 

30.0 

20.0 

~ "  lO.O 

~'~ 0.0 

~ -10.0 

-20 .0  1~ 
0 

-30 .0  

-40.0 P0S. m NEG. 

--50.0 , I I , I , I , 
0.0 0.2 0.4 0.6 0.8 1.0 

X 
Fig. 5. Reaction rate profiles for 408 mA/cm 2 discharge at -18~ 
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Fig. 6.  State-of-charge profiles for 408  mA/cm 2 discharge at - 18~ 

Profiles from top to bottom are at time steps of 0, 5, I 0 ,  15, 20,  and 
30s, respectively. 

ha 
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0.0 5.0 lO.O 15.0 20.0 25.0 30.0 

TIME ( s ) 
Fig, 8. Battery voltage as o function of t ime for 4 0 8  mA/cm 2 dis- 

charge at - 18~ 

availabili ty of the acid for the electrode reaction (espe- 
cia!!y in the posit ive electrode). The profile indicates 
whether  acid deplet ion is l imiting the capacity of the cell, 
For  the present  case, acid deplet ion is definitely not a lim- 
iting factor. Cold cranking performance of a lead-acid bat- 
tcry is most ly affected by  high electrolyte resistivity and 
slow electrode kinetics Ccf. Fig. 7), One sees from Fig, 2 
that  acid deplet ion is more noticeable in the positive elec- 
trode. 
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Fig. 7. Cell voltage as a function of time for 408  mA/cm 2 discharge 

at - 18~ 

The degree of polarization across the thickness of an 
electrode is the #1 - #2 profile. For  the present  case, Fig. 3 
indicates  that  the polarization of the negative electrode is 
relatively unchanged during the 30s of discharge. The pos- 
itive electrode in the beginning of the discharge exhibits  a 
lower polarization near the current  collector and a higher  
polarization at the electrode/separator  interface. Toward 
the end of the discharge, the degree of polarization be- 
comes more uniform across. The acid concentrat ion may 
play a role in the difference between the positive and nega- 
tive electrode polarization profiles (cfi Fig. 2). 

The porosi ty  profile indicates whether  the pores of the 
electrodes are being plugged by the discharge p roduc t - -  
PbSO4. Figure 4 reveals that  the negative electrode loses 
its porosi ty  faster than the positive electrode. The fast drop 
in porosi ty at the front of the negative electrode is due to 
the high reaction rate there (cf, Fig. 5). The reaction rate 
profile tells us whether  the electrode is being utilized uni- 
formly. Figure 5 shows that  under  the cold cranking condi- 
t ions both electrodes are nonuniformly discharged. The 
negative electrode has less uniform reaction d is t r ibut ion--  
showing a higher rate of react ion at the front of the elec- 
t rode- -as  compared  to the positive electrode. The reaction 
rate profile of the posit ive electrode, however,  varies more 
with time, which is consis tent  with the polarization profile. 

The state-of-charge profile (Fig. 6) is obta ined from the 
t ime integral  of the reaction rate. It shows the cumulat ive 
effect of the non-uniform electrode reaction rate. Under  
cold cranking conditions,  the capaci ty  of an electrode is 
not a l imiting factor. The cell voltage (Fig. 7) is a global re- 
sponse to the ohmic losses, concentrat ion polarization, 
and electrode kinetics, The initial large drop from the 
open-circuit  voltage (-2.1V) indicates that  the ohmic and 
kinetic effects are quite significant at low-temperature 
cranking. The open-circuit  voltage of the battery is six 
t imes the open-circuit  voltage of a cell. At 30s into the dis- 
charge, the bat tery voltage has dropped  to 7.2V (Fig. 
8)--the s tandard cutoff voltage for a cold cranking test, A 
comparison between the bat tery and cell voltages gives us 
an idea of the significance of losses due to the grids, inter- 
cell connectors,  and terminals.  

Effects of the separator.--We used the model  to examine 
the effects of glass-mat separator  thickness and glass-mat 
porosi ty on the CCA and RC performance of a starved 
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Fig. 10. Effects of separator porosity and saturation level on reserve 
capacity. 

lead-acid battery. The CCA calculation was based on a 
728A discharge at - 18~ to 30s, as was used to illustrate the 
results of a model  calculation in the last section. The RC 
calculation was based on a 25A discharge at 25~ to 10.5V 
of the battery terminal voltage. 

In Fig. 9, the 30s voltage is plotted against fsatesep at the 
two tortuosity factors, ex2 of 1.0 and 1.5. All other parame- 
ters used are those given in Table I. The abscissa was so 
chosen because the 30s voltage is really directly affected 
by the product  of tsar and esep. For  instance, the effect is the 
same whether  e~p = 0.70 and fsat = 0.95 or esep = 0.96 and 
fsat = 0.69. From Fig. 9, we see that the effect of the separa- 
tor porosity on the 30s voltage is not a linear function; one 
might  incorrectly assume, without  a detailed analysis, that 
the voltage drop would be inversely proportional to the 
cross-sectional area. We also see that the effect of ex2 
varies with the porosity level of the separator. The precise 
knowledge of the tortuosity factor is not as important  in 
predicting 30s voltage when the separator is relatively 
porous. 

The effect of the separator porosity on RC is almost lin- 
ear, as shown in Fig. 10, indicating that RC is proportional 
to the volume of electrolyte stored in the separator. This 
finding suggests that the electrolyte in the separator is suf- 
ficiently utilized at the low current discharge and that the 
diffusion of  acid is not  limiting. Figure 10 also indicates 
that an exact  knowledge of the tortuosity factor is not im- 
portant to obtaining a satisfactory prediction of the reserve 
capacity. 

To examine the effects of the separator thickness, we 
used a porosity of 0.96, a tortuosity factor of 1.5, and all 
other values of the base-line condition given in Table I. The 
effects of  the separator thickness were found to be quite 
straightforward. The separator thickness affects the 30s 
voltage linearly (Fig. 11), as would be expected, since the 
voltage loss across a conductor  is a direct function of the 
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0,20 

length. The effect of the separator on RC is also approxi- 
mately linear (Fig. 12) because like the porosity the thick- 
ness governs the amount  of acid that is available for the 
electrode react ion-- the thicker the separator, the more 
acid, the greater the reserve capacity. 

Conclusions 
The separator in a starved lead-acid battery is an impor- 

tant factor governing the performance of the battery. Its 
thickness and porosity have significant effects on the CCA 
capability and RC. We can use this mathematical  model  to 
select a separator that will give an opt imum balance be- 
tween CCA capability and RC performance. We have also 
examined the sensitivity, of CCA and RC to the tortuosity 
factor of the separator formulated in the mathematical  
model. We found that the accuracy of the model  in predict- 
ing RC is not sensitive to the tortuosity factor, and neither 
is the CCA prediction if the porosity of the separator is 
high. 
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diffusion coefficient of the binary electrolyte, 
em2/s  
exponents on porosity in region 1 
exponent  on porosity in region 2, separator 
tortuosity factor 
exponents on porosity in region 3 
mean molar activity coefficient 
fraction of separator saturated with acid 
Faraday's constant, 96,487 C/mol 
total applied current density based on pro- 
jected electrode area, A/cm 2 
exchange current density at CrCf for the posi- 
tive electrode, A/cm 2 
exchange current density at Cr~f for the nega- 
tive electrode, A/cm 2 
superficial current density in the solution 
based on projected electrode area, A/cm 2 
applied current, A 
reaction current per uni t  volume of electrode, 
/Ucm 3 
distance between positive and negative elec- 
trode current collectors, cm 
molality of the acid, mol/kg 
molecular weight of species i (i = PbS04, 
Pb02, Pb), g/mol 
number  of electrons involved in electrode re- 
action 
flux of electrolyte, moYcm2-s 
charge per uni t  volume in regions 1 and 3, 
C/cm ~ 
max imum charge per uni t  volume in regions 1 
and 3, C/cm 3 
number  of plates in a cell 
universal gas constant, 8.3143 J/mol-K 
equivalent resistance of a pair of positive and 
negative grids, s 
resistance of a battery intercell connector, 
battery terminal resistance, 
time, s 
transference number  of H + with respect to the 
solvent velocity 
absolute temperature, K 
standard electrode potentials referred to the 
hydrogen electrode, V 
rest-potential difference between PbO2 and 
Pb electrodes, V 
cell voltage, V 

Cta3~ ~c3 

~/1, ~3 

~sep 
~1, ~3 

K 
Pi 

4'2 
Subscripts 
e 
o 
+ 

x distance from the center of the positive elec- 
trode, em 

X ratio of x to the total cell thickness (with half 
electrodes) 

Greek letters 
aal, at1 anodic and cathodic transfer coefficients for 

the positive electrode 
anodic and cathodic transfer coefficients for 
the negative electrode 
exponents for the concentration dependence 
of the exchange current density 
porosity 
porosity of the separator 
exponents for the charge dependence of the 
specific active surface area 
electrolyte conductivity, S/cm 
density of species i (i = PbSO4, PbO2, Pb), 
g/cm ~ 
conductivity of the electrode solid phase 
(i = Pb, PbO2), S/cm 
potential in the electrode matrix, V 
potential in the solution, V 

electrolyte 
solvent 
cation 
anion 
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Topotactic Two-Phase Reaction of Ruthenium Dioxide (Rutile) in 
Lithium Nonaqueous Cell 

Tsutomu Ohzuku,* Keijiro Sawai, and Taketsugu Hira{* 
Electrochemistry and Inorganic Chemistry Laboratory, Department of Applied Chemistry, Faculty of Engineering, 

Osaka City University, Sugimoto 3-3-138, Sumiyoshi, Osaka 558, Japan 

ABSTRACT 

Electrochemical and x-ray diffraction studies were carried out for the reduction of RuO2 having rutile structure in 1M 
LiC104 propylene carbonate/1,2-dimethoxyethane (1:1) solution. RuO2 was topotactically reduced to LiRuO2, drawing an 
L-shapedovoltage curve. X-ray diffraction examinations of the reduced RuO~indicated that RuO2 (tetragonal; a = 4.491A, 
c = 3.105A) was transformed to LfiRuO2 (orthorhombic; a = 5.055A, b = 4.954A, c = 2.774A) via an intermediate phase hav- 
ing a tetragonal lattice (a = 4.65A, c = 3.10A). The reaction was reversible, i.e., LiRuO2 was electrochemically oxidized to 
RuO~ via an intermediate phase. Although three phases coexisted during the reduction of RuO2 and oxidation of Lil.0RuO2, 
the reaction was classified as a topotactic two-phase reaction in which an intermediate phase existed between the RuO2 
and LiRuO2 phases. Hysteresis was observed, even in plots of the open-circuit voltages (OCV) vs. the reduction degree, 
when the cell was cycled. The reaction mechanism of RuO2 is discussed, with emphasis on one characteristic of a topotac= 
tic two-phase reaction. The mechanochemical aspects on the reaction are also described. 

Insert ion electrodes are of great interest among battery 
researchers and electrochemists because of their utility as 
cathode materials for l i thium nonaqueous cells. Of these, 
manganese dioxide (MnO2) has attracted interest since its 

* Electrochemical Society Active Member. 

applicability to rechargeable li thium cells was indicated 
(1-4). In  order to develop the electrochemistry of MnOz in a 
l i thium nonaqueous cell, it is necessary to understand the 
electrochemistry of rutile (2). 

Heat-treated electrolytic manganese dioxide (HEMD) at 
400~ is widely used as a cathode material for primary lith- 
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