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The effects of sex hormones on immune function have received much attention, 24	

especially following the proposal of the immunocompetence handicap hypothesis. 25	

Many studies, both experimental and correlational, have been conducted to test the 26	

relationship between immune function and the sex hormones testosterone in males 27	

and oestrogen in females. However, the results are mixed. We conducted four cross-28	

species meta-analyses to investigate the relationship between sex hormones and 29	

immune function: (1) the effect of testosterone manipulation on immune function in 30	

males, (2) the correlation between circulating testosterone level and immune function 31	

in males, (3) the effect of oestrogen manipulation on immune function in females, and 32	

(4) the correlation between circulating oestrogen level and immune function in 33	

females. The results from the experimental studies showed that testosterone had a 34	

medium-sized immunosuppressive effect on immune function. The effect of 35	

oestrogen, on the other hand, depended on the immune measure used. Oestrogen 36	

suppressed cell-mediated immune function while reducing parasite loads. The overall 37	

correlation (meta-analytic relationship) between circulating sex hormone level and 38	

immune function was not statistically significant for either testosterone or oestrogen 39	

despite the power of meta-analysis. These results suggest that correlational studies 40	

have limited value for testing the effects of sex hormones on immune function. We 41	

found little evidence of publication bias in the four data sets using indirect tests. There 42	

was a weak and positive relationship between year of publication and effect size for 43	

experimental studies of testosterone that became non-significant after we controlled 44	

for castration and immune measure, suggesting that the temporal trend was due to 45	

changes in these moderators over time. Graphical analyses suggest that the temporal 46	

trend was due to an increased use of cytokine measures across time. We found 47	

substantial heterogeneity in effect sizes, except in correlational studies of testosterone, 48	
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even after we accounted for the relevant random and fixed factors. In conclusion, our 49	

results provide good evidence that testosterone suppresses immune function and that 50	

the effect of oestrogen varies depending on the immune measure used.  51	

 52	
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I. INTRODUCTION 89	

There has been a long-standing interest in the effects of sex hormones on 90	

immune function (Ansar Ahmed, Penhale & Talal, 1985; Grossman, 1985; Schuurs & 91	

Verheul, 1990; Klein, 2004; Bouman, Heineman & Faas, 2005). Across species, 92	

females typically show stronger immune responses to parasitic challenges compared 93	

to males (Klein, 2004; Zuk & McKean, 1996). The prevalence and intensity of 94	

parasite infections also tend to be lower in females (Klein, 2004; Schuurs & Verheul, 95	

1990). These sex differences were found even when experiments control carefully for 96	

parasite exposure (Daniels & Belosevic, 1994; Klein, Gamble & Nelson, 1999). These 97	

results suggest that sex differences in immune function are at least partly caused by 98	

physiological differences between the sexes. Among the physiological factors that 99	

differ between the sexes, sex hormones appear to be prime candidates as factors 100	

affecting immune function. The presence of testosterone and oestrogen receptors on 101	

various immune organs and immune cells suggests that sex hormones can influence 102	

the immune system directly (Alexander & Stimson, 1988; Cutolo et al., 1996; Danel 103	

et al., 1983; Roberts, Walker & Alexander, 2001; Wunderlich et al., 2002). 104	

Furthermore, the removal of gonads, one of the main sources of sex hormones, can 105	

alter immune functioning (e.g. Kamis, Ahmad & Badrul-Munir, 1992; Rivero et al., 106	

2002; also see review by Klein, 2004). 107	
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Much attention has been placed on the effects of sex hormones, especially 108	

following the proposal of the influential immunocompetence handicap hypothesis 109	

(ICHH; Folstad & Karter, 1992). According to indirect-benefit models of female mate 110	

choice, females can obtain genetic benefits for their offspring by favouring the most 111	

ornamented males (Fisher, 1958; Pomiankowski, 1988). However, if females are 112	

consistent in their preference, genetic variance in fitness-related traits should be lost, 113	

leading to the so-called ‘lek paradox’ (Borgia, 1979; Taylor & Williams, 1982; 114	

Kirkpatrick & Ryan, 1991). Hamilton & Zuk (1982) proposed that male sexual 115	

signals might reflect genes that code for superior parasite resistance. Based on this 116	

hypothesis, male genetic variation is maintained through a co-evolutionary arms race 117	

where genes that code for good health spread among host individuals while parasites 118	

evolve increased virulence in response to the improved immunity of hosts. In 119	

elaboration of the Hamilton–Zuk hypothesis, the ICHH suggested that sex hormones, 120	

in particular testosterone in males, provide the mechanistic link between sexual 121	

signals and genes that code for good health through their effects on both signal 122	

development and immune function.  123	

Since its inception, there has been much debate concerning the ICHH, 124	

particularly the assumption that sex hormones affect immune function. Roberts, 125	

Buchanan & Evans (2004) published a meta-analysis examining the effect of 126	

testosterone on immune function using studies from evolutionary biology. They found 127	

little support for the hypothesis that testosterone suppresses immune function in 128	

males. In the decade since then, many more studies on the effects of testosterone have 129	

been published, and meta-analytic techniques have advanced considerably. Therefore, 130	

we provide an update on Roberts et al. (2004). In addition, we examine the 131	
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relationship between oestrogen and immune function in females, which has not been 132	

subjected to meta-analysis previously. 133	

 134	

(1) The effect of testosterone on immune function in males 135	

Males, in general, face intense mating competition (Trivers, 1972). As a result, 136	

males from many species often develop elaborate testosterone-dependent secondary 137	

sexual ornaments for the purpose of fighting for and attracting females (Andersson, 138	

1994). The development of such ornaments is not without costs. Resources (e.g. 139	

energy) are limited. Therefore, natural selection is expected to favour an optimum 140	

allocation of energetic resources depending on the environmental situation, leading to 141	

trade-offs between different fitness components (Stearns, 1977, 1992). According to 142	

the ICHH, male sexual ornaments provide honest signals of the males’ immune 143	

function due to the trade-off between ornament development and immune health via 144	

the effects of testosterone. Ornament development triggers a down-regulation of 145	

immune function, which is effected through the immunosuppressive effect of 146	

testosterone. This immunosuppression makes it impossible for males of low genetic 147	

quality to develop exaggerated ornaments without compromising their health and 148	

potential future reproductive success. Thus, only high-genetic-quality males can 149	

afford to sustain the high levels of testosterone required for the development of 150	

elaborate ornaments.  151	

Many empirical studies have therefore examined the relationship between sex 152	

hormones and immune function in vivo, across a wide variety of species and using 153	

both experimental and correlational designs. For testosterone, both positive (e.g. 154	

Bilbo & Nelson, 2001; Evans, Goldsmith & Norris, 2000; Morales-Montor et al., 155	

2002) and negative (e.g. Alonso-Alvarez et al., 2007a; Belliure, Smith & Sorci, 2004; 156	
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Duckworth, Mendonça & Hill, 2001; Duffy et al., 2000) effects have been reported in 157	

experimental studies.  158	

Similarly, both positive and negative correlations between testosterone and 159	

immune function have been reported (e.g. Duffy & Ball, 2002; Peters, 2000; Rantala 160	

et al., 2012). In an immunocompetence handicap, individuals of different genetic 161	

quality are expected to have different optimal hormone levels due to differences in the 162	

marginal fitness benefit for every unit increase in a sexual signal (Getty, 2006). 163	

Hence, both positive and negative correlations between testosterone and immune 164	

function can be taken as supportive of an immunosuppressive effect of testosterone 165	

(Getty, 2006). A positive correlation might suggest that individuals with high genetic 166	

quality are able to cope with the reduced immune function that results from their high 167	

levels of testosterone. By contrast, a negative correlation might suggest that healthy 168	

individuals are trading their survival advantage for increased mating success. 169	

 170	

(2) The effect of oestrogen on immune function in females 171	

In females, trade-offs occur between the allocation of resources to current 172	

reproduction and conserving resources for future reproduction (Stearns, 1992; 173	

Thornhill & Gangestad, 2008). Oestrogen is critically involved in a number of female 174	

reproductive functions, such as fertility and pregnancy (Ellison, 2001). Oestrogen is 175	

also implicated in the production of sexual signals in species such as humans (Homo 176	

sapiens) (Jasieńska et al., 2004; Moore et al., 2011; Smith et al., 2006) and red-sided 177	

garter snakes (Thamnophis sirtalis parietalis) (Parker & Mason, 2012). Therefore, the 178	

effect of oestrogen on immune function might be linked to trade-offs involving these 179	

reproductive functions. However, the predicted direction of the effect of oestrogen on 180	

immune function is unclear. Although an immune-enhancing effect seems intuitive 181	
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given that females tend to have better immune function (i.e. lower parasitism and 182	

stronger immune responses) than males, we should note that females can have better 183	

immune function than males even if oestrogen is immunosuppressive. As long as 184	

testosterone suppresses immune function in males and the immunosuppressive effect 185	

is stronger than that of oestrogen in females, we will see better immune function in 186	

females. 187	

Similar to the results of studies looking at the effect of testosterone on immune 188	

function in males, the results of in vivo studies looking at the relationship between 189	

oestrogen and immune function in females have been mixed. Both positive (e.g. Ádori 190	

et al., 2010; Ding & Zhu, 2008; Zhou et al., 2011) and negative (e.g. Douin-Echinard 191	

et al., 2011; Salem et al., 2000) effects have been reported for experimental studies. 192	

Some researchers have observed that the effect of oestrogen appears to depend on the 193	

immune component measured and the oestrogen dosage used (Cutolo et al., 1996; 194	

Klein, 2004). Both positive and negative correlations between oestrogen level and 195	

immune function have also been reported (e.g. Klein & Nelson, 1997; Vainikka et al., 196	

2004).  197	

 198	

 (4) This study 199	

The mixed results in the literature make it difficult to assess the general effects 200	

of sex hormones on immune function. In this study, we use meta-analysis to analyse 201	

the results quantitatively from the literature. We provide an update on Roberts et al. 202	

(2004) by including studies conducted since then. We also analyse correlations 203	

between testosterone and immune function, which has not been done before. In 204	

addition, we examine the effect of oestrogen on immune function and the correlation 205	

between circulating oestrogen level and immune function in females by quantitatively 206	



	 9	

analysing the results from experimental and correlational studies, respectively, neither 207	

of which has been done previously. Notably, for all these analyses, we include studies 208	

from fields other than evolutionary biology, such as the biomedical sciences. 209	

We conduct four phylogenetic meta-analyses (Verdú & Traveset, 2005; 210	

Hadfield & Nakagawa, 2010; Nakagawa & Santos, 2012) to address the following 211	

questions: (1) does experimental manipulation of testosterone affect immune function 212	

in males? (2) Are the levels of circulating testosterone correlated with immune 213	

function in males? (3) Does experimental manipulation of oestrogen affect immune 214	

function in females? (4) Are the levels of circulating oestrogen correlated with 215	

immune function in females?  216	

We also conduct moderator analyses to investigate the factors that account for 217	

variation in effect sizes. First, we look at sample-related variables such as the mating 218	

system of the species and whether the individuals were sampled from natural or 219	

laboratory populations. Polygamous species face more intense mating competition 220	

compared to monogamous species (Andersson, 1994; Darwin, 1871). They tend to 221	

have higher sex hormone levels and rely more on sex-hormone-mediated traits for 222	

mating success (Andersson, 1994). Therefore, we expect the effect of sex hormones 223	

on immune function to be stronger in polygamous species.  224	

We also look at natural versus laboratory populations. Some laboratory 225	

populations might have undergone artificial selection for traits that make the 226	

populations ideal for laboratory experiments, including traits that might be related to 227	

sex hormones, such as aggression. Therefore the results from laboratory populations 228	

might be different to those from natural populations. 229	

Second, we look at immune-measure-related variables such as the immune 230	

measure used and whether the study measured baseline immunity or immune 231	
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reactivity to a pathogenic challenge. Different immune measures can be independent 232	

from each other (Adamo, 2004). Furthermore, the effect of oestrogen appears to 233	

depend on the immune component measured (Cutolo et al., 1996; Klein, 2004). 234	

Therefore, we include immune measure as a moderator variable.  235	

It has been suggested that measures of immune reactivity to pathogenic 236	

challenges are more valid measures of immune function than baseline measures 237	

because higher baseline immunity may indicate current infection status rather than 238	

actual immunocompetence (Demas et al., 2011; Norris & Evans, 2000). We therefore 239	

investigate whether effect sizes are different for baseline immunity versus immune 240	

reactivity. 241	

Third, for experimental studies, we look at the dosage of the hormones used 242	

(physiological versus supraphysiological dosages) to ascertain whether the effects of 243	

sex hormones are biologically relevant or simply due to overdosing. We also look at 244	

whether steps were taken to control for endogenous production of sex hormones (i.e. 245	

castration for males and ovariectomy for females). 246	

Finally, to validate the robustness of our results, we present results from 247	

analyses that provide indirect estimates of publication bias.  248	

 249	

II. METHODS 250	

(1) Literature search 251	

We conducted a literature search between January 2013 and June 2013. We 252	

searched the online database, Web of Science, using the terms ‘immunocompetence 253	

handicap hypothesis’, ‘testosterone AND immun*’, ‘testosterone AND parasit*’, 254	

‘estrogen AND immun*’, and ‘estrogen AND parasit*’. We also searched the Internet 255	
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via Google Scholar using similar terms. Since it was impossible to use truncations 256	

and wildcards in Google Scholar, we tried to use as many variants of a word as 257	

possible to maximise our search potential. For example, we used the terms ‘parasite’ 258	

and ‘parasitic’ when ‘parasit*’ was not possible. We included studies reported in 259	

Roberts et al. (2004). We also included relevant studies citing Roberts et al. (2004). 260	

Fig. 1 summarises the process and outcome of the literature search.  261	

 262	

 (2) Inclusion/exclusion criteria 263	

Studies were included if they fulfilled the following inclusion/exclusion criteria: (1) 264	

Studies must have been in vivo; in vitro studies and studies with simulated data were 265	

not included. (2) Experimental studies must have manipulated hormone levels and 266	

measured immune function post-manipulation. (3) Correlational studies must have 267	

measured both circulating hormone levels and immune function. (4) The immune 268	

function measures used must have been physiological measures of immune 269	

parameters or measures of parasite loads. (5) The individuals tested in the studies 270	

must have been adults. This criterion was used to prevent any confounds due to age. 271	

(6) A paper must have contained extractable data (i.e. effect size and sample size 272	

values or statistics that allowed us to infer these values). For relevant papers that did 273	

not contain extractable data, we contacted the authors for their original data sets. 274	

These papers were excluded if we could not contact the authors (see Fig. 1 for further 275	

information). (7) Laboratory animals that had anomalous immune function due to 276	

artificial selection (e.g. certain strains such as MRL+/+ mice) were excluded from the 277	

meta-analyses. References for the included and excluded studies can be found in the 278	

main reference list. Reasons for exclusion of studies are given as online supporting 279	
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information in Table S1. The final data set, including citations to the included studies, 280	

is uploaded as part of the electronic supplementary material. 281	

 282	

(3) Effect size extraction/calculation 283	

We chose Pearson’s r as our measure of effect size. However, r is not suitable 284	

for parametric analyses because it is bounded at –1 and 1, not conforming to a normal 285	

distribution (Hedges & Olkin, 1985). Therefore, for the purpose of the statistical 286	

analyses, all extracted statistics were converted to Fisher’s Z (hereafter termed Zr), 287	

which is normally distributed. All results were back-transformed to r to facilitate 288	

interpretations. 289	

For experimental studies, most statistics extracted were means and variance (or 290	

uncertainty) estimates (i.e. S.D. and S.E.). For studies that reported the means and 291	

variance estimates in the form of graphs, we extracted values using the software 292	

Graphclick (Arizona-Software 2008). For studies that took multiple measures of 293	

immune function across time, we took the means and variance estimates at the time 294	

point where both conditions showed peak immune function. If the peak immune 295	

function could not be determined or if the treatment and control groups peaked at 296	

different time points, we took the means and variance estimates at the time point 297	

where the difference in immune function between the treatment and control groups 298	

was the largest. We reasoned that such differences are most likely to be biologically 299	

significant. For multifactorial studies that contained a sex-hormone-only group and a 300	

control group, we focused on the difference between the two groups. For 301	

multifactorial studies that did not have a sex-hormone-only group and a control group, 302	

we collapsed the other factors and took the results from the main effect of sex 303	
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hormone. For studies that did not report the means and variance estimates, we 304	

extracted statistics such as proportion infected, F values, t values, and P values. 305	

For correlational studies, most statistics extracted were correlation coefficients 306	

(i.e. Pearson’s r). For studies that did not report correlation coefficients, we extracted 307	

statistics such as F values, P values, Spearman’s rho, Kendall’s tau, β values, R2 308	

values, and χ². 309	

All extracted statistics were converted to Zr based on the equations in Lipsey & 310	

Wilson (2001) using the online calculator on the Campbell Collaboration website. For 311	

experimental studies that had more than one dosage group, we combined the 312	

treatment groups into one effect size using the function to combine subgroups on the 313	

Campbell Collaboration website. We expect the effect estimates for parasite loads to 314	

be in the opposite direction to those for measures of immunity. Therefore, for the 315	

purpose of the meta-analysis, we reversed the sign of parasite load effect sizes to 316	

standardize the direction of all effect sizes. A positive effect size indicates one of the 317	

following: a stronger immune response, an increase in the baseline immune level, or a 318	

decrease in parasite load. 319	

 320	

(4) Coding of papers 321	

For each effect size, we recorded the species, sample size, and study identity. 322	

We also recorded the following moderator variables. 323	

(1) Mating system: the species were classified into ‘monogamous’ versus 324	

‘polygamous’ species based on published information (see Table S2). Monogamous 325	

and socially monogamous species, where individuals maintain a long-term pair bond 326	

while engaging in extra-pair copulations occasionally, were classified as 327	

‘monogamous’. Polygynous, polyandrous, polygynandrous, or lekking species were 328	
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classified as ‘polygamous’. We could not find information about the mating systems 329	

of four species. For these species, we consulted the authors of the studies and sought 330	

their expert opinions. One species was classified this way. The mating systems of the 331	

other three species were treated as missing values because we were unable to contact 332	

the authors. Socially monogamous species such as Passer domesticus, Sturnus 333	

vulgaris, and Homo sapiens are most likely intermediate in terms of the level of 334	

sexual selection they experience. Therefore, to check the robustness of our results, we 335	

reclassified these three species as polygamous and re-ran those analyses that 336	

contained these three species, which include the experimental and correlational 337	

studies of testosterone. Our conclusions remained the same after this reclassification. 338	

(2) Natural versus laboratory populations: species sampled from the wild were 339	

classified as ‘natural’ while laboratory strains of rats, mice, and guinea pigs were 340	

classified as ‘laboratory’. 341	

(3) Immune measure: the immune measures were classified into ‘cell-mediated’, 342	

‘cytokines’, ‘humoral-mediated’, ‘white blood cells’, and ‘parasite load’ measures. 343	

‘Parasite load’ contained both ectoparasites and endoparasites. Our initial analyses 344	

showed that the results for both types of parasite loads were very similar in all four 345	

meta-analyses. The two types of parasites were therefore combined into one category. 346	

(4) Immune challenge: the immune measures were classified into ‘baseline’ and 347	

‘immune reactivity’ measures.  348	

 (5) Gonadectomy, i.e. castration for males and ovariectomy for females 349	

(experimental studies only): experimental studies were classified based on whether or 350	

not gonadectomy was performed.  351	

(6) Dosage (experimental studies only): hormone dosages were classified into 352	

‘physiological’ and ‘supraphysiological’ levels based on the interpretations of the 353	
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authors. Five testosterone and five oestrogen studies were treated as missing values 354	

because we could not find any information on the dosages. 355	

 356	

(5) Building phylogenies 357	

Using the statistical program R 3.0.3 (R Core Team, 2014), we created the 358	

phylogeny for each meta-analysis following Lim, Senior & Nakagawa (2014). We 359	

first created one main tree containing the species from all four meta-analyses using 360	

the Interactive Tree of Life online tree generator (iTOL)(http://itol.embl.de/), which 361	

generates trees based on data from the National Center for Biotechnology Information 362	

taxonomy database. Polytomies on the main tree were resolved using published 363	

phylogenies (Fabre et al., 2012; Leache, 2009; Mayer & Pavlicev, 2007; Pyron, 364	

Burbrink & Wiens, 2013). We then created the sub-trees for each meta-analysis by 365	

trimming the main tree, leaving only the species from that particular meta-analysis 366	

(see Figs S1–S4). Given the wide variety of species in our data sets, it was difficult to 367	

estimate the branch lengths accurately. Therefore, we only used the topology of the 368	

sub-trees (i.e. the evolutionary relationship among the species without branch-length 369	

estimates) for our meta-analyses. Using the compute.brlen command with the default 370	

setting of rho = 1 from the R package ape, we converted the sub-trees to an 371	

ultrametric form so that the phylogenetic correlation could be incorporated into our 372	

meta-analyses. 373	

 374	

(6) Meta-analyses  375	

 All analyses were conducted using the statistical program R 3.0.3 (R Core 376	

Team, 2014). Using the metafor package (Viechtbauer, 2010), we ran multilevel 377	

meta-analyses using linear mixed models (Nakagawa & Santos, 2012; Viechtbauer, 378	
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2010). Linear mixed models allow us to control for non-independence in the data 379	

arising due to multiple effect sizes originating from the same study, multiple effect 380	

sizes originating from the same species, and shared ancestry among species (i.e. 381	

phylogenetic relationship – species that are more closely related may show more 382	

similar effects compared to species that are less closely related, thus resulting in non-383	

independence in the data structure), by including study identity, species identity, and 384	

phylogeny into our models as random factors. 385	

For each meta-analysis, we first checked the statistical significance of the 386	

random variables study identity and species identity using likelihood ratio tests. Each 387	

random variable was first entered into an intercept-only model (i.e. meta-analysis) and 388	

tested for statistical significance. Both variables were then entered simultaneously 389	

into the intercept-only model to check whether each variable had a significant effect 390	

after accounting for the other. A random variable was included in subsequent models 391	

if it had a significant effect and had a significant effect over and above that of the 392	

other random variable. We then tested the overall effect size by running an intercept-393	

only model using restricted maximum likelihood (REML) estimation with the 394	

selected random variable/s.  395	

We also tested whether it was necessary to control for similarity between 396	

species due to common phylogenetic descent by including phylogeny into the 397	

intercept model as a random effect. If controlling for phylogeny influenced the 398	

magnitude and/or significance of our overall effect size, phylogeny was included as a 399	

random effect for all subsequent analyses. If not, subsequent analyses were run 400	

without phylogeny.  401	

We computed the heterogeneity statistic I2 by running an intercept-only model 402	

without any random effects using the rma function in metafor. The statistic I2 tells us 403	
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the percentage of variability in the effect sizes that is not due to sampling error 404	

(Higgins et al., 2003; Higgins & Thompson, 2002). If I2 was moderate to large (i.e. > 405	

50% according to Higgins et al., 2003; Higgins & Thompson, 2002), we proceeded to 406	

run moderator analyses.  407	

Moderator analyses were conducted by running meta-regression models using 408	

the rma.mv function in metafor. We first ran single-factor models without the 409	

intercept using REML estimation by entering each moderator as a fixed factor 410	

together with the random factors to obtain the parameter estimates of each level in 411	

each factor after controlling for the random factors. We then ran an automated model 412	

selection (Burnham & Anderson, 2002; Grueber et al., 2011) using the package 413	

MuMIn (Barton, 2014 to identify the moderators that remained in the final model. The 414	

model selection was based on the Akaike Information Criterion with sample size 415	

correction (AICc; Anderson, 2008; Burnham & Anderson, 2002) obtained from 416	

maximum likelihood (ML) estimation. We ran the model selection using only the 417	

effect sizes that had no missing data to ensure that the AICc values of the different 418	

models were comparable (Nakagawa & Freckleton, 2011). We first generated all the 419	

possible models from the moderator variables in the data set. We then averaged the 420	

model coefficients (without shrinkage) of all models within two AICc units from the 421	

best model, indicated by having the lowest AICc unit. We tested the significance of 422	

the moderators that were retained in the final averaged models using the Q test. The Q 423	

test provides an omnibus test for each moderator. It is also more conservative 424	

compared to testing the Z values derived from the model estimates. We interpreted the 425	

variables in the final averaged model using the parameter estimates obtained from the 426	

single-factor models.  427	

 428	
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(7) Publication bias 429	

We analysed the relationship between year of publication and effect size for 430	

potential time-lag bias. Time-lag bias is the tendency for some studies to be published 431	

faster than others depending on the direction and magnitude of their results, usually 432	

with studies having large effects being published first (Jennions & Møller, 2002). We 433	

first ran a single-factor meta-regression model with year of publication entered as a 434	

moderator together with the random factors using the rma.mv function in metafor. We 435	

then entered year of publication together with the other moderators into the AICc 436	

model selection to see whether it was retained in the final averaged model and, if it 437	

was, whether it significantly predicted effect size after controlling for the rest of the 438	

fixed and random factors.  439	

We looked for potential missing effect sizes by running two funnel plot 440	

asymmetry analyses using the meta-analytic residuals (sensu Nakagawa & Santos, 441	

2012) extracted from the final averaged model using the MCMCglmm function in the 442	

MCMCglmm package (Hadfield, 2010); note that the residuals incorporating random 443	

effects could only be extracted from the models using MCMCglmm but not metafor. 444	

We used 130,000 iterations, 100 thinning, 30,000 burn-in, and inverse gamma prior 445	

for all four residual extractions. We ran Egger’s regression test (Egger et al., 1997) on 446	

the residuals using the regtest function in metafor. Egger’s test regresses the 447	

standardised residuals on precision. Publication bias is indicated by an intercept that is 448	

significantly different from zero. 449	

We ran a trim-and-fill analysis (Duval & Tweedie, 2000) on the residuals using 450	

the trimfill function in metafor to test for funnel plot asymmetry and identify missing 451	

studies. The analysis assumes that the funnel plot is symmetric and attempts to 452	

remove (trimming) the smaller studies that are causing asymmetry while filling the 453	
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distribution with missing studies to symmetrize the distribution. We also used the I2 454	

statistic reported in the trimfill function to look at the amount of heterogeneity left 455	

after accounting for the random and fixed factors that were retained in the final 456	

averaged model. 457	

 458	

III. RESULTS 459	

(1) Testosterone 460	

The results (parameter estimates) of the meta-analytic and meta-regression 461	

models for both experimental and correlational studies are presented in Fig. 2 and 462	

Table 1.  463	

 464	

(a) Experimental studies 465	

Both study identity (likelihood ratio test: χ²1 = 486.17, P < 0.0001) and species 466	

identity (likelihood ratio test: χ²1 = 110.83, P < 0.0001) significantly improved the 467	

model when entered individually into the model, but species identity did not have a 468	

significant effect over and above the effect of study identity (likelihood ratio test: χ²1 469	

= 0) when both random variables were entered into the model simultaneously. 470	

Therefore, we only included study identity as the random variable in subsequent 471	

analyses. Overall, there was a medium significant immunosuppressive effect of 472	

testosterone after controlling for study identity (roverall = –0.28, 95% CI [–0.39, –0.17], 473	

P < 0.0001; Fig. 2A). Controlling for similarity due to common phylogenetic descent 474	

did not have a significant effect on the effect size (likelihood ratio test: χ²1 = 0). 475	

Therefore we ran all subsequent analyses without controlling for phylogeny.  476	
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There was large heterogeneity in this data set (I2 = 89.16%). Therefore we 477	

conducted moderator analyses. The final averaged model from the AICc model 478	

selection retained the factors castration and immune measure (see Table S3 for model 479	

results). There was a significant effect of castration (Q1 = 5.55, P = 0.02). The 480	

immunosuppressive effect was stronger in castrated animals, which showed a 481	

significant medium-to-large negative effect (rcastrated = –0.41, 95% CI [–0.55, –0.24], 482	

P < 0.0001), compared to non-castrated animals, which showed a small-to-medium 483	

negative effect, (rnon-castrated = –0.22, 95% CI [–0.35, –0.07], P = 0.004) (Fig. 2A). The 484	

effect of immune measure was non-significant (Q4 = 6.59, P = 0.16).  485	

There was a small and significant positive relationship between year of 486	

publication and effect size in the single-factor model (slope estimate = 0.03, 95% CI 487	

[0.01, 0.04], P = 0.001) (Fig. 3). Year of publication was also retained in the final 488	

AICc model, but the relationship between year of publication and effect size became 489	

non-significant after controlling for immune measure and castration (Q1 = 3.65, P = 490	

0.06). Therefore, the temporal trend appears to be due to changes in moderators over 491	

time. 492	

For the two funnel plot analyses, Egger’s regression test did not indicate 493	

significant asymmetry in the funnel plot of the residuals (t154 = –0.83, P = 0.41). The 494	

trim-and-fill analysis estimated a total of 34 effect sizes missing from the right side of 495	

the distribution and that the effect-size estimate should be adjusted to r = –0.15 (95% 496	

CI [–0.26, –0.04]) (Fig. 4A), indicating that the actual effect of testosterone might be 497	

smaller than our initial estimate of r = –0.28. The I2 statistic indicated that 498	

considerable heterogeneity still remained in the residuals (81.11%), suggesting that 499	

the effect of testosterone might be moderated by other variables. 500	

 501	
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(b) Correlational studies 502	

Both study identity (likelihood ratio test: χ²1 = 117.27, P < 0.0001) and species 503	

identity (likelihood ratio test: χ²1 = 42.84, P < 0.0001) significantly improved the 504	

model when entered individually into the model, but species identity did not have a 505	

significant effect over and above the effect of study identity (likelihood ratio test: χ²1 506	

= 0) when both random variables were entered into the model simultaneously. 507	

Therefore, we only included study identity as the random variable in subsequent 508	

analyses. Overall, the correlation between circulating testosterone level and immune 509	

function after controlling for study identity was small and non-significant (Fig. 2B; 510	

Table 1). Controlling for similarity due to common phylogenetic descent did not have 511	

a significant effect on the effect size (likelihood ratio test: χ²1 = 0). Therefore we ran 512	

all subsequent analyses without controlling for phylogeny.  513	

There was large heterogeneity in this data set (I2 = 95.41%). Therefore we 514	

conducted moderator analyses. The final averaged AICc model retained the 515	

moderators immune measure, immune challenge, and mating system (see Table S4 for 516	

model results). There was a significant effect of immune measure (Q3 = 8.56, P = 517	

0.04). There was a medium positive relationship between cell-mediated immune 518	

function and testosterone that was significant (rcell-mediated = 0.26, 95% CI [0.007, 519	

0.48], P = 0.04) (Fig. 2B). The relationship between immune function and 520	

testosterone was non-significant for the other immune measures (rhumoral-mediated = 0.06, 521	

95% CI [–0.16, 0.27], P = 0.59; rparasite load = –0.17, 95% CI [–0.50, 0.21], P = 0.38; 522	

rwhite blood cells = 0.08, 95% CI [–0.14, 0.29], P = 0.47). The effect of immune challenge 523	

(Q1 = 2.46, P = 0.12) and mating system (Q1 = 0.40, P = 0.53) were non-significant. 524	

No indirect evidence of publication bias was detected. The relationship between 525	

year of publication and effect size was non-significant in the single factor model 526	
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(slope estimate = –0.02, 95% CI [–0.05, 0.01], P = 0.17). Year of publication was 527	

retained in the final averaged AICc model, but the relationship between year and 528	

effect size remained non-significant after controlling for immune measure, immune 529	

challenge, and mating system (Q1 = 2.62, P = 0.11). Egger’s regression test indicated 530	

no significant asymmetry in the funnel plot of the residuals (t107 = 0.18, P = 0.85). 531	

Trim and fill analysis estimated no missing effect sizes (Fig. 4B). The I2 statistic 532	

indicated that only a small amount of heterogeneity remained in the residuals 533	

(20.84%). 534	

 535	

(2) Oestrogen 536	

The results (parameter estimates) of the meta-analytic and meta-regression 537	

models for both experimental and correlational studies are shown in Fig. 5 and Table 538	

2. 539	

 540	

(a) Experimental studies 541	

When entered individually into the model, both study identity (likelihood ratio 542	

test: χ²1 = 911.63, P < 0.0001) and species identity (likelihood ratio test: χ²1 = 11.11, P 543	

= 0.0009) significantly improved the model, but species identity did not have a 544	

significant effect over and above the effect of study identity (likelihood ratio test: χ²1 545	

= 0) when both random variables were entered into the model simultaneously. 546	

Therefore we only included study identity as the random variable in subsequent 547	

analyses. Overall, the effect of oestrogen on immune function after controlling for 548	

study identity was small and non-significant (Fig. 5A; Table 2). Controlling for 549	

similarity due to common phylogenetic descent did not have a significant effect on 550	
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effect size (likelihood ratio test: χ²1 = 0). Therefore we ran all subsequent analyses 551	

without controlling for phylogeny. 552	

There was large heterogeneity in this data set (I2 = 94.60%). Therefore, we 553	

conducted moderator analyses. The final averaged AICc model retained the following 554	

moderators: immune measure, immune challenge, ovariectomy, and dosage (see 555	

Table S5 for model results). There was a significant effect of immune measure (Q4 = 556	

41.28, P < 0.001). Oestrogen had a medium-to-large immunosuppressive effect on 557	

cell-mediated immune function that was significant (rcell-mediated = –0.41, 95% CI [–558	

0.65, –0.09], P = 0.01). The effects of oestrogen on parasite load, humoral-mediated 559	

immune function, and cytokine levels were in the opposite direction. Oestrogen had a 560	

medium-to-large immunoenhancing effect on parasite load (i.e. reducing parasite 561	

load) that was significant (rparasite load = 0.46, 95% CI [0.09, 0.72], P = 0.02). 562	

Oestrogen also had a medium but non-significant immunoenhancing effect on 563	

humoral-mediated immune function and cytokine level (rhumoral-mediated = 0.30, 95% CI 564	

[–0.02, 0.56], P = 0.07; rcytokine = 0.29, 95% CI [–0.04, 0.56], P = 0.08) (Fig. 5A; 565	

Table 2). There was a significant effect of immune challenge (Q1 = 40.61, P < 0.001). 566	

Studies using measures of baseline immunity showed a large positive effect that was 567	

significant (rbaseline immunity = 0.60, 95% CI [0.11, 0.85], P = 0.02) while studies using 568	

measures of immune reactivity showed a small and non-significant effect (rimmune 569	

reactivity = 0.10, 95% CI [–0.22, 0.40], P = 0.54) (Fig. 5A; Table 2). There was a 570	

significant effect of dosage (Q1 = 10.36, P = 0.001). Studies using supraphysiological 571	

oestrogen dosages showed a medium-to-large positive effect that was significant 572	

(rsupraphysiological = 0.48, 95% CI [0.14, 0.72], P = 0.008) while studies using 573	

physiological dosages showed a small and non-significant effect (rphysiological = –0.05, 574	
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95% CI [–0.40, 0.31], P = 0.78) (Fig. 5A; Table 2). The effect of ovariectomy (Q1 = 575	

1.82, P = 0.18) was non-significant 576	

There was a small but significant positive relationship between year of 577	

publication and effect size in the single-factor model (estimate = 0.04, 95% CI [0.004, 578	

0.08], P = 0.03), but the relationship was highly influenced by one large negative 579	

effect size in 1974 (Fig. 6). We re-ran the time-lag bias analysis a second time 580	

excluding that particular effect size. The relationship became non-significant 581	

(estimate = 0.02, 95% CI [–0.02, 0.06], P = 0.30). Year of publication was retained in 582	

the final averaged AICc model, but the relationship between year and effect size 583	

remained non-significant after controlling for immune measure, immune challenge, 584	

ovariectomy, and dosage (Q1 = 3.70, P = 0.054). Therefore, there was no evidence of 585	

a significant temporal trend. 586	

Egger’s regression test indicated no significant asymmetry in the funnel plot 587	

(t126 = 0.51, P = 0.61). The trim-and-fill analysis estimated a total of 31 effect sizes 588	

missing from the left side of the distribution. However, the missing effect sizes did 589	

not qualitatively influence the results. The overall effect size estimate remained small 590	

and non-significant after adjusting for the missing effect sizes (–0.10, 95% CI [–0.41, 591	

0.18]) (Fig. 7A). I2 indicated considerable heterogeneity in the residuals (89.23%).  592	

 593	

(b) Correlational studies 594	

Out of the 64 effect sizes in this data set, 60 effect sizes came from the same 595	

species and a single study while the remaining four effect sizes came from two 596	

species and three other studies. It was therefore impossible to distinguish between the 597	

variances of study identity and species identity. Therefore we only tested study 598	

identity as a random factor. Study identity significantly improved the model 599	
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(likelihood ratio test: χ²1 = 7.99, P < 0.0001) and was included as a random variable 600	

for subsequent analyses. Overall, there was a significant medium-to-large positive 601	

relationship between circulating oestrogen level and immune function after 602	

controlling for study identity (roverall = 0.43, 95% CI [0.11, 0.66], P = 0.01) (Fig. 5B; 603	

Table 2). Controlling for similarity due to common phylogenetic descent did not have 604	

a significant effect on the effect size (likelihood ratio test: χ²1 = 0.57, P = 0.45). 605	

However, the overall effect size became non-significant after controlling for 606	

phylogeny (rphylogenetic = 0.42, 95% CI [–0.17, 0.79], P = 0.16) (Fig. 5B; Table 2). We 607	

therefore ran all subsequent analyses with phylogeny included as a random variable.  608	

There was moderate heterogeneity in this data set (I2 = 60.52%). Therefore, we 609	

conducted moderator analyses. We could not perform an AICc model selection 610	

because immune measure was confounded with immune challenge: all of the cell-611	

mediated and cytokine measures were reactivity measures and all of the humoral-612	

mediated and white blood cell measures were baseline measures. Therefore, we ran 613	

single-factor moderator analyses for the two factors separately. Neither the effects of 614	

immune measure (Q3 = 1.16, P = 0.76) nor immune challenge (Q1 = 0.06, P = 0.80) 615	

were significant (Fig. 5B; Table 2).  616	

Year of publication was not significantly related to effect size in the single-617	

factor model (estimate = –0.05, 95% CI [–0.13, 0.04], P = 0.27). Since none of the 618	

moderator effects were significant, we extracted the residuals from the intercept-only 619	

model with study identity and phylogeny entered as random factors. Egger’s 620	

regression test indicated no significant asymmetry in the residual funnel plot (t62 = –621	

0.19, P = 0.85). Trim-and-fill analysis estimated no missing effect sizes (Fig. 7B). I2 622	

indicated moderate heterogeneity in the residuals (56.22%). 623	

 624	
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IV. DISCUSSION 625	

(1) The relationship between testosterone and immune function in males 626	

The results from the experimental studies support the hypothesis that 627	

testosterone suppresses immune function (Ansar Ahmed et al., 1985; Bouman et al., 628	

2005; Grossman, 1985; Klein, 2004; Schuurs & Verheul, 1990). Overall, testosterone 629	

manipulation had a medium immunosuppressive effect (r = –0.28) that was 630	

significant. Controlling for similarity due to common phylogenetic descent did not 631	

influence our results, which suggests that our results may be generally applicable 632	

across the species studied.  633	

Castrated animals showed a stronger immunosuppressive effect than non-634	

castrated animals. One possible explanation is that in the non-castrated animals, 635	

testosterone manipulation in the treatment group triggered a compensatory reduction 636	

in endogenous testosterone via a feedback loop, thus reducing the difference in 637	

testosterone levels between the treatment and control groups.  638	

Our results provide important support for a critical assumption of the ICHH 639	

(Folstad & Karter, 1992), namely that testosterone suppresses immune function. 640	

According to the ICHH, testosterone-based male ornaments are honest signals of 641	

immune function because the immunosuppressive effect of testosterone makes it 642	

impossible for males with poor immune function to sustain high levels of testosterone 643	

for ornamentation. In their meta-analysis, Roberts et al. (2004) found that the overall 644	

effect of testosterone on immune function in males was non-significant and that a 645	

significant immunosuppressive effect was found only in reptiles and not in mammals 646	

or birds. They concluded that there was little support for the ICHH. Thus, our results 647	

differ from those of Roberts et al. (2004). They found an overall effect of d = –0.32, 648	

which transforms to r = –0.16. Our overall effect size (r = –0.28) was almost twice 649	
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that. The difference in findings is probably due to the accumulation of studies since 650	

2004 and the inclusion of studies from fields other than evolutionary biology, such as 651	

biomedical sciences, in our meta-analysis. Based on our results, there is good 652	

evidence that testosterone suppresses immune function. 653	

We assumed that the effect of testosterone would be stronger in polygamous 654	

species compared to monogamous species. Polygamous species face more intense 655	

sexual selection and are thus expected to evolve stronger condition dependence of 656	

ornamentation (Andersson, 1994). However, mating system did not influence the size 657	

of the effect of testosterone on immune suppression. One possible reason for a lack of 658	

a mating-system effect might be that, while in polygamous systems a trade-off 659	

between testosterone and immune function is driven by male expenditure on 660	

ornaments, in monogamous systems the same trade-off is driven by male expenditure 661	

on parental care. Indeed, there is evidence that male parental care is associated with a 662	

reduction in circulating testosterone level (Gray, Yang & Pope, 2006; Wingfield et 663	

al., 1990). It is possible then that we did not observe a significant effect of mating 664	

system because trade-offs between mating and parental care may balance the overall 665	

reproductive effort among polygamous and monogamous species.  666	

In contrast to the experimental studies, we did not find a significant overall 667	

correlation between testosterone and immune function. Our results are consistent with 668	

arguments that correlational studies are not ideal for testing the effect of testosterone 669	

on immune function (Getty, 2006).  670	

 671	

(2) The relationship between oestrogen and immune function in females 672	

The effect of oestrogen manipulation on immune function depended on the 673	

immune measure used. Oestrogen had a significant medium-to-large 674	



	 28	

immunosuppressive effect on cell-mediated immune function (rcell-mediated = –0.41) but 675	

had a significant medium-to-large immunoenhancing effect on parasite loads (rparasite 676	

load = 0.46). Oestrogen also had a medium but non-significant immunoenhancing 677	

effect on humoral-mediated immune function and cytokine level. Although these 678	

effects on humoral-mediated immune function and cytokine level were non-679	

significant, the effect sizes (rhumoral-mediated = 0.30 and rcytokine = 0.29) were medium in 680	

magnitude (Cohen, 1988). Moreover, the effect sizes were slightly larger than those 681	

typically found in biological studies, which range from r = 0.16 to 0.25 (Møller & 682	

Jennions, 2002). Therefore, the immunoenhancing effect of oestrogen on humoral-683	

mediated immune function and cytokine level may prove to be biologically important 684	

despite the lack of statistical significance. 685	

Our results are consistent with observations by researchers that oestrogen 686	

suppresses cell-mediated immune function and enhances humoral-mediated immune 687	

function (Cutolo et al., 1996; Klein, 2004). However, little is known about why 688	

oestrogen would have different effects on different immune components. This 689	

diversity in effects across immune components may reflect life-history trade-offs in 690	

females based on the costs and benefits of different immune components (Lee, 2006). 691	

Cell-mediated responses are energetically and nutritionally costly because they are 692	

associated with the activation of the systemic inflammatory response (Halloran et al., 693	

1992; Janeway et al., 1999). In comparison, humoral-mediated responses are less 694	

costly because they are associated with the activation of the anti-inflammatory system 695	

(Janeway et al., 1999). Lee (2006) argued that because females invest more energy 696	

and resources in their offspring compared to males (Trivers, 1972), females are 697	

expected to adopt an immune profile that is less cell-mediated and more humoral-698	

mediated. Doing so allows females to reduce the cost of maintaining a healthy 699	
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immune system while diverting energetic resources towards reproduction and 700	

parenting. Our results suggest that oestrogen, the major female sex hormone, 701	

influences the immune profile females adopt by suppressing cell-mediated immune 702	

function and enhancing humoral-mediated immune function.  703	

We also found that the effect of oestrogen depended on whether measures of 704	

baseline immunity or immune reactivity were used. Given that measures of immune 705	

reactivity are considered more rigorous measures of immune function compared to 706	

baseline immunity (Demas et al., 2011; Norris & Evans, 2000), it is surprising to find 707	

that immune reactivity showed a small and non-significant effect (rimmune reactivity = 708	

0.10) while baseline immunity showed a large positive and significant effect (rbaseline 709	

immunity = 0.60). However, it should be noted that the different measures of immune 710	

function were not equally distributed between immune reactivity and baseline 711	

immunity. Baseline immunity consisted of only white blood cell and humoral-712	

mediated measures (19 effect sizes in total), while immune reactivity consisted of all 713	

five immune measures (127 effect sizes in total). As discussed above, the effect of 714	

oestrogen on immune function depends on the immune measure. Therefore, the non-715	

significant results for immune reactivity may be due to the effects of the different 716	

immune measures cancelling each other out. On the other hand, the large effect size 717	

for baseline immunity may be due to a relatively small sample of effect sizes that 718	

consists of immune measures on which oestrogen had a positive effect. Nonetheless, 719	

it remains possible that the effect of oestrogen on immune function could differ for 720	

baseline and reactivity measures of immune function.  721	

Besides moderators associated with the measurement of immune function, there 722	

was also an effect of dosage. Larger dosages showed larger effects. Specifically, 723	

supraphysiological dosages led to a significant medium-to-large immunoenhancing 724	
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effect (rsupraphysiological = 0.48) while physiological dosages showed a non-significant 725	

effect that was close to zero (rphysiological = –0.05). 726	

Overall, there was a medium-to-large positive relationship in correlational 727	

studies between circulating oestrogen level and immune function (r = 0.43), but this 728	

relationship became non-significant after we controlled for the similarity due to 729	

common phylogenetic descent between species. This change was due largely to the 730	

widening of the confidence intervals after accounting for phylogeny. This data set 731	

consists of 64 effect sizes, 60 of which belonged to one single study of one species. 732	

Therefore, the widening of the confidence interval probably reflects the over-733	

representation of a single species in the data set and the meta-analytic mean may not 734	

be general. Furthermore, unlike the results from the experimental studies, the 735	

correlation between oestrogen and immune function did not depend on immune 736	

measure or immune challenge. Like the testosterone results, the oestrogen results 737	

suggest that correlational designs are unsuitable for testing the effects of sex 738	

hormones on immune function.  739	

 740	

(3) Publication bias 741	

We found a significant positive relationship between year of publication and 742	

effect size for experimental studies of testosterone. Decreases in the magnitude of 743	

effect sizes over time have been reported in numerous meta-analyses in evolutionary 744	

biology (Jennions & Møller, 2002). It should, however, be noted that the analyses 745	

used in this study are indirect tests of publication bias. A direct test of publication bias 746	

requires a comparison of the effect sizes between published and unpublished studies 747	

(Song et al., 2000; Møller & Jennions, 2001). A significant result from indirect tests 748	

may not always indicate publication bias (Jennions & Møller, 2002; Jennions et al., 749	
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2013; Koricheva, Jennions & Lau, 2013). For example, the temporal trend we found 750	

for experimental studies of testosterone appears to be due to changes in moderators 751	

across time. We found that the significant trend disappeared after we controlled for 752	

castration and immune measure. We graphically explored the moderators that 753	

changed across time by plotting the relationship between year of publication and 754	

effect size using different colours for each moderator level (Figs S5 and S6). We 755	

found that in the later years, more studies were conducted using cell-mediated and 756	

cytokine measures. The effect of testosterone on cytokine levels is smaller than the 757	

overall effect size (Fig. 2A; Table 1). The effect size for cell-mediated measures 758	

seems to be comparable to the overall effect size (Fig. 2A; Table 1). Therefore, the 759	

significant temporal trend seems likely to have been due to the increase in number of 760	

effect sizes assessing cytokines in recent years. Castration was fairly equally 761	

distributed across year of publication. Our finding suggests that the significant 762	

temporal trend was not due to a publication bias. 763	

The trim-and-fill analysis also detected a substantial number of missing effect 764	

sizes in the same data set. Although the missing effect sizes did not change the results 765	

qualitatively, they did reduce the overall effect size by almost half from a medium 766	

effect size (r = –0.28) to a small effect size (r = –0.15). Even though the 767	

immunosuppressive effect remained significant, our result suggests that the effect of 768	

testosterone on immune function might not be as strong as initially indicated. 769	

However, like the temporal trend findings, caution must be exercised when 770	

interpreting the results from the trim-and-fill analysis because the findings might 771	

reflect causes other than publication bias (Thornhill, Møller & Gangestad, 1999; 772	

Jennions et al., 2013). Heterogeneity in effect sizes can also lead to funnel plot 773	

asymmetry. We tried to control for the effects of heterogeneity by running the trim-774	



	 32	

and-fill analysis on the residuals extracted from the final AICc model. However, we 775	

found that the I2 value for experimental studies remained high even after we 776	

controlled for the random and moderator variables. Therefore, the funnel plot 777	

asymmetry we observed in the experimental studies might have been caused by 778	

unidentified moderators and not by publication bias. We therefore believe that the 779	

initial estimate of r = –0.28 is more reflective of the actual effect size.  780	

We detected little indirect evidence of publication bias for the other three data 781	

sets. The trim-and-fill analysis estimated 32 missing effect sizes from the oestrogen 782	

experimental studies, but the missing effects did not influence the results. Overall, our 783	

results seem fairly robust to publication bias.  784	

 785	

(4) Sex differences in immune function  786	

Females tend to have better immune function compared to males (i.e. lower and 787	

less-intense parasitism and stronger immune responses) (Klein, 2004; Schuurs & 788	

Verheul, 1990; Zuk & McKean, 1996). Our results suggest that these sex differences 789	

might be due to the combined effects of testosterone in males and oestrogen in 790	

females. Our results also showed that the effect for oestrogen depends on the immune 791	

measure. Therefore, it would be interesting to examine studies looking at sex 792	

differences in immune function and test whether the effect sizes differ depending on 793	

the immune measure. 794	

 795	

 (5) Heterogeneity in the effects of sex hormones on immune function 796	

In meta-analysis, it is important to examine both the mean effect size and the 797	

variance of the effect sizes (i.e. heterogeneity). The main tenet of life-history theory is 798	

that trade-offs between fitness components occur due to limited resource availability. 799	
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One implication of this theory is that trade-offs between fitness components could 800	

vary across individuals. Therefore, one would predict that the effect of sex hormones, 801	

which mediate trade-offs between immune function and reproductive functions, 802	

would show significant heterogeneity. Indeed, we found large heterogeneity in the 803	

effect sizes across all four data sets. We ran moderator analyses to examine the factors 804	

that account for the variation in effect sizes. However, the heterogeneity remained 805	

moderate to large for three of the analyses, apart from correlational studies of 806	

testosterone, even after we accounted for the random and moderator effects from the 807	

final averaged AICc models.  808	

Increasing evidence suggests that the effects of sex hormones on immune 809	

function can be dependent on individual condition. The amount of resources available 810	

to individuals varies substantially. It has been predicted that trade-offs between fitness 811	

components occur only when resources are limiting (van Noordwijk & de Jong, 1986; 812	

McDade, 2003). For example, the effect of testosterone on immune function in 813	

Sceloporus graciosus lizards depends on the quality of food available to the lizards 814	

(Ruiz et al., 2010). Testosterone enhanced immune function in lizards that were given 815	

extra vitamins on top of their usual diet, but decreased immune function in lizards that 816	

did not receive extra vitamins. The effect of testosterone might also depend on the 817	

effect of leptin, a hormone that functions as a signal of energetic resource level. In a 818	

study on zebra finches (Taeniopygia guttata), leptin increased immune function and 819	

prevented the immunosuppressive effect of testosterone (Alonso-Alvarez et al., 820	

2007b). The effect of testosterone on immune function may also depend on stress 821	

levels [Rantala et al., 2012, but see Roberts et al. (2009) and Roberts et al. (2007a) 822	

for contradictory findings].  823	
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In relation to the issue of looking at variance, recent advances have applied 824	

meta-analytic techniques to analysing the variance instead of the mean data of 825	

experimental studies involving two groups (Nakagawa et al., 2015). For example, 826	

instead of asking whether testosterone suppresses immune function, we could ask 827	

whether testosterone increases or decreases the variance in immune function across 828	

individuals relative to controls. We did not run such analyses because the theoretical 829	

predictions were focused on the mean effect and not the variance. 830	

 831	

(6) Limitations and future directions  832	

Sex hormone levels change across time in response to life-history changes. For 833	

example, testosterone in males peaks during the breeding season and drops when the 834	

breeding season ends (Wingfield et al., 1990; Nelson, 2005). Similarly, oestrogen in 835	

females varies across the fertility cycle (Abraham et al., 1972). One might wonder 836	

how relevant the results in this meta-analysis are for understanding the effects of sex 837	

hormones during different life-history stages. In this review, for the testosterone 838	

studies, all studies except five that were unclassified reported using physiological 839	

dosages. For the oestrogen studies, we found a significant effect of immune measure 840	

even after controlling for the effect of dosage. Therefore, we were able to conclude 841	

that our results were not just an artefact of using dosages that were in excess of what 842	

is normally found in the body. However, we were unable to look at the seasonal or 843	

life-history relevance of the dosage levels because most studies did not provide such 844	

information. Future studies examining the effects of sex hormones in relation to 845	

different life-history stages will provide us with a better understanding of the effects 846	

of sex hormones on the immune system. 847	
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The studies reviewed herein have focused on the strength of the immune 848	

response. Navarro et al. (2003) found a positive correlation between immune-849	

response strength and latency to maximum immune response in Passer domesticus. 850	

Their results suggest a trade-off between the strength and rapidity of the immune 851	

response. Therefore, future studies should measure both the strength and time course 852	

of the immune response to gain a better picture of the effects of sex hormones on 853	

immune function. 854	

 855	

V. CONCLUSIONS 856	

(1) We found meta-analytic evidence that testosterone has a medium-sized 857	

suppressive effect on immune function. This effect was generalizable across the 858	

species studied. Castrated animals showed a greater immunosuppressive effect than 859	

non-castrated animals, but the immunosuppressive effect was significant in both 860	

cases. Our overall effect size for experimental studies of testosterone was almost 861	

twice that of a previous meta-analysis (Roberts et al., 2004). 862	

(2) We also found meta-analytic evidence that oestrogen has a medium-to-large 863	

suppressive effect on cell-mediated immune function while having a medium-to-large 864	

effect in reducing parasite loads and a medium but non-significant enhancing effect 865	

on humoral-mediated immune function and cytokine level. Oestrogen also had a 866	

significant immune-enhancing effect in studies using supraphysiological dosages and 867	

studies using baseline measures of immune function.  868	

(3) When effect sizes were derived from correlational studies, the relationships 869	

between circulating sex hormone levels and immune function measurements were 870	

small and non-significant for both testosterone and oestrogen, suggesting that 871	
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correlational studies are unsuitable for testing the effects of sex hormones on immune 872	

function. Thus, an experimental approach is imperative to study the effects of sex 873	

hormones on immune function. 874	

(4) We found little evidence of publication bias using indirect tests. There was a small 875	

and positive relationship between year of publication and effect size for experimental 876	

studies of testosterone that became non-significant after we controlled for castration 877	

and immune measure, suggesting that the temporal trend was due to changes in 878	

moderators over time. The trim-and-fill analysis for experimental studies of 879	

testosterone estimated a total of 34 missing effect sizes and that the 880	

immunosuppressive effect of testosterone should be reduced from –0.28 to –0.15. 881	

However, due to the substantial heterogeneity in the residuals after accounting for the 882	

random and fixed factors, we cannot rule out the possibility that the asymmetry in the 883	

funnel plot was due to heterogeneity. Overall, our results seem to be fairly robust to 884	

publication bias. 885	

(5) We found substantial heterogeneity in the effect sizes for all four meta-analyses. 886	

The amount of heterogeneity in three of the meta-analyses, apart from correlational 887	

studies of testosterone, remained substantial even after we accounted for the relevant 888	

random and fixed factors, suggesting that there are other factors that moderate the 889	

effects of sex hormones on immune function.  890	
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Table 1. Parameter estimates and P-values for the effect of testosterone manipulation on immune function and the correlation between 

circulating testosterone level and immune function in males. M is the mean effect size. CI.lb and CI.ub are the lower and upper bounds of 

the 95% confidence interval respectively. * indicates moderators that were retained in final AICc models. 

 

1769	
  Experimental studies     Correlational studies 

  M CI.lb CI.ub P     M CI.lb CI.ub P 

Meta-analytic mean −0.28 −0.39 −0.17 < 0.0001 
 

Meta-analytic mean 0.04 −0.14 0.21 0.66 

Phylogenetic mean −0.28 −0.39 −0.17 < 0.0001 
 

Phylogenetic mean 0.04 −0.14 0.21 0.66 

Mating system 
     

Mating system* 
    

Polygamous −0.30 −0.43 −0.16 < 0.0001 
 

Polygamous −0.001 −0.24 0.24 0.99 

Monogamous −0.17 −0.33 0.006 0.06 
 

Monogamous 0.09 −0.18 0.34 0.51 

Natural vs Lab 
     

Immune measure* 
    

Natural  −0.25 −0.37 −0.11 0.0004 
 

Cell-mediated 0.26 0.007 0.48 0.04 

Lab −0.41 −0.60 −0.17 0.0011 
 

Humoral-mediated 0.06 −0.16 0.27 0.59 

Immune measure* 
     

Parasite load −0.17 −0.50 0.21 0.38 

Cell-mediated −0.29 −0.42 −0.14 0.0002 
 

White blood cells 0.08 −0.14 0.29 0.47 

Cytokines −0.03 −0.34 0.29 0.87 
 

Immune-challenged* 
    

Humoral-mediated −0.32 −0.45 −0.17 < 0.0001 
 

Yes 0.05 −0.14 0.24 0.59 

Parasite load −0.33 −0.45 −0.18 < 0.0001 
 

No 0.03 −0.16 0.21 0.77 

White blood cells −0.24 −0.40 −0.07 0.007 
      

Immune-challenged 
          

Yes −0.29 −0.40 −0.16 < 0.0001 
      

No −0.28 −0.42 −0.12 0.0007 
      

Castrated* 
          

Yes −0.41 −0.55 −0.24 < 0.0001 
      

No −0.22 −0.35 −0.07 0.004 
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Table 2. Parameter estimates for the effect of oestrogen manipulation on immune function and the correlation between circulating oestrogen 

level and immune function in females. M is the mean effect size. CI.lb and CI.ub are the lower and upper bounds of the 95% confidence interval, 

respectively.* indicates moderators that were retained in final AICc models. 

 
  Experimental studies     Correlational studies 

  M CI.lb CI.ub P     M CI.lb CI.ub P 

Meta-analytic mean 0.16 −0.15 0.44 0.30 
 

Meta-analytic mean 0.43 0.11 0.66 0.01 

Phylogenetic mean 0.16 −0.15 0.44 0.30 
 

Phylogenetic mean 0.42 −0.17 0.79 0.16 

Immune measure* 
     

Immune measure 
    

Cell-mediated −0.41 −0.65 −0.09 0.01 
 

Cell-mediated 0.42 −0.18 0.79 0.16 

Cytokines 0.29 −0.04 0.56 0.08 
 

Cytokines 0.48 −0.45 0.91 0.31 

Humoral-mediated 0.30 −0.02 0.56 0.07 
 

Humoral-mediated 0.5 −0.08 0.83 0.08 

Parasite load 0.46 0.09 0.72 0.02 
 

White blood cells 0.42 −0.18 0.79 0.16 

White blood cells 0.10 −0.27 0.44 0.61 
 

Immune-challenged 
    

Immune-challenged* 
     

Yes 0.42 −0.21 0.80 0.18 

Yes 0.10 −0.22 0.40 0.54 
 

No 0.43 −0.18 0.81 0.16 

No 0.60 0.11 0.85 0.02 
      

Ovariectomized* 
          

Yes 0.09 −0.24 0.40 0.59 
      

No 0.41 −0.05 0.72 0.08 
      

Dosage*  
          

Physiological −0.05 −0.40 0.31 0.78 
      

Supraphysiological 0.48 0.14 0.72 0.008             
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Fig. 1. Prisma flow chart (Moher et al., 2009) depicting the process and outcome of 

the literature search.  
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Fig. 2. Parameter estimates for (A) studies investigating the effect of testosterone manipulation on immune function and (B) studies investigating 

the correlation between circulating testosterone level and immune function in males. Diamonds represent the mean and error bars represent 95% 

confidence intervals. N refers to the number of effect sizes. White, light-grey, medium-grey and dark-grey spaces represent the regions for small, 

small-to-medium, medium-to-large, and large effect sizes, respectively, based on Cohen (1988).
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Fig. 3. Relationship between effect size and year of publication (indicated by the bold 

line) for studies investigating the effect of testosterone manipulation on immune 

function. Size of each point indicates the sample size of that effect size. 
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Fig. 4. Funnel plot of the residuals plotted against precision for (A) studies investigating the effect of testosterone manipulation on immune 

function in males and (B) studies investigating the correlation between circulating testosterone level and immune function in males. Filled circles 

are actual effect sizes and empty circles are missing effect sizes estimated from the trim-and-fill analyses. Dashed lines indicate the zero line.
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Fig. 5. Parameter estimates for (A) studies investigating the effect of oestrogen manipulation on immune function and (B) studies investigating 

the correlation between circulating oestrogen level and immune function in females. Diamonds represent the mean and error bars represent 95% 

confidence intervals. N refers to the number of effect sizes. White, light-grey, medium-grey and dark-grey spaces represent the regions for small, 

small-to-medium, medium-to-large, and large effect sizes, respectively, based on Cohen (1988). 
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Fig. 6. Relationship between effect size and year of publication for studies 

investigating the effect of oestrogen manipulation on immune function. Solid line 

indicates the relationship when all effect sizes were included. Dashed line indicates 

the non-significant relationship after removing the effect size from 1974 that appeared 

to be driving the significant relationship between effect size and year of publication. 

Size of each point indicates the sample size of that effect size.

1970 1980 1990 2000 2010

−
4

−
2

0
2

4

Year of publication

Z
r

N = 10

N = 40



	 64	

 

Fig. 7. Funnel plot of the residuals plotted against precision for (A) studies investigating the effect of oestrogen manipulation on immune 

function in females and (B) studies investigating the correlation between circulating oestrogen level and immune function in females. Filled 

circles are actual effect sizes and empty circles are missing effect sizes estimated from the trim-and-fill analyses. Dashed lines indicate the zero 

line.  
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