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The Effects of Sodium-Glucose
Cotransporter 2 Inhibitors on
Sympathetic Nervous Activity
Ningning Wan, Asadur Rahman, Hirofumi Hitomi and Akira Nishiyama*

Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan

The EMPA-REG OUTCOME study revealed that a sodium-glucose cotransporter 2

(SGLT2) inhibitor, empagliflozin, can remarkably reduce cardiovascular (CV) mortality and

heart failure in patients with high-risk type 2 diabetes. Recently, the CANVAS program

also showed that canagliflozin, another SGLT2 inhibitor, induces a lower risk of CV events.

However, the precise mechanism by which an SGLT2 inhibitor elicits CV protective

effects is still unclear. Possible sympathoinhibitory effects of SGLT2 inhibitor have been

suggested, as significant blood pressure (BP) reduction, following treatment with an

SGLT2 inhibitor, did not induce compensatory changes in heart rate (HR). We have begun

to characterize the effects of SGLT2 inhibitor on BP and sympathetic nervous activity

(SNA) in salt-treated obese and metabolic syndrome rats, who develop hypertension

with an abnormal circadian rhythm of BP, a non-dipper type of hypertension, and do

not exhibit a circadian rhythm of SNA. Treatment with SGLT2 inhibitors significantly

decreased BP and normalized circadian rhythms of both BP and SNA, but did not change

HR; this treatment was also associated with an increase in urinary sodium excretion.

Taken together, these data suggest that an SGLT2 inhibitor decreases BP by normalizing

the circadian rhythms of BP and SNA, which may be the source of its beneficial effects on

CV outcome in high-risk patients with type 2 diabetes. In this review, we briefly summarize

the effects of SGLT2 inhibitors on BP and HR, with a special emphasis on SNA.

Keywords: sodium-glucose cotransporter 2 (SGLT2) inhibitor, EMPA-REG OUTCOME trial, CANVAS program,

blood pressure, heart rate, sympathetic nervous activity

INTRODUCTION

Sodium-glucose cotransporter 2 (SGLT2) is located at the S1 and S2 segments of the proximal
tubule epithelium, which reabsorbs approximately 90% of filtered glucose (1). SGLT2 inhibitors
induce glycosuria (2) and are widely used as antihyperglycemic agents in patients with type
2 diabetes (3). Recently, the EMPA-REG OUTCOME study demonstrated that treatment with
empagliflozin, an SGLT2 inhibitor, significantly decreased the primary composite outcome of
cardiovascular (CV) events, thereby reducing CVmortality by 38% (4). Further studies have shown
that empagliflozin reduced heart failure hospitalization and CV death, with a consistent benefit in
patients with and without baseline heart failure (5). The CANVAS program has also shown that
canagliflozin, another SGLT2 inhibitor, lowers the risk of CV events by providing renal protection
in type 2 diabetes patients (6). Moreover, in the large, multinational CVD-REAL study, treatment
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with an SGLT2 inhibitor was associated with lower rates of
hospitalization for heart failure and death, compared with other
glucose lowering drugs, implying CV benefits from SGLT2
inhibitor usage (7). The underlying mechanism by which an
SGLT2 inhibitor improves CV disease is not clear; however,
which the mechanism may not be limited to effects on metabolic
parameters, body weight, and blood pressure (BP) (4).

There were close links and interactions between sympathetic
nervous activity (SNA) and metabolic syndrome (8). And
patients with obesity, hypertension, or diabetes exhibit high CV
risk, which is associated with an inappropriate augmentation
of SNA (9). A systematic meta-analysis revealed that SGLT2
inhibitors decrease systolic blood pressure (SBP) and diastolic
blood pressure (DBP) from baseline (−4.0 mmHg, and −1.6
mmHg, respectively) (2). However, clinical trials have failed
to show notable changes or compensatory increases in heart
rate (HR), following the administration of SGLT2 inhibitors
(2, 10). These data suggest a possible sympathoinhibitory effect
from an SGLT2 inhibitor, which may contribute in part to
the cardioprotective effects of SGLT2 inhibitor therapy. In this
review, we briefly summarize the effects of SGLT2 inhibitors on
BP and HR in patients with type 2 diabetes. We also discuss the
hypothesis that SGLT2 inhibitors elicit SNA inhibition.

EFFECTS OF SGLT2 INHIBITORS ON BP

Most clinical studies have shown that treatment with SGLT2
inhibitors, either as mono- or add-on therapies, significantly
decreases both SBP and DBP in patients with type 2 diabetes
(Table 1); however, some studies have shown no notable change
in DBP (3, 23). Meta-analyses have revealed that SGLT2
inhibitors induce statistically significant reductions in SBP and
DBP (2, 39). And Reed et al. (10) showed reasonable explanation
of BP-lowering effects of SGLT2 inhibitors in type 2 diabetes.
Interestingly, the extent of antihypertensive efficacy for each
SGLT2 inhibitor differs according to patient background. For
example, in a study of 1,031 type 2 diabetic patients who were
divided into 5 groups based on body mass index (BMI, kg/m3)
level [low-to-medium (<22.5, n = 222); medium (22.5–24.9, n
= 270); high-level 1 (25–27.4, n = 262); high-level 2 (27.5–
29.9, n = 142); and very-high (≥ 30, n = 135)], treatment with
luseogliflozin significantly decreased SBP and DBP, relative to
baseline, in all groups. However, reductions in SBP andDBPwere
greater in groups with higher BMI levels (40), suggesting that
an SGLT2 inhibitor effectively decreases BP in high BMI, type
2 diabetic patients. Another clinical trial with ipragliflozin (50
mg/day for 24 weeks) showed no significant change in BP in 50
patients with type 2 diabetes. However, in 23 patients with poorly
controlled BP (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg),
treatment with ipragliflozin significantly reduced SBP and DBP
(−6.6 mmHg and, −3.0 mmHg, respectively) (41). Similarly,
treatment with empagliflozin for 12 weeks resulted in a greater
BP reduction in hypertensive patients with type 2 diabetic who
exhibited higher baseline BP (17). Taken together, these results
suggest that SGLT2 inhibitors are effective for BP reduction in
poorly controlled hypertensive patients with type 2 diabetes.
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FIGURE 1 | Effects of empagliflozin treatment on systolic blood pressure (SBP), and on circadian rhythm of SBP, in Otsuka Long Evans Tokushima Fatty (OLETF) rats.

(A) 24-h SBP. (B) Average of 24-h SBP. (C) SBP in dark and light periods. (D) Differences between dark and light period in SBP. OLETF rats were treated with vehicle

(vehicle, n = 7), 1% NaCl drinking water (high-salt, n = 5), or 1% NaCl drinking water and empagliflozin (high-salt + empagliflozin, n = 8), for 5 weeks. Values are

mean ± SEM. ***P < 0.0001 vs. vehicle and high-salt + empagliflozin (one-way analysis of variance followed by Tukey’s multiple comparison test),
†P < 0.0001 vs.

high-salt + empagliflozin dark period (2-way analysis), #P < 0.0001 vs. high-salt light period (t-test), *P < 0.05 vs. high-salt (t-test).

EFFECTS OF SGLT2 INHIBITORS ON
DIPPING PATTERN OF BP

The restoration and maintaining a normal circadian rhythm
is crucial to CV health (42). Diminished nocturnal decline
in BP has been established as an important determinant for
CV risk, independent of overall BP during a 24-h period
(43). We have recently shown that SGLT2 inhibitors improve
disrupted circadian rhythms of BP in metabolic syndrome rats
[SHR/NDmcr-cp(+/+) rats; SHRcp] (37) and salt-treated obese
Otsuka Long Evans Tokushima Fatty (OLETF) rats (44), both
of which show non-dipper type of hypertension. Rahman et al.
(37) showed a significant BP-lowering effect from luseogliflozin
therapy in SHRcp rats. Interestingly, significant differences in
BP levels appeared between dark and light periods, following
treatment with an SGLT2 inhibitor, suggesting that the SGLT2
inhibitor altered the circadian rhythm of SBP, from a non-
dipper type to a dipper type. Similar effects were reported
by Takeshige et al. (44) in salt-treated obese OLETF rats,
following use of another SGLT2 inhibitor, empagliflozin. In these
obese animals, high salt treatment increased BP and abolished
differences in BP between dark and light periods, suggesting a
non-dipper type of hypertension. Treatment with empagliflozin

prevented the development of salt-induced hypertension and
reversed their circadian rhythm of BP, from a non-dipper pattern
to a dipper pattern. In SHRcp (37) and salt-treated obese
rats (44), SGLT2 inhibitor-induced normalization of disrupted
circadian rhythm of BP was associated with increased urinary
excretion of sodium. Overall, these data suggest that an SGLT2
inhibitor induces natriuresis, which plays an important role in
the improvement of the circadian rhythm of BP in type 2 diabetes
(45).

Recently, a clinical case study examined the effect of
dapagliflozin (5 mg/day) in patients with type 2 diabetes
who exhibited a non-dipper type (sleep-time mean SBP >

90% of awake-time mean) of hypertension. Administration of
dapagliflozin significantly decreased BP and altered the circadian
dipping pattern of BP, from a non-dipper type to a dipper type
(sleep-time mean SBP≤ 90% of awake-time mean) (46). Another
empagliflozin clinical trial also revealed that the reduction in BP
was greater during sleep-time, than during wake-time, in type 2
diabetes patients with non-dipper hypertension (47). These data
indicate that BP reduction by an SGLT2 inhibitor is associated
with restoration of a disrupted circadian rhythm of BP, from a
non-dipper pattern to a dipper pattern, in hypertensive patients
with type 2 diabetes.

Frontiers in Endocrinology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 421

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wan et al. SGLT2 Inhibitors and Sympathetic Nervous Activity

FIGURE 2 | Effects of empagliflozin treatment on low frequency (LF) of systolic blood pressure (SBP), and on circadian rhythm of LF of SBP, in Otsuka Long Evans

Tokushima Fatty (OLETF) rats. (A) 24-h LF of SBP. (B) Average of 24-h LF of SBP. (C) LF of SBP in dark and light period. (D) Differences between dark and light

period in LF of SBP. OLETF rats were treated with vehicle (vehicle, n = 7), 1% NaCl drinking water (high-salt, n = 5), or 1% NaCl drinking water and empagliflozin

(high-salt + empagliflozin, n = 8), for 5 weeks. Values are mean ± SEM.
†P < 0.001 vs. high-salt + empagliflozin dark period (2-way analysis), #P < 0.001 vs.

high-salt light period (t-test), *P < 0.05 vs. vehicle (one-way analysis of variance followed by Tukey’s multiple comparison test).

EFFECTS OF SGLT2 INHIBITORS ON HR

As shown in Table 1, many clinical studies have investigated
the effects of SGLT2 inhibitors on BP and HR in patients
with type 2 diabetes. Many clinical trials have shown that
SGLT2 inhibitors significantly decrease BP in patients with type
2 diabetes; however, no study has reported any meaningful
change or compensatory increase in HR. We have also recently
monitored BP and HR, using a telemetry system, in hypertensive
animals. We found that luseogliflozin significantly decreased BP,
but did not change HR, in SHRcp rats (37). Recently, Sano et al.
(48) reviewed clinical data regarding luseogliflozin treatment in
Japanese patients with type 2 diabetes; their report showed that
luseogliflozin significantly decreased HR in patients with high
baseline HR levels (≥ 70/min before treatment). The authors of
that study hypothesize that reduction in HR, by treatment with
an SGLT2 inhibitor, is induced by the sympathoinhibitory effect
of an SGLT2 inhibitor, in these patients.

EFFECTS OF SGLT2 INHIBITORS ON SNA

As discussed above, both clinical and animal studies indicate
that SGLT2 inhibitors decrease BP without changing HR. The

absence of HR changes, along with the reduction in BP,
supports the notion that SGLT2 inhibitors elicit inhibitory
effects on SNA; importantly, SNA strongly correlates with
CV mortality (49). Previous studies have revealed that an
SGLT2 inhibitor decreases SNA: Chiba et al. (50) showed that
acute administration of dapagliflozin significantly suppressed
norepinephrine turnover in brown adipose tissue of mice, which
reflects SNA in brown adipose tissue. Further, Yoshikawa et al.
(51) assessed the effects of ipragliflozin on arterial pressure and
low frequency (LF, 0.04–0.60Hz) of systolic arterial pressure,
which reflects the level of sympathetic vasoconstrictor activity, in
diabetes mellitus rats; their study demonstrated that inhibition
of SGLT2 attenuated the arterial pressure lability associated
with sympathoinhibition during the working period. Matthews
et al. (52) concluded that SNA was upregulated in obesity
and type 2 diabetes, and showed that dapagliflozin reduced
SNA markers, such as tyrosine hydroxylase and noradrenaline,
in the kidney and heart of C57BL6/J mice; these markers
were routinely elevated by high-fat diet treatment. A rising
in muscle SNA is usual during hypovolemia, like diuretic
effects (53). Jordan et al. (54) demonstrated that there was
no significant changes in muscle SNA despite increases in
urine volume after short-term treatment of empagliflozin in
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FIGURE 3 | Possible mechanisms for reducing sympathetic nervous activity

(SNA) through use of sodium-glucose cotransporter 2 (SGLT2) inhibitors.

Recent studies have suggested that SGLT2 inhibitors elicit a reduction in SNA

by decreasing insulin, leptin (59, 60) and blood glucose levels; and by

improving insulin resistance and hyperinsulinemia, which could reduce the

activation of carotid body (CB) (57); as well as by reducing sodium volume,

which inhibits the activation of organum vasculosum laminae terminalis (OVLT)

(58). Importantly, there are likely to be other mechanisms that have not been

described.

type 2 diabetes, which suggested a possible inhibitory effects
of SGLT2 inhibitor on SNA. However, Kusaka et al. (55)
utilized a telemetry system to show that empagliflozin did
not elicit significant changes in averaged 24-h SBP, DBP, or
HR in SHRcp rats. They also measured LF (0.25–0.75Hz) of
SBP, and showed that treatment with empagliflozin did not
alter LF of SBP, or its circadian rhythm, in those animals.
Recently, Rahman et al. (37) showed that treatment with
luseogliflozin tended to decrease the LF of SBP in SHRcp rats,
but these were not statistically significant changes. However,
when the LF of SBP was separately analyzed during dark
(working) and light (sleeping) time periods, the investigators
found that luseogliflozin significantly decreased LF of SBP
only during the sleeping period, but not during the working
period.

To confirm whether the sympathoinhibitory effect of an
SGLT2 inhibitor is dependent on its class-effect or drug-effect,
similar experiments were performed to examine the effects
of another SGLT2 inhibitor, empagliflozin, in obese OLETF
rats. Twenty male OLETF rats (13 weeks old) were implanted
with radiotelemetry devices. After 2 weeks of acclimatization,
animals were treated with vehicle (0.5% carboxymethylcellulose,
n = 7), high salt (1% NaCl in drinking water, n = 5),
or high salt plus empagliflozin (10 mg/kg per day, n =

8), for 5 weeks. We analyzed the 24-h SBP (Figure 1) and
LF (0.25–0.75Hz) of SBP (Figure 2), respectively; we found
that high salt treatment significantly increased 24-h SBP,
while empagliflozin inhibited this salt-induced increase in SBP
(Figures 2A, B). Interestingly, differences in BP between dark
and light periods were not observed in high salt-treated obese

animals, suggesting a lack of circadian rhythm of BP in
these animals. However, obvious circadian rhythms of SBP
appeared upon administration of empagliflozin to high salt-
treated obese rats (Figures 1C,D). Conversely, empagliflozin
did not change HR (data not shown). Empagliflozin also
tended to decrease the 24-h averaged LF of SBP; however,
differences among the groups were not statistically significant
(Figures 2A,B). Further, empagliflozin significantly decreased LF
of SBP only during the sleeping period, and differences between
working and sleeping periods were elevated. Consequently,
circadian rhythms in the LF of SBP were quite clear after
empagliflozin administration in high salt-treated obese rats
(Figures 2C,D). These results support the hypothesis that
inhibition of SGLT2 improves the circadian rhythm of SNA
through its sympathoinhibitory class-effect during the sleeping
period.

CONCLUSIONS

Here, we have summarized clinical data regarding the effects
of SGLT2 inhibitors on BP and HR in patients with type
2 diabetes. During treatment with an SGLT2 inhibitor, BP
reduction is not accompanied by compensatory increases or
notable changes in HR. Further, SGLT2 inhibitors exhibit
beneficial influences on the circadian rhythms of BP and SNA.
Thus, these effects of SGLT2 inhibitors may be important
in their CV protective effects, as shown in the EMPA-
REG OUTCOME and CANVAS programs (4–6). The precise
mechanism by which an SGLT2 inhibitor normalizes disrupted
circadian rhythms of BP and SNA is not clear; however,
multiple processes may be involved, including reduction
of blood glucose level and body weight, improvement of
insulin resistance, and initiation of natriuresis (8, 56–60)
(Figure 3). Further studies are necessary to determine the
mechanism responsible for the effects of SGLT2 inhibitors on
SNA.
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