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Abstract

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional

reprogramming resulting in severe physiological changes to the roots and shoots and

repression of plant immunity. Thus, plant-colonizing microorganisms—the plant microbiota

—are exposed to direct influence by the soil’s phosphorus (P) content itself as well as to the

indirect effects of soil P on the microbial niches shaped by the plant. The individual contribu-

tion of these factors to plant microbiota assembly remains unknown. To disentangle these

direct and indirect effects, we planted PSR-deficient Arabidopsismutants in a long-term

managed soil P gradient and compared the composition of their shoot and root microbiota to

wild-type plants across different P concentrations. PSR-deficiency had a larger effect on the

composition of both bacterial and fungal plant-associated microbiota than soil P concentra-

tions in both roots and shoots.

To dissect plant–microbe interactions under variable P conditions, we conducted a micro-

biota reconstitution experiment. Using a 185-member bacterial synthetic community (Syn-

Com) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in

the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as

measured by rosette size. This phenotypic shift was accompanied by changes in microbiota
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composition: the genus Burkholderia was specifically enriched in plant tissue under P star-

vation. Through a community drop-out experiment, we demonstrated that in the absence of

Burkholderia from the SynCom, plant shoots accumulated higher ortophosphate (Pi) levels

than shoots colonized with the full SynCom but only under Pi starvation conditions. There-

fore, Pi-stressed plants are susceptible to colonization by latent opportunistic competitors

found within their microbiome, thus exacerbating the plant’s Pi starvation.

Introduction

Plants provide the primary energy source for terrestrial heterotrophs, most of which are

microbial. The interaction of these microbial heterotrophs with plants ranges between the

extremes of mutualistic symbiosis [1] and pathogenesis [2,3]. However, the vast majority of

plant-associated microbial diversity, the plant microbiota, lies between these 2 extremes,

inducing more subtle, context-dependent effects on plant health [4–6]. The microbiota con-

sumes plant photosynthate [7–9], and it provides benefits via protection from pathogens [10–

14] or abiotic stress [15,16] or by increasing nutrient bioavailability [4,17,18].

The plant microbiota is derived from the microbial community composition in soil [19–

21], which is governed by its own set of ecological processes [22]. Correlations with soil micro-

bial diversity, and by derivation, with plant microbiota composition and diversity, were

observed for soil abiotic factors, such as pH [22–25], drought [25–30], and nutrient concentra-

tions [22,25,31–35]. Soil nutrient concentrations, in particular orthophosphate (Pi)—the only

form of phosphorus (P) that can be taken up by plants—produce comparatively modest

changes in microbial community composition [35,36]. Nevertheless, available soil Pi concen-

trations influences where a plant–microbe interaction lies along the mutualism–pathogenicity

continuum [17].

Nonmycorrhizal plants respond to phosphate limitation by employing a range of PSR

mechanisms. These manifest as severe physiological and morphological changes to the root

and shoot, such as lateral root growth prioritization, depletion of shoot Pi stores [37], and

changes to root exudate profiles [38,39]; these changes can potentially affect both root and

shoot microbiota. In Arabidopsis, most of the transcriptional PSR driving these physiologi-

cal responses is controlled by the 2 partially redundant transcription factors PHOSPHATE

STARVATION RESPONSE 1 (PHR1) and PHR1-LIKE (PHL1) [40]. As a result, the double

mutant phr1 phl1 has an impaired PSR and accumulates a low level of Pi. Pi transport into

roots relies on the PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1)

gene, which is required for membrane localization of high-affinity phosphate transporters

[41]. In axenic conditions, phf1mutants constitutively express PSR and accumulate low lev-

els of Pi [41]. In addition to inducing physiological changes, the plant’s response to its nutri-

ent status is also linked to its immune system. PHR1 negatively regulates components of the

plant immune system, which can lead to enhanced pathogen susceptibility but also to the

alteration of the plant’s microbiota under phosphate starvation [4]. Arabidopsismicrobiota

are altered in phr1 phl1 and phf1mutants [4,36] in experiments using both natural and syn-

thetic microbial communities [4].

Here, we examined (i) the effect of soil P content on plant microbiota composition, (ii) how

PSR modulates the plant microbiota, and (iii) the interplay between PSR and soil P content in

shaping the plant microbiota composition. We used a combination of greenhouse experiments

with differentially P-fertilized soils, Arabidopsis PSR mutants and laboratory microcosms
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utilizing tractable synthetic bacterial communities. Using PSR mutants planted in P-amended

soil, we demonstrate that the plant PSR regulators have a profound effect on the composition

of root and shoot microbiota, overshadowing the effect of the soil P content. We constructed

an ecologically tractable system utilizing a complex bacterial synthetic community (SynCom)

as a model of the plant root microbiome and used this system to study the interactions

between microbiota assembly and abiotic stress. We demonstrate deterministic responses of

the SynCommembers to changes in Pi concentrations, and we identify Pi-dependent shifts in

community composition along the mutualist–pathogen continuum.

Results

PSR is activated in soil

To better understand the effect of PSR genes on the plant microbiome under both Pi-limiting

and Pi-replete conditions, we investigated how microbiota adapted to varying soil P levels

interact with the plant’s PSR. We grew wild-type (wt) Arabidopsis and the PSR mutants phf1

and phr1 phl1 in soils collected from the “Halle long-term soil fertilization experiment,” ongo-

ing since 1949 [42]. Throughout this long-term experiment, each transect of soil has received 1

of 3 P fertilization treatments: 0 (low), 15 (medium) and 45 (high) Kg[P].Ha−1.Year−1, result-

ing in a 3- to 5-fold difference in bioavailable P between the low and high treatments [43]. To

differentiate the long-term adaptive effect of P limitation on the microbial community from

the effect of short-term changes in P availability, we also fertilized a subset of the low P soil at

the time of planting and designated this condition low+P.

We examined whether PSR, defined and typically studied in axenic conditions, is active in

our soil-based experimental system. We harvested 8-week-old plants grown in the different

soils and quantified developmental and molecular phenotypes typically associated with PSR in

both wt plants and mutants. We found a strong positive correlation among all developmental

features analyzed: shoot area, shoot fresh weight, and shoot Pi accumulation across all soil con-

ditions (Figs 1A and S1A–S1C and S1 Table and S1 Data). In wt plants, shoot Pi accumulation

reflected soil P conditions (Fig 1A and S1 Data). As expected [44], phr1 phl1 showed a dra-

matic reduction in all phenotypic parameters (Figs 1A and S1B and S1C and S1 Data) and phf1

accumulated less shoot Pi than wt but did not display any obvious morphological effect (Figs

1A and S1B–S1D and S1 Data).

To identify the transcriptomic signature of PSR in a low P soil, we compared the root tran-

scriptomes of the 3 genotypes from the low P samples with those of the low+P samples (S2

Table). Using a likelihood ratio test, we identified 210 genes that were differentially expressed

across genotypes and P conditions (q< 0.1). After hierarchical clustering, 123 (59%) of these

genes fall into a single cluster (Cluster 1) of co-expressed genes that are exclusively highly

expressed in wt under low P and not in either of the PSR mutants (Fig 1B and S1 Data). Thus,

these genes represent a PSR under our experimental conditions. A gene ontology (GO) enrich-

ment analysis (Fig 1D and S1 Data) illustrates that these genes are involved in processes such

as ion homeostasis, detoxification, and response to oxidative stress. Interestingly, few PSR

genes defined from in vitro experiments were significantly differentially expressed in our soil

experiment. From a previously defined set of 193 PSR marker genes defined using 7-day-old

seedlings exposed in vitro to P limitation for up to 2 days [4], only 7 were called as significant

in our experiment using 8-week-old plants. Nevertheless, all 7 of these genes were enriched in

wt in low P soil (Fig 1B and S2 Table). Surprisingly, despite the fact that phf1 and phr1 phl1

have contrasting transcriptional responses to Pi limitation in vitro [41], the 123 genes in Clus-

ter 1 were not up-regulated in both mutants. To corroborate that the canonical in vitro defined

PSR is also induced in wt plants, we compared the median expression of the set of 193 PSR
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marker genes [4] across the different soils (Figs 1C and S1E and S1 Data). As expected, shoot

Pi content was significantly correlated with the induction of PSR marker genes (Figs 1C and

S1F and S1 Data), with the highest median expression level in the low P conditions. We con-

clude that although the response of 8-week-old plants to low P conditions in natural soil is

Fig 1. Plants respond to differential P conditions in soil. (A) Free phosphate content normalized by shoot fresh weight (mmol�mg−1) across wt Col-0 plants
and 2 PSRmutants, phf1 and phr1 phl1. Statistical significance between low P and low+P treatments was determined across each genotype independently by a
paired t test (p< 0.05). (B) Heat map showing the average standardized expression of 210 DEGs across the low P and low+P samples in the Col-0, phf1 and
phr1 phl1 genotypes. The black bar to the right highlights the distribution of 7 genes belonging to the in vitro defined PSR marker genes [4] across the 5 clusters
in the heat map. (C) Average expression of 193 PSR marker genes [4] across the 4 phosphorus regimes in the Col-0 genotype. (D) GO enrichment for Clusters 1
and 4. Clusters 2, 3, and 6 did not show any statistically significant GO enrichment. The gene ratio is the proportion of genes per cluster that belong to a GO
category. DEG, differentially expressed gene; GO, gene ontology; P, phosphorus; PSR, phosphate starvation response; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000534.g001
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markedly different from in vitro defined PSR, wt plants indeed respond to low P conditions in

the soils tested in a Pi concentration- and PHR1/PHL1-dependent manner.

Bacterial and fungal plant microbiota differ in plant recruitment patterns

We studied the relationship between PSR and the plant microbiome in wt plants and the 2

PSR mutants grown in all 4 soils. Total DNA was extracted from shoots, roots, and soil, and

the 16S rRNA (V3-V4) and ITS1 regions were amplified and sequenced to obtain bacterial and

fungal community profiles, respectively. Sequences were collapsed into amplicon sequence

variants (ASVs. Bacterial and fungal alpha- and beta-diversity measures conform to previously

published data [19,36]: Microbial diversity decreased from the soil to the root and shoot com-

partments (Figs 2A and 2D and S2A and S2B and S3 Table and S1 Data), and roots and shoots

harbor bacterial and fungal communities distinct from the surrounding soil community and

from each other (Figs 2B and 2E and S2C–S2F and S4 Table and S1 Data). Plant-derived sam-

ples were primarily enriched in comparison to soil with members of the phyla Proteobacteria,

Bacteroidetes, and Actinobacteria and depleted in members of Acidobacteria and Gemmati-

monadetes (Figs 2C and S2E and S4 Table and S1 Data). Plant-enriched fungal ASVs belonged

mainly to the phyla Ascomycota (orders Hypocreales and Pleosporales) and Basidiomycota

(order Agaricales). Plant-depleted fungal ASVs belonged mainly to Filobasidiales (Basidiomy-

cota) and Mortierellales (Zygomycota; Figs 2F and S2F and S5 Table and S1 Data).

To quantify the effect of soil community composition on the composition of root and shoot

microbiota, we used Mantel tests to detect correlation between dissimilarity matrices of the 3

fractions (root, shoot, and soil). For bacteria, both root and shoot community dissimilarities

were strongly correlated with soil community dissimilarity (S3A and S3B Fig and S1 Data),

whereas for fungi, no correlation was measured between root and soil (S3D Fig and S1 Data),

and only a weak correlation was measured between shoot and soil (S3E Fig and S1 Data). This

observation indicates that both root and shoot bacterial communities are strongly dependent

on soil community composition, despite the fact that bacterial microbiota are distinct from the

soil community (Fig 2B and S1 Data). By contrast, the fungal microbiota composition both

above and below ground is independent of relative abundances within the soil inoculum. This

difference implies that the plant’s microbiota filtering mechanisms are fundamentally different

for fungi and bacteria.

Shoot and root microbiota are both correlated and distinct

Shoot and root microbiomes are linked, and substantial crosstalk is expected to occur between

these 2 niches [45,46]. We show here that roots and shoots harbor distinct communities from

each other (Figs 2B and 2E and S2C–S2F and S4 Table and S1 Data). To further explore organ

specificity in the plant microbiome composition, we compared root and shoot samples at the

ASV level. Shoots were mainly enriched with the bacterial phyla Cyanobacteria and Patesci-

bacteria compared to the root, whereas roots were enriched with Proteobacteria, Chloroflexi,

and Bacteroidetes (Figs 2C and S2E and S4 Table and S1 Data). With regard to fungal orders,

shoots were enriched with Capnodiales, Glomerellales, Pleosporales, and Hypocreales, whereas

roots were enriched with Pezizales, Helotiales, and Mucorales (Figs 2F and S2F and S5 Table

and S1 Data). The shoot enrichment of Cyanobacteria suggests that the availability of light is

an important factor in niche differentiation within the plant [47–49]. We used Mantel tests to

detect correlation between dissimilarity matrices of root and shoot samples. Despite the fact

that they harbor distinct communities, roots and shoots were correlated with each other for

both bacteria and fungi (S3C and S3F Fig and S1 Data). Thus, although roots and shoots form

The plant microbiome under phosphate starvation
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Fig 2. Plant recruitment patterns of bacteria and fungi. (A, D) Bacterial (A) and fungal (D) alpha diversity estimated using the Shannon Diversity Index. Letters
represent post hoc test results, based on a full factorial ANOVAmodel. (B, E) CAP based on Bray-Curtis dissimilarities between bacterial (B) and fungal (E) communities
across the soil, root, and shoot. The bar graph to the left of the CAP depicts the percentage of variance explained by statistically significant (p< 0.05) terms in a
PERMANOVAmodel. (C) Left panel: Relative abundance profiles of the main bacterial phyla across the soil, root, and shoot fractions. Right panel: Number of
statistically significant ASVs enriched in specific fractions. The arrows on the bottom of the panel denote the direction of the enrichment relative to the name of the
contrast tested; the up arrowmeans enrichment in the left fraction of the contrast, whereas the down arrowmeans enrichment in the right fraction of the contrast (e.g.,
RootvsSoil, up arrow enriched in root relative to soil, bottom arrow enriched in soil relative to root). A detailed interactive visualization of the bacterial enrichment
patterns across the multiple taxonomic levels can be found at https://itol.embl.de/tree/1522316254174701551987253. (F) Left panel: Relative abundance profiles of the
main fungal orders across soil, root, and shoot fractions. Right Panel: Number of statistically significant ASVs enriched in specific fractions. The arrows on the bottom of
the panel denote the direction of the enrichment relative to the name of the contrast tested; the up arrow signifies enrichment in the left fraction of the contrast, whereas
the down arrow signifies enrichment in the right fraction of the contrast (e.g., RootvsSoil, up arrow enriched in root relative to soil, bottom arrow enriched in soil relative
to root). Plot is colored by order. The symbols besides the colors in the legend denote phylum. A detailed interactive visualization of the fungal enrichment patterns
across the multiple taxonomic levels can be found at https://itol.embl.de/tree/13656172137464831571097084. ASV, amplicon sequence variant; CAP, canonical analysis of
principal coordinates; PERMANOVA, Permutational Multivariate Analysis of Variance.

https://doi.org/10.1371/journal.pbio.3000534.g002
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distinct bacterial and fungal niches, shifts in microbiota in both of these niches are correlated,

suggesting that either one or both of these fractions serves as an inoculum source for the other.

The plant microbiome composition is driven by the plant PSR status

We investigated the influences of plant PSR signaling and the different soil P concentrations

on microbial community composition. Constrained ordination showed significant differences,

explaining a similar proportion of variance, in both bacterial and fungal community composi-

tions. These differences persist across the P accumulation gradients represented by both the

difference in soil P and PSR mutants (Figs 3A and 3B and S4A and S4B and S1 Data). This

effect is maintained also when considering 13 soil edaphic factors that were measured in for

the same soil samples [43] (S5A–S5D Fig and S1 Data). For both bacteria and fungi, the PSR

genotype effect in roots was more consistent than the soil P effect (Fig 3A and 3B and S1

Data), which was mainly driven by the P-amended low+P samples. In shoots, both bacteria

and fungi responded to PSR genotype but in this case did not respond to soil P (S4C and S4D

Fig and S1 Data). We did not observe a significant soil P:genotype interaction effect for either

bacteria or fungi (S4A and S4B Fig and S1 Data), confirming that phf1 and phr1 phl1 both had

atypical bacterial microbiomes regardless of Pi status. As expected, we did not observe a PSR

effect in the soil samples (S4E and S4F Fig and S1 Data). The notable genotype effect illustrates

that the plant niche filtering (Fig 2B and 2E and S1 Data) is partly shaped by PSR.

To define which taxa at the ASV-levels were influenced by soil P and/or plant PSR, we

applied a generalized linear model (GLM) to the count datasets (S6 and S7 Tables). Contrast-

ing the low P samples against the low+P samples, we detected 769 bacterial (S6 Table) and 140

fungal (S7 Table) ASVs, accounting for 23% and 33% of the bacterial and fungal abundance in

the root, respectively, that were differentially abundant in at least 1 genotype (Fig 3C–3F and

S1 Data). Of these, most (568 bacterial and 85 fungal ASVs) were genotype specific, suggesting

that the Pi response of these taxa is not direct but is rather driven by Pi responses in the plant.

Taken together, these results indicate that plant microbiota are relatively robust to differences

in soil P content but are sensitive to the plant PSR status. Responses to soil P concentration are

contingent on PSR regulatory elements under both low and high P conditions.

Bacterial synthetic communities modulate the plant PSR

The results obtained from the soil experiment suggest that the community structure of the

plant microbiome is not only determined by first-order interactions (plant–microbe, microbe–

microbe, microbe–environment) but also by higher-order interactions, such as the effect of abi-

otic conditions on plant–microbe interactions. This is evident in the large proportion of ASVs

that respond to soil P in a genotype-specific manner (Fig 3C–3F and S1 Data). To establish a sys-

tem in which interactions of different orders of complexity can be studied reproducibly, we con-

structed a plant–microbe microcosm that can be deconstructed to its individual components

while retaining a complexity that is comparable to natural ecological communities. We designed

a representative bacterial SynCom from a culture collection composed of isolates derived from

surface-sterilized Arabidopsis roots [50]. We selected 185 genome-sequenced isolates represent-

ing a typical plant-associated taxonomic distribution (Fig 4A and 4B and S1 Data). We grew each

isolate separately and mixed the grown cultures to equal optical densities. We grew 7-day-old

Arabidopsis seedlings in a Pi concentration gradient (0, 10, 30, 50, 100, 1000 μMKH2PO4) and

concomitantly exposed them to the SynCom on vertical agar plates for 12 days.

First, we investigated whether PSR is induced in our experimental system. Similar to the

natural soil-based experiment, we quantified developmental and transcriptional phenotypes

associated with PSR in plants grown in different concentrations of Pi. In line with the work by

The plant microbiome under phosphate starvation
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Castrillo and colleagues [4], the presence of the SynCom consistently decreased primary root

elongation across all Pi concentrations compared with the uninoculated control, but the Pi

gradient did not affect this parameter (S6A Fig and S1 Data). Shoot size increased with Pi con-

centration, and the slope of this trend was affected by the presence of the SynCom: At high Pi,

the SynCom tended to increase shoot size, whereas at low Pi the SynCom decreased it (Fig 5A

and S1 Data), suggesting that the microbiome plays a role in shaping the plant’s response to

different Pi concentrations.

We performed RNA sequencing (RNA-Seq) on inoculated and uninoculated seedlings

exposed to high (1,000 μM) and low (50 μM) Pi. To confirm that our low Pi treatments induce

PSR, we examined the expression of the 193 PSR markers defined in the work by Castrillo and

colleagues [4]. We found that 168 of the 193 PSR markers genes were significantly induced in

uninoculated plants at low Pi compared with high Pi conditions. In the presence of the Syn-

Com, 184 out of 193 PSRmarker genes were significantly induced, and the average fold change

Fig 3. Plant PSR controls the assembly of the plant microbiome. (A, B) Canonical analysis of principal coordinates showing the influence of plant genotypes and soil P
content over the (A) bacterial and (B) fungal communities in the root. The p-value and R2 values inside each plot are derived from a PERMANOVAmodel and
correspond to the genotype and P term, respectively. (C, E) Venn diagrams showing the distribution of (C) bacterial and (E) fungal ASVs with statistically significant
(q< 0.1) higher abundance in the low P treatment in comparison to the low+P treatment in the Col-0, phf1 and phr1 phl1 roots. (D, F) Venn diagrams showing the
distribution of (D) bacterial and (F) fungal ASVs with statistically significant (q< 0.1) higher abundance in the low+P treatment in comparison to the low P treatment
across the Col-0, phf1 and phr1 phl1 roots. ASV, amplicon sequence variant; P, phosphorus; PERMANOVA, Permutational Multivariate Analysis of Variance; PSR,
phosphate starvation response; RA, relative abundance.

https://doi.org/10.1371/journal.pbio.3000534.g003
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increased from 4.7 in uninoculated conditions to 11 in the presence of the SynCom (S6B Fig

and S1 Data). We further examined whether the 123 low Pi-responsive genes from the soil

experiment (Cluster 1 in Fig 1B) are overexpressed in the agar system as well. We found that

59 of the 123 genes (47.2%) were low Pi-enriched in uninoculated plants and 72 (58.5%) were

low Pi-enriched in the presence of the SynCom. The average fold change for this set of 123

genes was 1.6 in uninoculated conditions and 2.0 in the presence of the SynCom (S6C Fig).

These results confirm that (i) in both our systems, wild soils and axenic conditions, PSR is

induced at low Pi, and (ii) the SynCom enhances this induction, similar to the results reported

in the work by Castrillo and colleagues [4].

Bacterial SynComs display deterministic community assembly in plants

To quantify the establishment of the SynCom in the plants, we determined bacterial commu-

nity composition after 12 days of co-inoculation in roots, shoots, and agar via 16S rRNA gene

amplicon sequencing, mapping reads to 97 unique sequences (USeqs) representing the

185-strain SynCom (S8 Table). We found that plant roots and shoots sustained a higher bacte-

rial alpha diversity than the surrounding agar (Fig 5B and S9 Table and S1 Data), an aspect in

which our experimental system differs from a natural environment where species richness is

higher in the surrounding soil than in the plant (Fig 2A and S1 Data). As in natural soil experi-

mental systems, agar, roots, and shoots assembled distinct bacterial communities, and this dif-

ference among these 3 fractions explained most of the variance in community composition

despite the different Pi concentrations (Figs 5C and S6D and S1 Data).

To study which strains are enriched in the roots and shoots under the different Pi concen-

trations, we utilized a GLM (S10 Table). Noticeably, plant (root and shoot) enrichment is

strongly linked to phylogeny (Fig 5D and S1 Data) and is robust across the phosphate gradient

Fig 4. Bacterial SynCom reproduces the typical plant-associated taxonomic distribution found in soil. (A) Phylogenetic tree of 185 bacterial genomes included in the
SynCom. The tree tips are colored according to the phylum classification of the genome in panel B; the outer ring shows the distribution of the 12 distinct bacterial orders
present in the SynCom. (B) Left Panel: Proportion of ASVs enriched in the root in comparison to the natural soil across all treatments and genotypes based on a fitted
GLM (q< 0.1). Each ASV is colored according to its phylum-level classification. Right Panel: Relative abundance profiles of bacterial isolates across the initial bacterial
inoculum, planted agar, root, and shoot fractions. Each isolate is colored according to its phylum-level classification based on the genome-derived taxonomy. ASV,
amplicon sequence variant; GLM, generalized linear model; SynCom, synthetic community.

https://doi.org/10.1371/journal.pbio.3000534.g004
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Fig 5. Synthetic bacterial communities display deterministic community assembly in plants. (A) Strip chart displaying the average shoot size of Col-0
Arabidopsis grown across a Pi gradient either in sterile conditions or with the SynCom. Each dot in the scatter plot represents the mean value for that particular
treatment; the range crossing each dot represents the 95% confidence interval calculated. The lines are drawn to connect the means. (B) Alpha diversity across
the fractions sampled was estimated using the Shannon Diversity index. An ANOVAmodel followed up by a Tukey HSD test were applied to estimate
differences between inoculum, unplanted agar, planted agar, root, and shoot fractions. Letters represent the results of the post hoc test. (C) CAP based on Bray-
Curtis dissimilarities between bacterial communities across the 4 fractions sampled. The bar graph to the left of the CAP depicts the percentage of variability
explained by statistically significant (p< 0.05) terms in the PERMANOVAmodel. (D) Enrichment patterns of the SynCom. Each row along the different
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assayed. In contrast, the root versus shoot comparison did not exhibit a significant phyloge-

netic signal, highlighting the fact that the ability to differentially colonize the shoot from the

root under these conditions is phylogenetically scattered across the SynCom. As in the soil

census, shoot, root, and agar beta diversities were significantly correlated (S6E–S6G Fig and S1

Data).

We hypothesized that by establishing a standardized protocol for producing the inoculum

and controlling the growth conditions, we will have created a reproducible system in which

most of the variance can be accounted for. To test this, we compared the number of ASVs and

total relative abundance captured by the fraction (root/shoot versus soil/agar) in a GLM in the

natural community experiment versus the SynCom experiment. Supporting our hypothesis,

only 1,518 out of 3,874 measurable ASVs (32% of the total ASVs), accounting for 72% of the

relative abundance in plant tissue, shift significantly between root and soil in the natural com-

munity survey, whereas 58 out of 97 USeqs (59%), accounting for 99% relative abundance in

plant tissue, were significantly enriched or depleted in plant tissue in the SynCom experiment

(Fig 5D and S1 Data).

These results indicate that plant colonization is largely deterministic in our SynCom sys-

tem, in comparison to microbiomes in nature. The reproducibility of this system, coupled

with our ability to edit it as a tool for hypothesis-testing, is crucial to bridge ecological observa-

tion with mechanistic understanding of plant–microbiota interactions.

P stress-induced changes in the root microbiome

The shifting role of the SynCom from increasing shoot size under replete Pi to decreasing

shoot size and PSR induction under Pi limitation (Figs 5A and S6B and S1 Data) can be

explained by either a shift in the lifestyle of individual bacteria along the mutualist–pathogen

continuum or by changes in the microbiota composition along the Pi gradient. The latter

would favor the proliferation of mutualist bacteria only when sufficient nutritional require-

ments are met. To measure the effect of the Pi concentration in the media on the SynCom

composition in wt plants, we measured alpha and beta diversity along our Pi gradient (0, 10,

30, 50, 100, 1000 μMKH2PO4) in roots, shoots, and agar. We observed a positive correlation

between alpha diversity and Pi concentrations, resembling a partial ecological diversity–pro-

ductivity relationship—the prediction/observation of a bell-shaped response of ecological

diversity to environmental productivity [51,52]—in roots and shoots but not in the surround-

ing agar (Fig 5E and S1 Data). As for beta diversity, the composition of the SynCom shifted

significantly along the Pi concentration gradient (Figs 5F and S7A–S7E and S1 Data). Pi con-

centration therefore alters the plant microbiome, shifting from a net-positive outcome for the

plant to a net-negative one as measured by shoot size (Fig 5A and S1 Data).

panels of the figure represents a USeq: a USeq encompasses a set of indistinguishable V3-V4 16S rRNA sequences present in the 185-member SynCom.
Phylogenetic tree (on the left) is colored based on the phylum-level classification of the corresponding USeq. Each column in the heat maps represents a
specific contrast in the enrichment model. We calculated root versus agar (left heat map), shoot versus agar (middle heat map), and root versus shoot (right
heat map) enrichments within each Pi treatment (e.g., Root_0Pi versus Agar_0Pi). The heat maps are colored based on log2 fold changes derived from the fitted
GLM. Positive fold changes (colored in red gradient) represent enrichments on the left side of the name of the contrast (e.g., Root-Agar, enriched in root in
comparison to agar), whereas negative fold changes (colored in blue gradient) represent enrichments on the right side of the name of the contrast (e.g., Root-
Agar, enriched in agar in comparison to agar). Boxed cells represent statistically significant enrichment/depletion. The bottom panel depicts the transformed
(−log10) q-value derived from a phylogenetic signal Pagel’s λ test. Tests were performed per column in the heat map (e.g., Root0μMPi versus Agar0μMPi). (E)
Bacterial alpha diversity estimated using the Shannon Diversity index. p-values derived from a linear model are shown for each fraction. Linear regression line
is shown in black and the 95% confidence interval is shaded in gray. (F) CAP showing the influence of phosphate on the bacterial communities in the root. The
bar graphs to the left of the CAP depict the percentage of variability explained by statistically significant (p< 0.05) variables based on a PERMANOVAmodel.
CAP, canonical analysis of principal coordinates; GLM, generalized linear model; HSD, Honestly Significant difference; PERMANOVA, Permutational
Multivariate Analysis of Variance; Pi, orthophosphate; SynCom, synthetic community; USeq, unique sequence.

https://doi.org/10.1371/journal.pbio.3000534.g005
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Burkholderia respond to Pi stress-induced changes in the plant

In a previous publication [4], we demonstrated that PHR1 negatively regulates defense-related

genes under low Pi conditions. Suppression of plant defense and consequent alterations in col-

onization could account for some of the shift we observed from a beneficial to a detrimental

community. We thus aimed to identify bacteria that respond to Pi stress-induced changes in

the plant, rather than the Pi concentration itself. To do so, we searched for USeqs that dis-

played a strong Pi:fraction (shoot, root, agar) interaction in our GLM (S8A Fig and S11 Table

and S1 Data). Two of the three USeqs displaying the strongest Pi:fraction interaction belonged

to Burkholderiaceae, representing all 5 Burkholderia strains used in this experiment. The rela-

tive abundance of these USeqs is positively correlated with Pi concentration in the agar but is

negatively correlated with Pi concentration in the root and shoot (Figs 6A and S8B and S8C

and S1 Data). This pattern suggests that these strains are responding to physiological changes

in the plant.

To measure the physiological effect of the specific recruitment of Burkholderia under Pi

stress on the plant, we conducted a drop-out experiment in which we compared plants inocu-

lated with the full SynCom to plants inoculated with a SynCom excluding all 5 Burkholderia

isolates. We also included a SynCom excluding all members of the neighboring Ralstonia clade

(Fig 4A and S1 Data), which did not display any discernible Pi response. We measured shoot

size and Pi concentrations in the shoots (a proxy for PSR) of plants grown in high (1,000 μM)

and low (50 μM) Pi with the different SynComs. In addition, we measured shoot size and Pi

content in a refeeding treatment with SynCom-inoculated plants grown in low (50 μM) Pi and

then transferred to high Pi (1,000 μM) conditions. As seen before (Fig 5A and S1 Data), the

SynCom decreased shoot sizes in low Pi and increased them in high Pi. However, the different

taxon drop-outs did not affect shoot size compared with the full SynCom, except for a slight

decrease in post-refeeding shoot size in the Ralstonia drop-out treatment (S9 Fig and S1 Data).

All SynCom treatments decreased shoot Pi content in the low Pi conditions compared with

the uninoculated plants but recovered to a higher shoot Pi level than the uninoculated treat-

ments upon transferring to high Pi conditions, reproducing our previous report [4] (Fig 6B

and S1 Data). Among inoculated treatments, plants colonized with the Burkholderia drop-out

treatment (SynCom excluding all Burkholderia) had a higher Pi content than either plants col-

onized with the full SynCom or with the Ralstonia drop-out SynCom only in the low Pi condi-

tions. There was no difference in shoot Pi among the SynCom treatments in either the high Pi

treatment or following the refeeding treatment. This finding suggests that the enrichment of

Burkholderia in plant tissue under Pi starvation can be considered a shift in the effect of bacte-

ria on the plant from a positive interaction to a negative one.

To test whether Burkholderia are recruited to the plant under low Pi via a PSR-dependent

mechanism, we inoculated 7-day-old wt, phf1, and phr1 phl1 seedlings with the SynCom and

profiled the community composition after 12 days of growth in 3 Pi concentrations (0, 50, and

1,000 μM). In accordance with our soil experiment, and with the work by Castrillo and col-

leagues [4], community composition assembled in the roots of the 3 genotypes differed signifi-

cantly (S10 Fig and S1 Data). However, Burkholderia sequences were enriched in low Pi in all

3 genotypes (Fig 6C and S1 Data), indicating that their recruitment to the root under low Pi is

independent of PSR activation and of the immune dampening that accompanies it.

Discussion

This study shows that despite 60 years of differential fertilization, the plant’s PSR and accom-

panying changes to its microbiome composition between the low P and high P soils are subtle,

possibly because Pi status of the plant is highly buffered by the plant ionomic regulatory
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Fig 6. Bacterial strains respond to Pi-stress-induced physiological changes in the wt plants. (A) Relative abundance of BurkholderiaUseqs, both of which exhibit a
statistically significant (q< 0.1) Pi-enrichment between the plant fractions and the agar fraction. The middle dot of each strip bar corresponds to the mean of that
particular condition, the range of the strip bar corresponds to the 95% confidence interval of the mean. The lines are drawn connecting the means for each Pi
concentration. (B) Box plots showing the phosphate accumulation in plants exposed to different SynComs across 3 phosphate treatments. Statistically significant
differences among SynCom treatments were computed within each phosphate treatment separately using an ANOVAmodel. Letters represent the results of the post hoc
test. (C) Box plot showing relative abundance of BurkholderiaUSeqs across 3 Pi concentrations and 3 plant genotypes. Summary of the NB-GLM for Burkholderia is
shown on the right. GLM, generalized linear model; NB, no bacteria; Pi, orthophosphate; SynCom, synthetic community; USeq, unique sequence; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000534.g006
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network [53]. Only when comparing the low P versus the P-supplemented low+P samples is

there a discernible difference in both plant transcriptome and shoot Pi accumulation, which

correlates to a stronger effect on microbiota composition. This suggests that bioavailable Pi

added to the soil is quickly consumed, and short-term amendments are needed in order to

detect changes. A similar short-term fertilization approach was successfully applied in the

work by Fabiańska and colleagues [36], using soils from a different long-term experimental

site.

As opposed to in vitro defined transcriptomes [41], here, phf1 and phr1 phl1 plants, although

each having a distinct transcriptional profile, were impaired in the response of a core set of genes

(Cluster 1 in Fig 1B) to low P. This is despite the fact that phf1 plants were not impaired in growth

(S1B and S1C Fig and S1 Data) and were only slightly impaired in shoot Pi accumulation (S1D

Fig and S1 Data). A paralogous discrepancy was also observed in the work by Hiruma and col-

leagues [17], in which both phf1 and phr1 phl1were impaired in their response to a plant growth

promoting fungus, whereas only phr1 phl1 but not phf1was impaired in P translocation to the

shoot, raising the speculation that PHF1 is needed for fine, rather than bulk, P translocation

within the plant. Our results support this idea and raise a similar speculation that PHF1-guided

transporters are involved in fine grained phosphate translocation within the plant toward Pi sens-

ing tissues.

An additional apparent departure from the axenically defined PSR transcriptional signature

is that only 7 of the genes that were induced in wt plants under low Pi conditions overlapped

with the list of 193 axenically defined PSR genes we used as a reference. It is notable, however,

that despite the difference in plant age and environmental conditions between our soil and

axenic agar systems, the agar-defined transcriptomic signature is detectable in the soil system

(Fig 1C and S1 Data) and vice versa: the signature of the 123 genes identified in our soil system

is detectable on agar (S6C Fig and S1 Data). Thus, despite the apparent differences, agar-

defined PSR signatures are also maintained under complex real-life conditions.

Several studies link host physiological response to the soil phosphate status with the bacte-

rial [4,38] and fungal [34,36] microbiome. A recent report of Arabidopsis planted in a 60-year-

long annual P fertilization gradient (the same soil used in the current study) showed a modest

P effect on plant microbiome composition [43]. Previously, we showed that PSR mutants in

Arabidopsis have different bacterial microbiomes in Pi replete conditions [4], and a recent

publication showed that PSR mutants had a slightly altered fungal microbiome in Pi-replete

but not in Pi-depleted conditions [36]. Here, we analyzed fungi and bacteria side by side and

demonstrated a pronounced effect of PSR impairment on both bacterial and fungal compo-

nents of the plant microbiota. We noted an intriguing difference that emerged in the patterns

of community assembly between bacteria and fungi (S3A, S3B, S3D and S3E Fig and S1 Data).

The bacterial microbiota composition is strongly dependent on the soil bacterial community

composition, whereas changes to the fungal microbiota are uncoupled from changes to the soil

fungal community composition. This indicates that the plant is markedly more selective as to

the fungi allowed to proliferate in its tissue than it is with bacteria. The observation that much

of the modulation of the plant’s fungal microbiota is mediated by the bacterial microbiota itself

[54] may also contribute to this complex pattern. Our results show that impairment of PSR

genes profoundly affects the composition of the plant microbiota, independently of P condi-

tions, and that observed shifts in root-derived microbial communities may not be a result of

sensitivity to P concentrations but rather a response to PSR regulation in the hosts. The mech-

anism by which PSR regulation affects microbiota assembly is not fully understood. On one

hand, PSR and plant immunity have been shown to be transcriptionally linked [4]. On the

other, Pi depletion drastically changes the root’s exudate profiles [17,38,39,55], which have

been shown to play a critical role in plant microbiota assembly [56,57]. It is likely that both

The plant microbiome under phosphate starvation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000534 November 13, 2019 14 / 34

https://doi.org/10.1371/journal.pbio.3000534


factors contribute to shifts in microbiota composition. Evidently, however, the Burkholderia

plant-enrichment in our SynCom occurs via a PSR-independent mechanism.

Our SynCom, comprising 185 genome-sequenced endophytic bacterial isolates, was

designed to resemble a natural bacterial community (Fig 4B and S1 Data). The community

assembly patterns shown for this system are highly reproducible, demonstrating that micro-

biome assembly is largely a deterministic process. The reproducibility and editability of this

system is attractive for detailed mechanistic study of the processes that determine community

assembly and its influence on plant phenotype and fitness. From within this SynCom, the

genus Burkholderia emerges as a PSR-independent, low Pi-responsive taxon. We compared

the effect of Burkholderia on shoot Pi accumulation from within a full SynCom (a realistic

proxy for the bacterial community) to that of the full SynCom lacking Burkholderia, a strategy

akin to knocking-out a gene of interest, also recently applied in the work by Durán and col-

leagues [54]. The control treatment for this type of approach is the full SynCom, whereas in a

plant–bacterium binary association experiment it would typically be sterile conditions.

Because both sterile conditions and binary association are strong deviations from conditions

that may be encountered in the field, the results of binary association experiments may be cor-

respondingly distorted. Using the drop-out approach, we expect to see more subtle differences,

because the microbial load on the plant does not change much, but also that these differences

be more relevant to the field—an expectation that is yet to be empirically tested. Our observa-

tion that dropping Burkholederia out of the SynCom increased shoot Pi in Pi-limiting condi-

tions (50 μMPi) but not in Pi-replete conditions (1,000 μMPi) suggests that strains in this

genus shift their relationship with the plant from a seeming commensal to a competitor/patho-

gen. Having ruled out PSR-dependent processes, another plausible explanation for Burkhol-

deria enrichment patterns is that when Pi is limiting in the media, the plant becomes a source

of Pi for the bacteria and strains with an enhanced ability to utilize plant-derived organic Pi or

polyphosphate have an advantage under these conditions. Strains belonging to the genus Bur-

kholderia have been shown to be particularly efficient at polyphosphate accumulation at pH

5.5, which is similar to the pH we used in our media [58].

Shifts in microbiota composition that accompany PSR are either adaptive to the plant or

reflect opportunistic strategies by bacteria [4,17]. Under the former hypothesis, microbes

recruited by the plant under Pi stress provide the plants with an advantage vis-a-vis coping

with this stress, whereas under the latter, opportunistic microbes might be making a bad situa-

tion worse for the plant. In the case of Burkholderia in our SynCom, results support the latter

hypothesis. Burkholderia contribute to depletion of shoot Pi stores, only under Pi-limiting

conditions. However, plant-adaptive microbial recruitment under low Pi has been shown to

occur as well [17]. The fact that bacteria responding to PSR genes are not a monophyletic

group in soil indicates that multiple mechanisms are involved in community assembly. It is

likely that these mechanisms encompass both plant-adaptive and opportunistic strategies.

Materials andmethods

Soil P gradient experiment

Collection of soil from field site. Soil used in this experiment was collected from the

long-term Pi fertilization field (“Field D”) trial at the Julius Kühn Experimental Station at Mar-

tin Luther University of Halle-Wittenberg (51˚29045.600N, 11˚59033.300E) [42,59]. Soil cores (10

cm diameter × 15 cm depth) were taken from 18 6 × 5 m unplanted plots belonging to 2 strips.

These plots represent 3 P fertilization regimens: low, medium, and high P (0, 15, and 45 kg P

ha−1 year−1, respectively). Differences in soil mineral content between strips and P fertilization

regimens are reported in the work by Robbins and colleagues [41], showing that the different
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Pi regiments significantly differed only in P content. Soil cores were harvested in the middle of

March 2016 (strip 1) and beginning of April 2016 (strip 2). Approximately 2 cm of the topsoil

was discarded, and the remaining lower 13 cm of soil was stored at 4˚C until use. Soils from

each core were homogenized separately with a mesh sieve wire (5 × 5 m2). The sieved soil

cores were stored at 4˚C until use. About 300 g of soil were added to each pot (7 × 7 × 7 cm3).

Experimental design. Each of the 3 Arabidopsis genotypes was grown in soil from all 18

plots (6 plots per P treatment). In addition, a fourth P regimen designated “Low+P” was cre-

ated by adding additional P to a set of pots with low P. The amount of P added to these pots

is based on the difference in total P between low and high P plots. The average difference

between low and high P over all the plots is 42 mg P per kg soil [43]. Per pot, this is 12.6 mg P

(accounting for 300 g soil per pot). Thus, a 10 ml solution consisting of 4.2 mg P in the form of

20% K2HPO4 (MilliporeSigma, St. Louis, MO) and 80% KH2PO4 (MilliporeSigma, St. Louis,

MO) was added to the pots in 3 applications (Weeks 2, 4, and 6) before watering (in order to

distribute the P through the soil).

Thus, the experiment included 2 variables: soil treatment (low P, medium P, high P, low+P)

and genotypes (Col-0, phf1, and phr1 phl1) with 6 independent replicates, amounting to 72

pots. Pot positions in the greenhouse were randomized.

Plant growth conditions. Arabidopsis thaliana ecotype Col-0 and mutants phf1 and phr1

phl1 (both in the Col-0 background) were used. Seeds were surface sterilized (20 min 70%

EtOH (MilliporeSigma, St. Louis, MO), 10 s 100% EtOH) and planted directly onto moist soil.

Sown seeds were stratified for 3 days at 4˚C before being placed in a greenhouse under short-

day conditions (6/18 day-night cycle; 19 to 21˚C) for 8 weeks. Germinating seedlings were

thinned to 4 plants per pot.

Sample harvest. After 8 weeks of growth, pots were photographed, and shoot size was

quantified using WinRhizo software (Regent instruments Inc., Québec, Canada). Samples

were harvested in random order to avoid any confounding circadian effect on the results. For

DNA extraction, 2 roots, 2 shoots, and soil from each pot were harvested separately. Roots and

shoots were rinsed in sterile water to remove soil particles, placed in 2 ml Eppendorf tubes

(Eppendorf, Hamburg, Germany) with 3 sterile glass beads (MilliporeSigma, St. Louis, MO),

then washed 3 times with sterile distilled water to remove soil particles and weakly associated

microbes. Root and shoot tissue were then pulverized using a tissue homogenizer (TissueLyser

II; Qiagen, Hilden, Germany) and stored at −80˚C until processing. Five ml of soil from each

pot was suspended in 20 ml of sterile distilled water. The resulting slurry was sieved through a

100 μm sterile cell strainer (Fisher Scientific, Hampton, NH) and the flow-through was centri-

fuged twice at maximum speed for 20 minutes, removing the supernatant both times. The

resulting pellet was stored at −80˚C until processing. For RNA extraction, one root system and

one shoot were taken from 3 replicates of each treatment, washed lightly to remove soil parti-

cles, placed in 2 ml Eppendorf tubes with 3 glass beads and flash frozen with liquid nitrogen.

Tubes were stored at −80˚C until processing. For shoot Pi measurement, 2 to 3 leaves from the

remaining shoot in each pot were placed in an Eppendorf tube and weighed; 1% acetic acid

(MilliporeSigma, St. Louis, MO) was then added, and samples were flash frozen and stored at

−80˚C until processing. The Ames method [60] was used to determine the phosphate concen-

tration in these samples.

DNA extraction. DNA extractions were carried out on ground root and shoot tissue and

soil pellets, using the 96-well-format MoBio PowerSoil Kit (MoBio Laboratories; Qiagen, Hil-

den, Germany) following the manufacturer’s instruction. Sample position in the DNA extrac-

tion plates was randomized, and this randomized distribution was maintained throughout

library preparation and sequencing.
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RNA extraction. RNA was purified from plant tissue using the RNeasy Plant Mini Kit

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions and stored at −80˚C.

Bacterial SynCom experiment

Bacterial isolation and culture. The 185-member bacterial SynCom contained genome-

sequenced isolates obtained from Brassicaceae roots, nearly all Arabidopsis, planted in 2 North

Carolina, US, soils. Because both bacteria and fungi responded similarly to PSR in our soil

experiments, we only included bacteria, which are more compatible with our experimental sys-

tem in our SynCom. A detailed description of this collection and isolation procedures can be

found in the work by Levy and colleagues [50]. One week prior to each experiment, bacteria

were inoculated from glycerol (MilliporeSigma, St. Louis, MO) stocks into 600 μL KB medium

in a 96 deep well plate. Bacterial cultures were grown at 28˚C, shaking at 250 rpm. After 5 days

of growth, cultures were inoculated into fresh media and returned to the incubator for an addi-

tional 48 hours, resulting in 2 copies of each culture, 7 days old and 48 hours old. We adopted

this procedure to account for variable growth rates of different SynCommembers and to

ensure that nonstationary cells from each strain were included in the inoculum. After growth,

48-hour-old and 7-day-old plates were combined and optical density (OD) of the culture was

measured at 600 nm using an Infinite M200 Pro plate reader (TECAN, Männedorf, Switzer-

land). All cultures were then pooled while normalizing the volume of each culture according

to the OD (we took a proportionally higher volume of culture from cultures with low OD).

The mixed culture was then washed twice with 10 mMMgCl2 (MilliporeSigma, St. Louis, MO)

to remove spent media and cell debris and vortexed vigorously with sterile glass beads to

break up aggregates. OD of the mixed, washed culture was then measured and normalized to

OD = 0.2. A total of 100 μL of this SynCom inoculum was spread on each agar plate prior to

transferring seedlings.

Experimental design of agar experiments. We performed the Pi gradient experiment in

2 independent replicas (experiments performed at different times, with fresh bacterial inocu-

lum and batch of plants), each containing 3 internal replications, amounting to 6 samples for

each treatment. We had 2 SynCom treatments: no bacteria (NB) and SynCom; 6 Pi concentra-

tions: 0, 10, 30, 50, 100, or 1,000 μMKH2PO4(henceforth, Pi); and 2 plant treatments: planted

plates and unplanted plates (NP).

For the drop-out experiment, the entire SynCom, excluding all 5 Burkholderia and both

Ralstonia isolates, was grown and prepared as described above. The Burkholderia and Ralsto-

nia isolates were grown in separate tubes, washed, and added to the rest of the SynCom to a

final OD of 0.001 (the calculated OD of each individual strain in a 185-Member SynCom at an

OD of 0.2) to form the following 4 mixtures: (1) Full community—all Burkholderia and Ralsto-

nia isolates added to the SynCom; (2) Burkholderia drop-out—only Ralstonia isolates added to

the SynCom; (3) Ralstonia drop-out—only Burkholderia isolates added to the SynCom; (4)

uninoculated plants—no SynCom. The experiment had 3 Pi conditions: low Pi (50 μMPi),

high Pi (1,000 μMPi), and low!high Pi. Twelve days post-inoculation the low Pi and high Pi

samples were harvested, and the low!high plants were transferred from 50 μMPi plates to

1,000 μMPi plates for an additional 3 days. The experiment was performed twice, and each

rep consisted of 6 plates per SynCommixture and Pi treatment, amounting to 72 samples.

Upon harvest, shoot Pi accumulation was measured using the Ames method.

For the drop-out experiment with PSR mutants, the entire SynCom, excluding all 5 Bur-

kholderia, was grown and prepared as described above. The Burkholderia isolates were grown

in separate tubes, washed, and added to the SynCom to a final OD of 0.001 (the calculated OD

of each individual strain in a 185-Member SynCom at an OD of 0.2) to form the following 2
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mixtures: (1) Full community—all Burkholderia isolates added to the SynCom; (2) Burkhol-

deria drop-out—no isolates added to the SynCom. For each SynCom, we inoculated 6 agar

plates for each of 3 Pi conditions: 0, 50, and 1,000 μMPi. Three 7-day-old seedlings from each

of the 3 genotypes (wt Col-0, phf1, and phr1 phl1) were transferred to each plate. Roots were

harvested 12 days post-inoculation, and bacterial DNA was extracted.

In vitro plant growth conditions. Arabidopsis thaliana accession Col-0 was used. All

seeds were surface-sterilized with 70% bleach (Clorox, Oakland, CA), 0.2% Tween-20 (Milli-

poreSigma, St. Louis, MO) for 8 minutes, and rinsed 3 times with sterile distilled water to elim-

inate any seed-borne microbes on the seed surface. Seeds were stratified at 4˚C in the dark for

2 days. Plants were germinated on vertical square 12 X 12 cm agar plates (Fisher Scientific,

Hampton, NH) with Johnson medium (JM; [4]) containing 0.5% sucrose (MilliporeSigma,

St. Louis, MO) and 1,000 μMPi, for 7 days. Then, 10 plants were transferred to each vertical

agar plate with amended JM lacking sucrose at one of the following experimental Pi concentra-

tions: 0, 10, 30, 50, 100, or 1,000 μMPi. The SynCom was spread on the agar prior to transfer-

ring plants. Each experiment included unplanted agar plates with SynCom for each media type

(designated NP) and uninoculated plates with plants for each media type (designated NB).

Plants were placed in randomized order in growth chambers and grown under a 16-hour

dark/8-hour light regime at 21˚C day/18˚C night for 12 days (the period of time it takes roots

to reach the bottom of the plate).

Sample harvest. Twelve days post-transferring, plates were imaged using a document

scanner. For DNA extraction, roots, shoots, and agar were harvested separately, pooling 6

plants for each sample. Roots and shoots were placed in 2.0 ml Eppendorf tubes with 3 sterile

glass beads. Samples were washed 3 times with sterile distilled water to remove agar particles

and weakly associated microbes. Tubes were stored at −80˚C until processing. For RNA, sam-

ples were collected from a separate set of 2 independent experiments, using the same SynCom

and conditions as above but with just 2 Pi concentrations: 1,000 μMPi (high) and 50 μMPi

(low). Four seedlings were harvested from each sample, and samples were flash frozen and

stored at −80˚C until processing.

DNA extraction. Root and shoot samples were lyophilized for 48 hours using a Freezone

6 freeze dry system (Labconco, Fisher Scientific, Hampton, NH) and pulverized using a tissue

homogenizer (MP Biomedicals, Solon, OH). Agar from each plate was stored in a 30 ml

syringe (Fisher Scientific, Hampton, NH) with a square of sterilized Miracloth (Millipore) at

the bottom and kept at −20˚C for a week. Syringes were then thawed at room temperature,

and samples were squeezed gently into 50 ml tubes. Samples were centrifuged at maximum

speed for 20 minutes, and most of the supernatant was discarded. The remaining 1 to 2 ml of

supernatant containing the pellet was transferred into clean microfuge tubes. Samples were

centrifuged again, supernatant was removed, and pellets were stored at −80˚C until DNA

extraction.

DNA extractions were carried out on ground root and shoot tissue and agar pellets using

96-well-format MoBio PowerSoil Kit (MOBIO Laboratories; Qiagen, Hilden, Germany) fol-

lowing the manufacturer’s instruction. Sample position in the DNA extraction plates was ran-

domized, and this randomized distribution was maintained throughout library preparation

and sequencing.

RNA extraction. RNA was extracted from Arabidopsis seedlings following the work by

Ames [61]. Frozen seedlings were ground in liquid nitrogen, then homogenized in a buffer

containing 400 μl of Z6-buffer; 8 M guanidinium-HCl (MilliporeSigma, St. Louis, MO), 20

mMMES, (MilliporeSigma, St. Louis, MO)20 mM EDTA (MilliporeSigma, St. Louis, MO) at

pH 7.0; 400 μL phenol:chloroform:isoamylalcohol (25:24:1) (MilliporeSigma, St. Louis, MO)

was added, and samples were vortexed and centrifuged (20,000g, 10 minutes) for phase
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separation. The aqueous phase was transferred to a new 1.5 ml tube, and 0.05 volumes of 1 N

acetic acid (MilliporeSigma, St. Louis, MO) and 0.7 volumes 96% ethanol were added. The

RNA was precipitated at −20˚C overnight. Following centrifugation (20,000g, 10 minutes,

4˚C), the pellet was washed with 200 μl sodium acetate (pH 5.2) (MilliporeSigma, St. Louis,

MO) and 70% ethanol. The RNA was dried and dissolved in 30 μL of ultrapure water and

stored at −80˚C until use.

Quantification of plant phenotypes. The Ames method [60] was used to determine the

phosphate concentration in the shoots of plants grown on different Pi regimens and treat-

ments. Primary root length elongation was measured using ImageJ [62], and for shoot area

and total root network measurement, WinRhizo software (Regent Instruments Inc., Quebec,

Canada) was used.

DNA and RNA sequencing

Bacterial 16S sequencing. We amplified the V3-V4 regions of the bacterial 16S rRNA

gene using primers 338F (50-ACTCCTACGGGAGGCAGCA-30) and 806R (50-GGACTACHV

GGGTWTCTAAT-30). Two barcodes and 6 frames hifts were added to the 5’ end of 338F, and

6 frameshifts were added to the 806R primers, based on the protocol in the work by Lundberg

and colleagues [63]. Each PCR reaction was performed in triplicate and included a unique

mixture of 3 frameshifted primer combinations for each plate. PCR conditions were as follows:

5 μl Kapa Enhancer (Kapa Biosystems, Wilmington, MA), 5 μl Kapa Buffer A (Kapa Biosys-

tems, Wilmington, MA), 1.25 μl of 5 μM 338F, 1.25 μl of 5 μM 806R, 0.375 μl mixed rRNA

gene-blocking peptide nucleic acids (PNAs; 1:1 mix of 100 μM plastid PNA and 100 μMmito-

chondrial PNA; PNA Bio (Kapa Biosystems, Wilmington, MA), 0.5 μl Kapa dNTPs (Kapa Bio-

systems, Wilmington, MA), 0.2 μl Kapa Robust Taq (Kapa Biosystems, Wilmington, MA), 8 μl

dH2O, 5 μl DNA; temperature cycling: 95˚C for 60 seconds, 24 cycles of 95˚C for 15 seconds,

78˚C (PNA) for 10 seconds, 50˚C for 30 seconds, 72˚C for 30 seconds, 4˚C until use. Following

PCR cleanup, the PCR product was indexed using 96 indexed 806R primers with the same

reaction mix as above and 9 cycles of the cycling conditions described in the work by Lundberg

and colleagues [63]. PCR products were purified using AMPure XP magnetic beads (Beckman

Coulter, Brea, CA) and quantified with a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA).

Amplicons were pooled in equal amounts and then diluted to 10 pM for sequencing. Sequenc-

ing was performed on an Illumina MiSeq instrument (Illumina, San Diego, CA) using a

600-cycle V3 chemistry kit. The raw data for the natural soil experiment is available in the

NCBI SRA Sequence Read Archive (accession PRJNA531340). The raw data for the SynCom

experiment is available in the NCBI SRA Sequence Read Archive (accession PRJNA531340).

Fungal/Oomycete ITS sequencing. We amplified the ITS1 region using primers ITS1-F

(50-CTTGGTCATTTAGAGGAAGTAA-30; [64]) and ITS2 (50-GCTGCGTTCTTCATCGAT

GC-30; [65]). Samples were diluted to concentrations of 3.5 ng μl−1 of DNA with nuclease-free

water for the first PCR reaction to amplify the ITS1 region. Reactions were prepared in tripli-

cate in 25 μl volumes consisting of 10 ng of DNA template, 1× incomplete buffer, 0.3% bovine

serum albumin, 2 mMMgCl2, 200 μM dNTPs, 300 nM of each primer, and 2 U of DFS-Taq

DNA polymerase (Bioron, Ludwigshafen, Germany); temperature cycling: 2 minutes at 94˚C,

25 cycles: 30 seconds at 94˚C, 30 seconds at 55˚C, and 30 seconds at 72˚C; and termination:

10 minutes at 72˚C. PCR products were cleaned using an enzymatic cleanup (24.44 μl: 20 μl

of template, 20 U of exonuclease I, 5 U of Antarctic phosphatase, 1× Antarctic phosphatase

buffer; New England Biolabs, Frankfurt, Germany); incubation conditions were 30 minutes at

37˚C, 15 minutes at 85˚C; centrifuge 10 minutes at 4,000 rpm. A second PCR was then per-

formed (2 minutes at 94˚C; 10 cycles: 30 seconds at 94˚C, 30 seconds at 55˚C, and 30 seconds
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at 72˚C; and termination: 10 minutes at 72˚C), in triplicate using 3 μl of cleaned PCR product

and sample-specific barcoded primers (50- AATGATACGGCGACCACCGAGATCTACACT

CACGCGCAGG-ITS1F-30; 50-CAAGCAGAAGACGGCATACGAGAT-BARCODE(12-NT)-

CGTACTGTGGAGA-ITS2-30). PCR reactions were purified using with Agencourt AMPure

XP purification kit (Beckman Coulter, Krefeld, Germany). Amplicons were pooled in equal

amounts and then diluted to 10 pM for sequencing. Sequencing was performed on an Illumina

MiSeq instrument using a 600-cycle V3 chemistry kit. The raw data are available in the NCBI

SRA Sequence Read Archive (Project Number PRJNA531340).

Plant RNA sequencing. Illumina-based mRNA-Seq libraries were prepared from 1 μg

RNA following the work by Herrera Paredes and colleagues [38]. mRNA was purified from

total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences, Chicago,

IL) and then fragmented in the presence of divalent cations (Mg2+) at 94˚C for 6 minutes. The

resulting fragmented mRNA was used for first-strand cDNA synthesis using random hexam-

ers and reverse transcriptase (Enzymatics, Qiagen, Beverly, MA), followed by second-strand

cDNA synthesis using DNA Polymerase I (Enzymatics, Qiagen, Beverly, MA) and RNAseH

(Enzymatics, Qiagen, Beverly, MA). Double-stranded cDNA was end-repaired using T4 DNA

polymerase (Enzymatics, Qiagen, Beverly, MA), T4 polynucleotide kinase (Enzymatics, Qia-

gen, Beverly, MA), and Klenow polymerase (Enzymatics, Qiagen, Beverly, MA). The DNA

fragments were then adenylated using Klenow exo-polymerase (Enzymatics, Qiagen, Beverly,

MA) to allow the ligation of Illumina Truseq HT adapters (D501–D508 and D701–D712; Illu-

mina, San Diego, CA). Following library preparation, quality control and quantification were

performed using a 2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA) and

the Quant-iT PicoGreen dsDNA Reagent (Invitrogen, Carlsbad, CA), respectively. Libraries

were sequenced using HiSeq4000 sequencers (Illumina, San Diego, CA) to generate 50-bp sin-

gle-end reads.

Data processing and statistical analyses

Quantification of plant phenotypes—Soil experiment. To measure correlation between

all measured plant phenotypes (shoot Pi, shoot weight, shoot size) we applied hierarchical clus-

tering based on a matrix of Pearson correlation coefficients between all pairs of phenotypes.

We used the R package corrplot version 0.84 [66] to visualize correlations. To compare shoot

Pi accumulation, we treated the low P sample as the control, because this soil did not receive

any treatment. We performed paired t tests between the different P-treated samples and the

low P samples within each plant genotype independently (α< 0.05).

Amplicon sequence data processing—Soil experiments. Bacterial sequencing data were

processed with MT-Toolbox [67]. Usable read output fromMT-Toolbox (i.e., reads with 100%

correct primer and primer sequences that successfully merged with their pair) were quality fil-

tered using Sickle [68] by not allowing any window with a Q score under 20. After quality fil-

tering, samples with low total reads recruited (<3,000 reads), amounting to 51 soil samples

were discarded. Although this study focuses on the root microbiome, the relatively small num-

ber of remaining soil samples may have affected the results shown in S4E Fig. The remaining

samples include at least 3 samples per genotype. The resulting sequences were collapsed into

ASVs using the R package DADA2 version 1.8.1 [69]. Taxonomic assignment of each ASV was

performed using the naïve Bayes kmer method implemented in the DADA2 package using the

Silva 132 database as training reference [69].

Fungal ITS sequence data were processed using DADA2 [69] with default parameters using

only the forward reads. Taxonomic assignment of each ASV was performed using the naïve
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Bayes kmer method implemented in the MOTHUR package [70] using the UNITE database

[71] as training reference.

The resulting bacterial and fungal count tables were deposited at https://github.com/isaisg/

hallepi.

Community analyses—Soil experiments. The resulting bacterial and fungal count tables

were processed and analyzed with functions from the ohchibi package [72]. Both tables were

rarefied to 3,000 reads per sample. An alpha diversity metric (Shannon diversity) was calcu-

lated using the diversity function from the vegan package version 2.5–3 [73]. We used

ANOVA to test for differences in Shannon Diversity indices between groups. Tukey’s HSD

post hoc tests here and elsewhere were performed using the cld function from the emmeans R

package [74]. Beta-diversity analyses (Principal coordinate analysis and canonical analysis of

principal coordinates [CAP]) were based on Bray-Curtis dissimilarity calculated from the rare-

fied abundance tables. We utilized the capscale function from the vegan R package v.2.5–3 [73]

to compute a CAP. To analyze the full data set (all fraction, all genotypes, all phosphorus treat-

ments), we constrained by fraction, plant genotype, and phosphorus fertilization treatment,

while conditioning for the plot effect. We performed the genotype:phosphorus interaction

analysis over each fraction independently, constraining for the plant genotype and phosphorus

fertilization treatment while conditioning for the plot effect. In addition to CAP, we performed

Permutational Multivariate Analysis of Variance (PERMANOVA) over the 2 data sets

described above using the adonis function from the vegan package version 2.5–3 [73]. Finally,

we used the function chibi.permanova from the ohchibi package to plot the R2 values for each

significant term in the PERMANOVAmodel tested.

The relative abundance of bacterial phyla and fungal taxa were depicted using the stacked

bar representation encoded in the function chibi.phylogram from the ohchibi package.

We used the R package DESeq2 version 1.22.1 [75] to compute the enrichment profiles for

both bacterial and fungal ASVs. For the full data set model, we estimated main effects for each

variable tested (Fraction, Plant genotype, and phosphorus fertilization) using the following

design:

Abundance � Fraction þ Genotype þ Phosphorus Treatment

We delimited ASV fraction enrichments using the following contrasts: soil versus root, soil

versus shoot, and root versus shoot. An ASV was considered statistically significant if it had

q< 0.1.

We implemented a second statistical model in order to identify ASVs that exhibited statisti-

cally significant differential abundances depending on genotype. For this analysis, we utilized

only root-derived low P and P-supplemented low P (low+P) treatments. We utilized a group

design framework to facilitate the construction of specific contrasts. In the group variable we

created, we merged the genotype and phosphate levels per sample (e.g., Col-0_lowP, phf1_low

+P, or phr1 phl1_lowP). We controlled the paired structure of our design by adding a plot vari-

able, resulting in the following model design:

Abundance � Plot þ group

We delimited 6 sets (S1, S2, S3, S4, S5, S6) of statistically significant (q< 0.1) ASVs from our

model using the following contrasts:

S1 = {Samples from Col-0, higher abundance in low treatment in comparison to low+P

treatment}
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S2 = {Samples from phf1, higher abundance in low treatment in comparison to low+P

treatment}

S3 = {Samples from phr1 phl1, higher abundance in low treatment in comparison to low+P

treatment}

S4 = {Samples from Col-0, higher abundance in low+P treatment in comparison to low

treatment}

S5 = {Samples from phf1, higher abundance in low+P treatment in comparison to low

treatment}

S6 = {Samples from phr1 phl1, higher abundance in low+P treatment in comparison to low

treatment}

The 6 sets described above were used to populate Fig 3C–3F.

The interactive visualization of the enrichment profiles was performed by converting the

taxonomic assignment of each ASV into a cladogram with equidistant branch lengths using R.

We used the interactive tree of life (iTOL) interface [76] to visualize this tree jointly with meta-

data files derived from the output of the statistical models described above. The cladograms for

both bacteria and fungi can be downloaded from the links described above or via the iTOL

user hallepi.

In order to compare beta-diversity patterns across samples, we only used samples coming

from pots in which sequence data from all 3 fractions (soil, root, and shoot) passed quality fil-

tering. Then, for each fraction, we estimated a distance structure between samples inside that

fraction using the Bray-Curtis dissimilarity metric. Finally, we computed Mantel [77] correla-

tions between pairs of distance objects (e.g., samples from root or samples from shoot) using

the vegan package version 2.5–3 [73] implementation of the Mantel test.

All scripts and data sets required to reproduce the soil experiment analyses are deposited in

the following GitHub repository: https://github.com/isaisg/hallepi/.

Inspection of other edaphic factors in the soil. To inspect whether the genotype or P

effects that we observed are confounded by another edaphic factor in the soil, we cross-refer-

enced our data set with the edaphic factors reported for the same soil plots in the work by Rob-

bins and colleagues [43]. Because most of the edaphic factors are correlated (S5A Fig), we

considered the first 3 principal components (PCs) derived from these edaphic factors. These 3

PCs encompass 87% of the cumulative variance in the edaphic factor matrix (S5B Fig). A PER-

MANOVAmodel of the root community composition that considers these 3 PCs assigns 21%

of explained variance to the first PC, which is composed of 8 edaphic factors (S5C and S5B

Fig). Nonetheless, the P and genotype variables explain a similar proportion of variance as in a

model that did not account for the other edaphic factors, indicating that they are orthogonal to

the other variables that can be accounted for and are not confounded by them.

Amplicon sequence data processing—SynCom experiments. SynCom sequencing data

were processed with MT-Toolbox [67]. Usable read output fromMT-Toolbox (i.e., reads

with 100% correct primer and primer sequences that successfully merged with their pair) were

quality filtered using Sickle [68] by not allowing any window with Q-score under 20. The

resulting sequences were globally aligned to a reference set of 16S rRNA gene sequences

extracted from genome assemblies of SynCommember strains. For strains that did not have

an intact 16S rRNA gene sequence in their assembly, we generated the 16S rRNA gene using

Sanger sequencing. The reference database also included sequences from known bacterial con-

taminants and Arabidopsis organellar 16S sequences (S12 Table). Sequence alignment was per-

formed with USEARCH version 7.1090 [78] with the option ‘usearch_global’ at a 98% identity
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threshold. On average, 85% of sequences matched an expected isolate. Our 185 isolates could

not all be distinguished from each other based on the V3-V4 sequence and were thus classified

into 97 USeqs. A USeq encompasses a set of identical (clustered at 100%) 16S rRNA V3-V4

sequences coming from a single or multiple isolates.

Sequence mapping results were used to produce an isolate abundance table. The remaining

unmapped sequences were clustered into Operational Taxonomic Units (OTUs) using

UPARSE [79] implemented with USEARCH version 7.1090 at 97% identity. Representative

OTU sequences were taxonomically annotated with the RDP classifier [80] trained on the

Greengenes database [81] (4 February 2011). Matches to Arabidopsis organelles were dis-

carded. The vast majority of the remaining unassigned OTUs belonged to the same families as

isolates in the SynCom. We combined the assigned USeq and unassigned OTU count tables

into a single table.

The resulting count table was processed and analyzed with functions from the ohchibi pack-

age. Samples were rarefied to 1,000 reads per sample. An alpha diversity metric (Shannon diver-

sity) was calculated using the diversity function from the vegan package version 2.5–3 [73]. We

used ANOVA to test for differences in alpha diversity between groups. Beta-diversity analyses

(Principal coordinate analysis and CAP) were based on were based on Bray-Curtis dissimilarity

calculated from the rarefied abundance tables. We used the capscale function from the vegan R

package version 2.5–3 [73] to compute the CAP. To analyze the full data set (all fraction, all phos-

phate treatments), we constrained by fraction and phosphate concentration while conditioning

for the replicate effect. We performed the Fraction:Phosphate interaction analysis within each

fraction independently, constraining for the phosphate concentration while conditioning for the

rep effect. In addition to CAP, we used PERMANOVA analysis over the 2 data sets described

above using the adonis function from the vegan package version 2.5–3 [73]. Finally, we used the

function chibi.permanova from the ohchibi package to plot the R2 values for each significant

term in the PERMANOVAmodel tested.

We visualized the relative abundance of the bacterial phyla present in the SynCom using

the stacked bar representation encoded in the chibi.phylogram from the ohchibi package.

We used the package DESeq2 version 1.22.1 [75] to compute the enrichment profiles for

USeqs and OTUs present in the count table. For the full data set model, we estimated main

effects for each variable tested (fraction and phosphate concentration) using the following

model specification:

Abundance � Fraction þ Phosphate Treatment þ Replicate

We calculated the USeqs/OTUs fraction enrichments using the following contrasts: agar versus

root, agar versus shoot, and root versus shoot. A USeq/OTU was considered statistically signif-

icant if it had q< 0.1. In order to populate the heat maps shown in Fig 5C, we grouped the

fraction and phosphate treatment variable into a new group variable that allowed us to fit the

following model:

Abundance � Replicate þ group

We used the fitted model to estimate the fraction effect inside each particular phosphate

level (e.g., Root versus agar at 0Pi, or shoot versus agar at 1,000Pi).

Additionally, we utilized a third model for the identification of USeqs/OTUs that exhibited

a significant Fraction:Phosphate interaction between the planted agar samples and the plant

fractions (root and shoot). Based on the beta-diversity and alpha-diversity results, we only

used samples that were treated with 0, 10, 100, and 1,000 μM of phosphate. We grouped the

samples into 2 categories based on their phosphate concentration, low (0 μM and 10 μM) and
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high (100 μM and 1,000 μM). Then we used the following model specification to derive the

desired interaction effect:

Abundance � Fraction þ Category þ Fraction : Category þ Replicate

Finally, we subset USeqs that exhibited a significant interaction (Fraction:Category, q< 0.1) in

the following 2 contrasts (planted agar versus root) and (planted agar versus shoot).

In order to compare beta-diversity patterns across samples, we only used samples coming

from pots in which sequence data from all 3 fractions (soil root and shoot) passed quality filter-

ing. Then, for each fraction, we estimated a distance structure between samples inside that

fraction using the Bray-Curtis dissimilarity metric. Finally, we computed Mantel [77] correla-

tions between pairs of distance objects (e.g., samples from root or samples from shoot) using

the vegan package version 2.5–3 [73] implementation of the Mantel test.

For the drop-out experiment, we ran an ANOVAmodel inside each of the phosphate treat-

ments tested (50 μMPi, 1,000 μMPi, and 50!1,000 μMPi). We visualized the results of the

ANOVAmodels using the compact letter display encoded in the CLD function from the

emmeans package.

All scripts necessary to reproduce the synthetic community analyses are deposited in the

following GitHub repository: https://github.com/isaisg/hallepi.

Phylogenetic inference of the SynCom isolates. To build the phylogenetic tree of the

SynCom isolates, we utilized the supermatrix approach previously described in the work by

Levy and colleagues [50]. Briefly, we scanned 120 previously defined marker genes across the

185 isolate genomes from the SynCom utilizing the hmmsearch tool from the hmmer version

3.1b2 [82]. Then, we selected 47 markers that were present as single copy genes in 100% of our

isolates. Next, we aligned each individual marker using MAFFT [83] and filtered low quality

columns in the alignment using trimAl [84]. Afterward, we concatenated all filtered align-

ments into a superalignment. Finally, FastTree version 2.1 [85] was used to infer the phylogeny

utilizing the WAGmodel of evolution.

We utilized the inferred phylogeny along with the fraction fold change results of the main

effect model to compute the phylogenetic signal (Pagel’s λ) [86] for each contrast (planted agar

versus root, planted agar versus shoot, and root versus shoot) along each concentration of the

phosphate gradient. The function phylosig from the R package phytools [87] was used to test

for significance of the phylogenetic signal measured.

Multiple panel figures were constructed using the egg R package [88].

RNA-Seq read processing. Initial quality assessment of the Illumina RNA-Seq reads

was performed using FastQC version 0.11.7 [89]. Trimmomatic version 0.36 [90] was used to

identify and discard reads containing the Illumina adaptor sequence. The resulting high-qual-

ity reads were then mapped against the TAIR10 [91] Arabidopsis reference genome using

HISAT2 version 2.1.0 [92] with default parameters. The featureCounts function from the Sub-

read package [93] was then used to count reads that mapped to each one of the 27,206 nuclear

protein-coding genes. Evaluation of the results of each step of the analysis was done with Mul-

tiQC version 1.1 [94]. Raw sequencing data and read counts are available at the NCBI Gene

Expression Omnibus accession number GSE129396.

RNA-Seq statistical analysis—Soil experiment. To measure the transcriptional response

to Pi limitation in soil, we used the package DESeq2 version 1.22.1 [75] to define differentially

expressed genes (DEGs) using the raw count table described above. We used only samples

from low P and P-supplemented low P (low+P) treatments along the 3 genotypes tested (Col-

0, phf1, and phr1 phl1). We combined the genotype and P treatment variables into a new

group variable (e.g., Col-0_lowP or phf1_low+P). Because we were interested in identifying
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DEGs among any pair of levels (6 levels) of the group variable (e.g., Col-0_lowP versus Col-

0_low+P) we performed a likelihood ratio test (LRT) between a model containing the group

variable and a reduced model containing only the intercept. Next, we defined DEGs as genes

that had a q< 0.1.

For visualization purposes, we applied a variance stabilizing transformation to the raw

count gene matrix. We then standardized (z-score) each gene along the samples. We subset

DEGs from this standardized matrix and for each gene calculated the mean z-score expression

value in a particular level of the group variable (e.g., Col-0_lowP); this resulted in a matrix of

DEGs across the 6 levels in our design. Next, we created a dendrogram of DEGs by applying

hierarchical clustering (method ward.D2, hclust R-base [95]) to a distance object based on the

correlation (dissimilarity) of the expression profiles of the genes across the 6 levels in our

design. Finally, we delimited the cluster of DEGs by cutting the output dendogram into 5

groups using the R-base cutree function [95]. GO enrichment was performed for each cluster

of DEGs using the R package clusterProfiler [96].

For the PSR marker gene analysis, we downloaded the ID of 193 genes defined in the work

by Castrillo and colleagues [4]. Then, we subset these genes from our standardized matrix and

computed for each gene the mean z-score expression value in a particular level of the group

variable. Finally, we visualized the average expression of this PSR regulon across our groups of

interest utilizing the function chibi.boxplot from the ohchibi package.

All scripts necessary to reproduce the RNA-Seq analyses are deposited in the following

GitHub repository: https://github.com/isaisg/hallepi.

RNA-Seq statistical analysis—SynCom experiment. To measure the transcriptional

response to Pi limitation in the SynCommicrocosm, we used the package DESeq2 version

1.22.1 [75] to define DEGs using the raw count gene table. We combined the bacteria (NB,

Full SynCom) and P treatment variables into a new group variable (e.g., NB_50Pi or

Full_1000Pi). Afterward we fitted the following model to our gene matrix:

Abundance Gene � Rep þ group

Finally, utilizing the model fitted, we contrasted the phosphate treatment inside each level

of the bacteria variable (e.g., NB_1000Pi versus NB_50Pi). Any gene with q< 0.1 was defined

as differentially expressed.

For the PSR marker gene analysis, we downloaded the ID of 193 genes defined in the work

by Castrillo and colleagues [4]. Then, we subset these genes from our standardized matrix and

computed for each gene the mean z-score expression value in a particular level of the group

variable. Finally, we visualized the average expression of the PSR regulon across our groups of

interest utilizing the function chibi.boxplot from the ohchibi package.

All scripts necessary to reproduce the RNA-Seq analyses are deposited in the following

GitHub repository: https://github.com/isaisg/hallepi.

Supporting information

S1 Fig. PSR in soil. (A) Heat map showing the all versus all pairwise Pearson correlation coef-

ficient calculated between the quantified phenotypes associated with the PSR: shoot area,

shoot fresh weight, and shoot free Pi accumulation. (B) Box plot showing the distribution of

the shoot area measured across the P gradient within each of the 3 genotypes. (C) Boxplot

showing the distribution of shoot fresh weight measured across the P gradient within each of

the 3 genotypes. (D) Box plot showing the shoot Pi accumulation across the 3 genotypes. Let-

ters represent the results of the post hoc test. (E) Box plots displaying the average expression of

193 PSR marker genes across the low and low+P samples in each of the 3 genotypes tested. (F)
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Scatter plot showing the relationship between the standardized average phosphate accumula-

tion in leaves (x-axis) and the average standardized expression of 193 PSR marker genes (y-

axis). The p-value and R value were calculated according to Pearson’s product moment corre-

lation coefficient. P, phosphorus; Pi, orthophosphate; PSR, phosphate starvation response.

(TIF)

S2 Fig. Characterization of the soil and plant microbiota in soils exposed to different level

of P fertilization. (A, B) Box plots showing the distribution of the alpha diversity (Shannon

diversity index) across all levels of P in the soil for bacteria (A) and fungi (B). (C, D) PERMA-

NOVA results in which the effect of the 3 variables (fraction, genotype, and soil P) and their

interaction on the assembly of the bacterial (C) and fungal (D) communities were tested. (E)

Relative abundance profiles of the main bacterial phyla in the 3 variables (fraction, genotype,

and soil P) across all levels of P in the soils. (F) Relative abundance profiles of the main fungal

orders in the 3 variables (fraction, genotype, and soil P) across all the levels of P in the soils. P,

phosphorus; PERMANOVA, Permutational Multivariate Analysis of Variance.

(TIF)

S3 Fig. Bacterial but not fungal plant microbiota composition is strongly dependent on

soil inoculum. (A, B, C) Correlation plots between Bray-Curtis distance matrices calculated

for bacteria within soil treatments, root, and shoot fractions. The R and p-values were calcu-

lated using Mantel tests. (A) Correlation plot of soil versus root. (B) Correlation plot of soil

versus shoot. (C) Correlation plot of root versus shoot. (D, E, F) Correlation plots between

Bray-Curtis distance matrices calculated for fungi within soil treatments, root, and shoot frac-

tions. The R and p-values were calculated using Mantel tests. R and p-values colored in red

were calculated excluding the cloud of large distances appearing in graphs panels D and E. (D)

Correlation plot of soil versus root. (E) Correlation plot of soil versus shoot. (F) Correlation

plot of root versus shoot.

(TIF)

S4 Fig. Plant genotypes and soil P concentrations influence the composition of the plant

microbiota. (A, B) PERMANOVA results showing the influence of the plant genotype and soil

P concentration and their interaction on the assembly of the root (A) bacterial and (B) fungal

communities. (C, D) CAP showing the effect of plant genotype and P content in the soil over

the shoot (C) bacterial and (D) fungal communities. The p-value and R2 values in each plot are

derived from a PERMANOVA model and correspond to the genotype and soil P term, respec-

tively. (E, F) CAP showing the influence of genotype and P on the soil (E) bacterial and (F)

fungal communities. Note smaller number of points in bacterial soil samples. The p-value and

R2 values in each plot are derived from a PERMANOVAmodel and correspond to the geno-

type and soil P term, respectively. CAP, canonical analysis of principal coordinates; P, phos-

phorus; PERMANOVA, Permutational Multivariate Analysis of Variance.

(TIF)

S5 Fig. Variation in soil edaphic factors does not confound soil P effect. (A) Correlation

heat map of the 13 edaphic factors reported in the work by Robbins and colleagues [43]. (B)

Bar plot displaying the amount of variance in the edaphic factor matrix explained by PC. (C)

Bar plot depicting the contribution of the different edaphic factors to the first 3 PC. Colors

denote the direction of the variable in PCA space. (D) Proportion of the variance explained

for the different variables in models including (M2) and excluding (M1) edaphic factors for

bacteria (left) and fungi (right). Only variables with a statistically significant effect are shown.

P, phosphorus; PC, principal component; PCA, principal component analysis.

(TIF)
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S6 Fig. A bacterial synthetic community modifies the plant PSR. (A) Box plots displaying

the primary root elongation of plants grown in a gradient of Pi concentrations in sterile condi-

tions or with the SynCom. A t test was used for each Pi treatment to estimate differences

between SynCom-treated and uninoculated plants. (B) Average expression of the 193 PSR

markers genes in low (50 μM) and high (1,000 μM) Pi conditions within SynCom-treated and

uninoculated plants. (C) Average expression of the 123 genes from Cluster 1 (Fig 1B) in low

(50 μM) and high (1,000 μM) Pi conditions within SynCom-treated and uninoculated plants.

(D) PERMANOVA model results showing the influence of the 2 variables (fraction and Pi

concentration) and their interaction on the assembly of the bacterial community in the plant.

(E, F, G) Correlation plots between Bray-Curtis distance matrices calculated for bacterial pro-

file within agar, root, and shoot fractions. The R and p-values were calculated using Mantel

tests. (E) Correlation plot of agar versus root. (F) Correlation plot of agar versus shoot. (G)

Correlation plot of root versus shoot. PERMANOVA, Permutational Multivariate Analysis of

Variance; Pi, orthophosphate; PSR, phosphate starvation response; SynCom, synthetic com-

munity.

(TIF)

S7 Fig. Bacterial synthetic community responds to the phosphate concentration in the

media. (A, B) CAP showing the influence of Pi concentration in the media on the bacterial

communities in the (A) plant shoot and (B) agar. The bar graphs to the left of each plot depict

the percentage of variability explained by statistically significant (p< 0.05) variables based on

a PERMANOVA model. (C, D, E) PERMANOVAmodel results showing the influence of Pi

concentration on the assembly of the bacterial community in (C) roots, (D) shoot, and (E)

agar. CAP, canonical analysis of principal coordinates; PERMANOVA, Permutational Multi-

variate Analysis of Variance; Pi, orthophosphate.

(TIF)

S8 Fig. USeqs in the bacterial synthetic community displayed a strong Pi:fraction (shoot,

root, agar) interaction. (A) Scatter plot (volcano plot) showing the results of the GLM interac-

tion model between fraction and Pi concentration. The axes of the plot represent the output of

the statistical test. The x-axis is the transformed q-value and the y-axis the log2 fold change.

Each dot in the scatter plot represents a USeq. USeqs that showed a statistically significant frac-

tion:Pi interaction are colored in red. USeqs genus and ID are displayed. The top right quad-

rant represents USeqs that are enriched in the plant tissues under low Pi conditions. (B, C)

Relative abundance of BurkholderiaUseqs 16 (B) and 30 (C) that exhibits a statistically signifi-

cant (q< 0.1) Pi enrichment between the plant fractions and the agar fraction. The middle dot

of each strip bar corresponds to the mean of that particular condition; the range of the strip

bar corresponds to the 95% confidence interval of the mean. GLM, generalized linear model;

Pi, orthophosphate; USeq, unique sequence.

(TIF)

S9 Fig. Shoot size is not affected by Burkholderia drop-out. Box plots showing shoot circum-

ference in plants exposed to different SynComs across 3 phosphate treatments. Statistically

significant differences among SynCom treatments were computed within each phosphate

treatment separately using an ANOVAmodel. Letters represent the results of the post hoc test.

SynCom, synthetic community.

(TIF)

S10 Fig. Plant genotype and Pi concentration affect root community composition in the

agar system. CAP showing the influence of plant genotypes (A) and agar Pi concentration (B)
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over the bacterial SynCom in the root. The p-value and R2 values inside each plot are derived

from a PERMANOVA model and correspond to the genotype and Pi terms, respectively.

CAP, canonical analysis of principal coordinates; PERMANOVA, Permutational Multivariate

Analysis of Variance; Pi, orthophosphate; SynCom, synthetic community.

(TIF)

S1 Table. Shoot Pi concentration, weight, and size. Pi, orthophosphate.

(XLSX)

S2 Table. Summary of RNA-Seq results presented in Fig 1. RNA-Seq, RNA sequencing.

(XLSX)

S3 Table. Alpha diversity data for the soil experiment.

(XLSX)

S4 Table. Results of the negative binomial GLM testing the fraction (root, shoot, soil)

effect on the bacterial ASVs). ASV, amplicon sequence variant; GLM, generalized linear

model.

(XLSX)

S5 Table. Results of the negative binomial GLM testing the fraction (root, shoot, soil)

effect on the fungal ASVs. ASV, amplicon sequence variant; GLM, generalized linear model.

(XLSX)

S6 Table. Results of the negative binomial GLM testing the Pi effect (low+P versus low)

and the genotype effect within low and low+P on the bacterial ASVs. ASV, amplicon

sequence variant; GLM, generalized linear model; P, phosphorus; Pi, orthophosphate.

(XLSX)

S7 Table. Results of the negative binomial GLM testing the Pi effect (low+P versus low)

and the genotype effect within low and low+P on the fungal ASVs. ASV, amplicon sequence

variant; GLM, generalized linear model; P, phosphorus; Pi, orthophosphate.

(XLSX)

S8 Table. Map of USeqs to bacterial strains in culture collections and their genome IDs.

USeq, unique sequence.

(XLSX)

S9 Table. Alpha diversity data for the agar experiment.

(XLSX)

S10 Table. Results of the negative binomial GLM in the agar system. GLM, generalized lin-

ear model.

(XLSX)

S11 Table. Results for the Fraction:Pi interaction term in the negative binomial GLM for

the agar system. GLM, generalized linear model; Pi, orthophosphate.

(XLSX)

S12 Table. List of known contaminant 16S rRNA sequences.

(XLSX)

S1 Data. Folder containing individual files with underlying data for all figures presented

in this paper in CSV format.

(ZIP)
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Formal analysis:Omri M. Finkel, Isai Salas-González, Gabriel Castrillo, Stijn Spaepen.
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genic photosynthesis on plant leaf surfaces. Environ Microbiol Rep. 2012; 4. https://doi.org/10.1111/j.
1758-2229.2011.00323.x PMID: 23757275

49. Finkel OM, Delmont TO, Post AF, Belkin S. Metagenomic signatures of bacterial adaptation to life in the
phyllosphere of a salt-secreting desert tree. Appl Environ Microbiol. 2016; 82. https://doi.org/10.1128/
AEM.00483-16 PMID: 26944845

50. Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic
features of bacterial adaptation to plants. Nat Genet. Nature Publishing Group; 2018; 50: 138–150.
https://doi.org/10.1038/s41588-017-0012-9 PMID: 29255260

51. Kassen R, Buckling A, Bell G, Rainey PB. Diversity peaks at intermediate productivity in a laboratory
microcosm. Nature. Nature Publishing Group; 2000; 406: 508–512. https://doi.org/10.1038/35020060
PMID: 10952310

52. Tilman D. Resource competition and community structure. Princeton University Press; 1982.

53. Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, et al. The leaf ionome as a multi-
variable system to detect a plant’s physiological status. Proc Natl Acad Sci. 2008; 105: 12081–12086.
https://doi.org/10.1073/pnas.0804175105 PMID: 18697928

54. Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial Interkingdom
Interactions in Roots Promote Arabidopsis Survival. Cell. Elsevier; 2018; 175: 973-983.e14. https://doi.
org/10.1016/j.cell.2018.10.020 PMID: 30388454

55. Pant B-D, Pant P, Erban A, Huhman D, Kopka J, Scheible W-R. Identification of primary and secondary
metabolites with phosphorus status-dependent abundance in A rabidopsis, and of the transcription fac-
tor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ.
JohnWiley & Sons, Ltd (10.1111); 2015; 38: 172–187. https://doi.org/10.1111/pce.12378 PMID:
24894834

56. Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, et al. A specialized metabolic network selectively
modulates Arabidopsis root microbiota. Science. American Association for the Advancement of Sci-
ence; 2019; 364: eaau6389. https://doi.org/10.1126/science.aau6389 PMID: 31073042

57. Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, et al. MYB72-dependent cou-
marin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A.
National Academy of Sciences; 2018; 115: E5213–E5222. https://doi.org/10.1073/pnas.1722335115
PMID: 29686086

58. Mullan A, Quinn JP, McGrath JW. Enhanced phosphate uptake and polyphosphate accumulation in
Burkholderia cepacia grown under low-pH conditions. Microb Ecol. Springer-Verlag; 2002; 44: 69–77.
https://doi.org/10.1007/s00248-002-3004-x PMID: 12187377

59. MerbachW, Garz J, SchliephakeW, Stumpe H, Schmidt L. The long-term fertilization experiments in
Halle (Saale), Germany—Introduction and survey. J Plant Nutr Soil Sci. Wiley-Blackwell; 2000; 163:
629–638. https://doi.org/10.1002/1522-2624(200012)163:6<629::AID-JPLN629>3.0.CO;2-P

60. Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. Aca-
demic Press; 1966; 8: 115–118. https://doi.org/10.1016/0076-6879(66)08014-5

61. Logemann J, Schell J, Willmitzer L. Improvedmethod for the isolation of RNA from plant tissues. Anal
Biochem. Academic Press; 1987; 163: 16–20. https://doi.org/10.1016/0003-2697(87)90086-8 PMID:
2441623

The plant microbiome under phosphate starvation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000534 November 13, 2019 32 / 34

https://doi.org/10.1094/PBIOMES-09-17-0042-R
https://doi.org/10.1094/PBIOMES-09-17-0042-R
https://doi.org/10.1105/tpc.105.036640
https://doi.org/10.1105/tpc.105.036640
http://www.ncbi.nlm.nih.gov/pubmed/16284308
https://doi.org/10.1038/ismej.2011.192
http://www.ncbi.nlm.nih.gov/pubmed/22189496
https://doi.org/10.1038/nature16192
https://doi.org/10.1038/nature16192
http://www.ncbi.nlm.nih.gov/pubmed/26633631
https://doi.org/10.1111/j.1462-2920.2011.02554.x
https://doi.org/10.1111/j.1462-2920.2011.02554.x
http://www.ncbi.nlm.nih.gov/pubmed/21883799
https://doi.org/10.1111/j.1758-2229.2011.00323.x
https://doi.org/10.1111/j.1758-2229.2011.00323.x
http://www.ncbi.nlm.nih.gov/pubmed/23757275
https://doi.org/10.1128/AEM.00483-16
https://doi.org/10.1128/AEM.00483-16
http://www.ncbi.nlm.nih.gov/pubmed/26944845
https://doi.org/10.1038/s41588-017-0012-9
http://www.ncbi.nlm.nih.gov/pubmed/29255260
https://doi.org/10.1038/35020060
http://www.ncbi.nlm.nih.gov/pubmed/10952310
https://doi.org/10.1073/pnas.0804175105
http://www.ncbi.nlm.nih.gov/pubmed/18697928
https://doi.org/10.1016/j.cell.2018.10.020
https://doi.org/10.1016/j.cell.2018.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30388454
https://doi.org/10.1111/pce.12378
http://www.ncbi.nlm.nih.gov/pubmed/24894834
https://doi.org/10.1126/science.aau6389
http://www.ncbi.nlm.nih.gov/pubmed/31073042
https://doi.org/10.1073/pnas.1722335115
http://www.ncbi.nlm.nih.gov/pubmed/29686086
https://doi.org/10.1007/s00248-002-3004-x
http://www.ncbi.nlm.nih.gov/pubmed/12187377
https://doi.org/10.1002/1522-2624(200012)163:6<629::AID-JPLN629>3.0.CO;2-P
https://doi.org/10.1016/0076-6879(66)08014-5
https://doi.org/10.1016/0003-2697(87)90086-8
http://www.ncbi.nlm.nih.gov/pubmed/2441623
https://doi.org/10.1371/journal.pbio.3000534


62. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
platform for biological-image analysis. Nat Methods. Nature Publishing Group; 2012; 9: 676–682.
https://doi.org/10.1038/nmeth.2019 PMID: 22743772

63. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-through-
put amplicon sequencing. Nat Methods. Nature Publishing Group; 2013; 10: 999–1002. https://doi.org/
10.1038/nmeth.2634 PMID: 23995388

64. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the
identification of mycorrhizae and rusts. Mol Ecol. Wiley/Blackwell (10.1111); 1993; 2: 113–118. https://
doi.org/10.1111/j.1365-294x.1993.tb00005.x PMID: 8180733

65. White T.J., Bruns T.D, Lee S.B., Taylor JW. Amplification and direct sequencing of fungal ribosomal
RNA genes for phylogenetics. PCR protocols: A Guide to Methods and Applications. Academic Press;
1990. pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042–1

66. TaiyunWei M, TaiyunWei cre A, Simko aut V, Levy ctb M, Xie ctb Y, Jin ctb Y, et al. Package “corrplot”
Title Visualization of a Correlation Matrix. 2017.

67. Yourstone SM, Lundberg DS, Dangl JL, Jones CD. MT-Toolbox: improved amplicon sequencing using
molecule tags. BMC Bioinformatics. BioMed Central; 2014; 15: 284. https://doi.org/10.1186/1471-2105-
15-284 PMID: 25149069

68. Joshi N, Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version
1.33) [Software]. Available at https://github.com/najoshi/sickle. 2011.

69. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution
sample inference from Illumina amplicon data. Nat Methods. Nature Publishing Group; 2016; 13: 581–
583. https://doi.org/10.1038/nmeth.3869 PMID: 27214047

70. Schloss PD,Westcott SL, Ryabin T, Hall JR, HartmannM, Hollister EB, et al. Introducing mothur: open-
source, platform-independent, community-supported software for describing and comparing microbial
communities. Appl Environ Microbiol. American Society for Microbiology; 2009; 75: 7537–41. https://
doi.org/10.1128/AEM.01541-09 PMID: 19801464

71. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE
database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications.
Nucleic Acids Res. Narnia; 2019; 47: D259–D264. https://doi.org/10.1093/nar/gky1022 PMID:
30371820

72. Gonzalez IS. isaisg/ohchibi: iskali. 2019; https://doi.org/10.5281/ZENODO.2593691

73. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package “vegan.” 2015.

74. Package “emmeans” Type Package Title Estimated Marginal Means, aka Least-Squares Means. 2019;
doi:10.1080/00031305.1980.10483031

75. Love MI, HuberW, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. BioMed Central; 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-
8 PMID: 25516281

76. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylo-
genetic and other trees. Nucleic Acids Res. 2016; 44: W242–W245. https://doi.org/10.1093/nar/gkw290
PMID: 27095192

77. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res.
American Association for Cancer Research; 1967; 27: 209–20. PMID: 6018555

78. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. Oxford Uni-
versity Press; 2010; 26: 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 PMID: 20709691

79. Edgar RC. UPARSE: highly accurate OTU sequences frommicrobial amplicon reads. Nat Methods.
2013; 10: 996–998. https://doi.org/10.1038/nmeth.2604 PMID: 23955772

80. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian Classifier for Rapid Assignment of rRNA
Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 2007; 73: 5261–5267. https://doi.
org/10.1128/AEM.00062-07 PMID: 17586664

81. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-
checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. Amer-
ican Society for Microbiology; 2006; 72: 5069–72. https://doi.org/10.1128/AEM.03006-05 PMID:
16820507

82. Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. Oxford Uni-
versity Press; 2013; 29: 2487–2489. https://doi.org/10.1093/bioinformatics/btt403 PMID: 23842809

83. Katoh K, Standley DM. MAFFTmultiple sequence alignment software version 7: improvements in per-
formance and usability. Mol Biol Evol. Oxford University Press; 2013; 30: 772–80. https://doi.org/10.
1093/molbev/mst010 PMID: 23329690

The plant microbiome under phosphate starvation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000534 November 13, 2019 33 / 34

https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1038/nmeth.2634
https://doi.org/10.1038/nmeth.2634
http://www.ncbi.nlm.nih.gov/pubmed/23995388
https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
http://www.ncbi.nlm.nih.gov/pubmed/8180733
https://doi.org/10.1016/B978-0-12-372180-8.500421
https://doi.org/10.1186/1471-2105-15-284
https://doi.org/10.1186/1471-2105-15-284
http://www.ncbi.nlm.nih.gov/pubmed/25149069
https://github.com/najoshi/sickle
https://doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
http://www.ncbi.nlm.nih.gov/pubmed/19801464
https://doi.org/10.1093/nar/gky1022
http://www.ncbi.nlm.nih.gov/pubmed/30371820
https://doi.org/10.5281/ZENODO.2593691
https://doi.org/10.1080/00031305.1980.10483031
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1093/nar/gkw290
http://www.ncbi.nlm.nih.gov/pubmed/27095192
http://www.ncbi.nlm.nih.gov/pubmed/6018555
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1038/nmeth.2604
http://www.ncbi.nlm.nih.gov/pubmed/23955772
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
http://www.ncbi.nlm.nih.gov/pubmed/17586664
https://doi.org/10.1128/AEM.03006-05
http://www.ncbi.nlm.nih.gov/pubmed/16820507
https://doi.org/10.1093/bioinformatics/btt403
http://www.ncbi.nlm.nih.gov/pubmed/23842809
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
https://doi.org/10.1371/journal.pbio.3000534


84. Capella-Gutiérrez S, Silla-Martı́nez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in
large-scale phylogenetic analyses. Bioinformatics. Oxford University Press; 2009; 25: 1972–3. https://
doi.org/10.1093/bioinformatics/btp348 PMID: 19505945

85. Price MN, Dehal PS, Arkin AP. FastTree 2 –Approximately Maximum-Likelihood Trees for Large Align-
ments. Poon AFY, editor. PLoS ONE. Public Library of Science; 2010; 5: e9490. https://doi.org/10.
1371/journal.pone.0009490 PMID: 20224823

86. Harvey, Pagel M. The comparative method in evolutionary biology. 1991;

87. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods
Ecol Evol. JohnWiley & Sons, Ltd (10.1111); 2012; 3: 217–223. https://doi.org/10.1111/j.2041-210X.
2011.00169.x

88. Package “egg” Type Package Title Extensions for “ggplot2”: CustomGeom, Plot Alignment, Sym-
metrised Scale, and Fixed Panel Size. 2018.

89. Andrews S. Babraham Bioinformatics—FastQC AQuality Control tool for High Throughput Sequence
Data [Internet]. 2018 pp. 3–5. doi:v.0.11.5

90. Bolger AM, LohseM, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-
matics. Oxford University Press; 2014; 30: 2114–20. https://doi.org/10.1093/bioinformatics/btu170
PMID: 24695404

91. Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, et al. The arabidopsis information
resource: Making and mining the “gold standard” annotated reference plant genome. genesis. John
Wiley & Sons, Ltd; 2015; 53: 474–485. https://doi.org/10.1002/dvg.22877 PMID: 26201819

92. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat
Methods. NIH Public Access; 2015; 12: 357–60. https://doi.org/10.1038/nmeth.3317 PMID: 25751142

93. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-
vote. Nucleic Acids Res. Oxford University Press; 2013; 41: e108. https://doi.org/10.1093/nar/gkt214
PMID: 23558742
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