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Abstract

Introduction

Static stretching (SS) program are widely used in clinical and athletic settings. Many previ-

ous studies investigate the effect of SS program on muscle strength and muscle architecture

(muscle thickness, and pennation angleh). However, no consensus has been reached

about the effect of SS programs on muscle strength and muscle architecture. The aim of

this study was to investigate the effects of 6-week SS programs performed at different

weekly frequencies on muscle strength, muscle thickness and pennation angle at different

ankle joint positions.

Methods

A total of 24 healthy male volunteers were performed 6-week SS programs (2,160 s of SS:

360 s/week*6 weeks) and were randomized to a group that performed SS once a week, or

a group that performed SS three times per week. Total time under stretching was equated

between groups. The muscle strength (maximum voluntary isometric contraction) at three

different ankle joints were assessed before and after the 6-week SS program. In addition,

muscle thickness and pennation angle were assessed by ultrasonography before and after

6-week SS program.

Results

There were no significant changes in all variables before and after the 6-week SS program,

regardless of weekly frequency (p > 0.05).
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Conclusions

Our results suggest that 6-week SS programs do not increase muscle strength or muscle

architecture at different ankle joint positions, regardless of stretching frequency; however,

no negative effect on these outcomes was observed, contrary to evidence on the immediate,

detrimental effects of SS.

Introduction

Static stretching (SS) is widely used in clinical setting and has been reported to increase range

of motion (ROM) [1, 2] and decrease muscle stiffness of the hamstring or gastrocnemius mus-

cles [3–5]. In athletic settings, SS program is usually performed to prevent sport injury.

Many previous studies investigating SS have reported only the acute effects on ROM, mus-

cle stiffness, and muscle strength. Although ROM is increased immediately following SS [6, 7],

muscle strength is decreased [6, 8–10]; this phenomenon is called the stretching-induced force

deficit. Consistently, data from reviews demonstrate a detrimental effect of SS on muscle

strength and athletic performance [11–13]; therefore, Simic et al. recommended avoiding the

use of SS alone during warm-up routines [12]. By contrast, the effect of SS programs of at least

several weeks duration on muscle strength and athletic performance remains equivocal. Inter-

estingly, there have been no studies reporting the stretching-induced force deficit after several

weeks SS program. In addition, although some studies reported that there were significant

changes in muscle strength and athletic performance after SS program [14, 15], other studies

reported no significant effects [16–18], which have not reached the consensus. In addition, a

systematic review about the effect of stretching program on muscle strength and athletic per-

formance concluded that more studies were needed to confirm whether stretching programs

could positively affect muscle strength and performance [19].

In animal models, previous studies showed that passive stretching might trigger mecha-

nisms that are important for muscle hypertrophy, such as insulin-like and myogenic growth

factors, stretch-activated channels, the AKT/mTOR pathway and protein synthesis [20–22].

Indeed, the studies reporting chronic effects of an SS program showed robust hypertrophy and

perhaps hyperplasia after several weeks of SS program intervention [23, 24]. Conversely, in

human studies the muscle thickness and pennation angle are usually assessed using ultraso-

nography. Previous studies showed that muscle size (cross-sectional area, muscle thickness

and muscle volume) has a strong influence on muscle strength [25, 26]. In addition, the penna-

tion angle of muscle fibers also influences muscle strength [27, 28]. Taken together, these ele-

ments of muscle architecture (muscle thickness and pennation angle) could strongly influence

muscle strength. Some previous studies measured these indexes before and after SS program

and reported that there were no significant changes in muscle thickness, pennation angle and

fascicle length of medial gastrocnemius (MG) after 3–6 week SS program [5, 16–18]. However,

Freitas and Mil-Homens (2015) investigated the effect of 8-week high-intensity SS program on

muscle architecture and reported significant increase in the fascicle length of biceps femoris.

In addition, there were reported significant increases in the muscle thickness and fascicle

length of MG after six weeks of a machine-assisted SS program [29]. Since no consensus has

been reached about the effect of SS program on muscle architecture as well as muscle strength,

it is necessary to reconsider the effect of SS program on muscle architecture. Furthermore, if

SS program could change the muscle architecture, it is expected to have a positive effect on

muscle strength. In particular, it is possible that the change in fascicle length might affect the
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muscle force at different angles (joint position). Therefore, along with investigating the effect

of SS program on the muscle architecture, it is necessary to clarify the effect of SS program on

muscle strength at different joint angles.

A SS program is considered to comprise intensity, duration, and repetition of stretches; rest

intervals; and intervention frequency. In previous studies, increased duration and intensity of

stretching resulted in greater increases and decreases, respectively, in ROM and passive stiff-

ness [30–32]. In addition, Marques et al. (2009) found that a stretching frequency of three

times per week was more effective than that of one or five times per week in increasing ROM.

It is possible that stretching frequency could determine the effect of SS programs on muscle

strength and architecture, in addition to ROM. However, the effects of stretching frequency on

muscle strength and architecture under volume-equated conditions are unclear. This informa-

tion could be useful for coaches or therapists when prescribing SS programs.

Therefore, the aim of this study was to compare the effects of two 6-week SS programs with

different stretching frequencies under volume-equated conditions on muscle strength and

architecture at different ankle joint positions.

Methods

Experimental design

A quasi-randomized controlled trial was conducted, which investigated the changes in muscle

strength and architecture (defined as muscle thickness and pennation angle) in two routine SS

programs with different stretching frequencies as follows: 360 s of SS conducted 1 time per

week (1 time/week group) versus 120 s of SS conducted 3 times per week (3 times/week

group). Muscle strength, muscle thickness, and pennation angle were measured at baseline

(before intervention [PRE]) and after the 6-week SS program (after intervention [POST]) in

both groups. A familiarization trial of muscle strength measurement was performed >3 days

before the PRE evaluation. Following the PRE evaluation, participants were randomly allo-

cated to either of the comparison groups in a 1:1 ratio using the alternation method. To control

for immediate SS effects, all outcome measurements were performed�24 h after the final SS

session. Participants were instructed not to initiate any other SS or strength-training programs

during the study period.

Participants

A total of 24 healthy male volunteers, who were non-athletes, participated in this study

(mean ± SD; age, 20.8 ± 0.9 years; height, 168.9 ± 5.0 cm; body mass, 61.3 ± 6.2 kg). All partici-

pants engaged in sports at a recreational level, but were not involved in any regular resistance

or flexibility training. All participants were fully informed of the procedures and purpose of

the study, and provided written informed consent. The Ethics Committee of the Niigata Uni-

versity of Health and Welfare, Niigata, Japan (Procedure #17677) approved the study and com-

plied with the requirements of the Declaration of Helsinki.

Maximum voluntary isometric contraction

Participants were seated in an isokinetic dynamometer chair at a 0˚ knee angle (that is, the

anatomical position) with adjustable belts fixed over their trunk and pelvis (Biodex System 3.0,

Biodex Medical Systems, Inc., Shirley, NY, USA). Participants were reclined (70˚ hip angle

and 0˚ full extension) to prevent tension in the posterior knee. The trunk and pelvis were

firmly fixed with straps, and trunk movement was restricted by holding the handle with both

hands. The maximal voluntary isometric contraction (MVIC) of the MG was measured with
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the ankle joint at 30˚ plantarflexion, in the neutral position, and at 15˚ dorsiflexion, which

were determined by the ROM through which all participants could exert force. To obtain mea-

surements, the ankle joint of the dominant leg was securely attached to the footplate of the

dynamometer using a velcro strap. A soft cloth was inserted between the velcro strap and

instep to prevent movement of the ankle joint. Two MVICs were performed for 5 s at each

ankle position, and the average value of both MVICs used for analyses. Strong, verbal encour-

agement was provided to promote participants’ maximal effort during contractions.

Muscle thickness and pennation angle

Participants were instructed to lie on a dynamometer table in the prone position, with their

hips secured in place using an adjustable lap belt. The knee of the dominant leg was main-

tained in full extension, and the foot of the same leg was attached to the dynamometer foot-

plate with adjustable belts.

B-mode ultrasonography (Aplio 500, Toshiba Medical Systems, Tochigi, Japan) with a 5–14

MHz linear probe was used to assess the muscle thickness and pennation angle of the MG. The

longitudinal ultrasound image of the MG at 30% of the lower-leg length, measured from the

popliteal crease to the lateral malleolus near the point of the maximal cross-sectional area of

the lower leg, was obtained [33, 34]. Muscle thickness, defined as the distance between the

inside edges of the fascia, and pennation angle, defined as the angle of the fascicle insertion

into the deep aponeurosis, were measured with the ankle joint at 30˚ plantarflexion, in the

neutral position, and at 15˚ dorsiflexion, consistent with the MVIC measurements; each mea-

surement was performed once. Muscle thickness and pennation angle were determined using

image processing software (ImageJ, National Institutes of Health, Bethesda, MD, USA). Mus-

cle thickness was determined as the mean of the distances between the deep and superficial

aponeuroses measured at both ends of each image [35, 36]. In addition, pennation angle was

determined as the mean of the three fascicles as the angle between fascicle and deep aponeuro-

sis. The test-retest reliability of the ultrasound measurements was determined by coefficient

variation (CV) for eight participants. The CVs for muscle thickness were 3.7 ± 1.9% in 30˚

plantarflexion, 3.5 ± 2.4% in neutral position and 3.5 ± 2.4% in 15˚ dorsiflexion. In addition,

the CVs for pennation angle were 4.0 ± 3.2% in 30˚ plantarflexion, 3.7 ± 2.4% in neutral posi-

tion and 2.2 ± 1.8% in 15˚ dorsiflexion.

Static stretching programs

Participants in both groups were instructed to perform the SS program they had been assigned

to for 6 weeks using a stretching board (Asahi stretching board, Asahi Corp., Gifu, Japan). Par-

ticipants stood erect with one foot on the stretching board and the other on its edge and both

arms against a wall in front of the body to provide balance [16, 33]. Stretching intensity was

defined as the greatest tolerated dorsiflexion angle, determined during a test conducted on the

stretching board. However, participants who could tolerate>35˚ dorsiflexion, which was the

maximal angle permitted by the stretching board, were instructed to maintain the stretching

intensity by moving their body mass forward. All SS programs were performed in the labora-

tory under direct supervision of research team. The total weekly duration of SS was 360 s in

both groups. The frequency of performing SS was every 7 days and every 2–3 days in the

1-time/week and 3-times/week groups, respectively.

Statistical analyses

IBM SPSS Statistics version 24.0 (IBM Corp., Armonk, NY, USA) was used to conduct statisti-

cal analyses. Between-group differences in anthropometric characteristics, muscle strength,
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muscle thickness, and pennation angle relative to PRE evaluation values were determined

using unpaired t-tests. For muscle strength, muscle thickness, and pennation angle, a split-plot

analysis of variance (ANOVA) using two factors [time (PRE versus POST evaluation) and

group (1-time/week versus 3-times/week)] was used to determine the interaction and main

effects. Classification of effect size (ES) was set where ηp2 < 0.01 was considered small, 0.02–

0.1 was considered medium and over 0.1 was considered to be a large effect size based on pre-

vious studies [37, 38]. A post-hoc analysis was conducted, using a paired t-test in each group,

to determine differences between PRE and POST evaluation scores. ES were calculated as dif-

ferences in the mean value between PRE- and POST-evaluation divided by the pooled stan-

dard deviation (SD) [37]. In addition, an ES of 0.00–0.19 was considered as trivial, 0.20–0.49

as small, 0.50–0.79 as moderate and�0.80 as large [37, 39]. Statistical significance was defined

as p< 0.05. Descriptive data are reported as means ± SD.

Results

All participants completed the SS program they were assigned to in full, and there were no

drop-outs. The characteristics of study participants are reported in Table 1. There were no sig-

nificant differences in age, height, or body mass between the two study groups at baseline.

Effects of static stretching programs on maximum voluntary isometric

contraction

The effects of the SS program on MVIC in both groups are reported in Tables 2 and 5. There

were no significant differences between groups in PRE evaluation scores, determined by the

unpaired t-test. The split-plot ANOVA indicated no significant interaction effects for MVIC

at 30˚ plantarflexion or in the neutral position. There was a significant interaction effect for

MVIC at 15˚ dorsiflexion. The post-hoc test revealed that there were no significant differences

between PRE and POST evaluation in both groups (1-time/week, p = 0.08, ES = 0.33, and

3-times/week, p = 0.149, ES = -0.37).

Table 1. Characteristics of participants participating in two static stretching programs.

One-time/week group (N = 12) Three-times/week group (N = 12) P-value

age (years) 21.0 ± 0.9 20.5 ± 0.8 P = 0.177

height (cm) 167.7 ± 4.2 170.0 ± 5.4 P = 0.273

weight (kg) 61.8 ± 6.1 60.8 ± 6.2 P = 0.684

Data presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0235679.t001

Table 2. Values for muscle strength before and after 6-week static stretching intervention program.

(Nm) One-time/week group (N = 12) Three-times/week group (N = 12) Interaction effect

MVIC at 30˚ plantarflexion PRE 64.8 ± 23.4 65.7 ± 23.8 F = 0.001, P = 0.975

POST 64.0 ± 20.4 65.1 ± 29.5 ηp2 = 0.000

MVIC at neutral position PRE 172.0 ± 38.5 189.3 ± 42.1 F = 0.08, P = 0.78

POST 169.4 ± 26.3 183.7 ± 49.8 ηp2 = 0.004

MVIC at 15˚ dorsiflexion PRE 200.2 ± 56.1 244.2 ± 52.5 F = 5.41, P = 0.03

POST 216.6 ±42.7 222.3 ± 65.5 ηp2 = 0.197

PRE, before static stretching intervention program; POST, after static stretching intervention program; MVIC, maximum voluntary isometric contraction. Data

presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0235679.t002
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Effects of static stretching programs on muscle thickness and pennation

angle

The effects of the SS program on muscle thickness and pennation angle in both groups are

reported in Tables 3, 4 and 5, respectively. The split-plot ANOVA indicated no significant

interaction effects for muscle thickness at 30˚ plantarflexion the neutral position or 15˚ dorsi-

flexion. In addition, there were no significant interaction effects for pennation angle at 30˚

plantarflexion or the neutral position or 15˚ dorsiflexion.

Table 5. Effect size values for maximum voluntary isometric contraction (MVIC), muscle thickness and penna-

tion angle according to groups after 6-week static stretching intervention program.

One-time/week group (N = 12) Three-times/week group (N = 12)

MVIC at 30˚ plantarflexion -0.04 -0.02

MVIC at neutral position -0.08 -0.12

MVIC at 15˚ dorsiflexion 0.33 -0.37

Muscle Thickness at 30˚ plantarflexion 0.08 -0.24

Muscle Thickness at neutral position -0.06 0.01

Muscle Thickness at 15˚ dorsiflexion 0.14 0.18

Pennation Angle at 30˚ plantarflexion -0.29 -0.03

Pennation Angle at neutral position -0.05 -0.07

Pennation Angle at 15˚ dorsiflexion -0.03 -0.12

Data presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0235679.t005

Table 3. Values for muscle thickness before and after 6-week static stretching intervention program.

(cm) One-time/week group (N = 12) Three-times/week group (N = 12) Interaction effect

Muscle Thickness at 30˚ plantarflexion PRE 1.61 ± 0.19 1.60 ± 0.22 F = 0.589, P = 0.451

POST 1.62 ± 0.16 1.54 ± 0.26 ηp2 = 0.026

Muscle Thickness at neutral position PRE 1.68 ± 0.23 1.59 ± 0.25 F = 0.030, P = 0.865

POST 1.66 ± 0.16 1.60 ± 0.29 ηp2 = 0.001

Muscle Thickness at 15˚ dorsiflexion PRE 1.65 ± 0.29 1.55 ± 0.28 F = 0.021, P = 0.887

POST 1.68 ± 0.16 1.59 ± 0.25 ηp2 = 0.001

PRE, before static stretching intervention program; POST, after static stretching intervention program. Data presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0235679.t003

Table 4. Values for pennation angle before and after 6-week static stretching intervention program.

(cm) One-time/week group (N = 12) Three-times/week group (N = 12) Interaction effect

Pennation Angle at 30˚ plantarflexion PRE 22.9 ± 3.8 21.8 ± 3.3 F = 0.804, P = 0.380

POST 21.9 ± 2.8 21.7 ± 3.2 ηp2 = 0.035

Pennation Angle at

neutral position

PRE 19.4 ± 3.5 18.7 ± 2.4 F < 0.001, P = 0.996

POST 19.2 ± 2.6 18.5 ± 2.3 ηp2 < 0.001

Pennation Angle at 15˚ dorsiflexion PRE 17.7 ± 2.7 17.1 ± 2.8 F = 0.064, P = 0.803

POST 17.1 ± 2.2 16.8 ± 2.0 ηp2 = 0.003

PRE, before static stretching intervention program; POST, after static stretching intervention program. Data presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0235679.t004
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Discussion

We investigated the effects of a 6-week SS program on muscle strength and architecture of the

MG at different ankle joint positions, comparing two different stretching frequencies under

volume-equated conditions. We found no significant effects of the SS program on these out-

comes, regardless of stretching frequency. It is important to mention that according to the lit-

erature presented in a recent review on the topic [40] and our updated knowledge, this is the

first study that compared effects of different frequencies of SS on muscular adaptations that

equalized the weekly volume of training. Equating the volume of training when studying train-

ing frequency is necessary to determine causality as to verify the actual influence of weekly

frequency of training; otherwise, the effects of volume confound the ability to draw proper

inferences [41].

In previous studies of animal models, SS programs induced muscle hypertrophy [21, 23,

24]; therefore, it was hypothesized that an SS program could produce a similar effect in

humans, which could lead to increased muscle strength and athletic performance. However,

our results were inconsistent with this hypothesis and revealed no significant changes in mus-

cle thickness and pennation angle, which suggested that there was no change in fascicle length,

or in muscle strength at different ankle joint positions. This discrepancy between our in vivo
study and previous in vitro studies might be explained by the stretching intensity and duration

of our program [42]. Nonetheless, the lack of SS effects on muscle architecture (muscle thick-

ness, pennation angle, and fascicle length) were also reported in other previous studies [5, 16,

17, 43]. One work reported that there was a positive effect for increased muscle thickness,

from Simpson et al. (2017), albeit with the caveat that raw data showed similar changes versus

control [44, 45], calling into question the practical relevance of the findings.

One point that seems to be important to induce architectural changes in muscle is SS train-

ing intensity [46]. Although we were unable to measure stretching intensity because we used a

stretching board in our SS program, the stretching intensity was expected to be much lower

than the required for muscle hypertrophy, such the achieved during resistance-training. The

stretching program in the previous study was carried out in a leg-press loaded with 20% of

MVIC, which induced muscle hypertrophy [29]. It is possible that higher stretching intensity

in the previous study contributed to the discrepancy with the current study. Nonetheless, in

addition to training load, total exercise volume, defined as the product of training load and

repetition number, has become recognized as an important factor for muscle hypertrophy. In

this study, each participant performed 2,160 s of SS (360 s/week�6 weeks); however, the total

exercise volume might be insufficient to induce muscle hypertrophy because the SS intensity

and duration were low. For instance, in studies from Freitas and Mil-Homens (2015) and

Simpson et al. (2017), which verified increases in fascicle length, the total time under stretch-

ing of the SS programs were of approximately 11,250 s (450 s�3.1 ± 0.8 sessions per week-
�8week) or 5,400 s, respectively; too higher than performed in our study.

Chen et al. (2011) reported a significant increase in concentric hamstring strength follow-

ing an 8-week SS program, whereas Nakao et al. (2019) found no significant changes in iso-

metric and concentric hamstring strength, but a significant increase in the peak angle of

concentric strength after a 4-week SS program. In addition, Freitas and Mil-Homens (2015)

reported a significant increase in the fascicle length of the biceps femoris following an 8-week

high-intensity SS program. These studies demonstrate that, in the case of hamstring, an SS

program may change the muscle architecture (e.g., muscle thickness or pennation angle),

which may result in increased strength or performance. Among studies evaluating the gastroc-

nemius muscle, Akagi et al. (2014) reported no significant changes in MVIC and muscle thick-

ness And Blazevich et al. (2014) reported no significant change in fascicle length after a 3-week
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SS program; the latter finding was supported by Nakamura et al. (2012) and Konrad et al.
(2014). Previous studies have noted the difference in muscle architecture (muscle thickness,

pennation angle, fascicle length and tendon length) between the biceps femoris and medial

gastrocnemius muscle [47, 48]. This could affect differences arising in prior literature on the

chronic effect of SS training. Collectively, these results suggest that the effects of SS training on

muscle strength and architecture may differ on the basis of the target muscle and total exercise

volume (stretching intensity and duration). Therefore, future studies should elucidate the vari-

ation in effects of SS programs on strength and architecture of different muscles.

An important factor regarding changes in muscle architecture might be nutrition. Our

study did not incorporate a nutritional component to the SS program. However, Simpson

et al. (2017) reported increased MG thickness and fascicle length after a 6-week SS program

which included subsequent protein intake, suggesting this might have moderated the hyper-

trophic effect of the SS program. Future studies should consider the combined effects of SS

programs, nutritional interventions, and resistance training.

This study has several limitations. The major limitations of this study were the small sample

size and the short duration of the intervention, although it is similar to several previous studies

on SS [5, 16, 17, 29, 43]. In this study, we calculated the sample size needed for split-plot

ANOVA (alpha error = 0.05, power = 0.80, effect size = 0.4 [large]), and the requisite number

of participants was 14 in each group. Therefore, it is feasible to be underpowered in this study.

We calculated the effect sizes for the split-plot ANOVA (ηp2) and different between PRE and

POST in each group. As the results of effect sizes, all variables were trivial or small. Therefore,

we have assumed that the results of this study have not been underpowered. However, further

study is needed to investigate the chronic effect of SS programs on muscle strength and muscle

architecture using more subjects for a longer duration. In addition, the effects of SS programs

on muscle performance (for example, jumping or sprinting) should be considered. In addition,

the effect of a 6-week SS program on athletes is not known, and future studies are needed to

investigate the effect of long-term SS program on muscle performance in other populations,

such as athletes.

Conclusion

In conclusion, a 6-week SS program targeting the MG muscle did not increase muscle strength

or hypertrophy; however, we also found no negative effect on these outcomes, contrary to evi-

dence on the immediate, detrimental effects of SS.
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