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Abstract Stent deployment following balloon angioplasty is used routinely to treat coronary artery disease. These interventions
cause damage and loss of endothelial cells (EC), and thus promote in-stent thrombosis and restenosis. Injured arteries
are repaired (intrinsically) by locally derived EC and by circulating endothelial progenitor cells which migrate and prolif-
erate to re-populate denuded regions. However, re-endothelialization is not always complete and often dysfunctional.
Moreover, the molecular and biomechanical mechanisms that control EC repair and function in stented segments are
poorly understood. Here, we propose that stents modify endothelial repair processes, in part, by altering fluid shear
stress, a mechanical force that influences EC migration and proliferation. A more detailed understanding of the biomech-
anical processes that control endothelial healing would provide a platform for the development of novel therapeutic
approaches to minimize damage and promote vascular repair in stented arteries.
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The article is part of the Spotlight Issue on: Biomechanical Factors in Cardiovascular Disease.

1. EC damage and repair in stented
arteries
Balloon angioplasty and stent implantation, interventions that are used
routinely to treat coronary artery disease (CAD), lead to damage and
loss of endothelial cells (EC). Given the essential role of EC in suppres-
sing inflammation and thrombosis and in controlling vascular tone and
function, the restoration of healthy vascular endothelium is an important
therapeutic goal to avoid the lethal consequences of in-stent thrombosis
and to prevent restenosis.1 While both local EC and bone-marrow
(BM)-derived endothelial progenitor cells (EPCs) have been suggested
to participate in re-endothelialization, there is controversy surrounding
the identity of the cell population(s) that are responsible. Since the dis-
covery of EPCs by Asahara in 1997,2 their contribution to vascular
homeostasis and potential ability to contribute to the regeneration of
endothelium in denuded vessels has been studied extensively. To
track the fate of EPCs during vascular repair, donor BM cells labelled
using LacZ or GFP markers were introduced into the circulation of
mice after wire/balloon-induced vascular injury3,4 or vein-to-artery
transposition.5 These studies suggested that BM-derived cells contrib-
ute to vascular repair and that the reparative process can be enhanced
by treatment with statins3,4 and granulocyte-colony stimulating factor
(G-CSF).6,7

Recently, the relative contribution of local vs. BM-derived EPCs to
endothelial repair following stenting was addressed directly using a
murine model of stenting in the aorta.8 The authors devised an
elegant experimental approach to track EC derived from local or sys-
temic sources by transplanting stented aortae from transgenic
Tie2-LacZ mice (expressing LacZ in EC) to non-transgenic mice and
vice versa, and by using chimeric mice containing Tie2-LacZ BM to
track EPCs. The study revealed that repair of stented arteries involved
both adjacent EC and BM-derived EC although the contribution of the
latter varied between animals.8 In contrast, recent studies of common
carotid artery (CCA) allografts between Tie2-GFP transgenic and wild-
type mice (of different genetic backgrounds) suggested that regener-
ation of the endothelium involved local cells, whereas a contribution
from BM-derived cells was not demonstrated.9,10 However, it should
be noted that the conclusions from the latter studies are complicated
due to strain-specific immunogenicity towards GFP. Additionally, the
anastomoses required for this transplantation model may influence
local repair mechanisms.11 The seemingly conflicting results from
Douglas et al.8 and Hagensen et al.10 may also be related to the animal
models used, i.e. hypercholesterolaemic or healthy mice. Lastly, the ob-
servation that the Tie2 promoter can be activated in monocytes as well
as EC12 complicates the interpretation of studies employing Tie-2-GFP/
LacZ murine models. Thus although it can be concluded that
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re-endothelialization of injured arteries can occur naturally via out-
growth of local EC or via recruitment of circulating EPCs, the exact con-
tribution of these populations and their mechanisms of recruitment
remain uncertain.

Migration of EC in injured coronary arteries may be affected by the
presence of a stent since this structure provides a non-physiological
surface for adhesion and generates perturbations in blood flow. Never-
theless, the effect of stent deployment on EC migration and proliferation
remains poorly understood. The issue of EC repair has been brought
into sharp relief in the era of drug-eluting stents (DES) which release
cytostatic compounds (e.g. sirolimus/rapamycin) that inhibit the
PI3K-mTOR pathway. Although DES are associated with reduced re-
stenosis rates via inhibition of vascular smooth muscle cell (VSMC) pro-
liferation, they have also been linked to lethal late-stage thrombotic
events associated with EC injury.13 –16 Thus there is an urgent need to
develop new interventions to promote EC repair in stented arteries
and thereby reduce the incidence of late-stage thrombosis and avoid
risks associated with prolonged administration of systemic anti-platelet
treatments.

2. Novel stent designs to promote
endothelialization
Several groups have attempted to promote re-endothelialization using
stents that deliver growth factors17–19 or devices that promote EPC
capture.20– 27 EPC capture has been attempted by coating stents with
antibodies that target EPC markers (e.g. CD34, CD133, VE-Cadherin),
however, this approach has had mixed success. For example, although
coating of stents with anti-VE-cadherin antibodies was shown to accel-
erate re-endothelialization and reduce neointimal formation in a rabbit
model,23 coatingwith anti-CD133 antibodies did not influence endothe-
lialization or neointimal thickening in a porcine model.24 In addition,
coating stents with anti-CD34 antibodies enhanced early endothelializa-
tion but did not reduce neointimal thickness in animal20 and human25,26

studies. While some EPC capture stents have been shown to enhance
endothelialization in animal models, they may have limited use in the
clinic because patients with cardiovascular disease often have few and/
or dysfunctional EPCs. However, this may be ameliorated by treatment
with statins which has been associated with enhanced EPC number and
survival in patients with cardiovascular disease.26 Because of these con-
siderations, new stent design strategies are urgently required including
the use of novel biomaterials that enhance endothelialization. For
example, a recent study by Andukuri et al. 27 demonstrated that a bioin-
spired multifunctional nanomatrix which mimicked endothelial surface
characteristics by containing cell-adhesion ligands and nitric oxide
donors was able to recruit EPCs and promote their differentiation
towards an endothelial lineage. However, these stents have not yet
been tested in pre-clinical models.

3. The mechanical environment
of stented arteries
Vascular cells are exposed to a complex mechanical environment which
they sense via numerous mechanoreceptors. On the luminal side, EC
sense blood flow-induced frictional forces, which can be represented
by the wall shear stress. Under the influence of blood pressure, the
vessel wall deforms in a cyclic manner. The EC will follow the deform-
ation of the sub-endothelial vessel wall and the resulting wall strain is

the second important mechanical trigger the EC and VSMC are
exposed to. In order to understand the influence of mechanics on vascular
physiology, research has focussed on the following areas: in vitro studies of
cellular response to controlled changes in the mechanical environment; in
vivo studies of cellular responses during disease development and post-
intervention using animal models; and clinical studies of patients with arter-
ial disease and their response to intervention. Each of these approaches
provides complementary information which has the potential to extend
our understanding of the effects of mechanical triggers on EC and
VSMC physiology following percutaneous coronary intervention (PCI).

It is well established that early plaque formation is localized in specific
arterial regions.28,29 Especially, arterial bifurcations, branch points, and
curved arterial segments are prone to develop atherosclerotic lesions.
From a mechanical perspective, these regions are characterized by dis-
turbed blood flow leading to low and/or oscillating shear stress.30,31

During early atherogenesis, outward vessel wall remodelling compen-
sates for plaque growth, leaving the lumen essentially unchanged.32

Since the geometry of the lumen determines blood-flow patterns, this
implies that shear stress will not alter during early plaque growth. This
changes once the plaque intrudes into the lumen: shear stress in the up-
stream and midcap plaque region increases while the downstream
plaque region is exposed to low shear stress.33,34 The development of
atherosclerotic plaques is also associated with altered strain patterns,
which vary as the disease progresses. Although limited information is
available, clinical studies applying intravascular ultrasound techniques
demonstrate that EC covering soft atherosclerotic plaques are sub-
jected to increased wall strain.35 If and how these strain patterns affect
EC function in the context of atherosclerosis is largely unknown.

The mechanical environment in the vesselwall is greatly alteredbyPCI
and stent placement. Balloon inflation leads to EC denudation and com-
promises the integrity of structures inside the diseased arterial wall. The
denuded interface between the lumen and the vessel wall is exposed to
altered mechanical stimuli, partly depending on the mechanical proper-
ties of the stent. On a macroscopic scale, the geometry of the stented
segment returns approximately to the 3D shape it had before the
plaque intruded into the lumen, resulting in the restoration of low
and/or oscillating shear stress which promotes inflammation and vascu-
lar injury. Both in bare metal stents (BMS) 36 and DES,37 this leads to an
inverse correlation between shear stress and neointimal hyperplasia.
Depending on the axial stiffness of the device, stent implantation
might also increase the local curvature at the entrance and the exit of
the stent, inducing additional disturbed shear-stress regions.38 Further-
more, the proximal and distal edge of the stented segment (potentially
the source of in-growing EC) will be exposed to elevated strain levels
due to the stiffness mismatch of the artery and stent.

On a local scale, the design of the stent struts is especially relevant. The
presence of stent struts leads to perturbations in the local flow patterns:
thus small regions with flow reversal and disturbed shear stress will
develop between the stent struts.39 The thickness of the stent struts
determines the size of the recirculation zone and strut height is associated
with thrombogenicity,40 in in vitro experiments. In the in vivo situation, the
occurrence of flow reversal is determined by how far the stent struts pro-
trude into the lumen. Stent-strut malapposition or tissue regression
between the stent struts might reinforce local flow recirculation.37,40,41

In addition to variations in shear stress, damage induced by stent place-
ment is also determined by stent-strut design and thickness, and this
has been related to subsequent restenosis.40,41 Finally, stent design also
influences the local strain distribution between the stent struts, although
few data are available to quantify this effect.
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4. How do vessels respond
to mechanical forces?
Vascular cells are exquisitely sensitive to their mechanical environment.
The application of a stent by balloon angioplasty leads to major changes
in wall strain which have profound effects on VSMC proliferation and mi-
gration, thus impacting on in-stent restenosis (reviewed in Lehoux42 and
Shyu43). VSMCs have been estimated to be exposed under the equivalent
of 1 dyn/cm2 of shear stress due to the interstitial flow induced by the
trans-vascular pressure differences. However, VSMC can be exposed to
much higher levels of shear stress in a denuded blood vessel (e.g. immedi-
ately following PCI) resulting in direct interaction of VSMC with blood
flow. This may have relevance to the structure and function of stented
vessels since shear stress is known to modulate VSMC proliferation,44–46

migration,47,48 and viability.46,49 Here we focus on the influence of stent-
ing on endothelial responses to mechanical force.

5. The influence of shear stress on
endothelial cells
EC sense shear stress via multiple mechanoreceptors, e.g. VEGFR2/
VE-cadherin/Pecam-1-complex, integrins (avb3), the glycocalyx, and
primary cilia,50– 54 that translate the mechanical signal into a biological
response, resulting in the modulation of proinflammatory and cell-
survival signalling pathways. Of note, the responses of EC to mechanical
force differ according to the magnitude, directionality, and temporal
fluctuations of the force that is applied. For example, low and/or oscilla-
tory shear stress (at disease-prone sites) promotes inflammatory activa-
tion and apoptosis of EC, whereas high uniform shear stress exerts
protective effects.30,55– 66 The fact that the endothelium is differentially
affected by high or low shear stress and by unidirectional or bidirectional
shear stress, governs the focal nature of atherosclerosis, but will also play
a role in arterial healing after stent deployment/PCI.

In vitroand in vivo studies have revealed a myriad of genes that are regu-
lated by shear stress (Figure 1). Of note, 70% of shear-regulated genes
are dependent on the mechanosensitive transcription factors Krüppel-
like factor-2 (KLF-2) and nuclear factor erythroid 2-related factor
(Nrf2),67 that are activated by high, unidirectional shear stress and co-
operate to induce anti-inflammatory, anti-thrombotic, and anti-
proliferative genes. Furthermore, KLF2 plays a major role in maintaining
vascular tone via regulating expression of the vasoconstrictor
endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS),
which produces the vasodilator NO.68 KLF2 has suppressive effects
on inflammatory activation in part by its ability to sequester critical
co-activators of NF-kB,69 thereby reducing NF-kB mediated transcrip-
tion and by inhibiting the MAPK pathway. Nrf2 also protects EC
exposed to high shear stress via the induction of antioxidant genes in-
cluding heme oxygenase-1, glutathione S-transferase, and ferritin and
via the negative regulation of p38 MAPK.59,70,71

In contrast, low and/or oscillatory shear stress activates the transcrip-
tion factor NF-kB,56 which controls multiple processes including im-
munity, inflammation, cell survival, differentiation, and proliferation.
The MAPK pathway plays a role in many cellular processes, including
apoptosis, proliferation, and inflammation. Low and/or oscillatory
shear stress also activates c-Jun N-terminal kinase (JNK) and the p38
pathway,55,57,59 which promote inflammation and EC apoptosis by acti-
vating transcription factors belonging to the activating protein-1 (AP-1)
superfamily [including c-Jun and activating transcription factor-2

(ATF2)]. In contrast, high shear stress negatively regulates JNK/p38
MAPK by inducing MAPK phosphatase-1 (MKP-1),57,58 reducing apop-
tosis signal-regulating kinase-1 (ASK-1) activation,63 and blocking cleav-
age of protein kinase C zeta,62 resulting in dampened pro-inflammatory
signalling in regions of high shear stress.

In addition, shear stress plays an important role in proliferation and
migration of EC. High, unidirectional shear stress increases EC migration
by promoting remodelling of the actin cytoskeleton to influence cell
polarity, formation, and protrusion of lamellipodia, and contractility of
stress fibres that are essential for cell traction.72– 74 In contrast, low
and/or oscillatory shear stress causes cell loss and migration of cells
away from areas with large gradients in shear stress.74 Shear stress
regulates EC cell-cycle entry via activation of the anti-mitotic
AMP-activated protein kinase (AMPK) and the proliferative Akt. High,
unidirectional shear stress activates both AMPK and Akt; this counter-
balance results in relatively undisturbed mTOR (mammalian target of
rapamycin) and its target p70 ribosomal S6 kinase (p70S6K), attenuating
EC proliferation. In contrast, low, oscillatory shear stress activates Akt in
the absence of AMPK, resulting in a sustained activation of p70S6K and,
consequently, EC proliferation.75,76 DES releasing rapamycin specifically
affect the Akt/mTor pathway, thereby inhibiting EC proliferation and
possibly disturbing the effect of shear stress on this pathway.77– 79

Endothelial dysfunction is associated with impaired eNOS activity or
the inactivation of NO by reactive oxygen species.80 EC dysfunction
plays an important role in the arterial healing upon PCI as it leads to
increased permeability, increased expression of chemotactic molecules
and adhesion molecules, enhanced recruitment and accumulation of
monocytes/ macrophages, decreased EC regeneration and increased
SMC proliferation and migration, and increased expression of procoa-
gulatory molecules.29 Endothelium that has regenerated after stent-
ing/PCI seems dysfunctional in terms of integrity and function, with
areas of poor endothelialization, poorly formed EC junctions,
reduced expression of anti-thrombotic molecules, and decreased
nitric oxide production, and thus contributes to late stent thrombosis
and development of in-stent neoatherosclerosis.1,13– 16 Maintaining a
functional endothelial layer is important for the long-term health of
the vessel wall. An improved understanding of the biological function
of the endothelium (before and after stenting) is, therefore, crucial. In
this regard, EC loss and re-endothelialization are ’black boxes’—we
do not understand the mechanisms that underlie these processes but
shear-stress-related changes in EC function are likely to be involved.

6. The influence of strain on
endothelial function
The effect of strain on EC has received less attention than the influence
of shear stress. Nevertheless, it has been demonstrated that EC sense
strain via multiple mechanoreceptors including cell-adhesion sites,
integrins, tyrosine kinase receptors, ion channels, and components of
the lipid bilayer (reviewed in Ando and Yamamoto81 and Anwar
et al.82). Activation of these sensors results in the activation of multiple
signalling pathways, including PKC, Rho, Rac, PI3K/Akt, and MAPKs.
Strain affects transcription factors including AP-1 and NF-kB 81,82 and in-
flammatory genes including ET-1, VCAM, MMPs, and monocyte chemo-
tactic protein-1 (MCP-1) (we refer the reader to Anwar et al.82 for a
more comprehensive list of strain-induced transcription factors and
genes). In addition to pathway activation and subsequent gene regula-
tion, strain was shown to induce endothelial Ang II release and AT1R

Effects of stenting and shear stress 271
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/99/2/269/345569 by guest on 21 August 2022



activation, resulting in elevated superoxide levels via activation of
NADPH oxidases.83 This increase in oxidative stress may lead to endo-
thelial dysfunction and inflammation.

Little is known about the combined effect of shear stress and strain,
however, it is likely that gene expression is regulated by an interaction
between these mechanical factors. For example, ET-1 mRNA increased
when EC were exposed to strain, decreased in response to shear stress,
but was unchanged when the two forces were combined.84 Similarly,
shear stress and strain were shown to differentially regulate AT1R.83

The basis for these seemingly opposing responses, and more important-
ly the EC responses to a combination of forces, require further study.
Strikingly, several of the strain-induced genes are known players in
atherogenesis and in-stent restenosis. However, studies on the role of
strain in these processes are lacking.

7. Computational modelling
approaches
With the advancements in computational power delivered during
recent years, the use of in silico approaches to the study of biological
systems is becoming more widespread, offering an alternative frame-
work for integration of biological data. Numerical techniques have been
employed over the past few decades to the study of both structural
effects following stent placement (interactions between the stent and
the vessel wall) and fluid effects (alteration in blood flow within the
stented region; reviewed in Morlacchi and Migliavacca85). These techni-
ques provide quantification of local variations in the structural and fluid

environment, described earlier in this paper. Finite element analysis (struc-
tural) and computational fluid dynamics (fluid) are often undertaken at the
length scale of the entire stented region, by dividing the geometry into a
large number of discrete elements. Early application of these techniques
involved simplification of the vessel and stent geometry. More recent
advances have utilized image-based information (angiography, IVUS,
OCT) to provide an accurate description of the vascular anatomy both
pre- and post-stent implantation. As illustrated in Figure 2, the availability
of both 3D geometry and histology data allows structural mechanics86

and fluid dynamics87 to be correlated with biological processes in the
vessel wall (e.g. the localization of neointimal thickening).

Most models of stent implantation consider both the vessel wall and
blood as a continuum, neglecting variations at the constituent level
(VSMCs, EC, red blood cells, platelets etc.) or the interactions between
constituents (cellular signalling etc.). However, within other biological
systems, computational modelling has been applied to consider function
of cellular constituents in isolation or in small groups,88 and to study the
influence of intracellular signalling on the cell-cycle.89 A recent develop-
ment in computational modelling of biological systems is the concept of
multi-scale modelling, where representations of mechanical stimuli and
biological function at a number of spatial and temporal scales are combined
to provide a framework for examination of mechanobiology across the
scales. A number of recent studies have applied the multi-scale paradigm
to the study of in-stent restenosis.90–94 For example, Evans et al. 95 de-
scribe the formulation of a multi-scale framework in which restenosis
is simulated using an agent-based model to represent smooth muscle
cell migration and proliferation. This framework has been applied to
study interactions between SMC, blood flow, and pharmacological

Figure1 The contrastingeffects of uniform andnon-uniform flowon intracellular signalling. Uniformflow(left) activates multiple signallingpathways that
protect arteries by promoting endothelial quiescence and viability, by suppressing inflammation and co-ordinating vascular tone and endothelial alignment.
In contrast, non-uniform flow associated with stent struts (right) may have the opposite effects.
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agents within the vascular tissue and to examine the influence of stent
design on the degree of restenosis.96 Such approaches provide insight
into potential mechanisms for interaction between mechanical stimuli
generated at scales much larger than individual cells and the response
of individual cells and intra-cellular signalling. However, such techniques
also promote challenging research questions as the rules required to
define cellular behaviour in such models are poorly understood.

Despite these challenges, computational models provide a consistent
framework, allowing comparisonof results from in vitrocellular studies, in
vivo models of coronary pathology/response to intervention, and in vivo
patient studies. A multi-disciplinary approach to the investigation of
future research questions, combining iterative model development
with study of biological responses at the molecular, cellular and tissue
level, has the potential to significantly improve our understanding of ar-
terial patho-physiology and improve our ability to develop effective
treatments for arterial disease.

8. Conclusions and future
perspectives
The cellular and molecular mechanisms that govern EC function and
repair in stented arteries are poorly understood. In this review, we
discuss the sensitivity of EC to mechanical forces and suggest that
further research is required to understand the effects of stent-induced
changes in shear stress and strain on EC migration and proliferation.
This is important because a detailed understanding of the endogenous

repair processes in stented arteries and their perturbation by
flow may inform the development of novel therapies to reduce throm-
bosis and restenosis in stented arteries by promoting ‘healthy
re-endothelialization’.
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