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Abstract

Using simple running models, researchers have argued

that swing-leg retraction can improve running robot per-

formance. In this paper, we investigate whether this holds

for a more realistic simulation model validated against

a physical running robot. We find that swing-leg retrac-

tion can improve stability and disturbance rejection. Al-

ternatively, swing-leg retraction can simultaneously reduce

touchdown forces, slipping likelihood, and impact energy

losses. Surprisingly, swing-leg retraction barely affected

net energetic efficiency. The retraction rates at which

these effects are greatest are strongly model dependent,

suggesting that robot designers cannot always rely on sim-

plified models to accurately predict such complex behav-

iors.

1 Introduction

Legged locomotion is an important topic in robotics
because legged robots promise improved mobility in
unstructured environments1–3. Intuition regarding
the sensitivities of robot performance to hardware
and controller parameters is essential for the design of
effective legged mobility systems. In addition, knowl-
edge of these sensitivities can give insight into hu-
man locomotion, which is useful for the design of bet-
ter prostheses and orthoses. The goal of this paper
is to develop intuition about the inherent effects of
a particular control parameter, swing-leg retraction

rate, on several running performance metrics if pos-
sible, and otherwise identify trends that defy simple
description.

Swing-leg retraction (SLR) is a behavior exhibited
by humans and animals in which the airborne front
leg rotates rearward prior to touchdown4. It is hy-
pothesized that SLR enhances performance of biolog-
ical systems5, and that we might use SLR to improve
the performance of legged robots, such as the Phides
robot shown in Figure 1. Use of SLR to improve
controller performance is attractive, because it is a
conceptually simple extension to any foot placement
controller, such as the constant angle of attack con-
troller6 and the neutral point controller7.

The effect of swing-leg retraction on limit cycle
walking8 is relatively well studied and has been
shown to improve energy efficiency, small disturbance
stability, and large disturbance rejection9–11. These
results are illuminating for walking systems, but fun-
damental differences between walking and running
gaits preclude the direct application of these results
to running systems. Certain aspects of swing-leg
retraction have been studied using relatively sim-
ple running models; for instance, multiple authors
agree that swing-leg retraction can improve the sta-
bility of running5,6,12–15; conclude that low retraction
rates yield better stability, but high retraction rates
minimize peak forces14,16; and suggest that swing-
leg retraction can improve energetic efficiency14,17,18.
However, the existing literature leaves two important
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Figure 1: Running robot ‘Phides’. This robot consists of a
torso and two kneed legs with small, spherical feet. The robot is
attached to a boom with a parallelogram mechanism to achieve
planar behavior. The two hip joints are directly actuated by
DC-motors in the torso. The two knee joints are actuated by
DC-motors with a spring in series (torsion bar inside the knee
shaft) as well as a spring in parallel (leaf spring with pulley
mechanism).

open questions:

• Do simple models accurately predict the effects
of SLR on a physical running robot?

• Given the effects of SLR on different perfor-
mance metrics, how should a controller’s retrac-
tion rate be chosen?

The present paper provides answers to these ques-
tions through a study of the effects of SLR on running
performance using simple models, a realistic model,
and physical hardware. The remainder of this paper
is organized as follows: Section 2 introduces the sim-
ulation models and experimental hardware used in
this study. Section 3 and Section 4 present the ef-
fects of the retraction rate on the impact losses and
energetic efficiency of the models, respectively. Sec-
tion 5 discusses the effect of the retraction rate on the
impact impulse and footing stability. Section 6 and
Section 7 study the effect of the retraction rate on the
stability and disturbance rejection. The paper ends
with a discussion, including model validation against
the physical robot, in Section 8 and conclusions in
Section 9.

2 Models and Experimental

Platform

In this study, our primary tool is simulation using
a fairly complete rigid-body model (Figure 4) of the
running robot, Phides (Figure 1). Physical experi-
ments with Phides provide evidence that the realistic
model is representative of the actual machine. To
better relate the findings to previous studies, we also
compare the results of the realistic model simulations
with those of the simpler models. Whenever possible,
the Spring Loaded Inverted Pendulum (SLIP, Fig-
ure 2) model is used as the simple simulation model
for comparison to5,6,12–15. However, the SLIP model
does not capture all the relevant dynamics; aspects re-
lated to energy loss and replacement are not captured
because the model is energetically conservative, and
other consequences of impact with the ground such
as reaction forces and foot slipping cannot be stud-
ied accurately without leg mass. To study these, we
use an extension of the SLIP, a Prismatic Leg model
(Figure 3) similar to that in14,15,18, and a new Kneed
Leg model (Figure 5), a simplification of the realis-
tic model of Phides. Besides their utility as bridges
to prior studies, these simple models permit either
symbolic analysis or more efficient computation and
help us gain insight by removing complexities of the
realistic model.

To fairly compare the results of the simulation mod-
els and the robot, we match model parameters to the
extent permitted by their structures. We normalize
all parameters and results with the total mass M , leg
length L0 and gravitational acceleration g to get di-
mensionless numbers. For instance, the swing-leg re-

traction rate ω (in rad/s) is normalized as ω̄ = ω
√

L0

g
.

Unless otherwise noted, the models and the robot
run at normalized average speed ẋavg of 0.42 (Froude
number of 0.18 = ẋ2

avg). This is a slow speed for a
running gait, but it is near the maximal speed of the
physical robot.

The following sections give detailed descriptions of
the simulation models and the physical robot.
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Figure 2: SLIP-model with swing-leg retraction. The model
consists of a point mass body and a massless spring leg. At
liftoff, the leg instantaneously assumes angle αr with respect
to the ground and begins rotating at rate ω. The leg angle at
touchdown α0 depends on the time between liftoff and touch-
down.

2.1 SLIP model

2.1.1 Simulation

The Spring Loaded Inverted Pendulum (SLIP) is a
one-leg hopper model widely used for analyzing run-
ning dynamics6,19–22. This model consists of a point
mass body on a massless spring leg (Figure 2). De-
spite its simplicity, it has been shown to be a reliable
model for certain aspects of human and robot run-
ning, such as the center-of-mass trajectories23,24.

Here, the parameters of the SLIP model are chosen
to match the robot Phides, with m = 13.11kg, L0 =
0.58m, g = 9.81m/s2, and k = 5.06kN/m, which are
normalized m̄ = 1, L̄0 = 1, ḡ = 1, and k̄ = 22.8.

2.1.2 Control of SLIP model

The SLIP model is controlled only by changing the
angle of the spring leg during flight. Because the
leg is massless, this requires no energy and does not
affect the flight dynamics. However, this changes the
angle α0, the time, and thus the velocity, at which
the leg touches the ground, which strongly influences
the behavior during the stance phase.
In practice with the Phides robot, we found that

the limited accuracy of sensors impedes reliable sens-
ing of apex. So in this paper, we set the initial leg
angle αr and begin retraction at liftoff instead of at
apex because liftoff can be measured with a simple
contact switch. The start leg angle αr is chosen to

m l

Figure 3: Prismatic Leg model, an extension of the SLIP
model with distributed leg mass and a point mass foot.

produce a limit cycle with a normalized apex hori-
zontal speed of 0.42 and a normalized apex height of
1.04 regardless of the retraction rate.

2.1.3 Prismatic Leg Impact Model

Because the SLIP model is energetically conservative,
we use an extension of the SLIP model shown in Fig-
ure 3 to study the effects of swing-leg retraction on
the impact event. In the simple prismatic leg model,
the mass of the SLIP is distributed to form the up-
per segment of the leg, and a point mass is added to
the foot. The impact equations are derived accord-
ing to conservation of angular momentum assuming
a perfectly inelastic collision, that is, the foot sticks
upon landing. Note that these equations are not used
in the dynamic simulation of the SLIP model; they
are only used in postprocessing to study the impact
dynamics of a SLIP-like model with leg mass.

2.2 Realistic model

2.2.1 Simulation

The realistic simulation model is designed to closely
resemble the physical running robot used in this
study (Section 2.3). The model, shown in Figure 4, is
2-dimensional (planar) and consists of five rigid bod-
ies: a torso, two upper legs, and two lower legs, the
sizes and mass distributions of which are presented in
Table 1. The feet are simply points at the ends of the
lower legs. For this study, we fix the rotation of the
torso with respect to the world to eliminate the need
to control the torso orientation. Torques, limited to
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21.4 Nm to represent the actuator limitations of the
robot, act at all four joints.
The running motion of the realistic model has two

distinct phases: a flight phase during which the robot
is airborne, and a stance phase in which one foot acts
as a pin joint fixed to the ground. During the flight
phase, the center of mass follows a ballistic trajectory,
as the leg is not in contact with the ground, and the
legs move under the influence of the joint torques.
When a foot touches the ground, the impact is mod-
eled as an impulsive, perfectly-inelastic collision. The
state after impact is calculated according to angular
momentum conservation. During stance, a spring of
constant stiffness 5.06 kN/m (dimensionless stiffness
of 22.8) produces a force linearly proportional to the
distance between the stance foot and the hip. The
knee is equipped with an end stop, modeled as a
unidirectional spring-damper, that prevents the leg
from extending further than the rest length of the
leg spring of 0.58 m. As in flight, joint torques con-
trol the robot during stance. Liftoff occurs and flight
resumes when the normal force between the foot and
the ground falls to zero. There is no impulsive colli-
sion involved, so there is no instantaneous change in
state at liftoff.
The equations of motion and impact equations

were derived using the TMT method25 and indepen-
dently verified using Lagrangian mechanics and con-
servation of angular momentum; the resulting equa-
tions are far too long to be included in this paper.
Integration of the equations is performed using Mat-

lab’s ode45() function with absolute and relative
tolerances of 10−5.

2.2.2 Control of Realistic model

The swing-leg retraction rate is defined as the angular
velocity of the “virtual leg”, that is, the line connect-
ing the hip and the foot. This swing-leg retraction is
not to be confused with swing-leg contraction, which
is the time derivative of the length of the virtual
leg. Although both swing-leg retraction and swing-
leg contraction is required for perfect ground speed
matching (and zero impact loss), the swing-leg con-
traction rate at touchdown is set to zero because hu-
mans tend to exhibit much more swing-leg retraction

Figure 4: 2-dimensional realistic running model that consists
of five rigid bodies. The left figure shows the robot during the
flight phase and labels model parameters, the values of which
are given in Table 1. The right figure shows the robot during
the stance phase, during which the leg spring is active, and the
6 generalized coordinates used to describe the motion. Note
that the torso orientation is not a degree-of-freedom as the
rotation of the torso is fixed with respect to the world.

than swing-leg contraction5 and the physical Phides
robot does not permit swing-leg contraction when the
stiff leg spring is engaged shortly before touchdown.

During the flight phase, all joints are PD-controlled
to follow quadratic spline trajectories that minimize
maximum acceleration magnitudes. During the last
part of the flight phase, the swing leg knee joint is
locked and the hip joint rotates with a constant an-
gular rate ω. During the stance phase, the hip and
knee joint of the swing leg follow quadratic spline tra-
jectories as during the flight phase. The only control
of the stance leg is a torque at the knee during the
second half of the stance phase, from maximal knee
compression to liftoff, which attempts to regulate the
system energy.

2.2.3 Simplified Impact Equations

In addition to the realistic model, we use a simplifi-
cation of the realistic model to study the effects of
swing-leg retraction on the impact event (Figure 5).
In the simple kneed leg model, the touchdown leg is
entirely preserved, but the other leg and the torso
are lumped into a point mass at the hip. The equa-
tions are derived and used in a similar fashion as the
simplified Prismatic Leg model.
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+ +

Figure 5: Kneed leg model, a simplification of the realistic
model in which the mass of the opposing leg and the torso are
lumped into a point mass at the hip.

2.3 Physical Robot

2.3.1 Hardware

We use the physical running robot ‘Phides’ , shown
in Figure 1 with parameters tabulated in Table 1,
to validate our models. The robot is attached to a
parallelogram boom to achieve approximately planar
behavior, and the rotation of the torso is fixed with
respect to the boom to eliminate the need to control
the torso angle. Leaf springs, torsion bars, and a non-
linear transmission implement an effective prismatic
(i.e. telescoping, as opposed to rotary) spring of con-
stant stiffness between the foot and the hip, as in the
SLIP and realistic models, during stance. An end
stop prevents the knees from extending beyond the
rest length of the parallel spring. Contact sensors in
the feet, digital encoders with resolution 2 · 10−4 rad
at the knees and boom, and encoders with resolution
6 · 10−5 rad at the hips measure the full state of the
robot.

2.3.2 Control of Robot

The controller of the robot is similar to the controller
of the realistic model. However, communication de-
lays and limited sensor accuracy on the robot limit
the gains of the PD-controllers, limiting the accuracy
to which the quadratic spline joint trajectories are
tracked. This inaccuracy makes it difficult to set the
swing-leg retraction rate to a desired level; instead
we measure the touchdown angle and flight time over

a large number of steps and consider the effective re-
traction rate to be the slope of a linear least-squares
fit through the data.

The robot uses a different push-off strategy than
the realistic simulation model because the knee ac-
tuators are not capable of injecting sufficient energy
during the second half of the stance phase alone. To
deliver more energy into the system, the knee actu-
ator tensions the leg spring before touchdown and
applies a constant, maximal torque in the same direc-
tion as the knee angular velocity during the first half
of stance.

3 Impact Losses

Swing-leg retraction rate affects the energy usage of
running systems. The most obvious reason is that the
speed of the foot, and thus the energy loss as the foot
impacts the ground, is greatly influenced by the rate
of swing-leg retraction. While there are other sources
of losses in running, we will first investigate the effect
of swing-leg retraction on the impact losses of the
realistic model of Section 2.2 and the two simplified
impacts models of Sections 2.1.3 and 2.2.3 to test our
intuition regarding the most apparent link between
swing-leg retraction and efficiency.

3.1 Methods

Impact losses are determined by taking the difference
between the kinetic energy of the system immediately
before and immediately after the instant of touch-
down. The impact losses of the realistic model are
determined while running under the hand-tuned con-
troller of Section 2.3.2. All elements of the realistic
model touchdown states except for retraction rate are
mapped onto the prismatic and kneed leg models. To
investigate the sensitivity of impact loss with respect
to typical state variations, impact loss is calculated
for the simplified models in all of these touchdown
states for a variety of retraction rates. In order to
investigate the sensitivity of the results for the pris-
matic and kneed leg models with respect to param-
eter variations, impact losses are calculated for the
models with ±50% upper leg mass.
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Table 1: Parameter values of the realistic model and physical robot. See Figure 4 for the parameter definitions, in which
parameters are given by the property symbol with a subscript indicating the segment. The parameters of the simplified models
are determined by combining or lumping segment masses as appropriate.

torso upper leg lower leg
Mass m [kg] 7.41 2.54 0.51
Moment of inertia I [kgm2] - 0.036 0.005
Length l [m] - 0.3 0.3
Vertical offset CoM c [m] - 0.183 0.139
Horizontal offset CoM w [m] - 0 0

3.2 Results

Figure 6 shows the effect of the swing-leg retraction
rate on impact loss of the prismatic and kneed legs
for a range of typical touchdown states and vary-
ing upper leg masses. For the prismatic model, the
curves agree very closely; all have a minimum at the
retraction rate that zeros the foot tangential speed,
in agreement with previous results14 that energy loss
is minimized when the tangential component of the
foot speed vt is zero. Note that this is not, in general,
the same as zeroing the horizontal component of the
relative velocity between the foot and the ground, vx.
The location of minimal impact loss for the kneed leg
is very different from the normalized retraction rate
for zero foot tangential speed and depends on the
mass distribution of the leg. The results of the real-
istic model are superposed and show close agreement
with the simplified kneed leg model.

3.3 Discussion

Figure 6 shows that variations within the characteris-
tic range of touchdown horizontal speeds, touchdown
vertical speeds, and angles-of-attack have little effect
on the normalized energy loss, as indicated by the
narrow bands. Also, for prismatic legs, mass distri-
bution of the leg has little effect on the trend, as the
minima of the lines for ±50% upper leg mass share
a minimum with the band for normal robot mass pa-
rameters.

For kneed legs, however, the minima of the curves
lie at a much lower retraction rate than that of zero
horizontal or tangential speed. That is, our intu-
ition about lower impact loss stemming from reduced

Figure 6: The effect of the normalized swing-leg retraction
rate ω on the normalized energy loss Eloss for a prismatic leg
model, kneed leg model, and realistic model. For each model,
this is calculated as the difference between the energy of the
model immediately before and after impact. For the simplified
models, shaded regions indicate results for a range of touch-
down conditions, including variations in instantaneous veloc-
ity and angle of attack, encountered at touchdown in limit cy-
cles of the realistic model. Lines indicate the mean result for
the range of touchdown conditions studied.

relative speed between the foot and the ground, or
ground speed matching, does not hold for kneed legs
when there is no swing-leg contraction during flight.
However, we can adjust our intuition by considering
that the impact loss is not only due to abrupt changes
in the translation of the foot or the leg segments, but
also due to abrupt changes in the rotation of the
leg segments. Note that immediately before touch-
down, the rate of swing-leg contraction is very low (by
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constraint), but immediately after touchdown, there
must be significant leg contraction as the knee bends.
This sudden increase in leg contraction is manifested
as a decrease in the angular velocity of the upper
leg segment and an increase in the angular velocity
of the lower leg segment. The impact losses due to
these sudden jumps in angular velocity are lower if
the more massive upper segment has a less positive,
or even more negative, angular velocity prior to touch-
down. Indeed, the minima of the impact loss curves
for the kneed leg models occur at much lower retrac-
tion rates than for prismatic leg models. Further-
more, the more massive the upper leg segment the
more pronounced this effect is: as upper leg mass is
increased, the retraction rate at which the minimum
occurs is decreased.

The curves for a kneed and prismatic leg are quite
different, so we cannot consider the prismatic leg
a representative simplification of a kneed leg when
studying impact losses. This suggests that while the
results of Haberland et al. 18 may be valid for pris-
matic legged robots, they do not necessarily gener-
alize to kneed legs as originally suspected. On the
other hand, the kneed leg model agrees closely with
the realistic model, indicating that the state of the
second leg of the realistic model at impact does not
significantly affect the energy loss.

4 Overall Energetic Efficiency

Impact loss is not the only factor in running energetic
efficiency; another consideration is that the forward
and rearward acceleration of the swing leg is accom-
plished, at least in part, by actuator work, and thus
the swing-leg retraction rate is the result of a certain
energy expenditure. Perhaps subtler still is that the
state of the leg as it touches down sets the initial con-
ditions for the stance phase, during which much of
the work of running is done, and the ensuing dynam-
ics are significantly affected by the initial conditions.
Since impact losses are only a portion of the energy
expenditure of the robot in running, it is unclear a
priori whether the reduction in impact loss due to
a given retraction rate leads to an overall efficiency
improvement. Therefore, we consider the effect of

Figure 7: The effect of the normalized retraction rate ω on the
mechanical cost of transport of limit cycle running under the
hand-tuned controlled.

the retraction rate on overall limit cycle energetic ef-
ficiency of the Phides robot in simulation.

4.1 Methods

We measure the overall energetic efficiency of the re-
alistic model of Section 2.2 in limit cycle motion for a
range of swing-leg retraction rates. We quantify the
energy efficiency using mechanical cost of transport
cmt, which is the energy consumed by the actuators
normalized by the robot’s weight and distance trav-
elled. The energy consumed is assumed to be the
integral of the absolute mechanical power of the ac-
tuators. Thus,

cmt =

∫ tstep

0

∣

∣

∣
τ · φ̇

∣

∣

∣
dt

M · g · xstep

. (1)

in which tstep is the temporal duration of a step, xstep

is the distance travelled in a step, τ is the vector
of instantaneous joint torques, φ̇ is a vector of the
angular velocities of the joints, M is the total robot
mass, and g is gravitational acceleration.

4.2 Results

Figure 7 shows the effect of SLR rate on efficiency.
While the optimal efficiency is found at a normalized
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retraction rate of 0.4, the absolute effect of the re-
traction rate on the cost of transport is small, with a
maximal difference of only 5% over the whole range
of retraction rates. In fact, even when we computed
the CoT of optimally efficient limit cycles as a func-
tion of SLR rate in another study26, we found the
same trend: SLR has little effect on overall energetic
efficiency.

4.3 Discussion

Although Figure 6 in Section 3 showed a pronounced
effect of swing-leg retraction rate on impact losses,
Figure 7 shows very little effect of swing-leg retrac-
tion rate on mechanical cost of transport. This is
surprising, because it seems intuitive that increased
impact losses would result in lower efficiency17, and
previous work18 showed correlation between impact
loss and minimal mechanical cost of transport, albeit
for a simulated machine with prismatic, rather than
rotary-kneed, legs.

To consider why this is so, recall that the effi-
ciency, as measured by cost of transport, is the ratio
of the robot’s energy expenditure to the product of
its weight and distance traveled. The robot’s energy
expenditure can be broken down into three compo-
nents: the energy loss at impact, the energy required
to swing the legs, and the energy required to produce
the vertical impulse. We have observed that SLR has
a strong effect on the component of energy expen-
diture due to impact losses, yet has little impact on
net efficiency. Therefore, the combined effects of SLR
on the other two components of energy expenditure
and distance traveled must almost exactly oppose and
thus approximately nullify the effects on impact loss.
This is a very unexpected result, as these other ef-
fects are far less intuitive than the effects on impact
loss, and it highlights the importance of performing
calculations with a complete model rather than as-
suming that partial results from heavily simplified
models will scale to models of higher complexity.

5 Impact Forces and Footing

Stability

When designing a robot controller, it may be neces-
sary to minimize the magnitude of impact forces at
touchdown to avoid damaging the robot, and it is of-
ten important to limit sliding between the foot and
the ground to avoid slipping and falling. By changing
the relative speed between the foot and the ground
at touchdown, SLR can have a significant effect on
the extent to which these risks are mitigated. In this
section, we analyze the effect of SLR on impact forces
and slippage.

5.1 Methods

The realistic model and the two simplified impact
models are not appropriate for predicting the magni-
tude of touchdown forces because touchdown is mod-
eled as an instantaneous event with impulses rather
than finite forces. However, we can assume that the
risk of damage is roughly proportional to the magni-
tude of the touchdown impulse. Likewise, the simu-
lation does not predict how much slipping will occur
at touchdown because the foot is assumed to stick
to the point of ground contact. However, we can as-
sume that slipping at touchdown will depend on the
angle of the touchdown impulse: if the impulse angle
is zero, the impulse is purely vertical, and slipping is
impossible; if the impulse angle is π/2, the impulse is
purely horizontal, and slipping is certain. At interme-
diate angles, slipping will occur if the impulse angle
exceeds the effective friction angle, the arctangent of
the effective friction coefficient. The magnitude and
angle of the impulse vector are computed similarly to
the impact energy loss, detailed in 3.1.

5.2 Results

Figure 8 shows the magnitude of the touchdown im-
pulse as a function of the retraction rate for the pris-
matic leg model, kneed leg model, and realistic model.
For the prismatic leg, the magnitude of the touch-
down impulse is minimal at the retraction rate for
which foot tangential speed is zero, as anticipated by
analysis presented in Karssen et al. 14 . However, the
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minimal touchdown impulses for the kneed leg occur
at negative retraction rates very different from the
retraction rate of zero foot tangential speed. Again,
the realistic robot model shows close agreement with
the simplified kneed leg model.

Figure 9 shows the angle of the touchdown impulse
as a function of the retraction rate. The larger this
angle is, the more likely it is that slipping will occur.
For the prismatic leg, the retraction rate has a large
influence on the impulse angle and the minimal angle
occurs near the retraction rate for which the foot tan-
gential speed is zero. For the kneed model, however,
the retraction rate has a much smaller effect on the
impulse angle. For all normalized retraction rates be-
tween -0.8 and 1.2, the impulse angle is low enough
that an effective friction coefficient of 0.2 would be
sufficient to prevent slipping. Also for the impulse,
the realistic robot model shows close agreement with
the simplified kneed leg model.

Figure 8: The effect of the normalized swing-leg retraction
rate ω on the normalized touchdown impulse magnitude for
the prismatic leg model, kneed leg model, and realistic model.
The meaning of strokes and shading are the same as in Figure
6

5.3 Discussion

Many conclusions analogous to those of Section 3.3
can be drawn from Figures 8 and 9. However, there

Figure 9: The effect of the normalized swing-leg retraction rate
ω on the impulse angle for a prismatic leg model, kneed leg
model, and realistic model. Impulse angle, or the magnitude
of the angle between the impulse and vertical, is defined as
|atan(Ix/Iy)|, where Ix and Iy are the horizontal and vertical
components of the impulse vector, respectively. A lower value
corresponds with an impulse closer to vertical and less slipping
at touchdown. The meaning of strokes and shading are the
same as in Figures 6 and 8

.

is also a new trend that the impulse angle observed
for the prismatic leg rises very sharply from the min-
imum, but the the impulse angle of the kneed leg
model is not very sensitive to retraction rates greater
than the optimum. Thus, for the prismatic leg, the
foot tangential speed must be almost precisely zero
to avoid slipping, but the kneed leg is unlikely to slip
for a wide range of SLR rates. For example, with
a coefficient of friction between a rubber robot foot
and concrete of 1, slipping will occur at an impulse
angle greater than arctan 1 = π/4. Consequently, for
the prismatic leg model, the normalized retraction
rate must be within ±0.3 of that required for vt = 0
to prevent slipping. For the kneed leg, on the other
hand, slipping is unlikely for all but the most negative
retraction rates. This may be an inherent advantage
of a rotary knee over a telescoping joint.
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6 Stability

In Seyfarth et al. 12 , swing-leg retraction is intro-
duced as a simple control strategy to improve the
stability, or small disturbance response, of the SLIP
model. In this section, we assess how the retraction
rate influences the stability of the SLIP and realistic
model.

6.1 Method

The stability of a running model can be assessed
by analyzing the Floquet multipliers of its step-to-
step behavior12,27, that is, the eigenvalues of the lin-
earized, discrete step-to-step map A. The map A gov-
erns the dynamics of perturbations from limit cycles
∆vi as

∆vn+1 = A∆vn with ∆vn = vn − v∗, (2)

in which vi is the state of the system at a specific
point in the gait cycle (e.g. state at liftoff) of the ith

step and v∗ is the state at this point in the limit cycle.
The Floquet multipliers indicate the rate at which the
model converges back to the limit cycle after a small
deviation from the limit cycle. A system is stable if
the magnitude of all Floquet multipliers is less than
unity.

6.2 Results

Figure 10 shows how the magnitude of the Floquet
multipliers varies across a range of retraction rates for
the SLIP and the realistic model respectively. The
Floquet multipliers for the realistic model are shown
only for retraction rates for which the model has a
stable limit cycle, as our method for finding limit
cycles requires the model to be stable.
The SLIP model has three Floquet multipliers, as

the state at apex can be described by the three state
variables: apex height, horizontal speed, and leg an-
gle. Due to the energy conservative nature of the
SLIP model, one of the Floquet multipliers is always
unity, signifying that disturbances to energy level per-
sist. We neglect the technicality that this trivial
eigenvalue precludes stability in the strictest sense,

Figure 10: Floquet multipliers as functions of normalized re-
traction rate for both the SLIP model and the realistic model.
The grey areas indicate the range of normalized retraction rates
for which the models are stable.

and and refer to any marginally stable limit cycles of
the SLIP as stable.

The magnitude of the other two Floquet multipli-
ers is less than unity for normalized retraction rates
between 0.20 and 1.24. Outside this range, one of
the Floquet multipliers has a magnitude greater than
unity, which means that the limit cycle running is
unstable at these retraction rates. The convergence
rate is maximal at a normalized retraction rate of
0.30, where the largest magnitude of the two nontriv-
ial Floquet multipliers is minimal.

The realistic model has eight Floquet multipliers,
as the state at touchdown can be described by eight
state variables corresponding with the angle and an-
gular rate of the upper and lower segments of both
the stance and swing leg. Four of the Floquet mul-
tipliers are almost zero over the range of retraction
rates, which is due to the stiff position control of the
knees. The realistic model is stable for normalized
retraction rates between 0.15 and 0.89. Within this
range of stable retraction rates, a normalized retrac-
tion rate of 0.46 results in the fastest convergence
rate.
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6.3 Discussion

Both models show that the retraction rate affects the
stability. However, the models show different ranges
of retraction rates for which the model is stable. The
lowest retraction rate at which the model is stable
is the same for both models at about 0.2. On the
other hand, the highest retraction rate at which the
model is stable is 1.24 for the SLIP model and only
0.89 for the realistic model. In addition, the trend of
the largest non-trivial Floquet multiplier differs be-
tween the models. For the SLIP model, this Floquet
multiplier is nearly constant over most of the range of
stable retraction rates, while for the realistic model it
varies from a maximum of unity at the boundaries of
the range of stable retraction rates to 0.3 at the cen-
ter of the interval. This highlights the importance of
performing stability analysis on realistic models, and
suggests that the SLIP model is not very suitable for
studying the effects of swing-leg retraction on stabil-
ity; it cannot be used to select the retraction rate
for optimal stability of realistic models or physical
robots.

7 Disturbance rejection

Besides affecting the stability with respect to in-
finitesimal disturbances, swing-leg retraction also af-
fects the response to large disturbances. In this sec-
tion, we quantify how the large disturbance rejection
of the simple SLIP model and the realistic model are
influenced by the swing-leg retraction rate.

In the field of legged robots, many ways to quan-
tify the rejection of large disturbances have been pro-
posed28,29, but there is little agreement on a standard.
In this paper, we show the effect of swing-leg retrac-
tion on three disturbance rejection measures: settling
time, maximal single relative disturbance, and mean
steps to fall. These were selected because they are in-
tuitive measures of how well a robot can handle real-
world disturbances and because their computational
costs are not excessive.

7.1 Method

The settling time is the time that a system takes to
return to a steady gait after a disturbance30. For run-
ning systems, it is important to return to a steady
gait quickly; the slower the convergence, the more
likely for successive disturbances to move the sys-
tem progressively further from the limit cycle to fail-
ure. The return to a limit cycle is measured using
a gait indicator, a quantitative characteristic of the
gait that, when outside a normal range, is observed to
correlate with failure. We use step time as the gait
indicator, because it has been observed that large
deviations in step time tend to correlate with sub-
sequent failure28,31. We define the settling time as
the number of steps after a disturbance before the
step time is within 0.1% of its steady state value. As
the disturbance, we use an energy-neutral step-down:
in addition to a step in ground height, the forward
speed is adjusted to keep the system energy constant.
This disturbance is chosen because it allows the en-
ergy conservative SLIP-model to return to the origi-
nal limit cycle. The step-down is chosen to be 3.5%
of the leg length, as this disturbance did not cause
either model to fall for a wide range of retraction
rates.

The maximal single relative disturbance is the max-
imum change from a known limit cycle state from
which the robot will not fall within a prescribed num-
ber of steps32–34. This measure gives an indication
of the size of the basin of attraction, which is the col-
lection of all initial states that do not lead to a fall.
We consider two types of single relative disturbances:

• A push disturbance is an increase (push forward)
or decrease (push backward) from a known limit
cycle apex hip velocity. This is equivalent to the
application of an impulse uniformly distributed
over the mass of the robot.

• A step disturbance is an increase (step down) or
decrease (step up) from a known limit cycle apex
hip height. This is equivalent to a single step in
the floor over which the robot is running.

The maximal single relative disturbance is deter-
mined by applying increasingly large disturbances un-
til the model falls within 25 steps of the disturbance.

The mean steps to fall metric is inspired by a mea-
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sure of manufacturing system reliability known as
mean time to failure35. Mean steps to fall is defined
as the average number of steps, starting from a given
limit cycle, before a robot falls under the influence
of a sequence of finite disturbances randomly sam-
pled from a given distribution. We consider both
absolute step disturbances, or normally distributed
perturbations in the apex vertical height above mean
ground level, and absolute push disturbances, or nor-
mally distributed perturbations in the apex horizon-
tal speed. Mean steps to fall is estimated by mea-
suring the number of steps to fall over 100 different
sequences of disturbances randomly sampled from a
Gaussian distribution with zero mean and specified
standard deviation, then averaging across all trials.
In order to test the disturbance rejection of the re-

alistic model, we must define fall modes that consti-
tute failure. The most obvious fall mode is when the
hip touches the ground. Another fall mode is when
the swing foot touches the ground (trip). The third
fall mode is when the model touches down with the
stance leg bent further than the rest length of the leg
spring permits. It is necessary to enforce this condi-
tion as a fall to prevent the leg spring from engaging
at a non-zero energy level. The robot Phides has a
similar fall mode, because its leg spring only engages
at the spring rest length; the leg will collapse if the
rest length is not reached before touchdown.

7.2 Results

Figure 11 shows the settling time as a function of
the retraction rate for the two models. In addition,
it shows the response of the gait indicator for three
retraction rates. For low retraction rates, the gait
indicator slowly converges to its steady state value.
With increasing retraction rates, the convergence rate
increases and settling time decreases. If the retrac-
tion rate is increased too much, the gait indicator
overshoots and oscillates about its steady state value.
The two models both show this effect of the retrac-
tion rate on the settling behavior, but the ranges of
retraction rates for which each behavior occurs differ
between the models.
Figure 12 shows the maximal single step and the

maximal push disturbance for a range of retraction

rates for the two models. The effect of the retraction
rate on the maximal single relative disturbance seems
to differ between disturbances that add energy and
those that remove energy. For disturbances that re-
move energy from the system, like the step-up and the
backwards push, the maximal disturbance increases
with increasing retraction rate until the retraction
rate for which the system becomes unstable. On the
other hand, for disturbances that add energy to the
system, like the step-down and the forward push, the
maximal disturbance peaks at a lower retraction rate,
especially for the SLIP model.

While both models reveal that retraction rate
greatly affects the maximal single relative distur-
bance, there are large quantitative differences. For
example, the maximal step-up the realistic model
can handle is about two times as large as what the
SLIP model can handle. In fact, the only quanti-
tative agreement between the two models is that for
maximal forward push, both models achieve maximal
disturbance at a normalized retraction rate of about
0.55-0.6, but here the peak for the SLIP model is
sharply defined whereas for the realistic model the
curve is relatively flat.

Figure 13 reveals a substantial effect of the retrac-
tion rate on the mean steps to fall. With a normal-
ized retraction rate of 0.33, the realistic model rejects
step disturbances for an average of 124 steps, where
with a retraction rate of 0.63 it only averages 21 steps.
It is interesting that the maximal mean steps to fall
for the step disturbances occurs at nearly the same
retraction rate for maximal mean steps to fall with
push disturbances. This holds for both the SLIP and
the realistic model, but the optimal retraction rate
for the SLIP model is at a much higher retraction
rate than the optimal retraction rate of the realistic
model. Also, the value of the maximum mean steps
to fall with push disturbances is several times higher
for the realistic model than for the SLIP model.

7.3 Discussion

There is an interesting correlation between settling
time and stability. For instance, the SLIP model
has a substantially wider range of retraction rates
for which the settling time is very low, or less than 5
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Figure 11: The settling time as function of the retraction rate for the two simulation models. The settling time indicates how
quickly the system returns to a steady gait after a disturbance. An energy-neutral step-down 3.5% L0 was used as disturbance.
The inserts show the response of the gait indicator, step time, after a disturbance for three retraction rates. At low retraction
rates there is slow convergence, at medium retraction rates there is quick convergence, and for high retraction rates there is an
oscillating convergence.
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Figure 12: The maximal single relative disturbance as a function of the normalized retraction rate of the SLIP and realistic
model. Four kinds of disturbances are used: step-down (top left), step-up (top right), forward push (bottom left), and backwards
push (bottom right).

Figure 13: The effect of the retraction rate on the mean steps to fall for both simulation models. The mean steps to fall
is shown for random step disturbances with a standard deviation of 2.6% L0 (left) and push disturbances with a standard
deviation of 15% ẋavg (right).

steps, than the realistic model. This reminds us of the
SLIP’s wide range of low, nearly-constant, maximal,
non-trivial eigenvalue. Also, the range of retraction
rates in which the settling time is reasonable, or less
than 25 steps, corresponds with the ranges for which
the models are stable.

All three measures show that swing-leg retraction
has a large influence on the disturbance rejection be-
havior for the SLIP model as well as the realistic

model. However, the trends are different for the three
measures and are dependent on the kind of distur-
bance used. This indicates that if swing-leg retrac-
tion is implemented to increase disturbance rejection,
the retraction rate should be chosen based on the ex-
pected disturbances; it cannot be chosen to maximize
rejection of all disturbance types at once.

Comparing the result of the SLIP model and the
realistic model, we can see that the models qualita-
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tively agree on some of the disturbance rejection mea-
sures, such as settling time, maximal step-up, and
backwards push. However, there is no agreement on
other disturbance rejection measures like the mean
steps to fall. In addition, there is no quantitative
agreement for any of the measures, which means that
the SLIP model cannot be used to select the optimal
retraction rate for realistic robot models or robots.

8 Discussion

8.1 Realistic model validation

The realistic model used in this paper is based on
the running robot Phides. To test the validity of
the realistic model, we compare its behavior with the
robot’s behavior at a normalized retraction rate of
0.62. For completeness, we also include the SLIP
model in this comparison. First, we compare the hip
trajectories as shown in Figure 14. There is a close
agreement between the hip trajectory of the models
and the robot, which suggests that they have similar
limit cycles.

For the experiments in this paper, it is important
that, besides having similar limit cycles, the model
and the robot respond similarly to disturbances. Fig-
ure 15 shows the response to a relative step-up distur-
bance of 5% L0 of both models and the robot. The re-
alistic model and the robot have similar responses in
the steps following the disturbance: a decrease in step
time, an increased in step time, finally convergence
back to the nominal step time. The SLIP model, on
the other hand, responds with a sequence of two short
steps, a long step, a short step, and then failure. This
shows that the SLIP model does not capture the dis-
turbance response of the physical robot well, while
the realistic model does.

Based on these two comparisons, we believe that
the realistic model is valid and that the effects of
swing-leg retraction on the realistic model transfers
over to the robot. To further validate the results
of this study, we would implement additional swing-
leg retraction rates and measure all the performance
metrics addressed in this paper.

Figure 14: Comparison of the hip trajectory of the SLIP model,
realistic model and robot, all with a normalized retraction rate
of 0.62 and running at a normalized speed of 0.38. The robot’s
hip trajectory are of 108 consecutive steps, with the horizontal
hip position defined to be zero at liftoff. The white areas indi-
cate the average duration of the flight phase of the robot and
the grey areas indicate the stance phase.

8.2 Effect of Controller Implementa-

tion

For the robot and the realistic model, we selected a
particular hand-tuned feedback controller based on
a variety of criteria: disturbance rejection behavior,
ease of implementation, ease of tuning, compatibility
with swing-leg retraction, etc. . . . This controller is
not uniquely suitable for this study, and results ob-
tained are not necessarily applicable to other robots
using different controllers. However, testing the robot
with this controller gives us an initial indication of
how performance criteria are affected by swing leg
retraction rate; it is a first step in the general un-
derstanding of the effects of swing leg retraction. If
in the future, similar tests are performed using other
controllers and similar results are obtained, it may
be assumed that these effects are general and hold
for most controllers. Alternatively, if the results of
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Figure 15: The response in step time, measured from liftoff
to liftoff, of the SLIP model, realistic model and robot on a
relative step-up disturbance of 5% L0 while running at a nor-
malized speed of 0.33. The robot response is shown for four
separate trials. The step time of the robot is measured with a
resolution of 5 ms. The robot and the realistic model show a
decrease in step time at the step-up followed by an increased
step time for the following steps. The SLIP model has a dif-
ferent response in step time and falls in the 4th step after the
disturbance.

other controllers are very different, this can lead to
the interesting conclusion that the effects of swing leg
retraction are highly dependent on specific aspects of
controller implementation.

Note that in a previous study26 we began to ex-
plore the effect of swing leg retraction on the over-
all energetic efficiency in a manner that is, in some
sense, independent of the particular controller. In
that study, we measured the effect of SLR on the
cost of transport of (locally) optimal gaits, and thus
established an approximate lower bound on cost of
transport to which robots with other efficient con-
trollers can be compared. As mentioned previously,
we found that the results were consistent with those
of the present study.

8.3 Are the trends of the models con-

sistent?

This question is discussed separately for the different
performance metrics in Sections 3.3, 5.3, 6.3, and 7.3.
In summary:

• The SLIP model correctly predicts that a modest
swing-leg retraction rate will improve both sta-
bility and disturbance rejection, and it correctly
identifies the shape of many trends in a qualita-
tive sense. However, because it does not make
an accurate quantitative prediction of the loca-
tion of extreme points for any curve, it cannot be
used to predict whether increasing the retraction
rate from a certain positive value will improve or
degrade stability or disturbance rejection.

• The prismatic leg model does not predict the
trends observed in the realistic model for impact
loss, impulse magnitude, or impulse angle; in all
of these cases, it even gets the direction of the
optimal retraction rate wrong.

• The kneed leg model correctly predicts the
trends observed in the realistic model for impact
loss, impulse magnitude, and impulse angle.

One might argue that it is obvious that the re-
sults of the prismatic leg model would not agree with
the realistic model due to fundamental differences in
their morphology. But clearly, differences in morphol-
ogy cannot always preclude agreement between sim-
ple models and realistic models or physical robots, or
it is unlikely that the SLIP model would be such a
popular model in the literature. Because it is difficult
to assess a priori and on intuitive grounds whether
a given model simplification will accurately predict
trends of a more realistic model, we believe it is im-
portant to study realistic running models in conjunc-
tion with simple models. Simple models may be used
to help identify new phenomena or explain known
behaviors, but in either case the extent of agreement
with more realistic models must be studied in order
for the results to be most useful for application to
running machines.
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8.4 Optimal retraction rate

In this paper, we investigated the effect of the swing-
leg retraction rate on the following six performance
metrics: impact losses, cost of transport, impact
forces, the risk of slipping, stability, and disturbance
rejection. The retraction rate has a substantial effect
on all but one of these performance metrics, namely
the cost of transport, for which the maximal effect is
less than 5%. For all the other studied performance
metrics, there is a substantial improvement by swing-
ing the leg at a non-zero retraction rate compared to
no retraction. However, the maximal improvement
for each performance metric is found at a different re-
traction rate. For the realistic model, there are even
performance metrics that require a negative retrac-
tion rate for the optimal performance. This presents
a trade-off when selecting the retraction rate, which
is in agreement with Karssen et al. 14 .

The results of this paper also showed that the ef-
fect of swing-leg retraction is very dependant on leg
morphology, especially for the performance metrics
that are strongly affected by the touchdown dynam-
ics. For a kneed leg morphology, the mass distribu-
tion also affects the effect of swing-leg retraction. As
a result, we cannot recommend any simple formula
for selecting an overall optimal retraction rate. If the
control system is designed such that retraction rate is
a relatively independent parameter, the “optimal” re-
traction rate will likely depend on the specific design
of the robot, the particulars of the rest of the control
system, and the relative importance of the different
performance metrics. The retraction rate should be
chosen accordingly, based on simulation and experi-
ment.

Figure 16 summarizes all the results obtained us-
ing the realistic model and is useful for selecting the
optimal retraction rate. For Phides, we are not inter-
ested in demonstrating energetic efficiency, we have
not noticed severe problems with slipping at impact,
and there are not particular concerns about impact
forces damaging the robot. We believe Phides’ great-
est contribution would be in the area of robustness
against typical real-world disturbances such as an un-
even floor, so we would choose a moderate positive
retraction rate near ω = 0.4, which is a compromise
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Figure 16: The effect of swing leg retraction rate on all perfor-
mance metrics for the realistic model running at normalized
average horizontal speed 0.42. Metrics for which lower values
are better have been inverted (negative) so that the the optimal
value corresponds with the maximum of each plot. All axes are
scaled between 0 and the most extreme value of the metric.

among low maximum eigenvalue magnitude, low set-
tling time, and high mean steps to fall under random
step disturbances. Under this controller, the robot
would exhibit quick recovery and few falls when sub-
ject to the perturbations of common outdoor terrain
such as asphalt, sidewalks, and low grass.

9 Conclusion

In this paper, we showed how the benefits of swing-
leg retraction depend on the retraction rate for simple
and realistic mathematical models validated against
a physical robot. Based on these results we conclude
that for the kneed leg morphology and parameters
used in this study:

• Swing-leg retraction can be used to decrease the
impact energy loss, but the overall effect on effi-
ciency, as measured by mechanical cost of trans-
port, is small.

• Swing-leg retraction can decrease touchdown
forces and increase footing stability, as estimated
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by impact impulses.
• Swing-leg retraction can increase several mea-
sures of stability and disturbance rejection, and
can, to a limited extent, increase all measures
simultaneously.

• The optimal retraction rate depends heavily on
which metrics of running performance are valued
and the specifics of the systems; generalizations
are difficult to generate.

More generally, we conclude that:

• A prismatic leg is not a satisfactory simplifica-
tion of a kneed leg when considering the touch-
down impact event; the impact dynamics of the
two models are fundamentally different.

• The SLIP model may be a useful template for
prediction of running behaviors such as hip tra-
jectories19, but it is not a satisfactory simplifica-
tion of a general running robot for the study of
some complex behaviors like stability and distur-
bance rejection.

• Indeed, such relationships may defy general
trends as they are strongly dependent on the
robot morphology, parameters, and controller.
Robot designers must use accurate models of
their own machines to predict the effect of swing
leg retraction on these behaviors.
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