Progress of Theoretical Physics, Vol. 60, No. 1, July 1978
 The Effects of the $1 p_{3 / 2}$ Core Excitations
 Kazuhisa Fujrta and Toshiya Komoda
 Department of Physics, College of Science and Engineering, Aoyama Gakuin University, Tokyo 157

(Received November 16, 1977)

 from the $1 p_{1} / 2$ core orbit in addition to
 almost all low-lying states in ${ }^{99} \mathrm{Y}$, etc., are well explained by the present model. The effect of this extension of the configuration space is reflected more strongly on the transition rates. $M 1$ and $E 3$ transitions which are forbidden in the $\left(0 g_{9 / 2}, 1 p_{1 / 2}\right)^{n}$ configuration space can be
 and compared with the experimental data. In some particular transitions in the heavier nuclei, the drastic discrepancies are obtained between the calculated results with and without
the $1 p_{3 / 2}$ core excitations. the $1 p_{3 / 2}$ core excitations

§ 1. Introduction

 shell-model, it has been assumed that the ${ }^{88} \mathrm{Sr}$ nucleus is an inert core and all low-lying states arise from the motion of several valence protons above $Z=38$ closed-shell. Such a description was first used to explain the observed level structure of ${ }^{90} Z \mathrm{r}^{2}{ }^{n, 2}$ Actually, the χ^{2}-fittins method in the $\left(O_{g_{9 / 2}, 1} 1 p_{1 / 2}\right)^{n}$ configuration space has been successful in the calculations of the energy levels and some other properties of the $N=50$ nuclei. ${ }^{3) \sim 8}$

Recently, however, it was pointed out that the above configuration space is not sufficient to explain some energy levels of these nuclei. ${ }^{8), 9}$ For example, the second 2^{+}excited state in ${ }^{90} Z r$ cannot be reproduced by the ($\left.0 g_{9 / 2}, 1 p_{1 / 2}\right)^{2}$ configuration. It was suggested that some core excited configurations are necessary to explain the second 2^{+4} state. $^{8)}$ Dedes and Irvine ${ }^{10,11}$ calculated the positive parity levels of this nucleus using a $2 p-2 h$ basis. In their calculation, this nucleus was

 $1 p_{3,2}$ orbit. In order to explain the detailed properties of the $N=50$ nuclei, it seems necessary to extend the configuration space.
Vergados and Kuo ${ }^{13}$ have calculated the energy levels of ${ }^{89} \mathrm{Y}$ taking account of both proton and neutron excitations from the ${ }^{88} \mathrm{Sr}$ core. From their result
 tron excitations. Therefore, it is expected that the low-lying levels in the $N=50$ nuclei which have several protons outside the ${ }^{85} \mathrm{Sr}$ core can also be described by taking only proton excitations into account. Thus in the present paper, we assume that 50 neutrons form the closed shell. The purpose of our work is to study the effects of the proton excitations from the ${ }^{88} \mathrm{Sr}$ core on the energy levels and other properties of the $N=50$ nuclei.
In § 2, the model space and the other assumptions which are adopted in our
 transition rates are compared with the experimental values in $\S \S 3$ and 4 , respec tively.

The model

 understand some nuclear properties of the $N=50$ nuclei. The single particle ener-

 subshell and the $1 p_{3 / 2}$ orbit is assumed to be closed. On the other hand, in the calculation B), the core excitations are allowed, and one and two protons are

 as follows,

$$
\left(0 g_{9 / 2}, I p_{1 / 2}\right)^{n}
$$

where $n=Z-38$ and $m=0,1$ and 2 .

 However, we are obliged to use a semiempirical interaction in this work because

 veit (K-K) interaction ${ }^{14)}$ which has a hard core and is expressed as
where the radial dependence of $V_{k}(k=t$ or $s)$ are given by

Suffices t and s indicate spin triplet and singlet, respectively.
eters are

$$
\alpha_{k}\left(\mathrm{fm}^{-1}\right)
$$

These parameters are adjusted to reproduce the two-body scattering data. This
 We ${ }^{14,15)}$

We employ the separation method ${ }^{16)}$ with separation distances 0.925 fm for the
triplet state and 1.025 fm for the singlet state to treat the hard core, and calculate two-body matrix elements using the harmonic oscillator wave function with an oscillator constant $\nu=m \omega / \hbar=0.228 \mathrm{fm}^{-2}$. This $K-K$ interaction was given firstly with the assumption that it acts only in the relative s state. ${ }^{\left.14,1_{5}\right)}$ In this paper, however, we apply this interaction to all states with possible relative orbital angular

 әл!̣! to separation distance.

 the observed energy levels of ${ }^{89} \mathrm{Y},{ }^{90} \mathrm{Zr}$ and ${ }^{91} \mathrm{Nb}$, simultaneously. Adopted values

 calculation A). Therefore, any differences between the calculated results with the
 core excitations.

§ 3. Energy levels

$$
\begin{aligned}
& 2.5214 \\
& 2.4021
\end{aligned}
$$

$$
2.4021
$$

The Effects of the $1 p_{3 / 2}$ Core Excitations 181

Nucleus	A	B	Exp. ${ }^{\text {b) }}$
${ }^{89} \mathrm{Y}$	6.600	6. 862	7.068
${ }^{00} \mathrm{Zr}$	14.205	14.544	15. 434
${ }^{91} \mathrm{Nb}$	20.153	20.421	20.592
${ }^{82} \mathrm{Mo}$	28.198	28.591	28.058
${ }^{93} \mathrm{Tc}$	34.549	34.835	32.162
${ }^{98} \mathrm{Ru}$	42.984	43.342	38.397

two configuration spaces defined in the previous section. The results are compared
with the experimental ones in Figs. $1 \sim 3$ for the even Z nuclei and in Figs. $4 \sim 6$
for the odd Z nuclei.
The binding energies of the ground state of these nuclei relative to the ${ }^{88} \mathrm{Sr}$
core are shown in Table I. In the theoretical values, the Coulomb effect calculated
with the harmonic oscillator model ${ }^{17 \%}$ is taken into account. The agreements with
the experimental ones are good except

 nuclei indicates that the two-body

 paper are a little too attractive. Since, [еиове!p әцұ fo әио чวеә 'ләләмоч

 energy level structure relative to the ground state energy.

3.1.1. The nucleus ${ }^{90} \mathrm{Zr}$
 culated energy spectrum agrees fairly well with the observed one. ${ }^{18)}$

$+$
∞ ${ }^{\circ} \mathrm{Zr}$. Columns A and B give our results calculated in A) configurations within the the $1 p_{3 / 2}$ core excitations. All levels are

182
a multiplying factor named S was introduced phenomenologically to improve large depression of the ground state energy. Note that in our calculation, we do not use any phenomenological assumptions such as the parameter S.
From comparison of the energy levels in the calculations A) and B) in Fig. 1, it is found that the $1 p_{3 / 2}$ core excitations bring about two important effects on the low-lying energy levels of ${ }^{90} \mathrm{Zr}$
Firstly, the second 2^{+}state observed at 3.33 MeV can be reproduced very well by including the $1 p_{3 / 2}$ core excitations. The configuration with one-hole in the Secondly, the level order between the first 2^{+}and first 5^{-}states is reproduced in the calculation B). It could not be explained within the $0 g_{9 / 2}-1 p_{1 / 2}$ configuration space even with the χ^{2}-fitting method [for example, Gloeckner and Serduke, Fig. 1 of Ref. 8)]. The drastic reordering of the levels in the calculation B) is principally caused by the lowering of the first 2^{+}level. The admixture of the

It is seen in Fig. 1 that the first 3^{-}state which appears at 2.748 MeV in experiment cannot be explained even if the $1 p_{3 / 2}$ core excitations are taken into account. It is interpreted as the collective state induced by octupole vibration because of its small excitation energy and large E3 transition rate to the ground state (see Table II in § 4.1).

3.1.2. The nucleus ${ }^{92}$ Mo

 tal energy spectra ${ }^{(99,20)}$ of this nucleus are shown in Fig. 2.
By including the $1 p_{3 / 2}$ core excitations, the second 0^{+}and the second 2^{+}states are strongly affected. The core excited configurations, especially the one-particle core excited configuration, have large contribution on these states. The importance of the one-particle excitation from the $1 p_{3 / 2}$ orbit to the $1 p_{1 / 2}$ orbit was pointed out in the calculation of the magnetic moment of the odd mass nuclei with the simple perturbation theory. ${ }^{21), 227}$ The important effect also shown in our calculation. ConәЧ7 'әуе7s $+Z$ puocas әчд Suturaд

ESL

$M 1$ transition rate between this state and the first 2^{+}state can be interpreted to some extent by the large

 the second 0^{+}state could not be reproduced by the calculation including only two-particle core excitation. ${ }^{233}$
 citations is very small in the other low-lying positive and negative parity

 -xafu! aq pinous ajefs sict fo satuad
 as the 3 state $1 n$ Zr.
 -Oəyt อц7 noəmpaq uosinedumo \forall
 tra
Fig. 3.

 excitations affect mainly the higher excited levels.

$$
\text { 3.2. Odd } Z \text { nuclei }
$$

3.2.1. The nucleus ${ }^{59} \mathrm{Y}$

 within the $0 g_{9 / 2}-1 p_{1 / 2}$ configuration space. Thus the observed levels other than the
above two states must be associated with the core excitations.

This nucleus has been investigated in terms of various models including the core excitations ${ }^{11,25}$ and the reasonable results have been obtained in these calculations. It is found that the result with our simple shell-model calculation is as good as these ones. The theoretical and experimental energy spectra ${ }^{26,27}$ are shown in Fig. 4.

18
 influenced by the $1 p_{3 / 2}$ core
excitations. The second $3 / 2^{-}$

 state appears in the calculation A)
 from the one-proton excitation from the $0 f_{5 / 2}$ orbit because of the large $0 f_{5 / 2}$ singleparticle strength in proton pick-up reaction, ${ }^{33)}$ this state is out of our consideration. 3.2.3. The nucleus ${ }^{93} \mathrm{Tc}$
A comparison between the theoretical and experimental energy spectra ${ }^{30,, 34) \sim 36)}$
f this nucleus is given in Fig. 6 .
It seems that in this nucleus the $1 p_{3 / 2}$ core excitations have less effect on the energy levels than in the case of ${ }^{91} \mathrm{Nb}$. This indicates that the low-lying energy levels are almost explained with the $\left(O g_{9 / 2}, 1 p_{1 / 2}\right)^{5}$ configuration. Only $3 / 2^{-}$states
 at $1.193,1.499$ and 1.787 MeV are tentatively assigned to be $3 / 2^{-}$or $1 / 2^{-}$states from (${ }^{3} \mathrm{He}, \mathrm{d}$) and (d, n) reaction data. ${ }^{35) \sim 38)}$ Our calculation shows two $3 / 2^{-}$levels at 1.162 and 2.075 MeV , but it is not sure to which observed levels the calculated ones correspond.

Electromagnetic transition rates of six $N=50$ nuclei are calculated with the wave functions obtained in the previous section and are compared with the experimental ones in Tables II \sim VIII. The radial matrix elements of the transition operator are computed in the harmonic oscillator model with the oscillator constant

 $\left(0 g_{9 / 2}, 1 p_{1 / 2}\right)^{n}$ configuration for the two-body matrix elements 'Level' proposed by Gloeckner and Serduke ${ }^{8)}$ and are shown also in these tables, for comparison.

 orbidden, since the states are described with the $\left|0 g_{9 / 2}^{n-2}(\nu, J) 1 p_{1 / 2}^{2}(0) ; J^{+}\right\rangle$and $\mid 0 g_{9 / 2}^{2} ;$

The Effects of the $1 p_{3 / 2}$ Core Excitations
calculation of the magnetic moment with the simple perturbation theory, ${ }^{21,22)}$ the importance of the one-particle excitation from the $1 p_{3 / 2}$ orbit to the $1 p_{1 / 2}$ orbit was

 without the core excitations and compared with the experimental data. Some of these transition rates are improved fairly well by taking account of the $1 p_{3 / 2}$ core excitations as shown later.

$$
\text { 4.1. Transition rates in even } Z \text { nuclei }
$$

 affected considerably by the $1 p_{3 / 2}$ core excitations. Concerning the calculated
 tions, but the enhancement of the $8^{+} \rightarrow 6^{+}$and $6^{+} \rightarrow 4^{+}$transitions is rather small. In the low-spin positive parity states (i.e., $0^{\frac{+}{4}}, 2^{+}$and 4^{+}states), the $B(E 2)$
 Table II. Reduced transition probabilities $B(\sigma L)^{\mathrm{a}}$) in ${ }^{9} \mathrm{Zr}$.

σL	$J_{i} \rightarrow J_{f}$	$B(\sigma L){ }_{\text {exp }}$	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) \times 2^{\text {b }}$ b
M1	$2_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}$		-	5.62×10^{-2}	-
	$4^{-} \rightarrow 5^{-}$		5.45×10^{-1}	1.19	5.45×10^{-1}
$E 2$	$2_{3}{ }^{+} \rightarrow 0_{1}{ }^{+}$	$49^{\text {c) }}$	-	1.70	-
	$8^{+} \rightarrow 6^{+}$	$60.5 \pm 2.5^{(1)}$	16.53	25.04	16.53
	$6^{+} \rightarrow 4^{+}$		41.27	76.67	41.27
	$\mathrm{2}_{2}{ }^{+} \rightarrow 0_{2}{ }^{+}$		-	3.62	-
	$\rightarrow 0_{1}^{+}$		-	0.93	-
	$4^{+} \rightarrow 2_{1}{ }^{+}$		59.68	122.80	59.68
	$2_{1}{ }^{+} \rightarrow 0_{2}{ }^{+}$	$150^{\text {er }}$	49.02	96.48	33.38
	$\rightarrow 0_{1}{ }^{+}$	$135^{\text {c }}$, e)	2.91	15.49	18.56
E4	$4^{+} \rightarrow 0_{1}^{+}$	$\approx 3.8 \times 10^{4 \mathrm{fj}}$	1.42×10^{3}	2.74×10^{3}	9.06×10^{8}
E3	$8^{+} \rightarrow 5^{-}$	$31 \pm 3^{\text {b }}$	-	42.18	--
	$3^{-} \rightarrow 0_{1}{ }^{+}$	$\left.(15.4 \pm 0.4) \times 10^{8} \mathrm{~h}\right)$	-	2.01×10^{3}	-
	$5^{-} \rightarrow 2_{1}{ }^{+}$		-	2.31	-
E5	$5^{-} \rightarrow \mathrm{O}_{2}{ }^{+}$		5.80×10^{5}	7.98×10^{5}	1. 18×10^{6}
	$\rightarrow 0_{1}^{+}$	33×10^{6} i)	9.65×10^{5}	1.11×10^{6}	3.68×10^{5}

[^0]tion $\left|O g_{9 / 2}^{2}(J-2) 1 p_{1 / 2} 1 p_{3 / 2}^{-1} ; J^{+}\right\rangle$which has non-vanishing $E 2$ matrix element with the leading component in the $(J-2)^{+}$state, i.e., $\left|0 g_{9 / 2}^{2} ; J-2^{+}\right\rangle$. On the other hand, in the high-spin positive parity states (i.e., 6^{+}and 8^{+}states), the mixing of the bove one-proton core excited configuration is not large
Rather strong observed $E 2$ transitions from the first and third 2^{+}states to the ground state and $E 4$ transition from the first 4^{+}state to the ground state re not reproduced even in the extended model space including the $1 p_{3 / 2}$ core excitations. These are caused by the fact that the ground state is dominated by the configuration $\left|1 p_{1 / 2}^{2} ; 0^{+}\right\rangle$in our calculation. No configurations which have nonvanishing $E 2$ and $E 4$ matrix elements with this configuration appear in the 2^{+}and 4^{+}states even in the extended model space. To explain the above transition
 2.1) may be necessary because this will decrease the amplitude of the $\left\langle 1 p_{1 / 2}^{2} ; 0^{+}\right\rangle$ component and, instead, increase that of the $\left|0 g_{9 / 2}^{2} ; 0^{+}\right\rangle$component in the ground state.

The $B(E 3)$ value for the $8^{+} \rightarrow 5^{-}$transition is well explained by our calculation. The $B(E 3)$ value is very sensitive to the mixings of the core excited configurations as already mentioned. Since the 5^{-}state is dominated by the configuration $10 g_{9 / 2}$ $\left.1 p_{12} ; 5^{-}\right\rangle$, the mixing of the one-proton core excited configuration of about 13%
To explain the $3^{-} \rightarrow 0_{1}{ }^{+}$transition quantitatively, more extension of the shell-
model space is necessary because of the highly collective nature of the 3^{--}state
The $E 0$ transition is observed between the first excited 0^{+}and ground 0 states in ${ }^{90} \mathrm{Zr}$ (Table III). Courtney and Fortune ${ }^{127}$ indicated using the wave functions deduced from the experimental spectroscopic factors that this $E 0$ matrix ele-

 of the core excited configurations. Calculation A) (without core excitation) is a little more favorable than calculation B).

[^1]opouoy iL puv on?!ng 'Y

∞

The Effects of the 1p $p_{3 / 2}$ Core Excitations 189

σL	$J_{i} \rightarrow J_{j}$	$B(\sigma L){ }_{\text {exp }}$	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) \times x^{6)}$
M1	$2_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}$	$\left(6.3_{-1.8}^{+2.0}\right) \times 10^{-2 \mathrm{e})}$	0.	8.85×10^{-4}	0.
	$4^{-} \rightarrow 5^{-}$		5.45×10^{-1}	6.87×10^{-1}	0.
E2	$2_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}$	$143_{-54}^{+57^{\mathrm{e}}}$	0.52	0.09	3.32
	$\rightarrow 0_{1}{ }^{+}$	$75_{-54}^{+22^{\text {c }}}$	0.87	5.91	2.21
	$8^{+} \rightarrow 6^{+}$	$32.4 \pm 1.2^{\text {a }}$	16.08	15.07	12.05
	$6^{+} \rightarrow 4^{+}$	$78.5 \pm 2.5^{\text {d }}$	40.18	37.19	29.84
	$\mathrm{O}_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}$		0.66	2.69	0.
	$4^{+} \rightarrow 2_{1+}^{+}$	$<583{ }^{\text {e }}$	58.10	52.84	42.93
	$2_{1}{ }^{+} \rightarrow 0_{1}{ }^{+}$	$234 \pm 40^{\text {e }}$	52.31	59.03	58.13
	$11^{-} \rightarrow 9^{-}$	$85 \pm 5^{\text {f) }}$	33.05	42.79	33.05
	$9^{-} \rightarrow 7^{-}$		57.38	72.72	57.38
	$7^{-} \rightarrow 5^{-}$		59.26	73.53	58.45
E3	$2_{2}{ }^{+} \rightarrow 5^{-}$		-	1.50×10^{2}	-
	$8^{+} \rightarrow 5^{-}$		-	6.08	-
	$3^{-} \rightarrow 0_{1}+$		-	3.66×10^{2}	-
	$5^{-} \rightarrow 2_{1}^{+}$		-	3.74×10^{1}	-
E5	$5^{-} \rightarrow \mathrm{O}_{2}{ }^{+}$		8.53×10^{5}	8.69×10^{5}	1.35×10^{3}
	$\rightarrow 0_{1}^{+}$		6.93×10^{5}	5.60×10^{5}	1.89×10^{5}

[^2]measured. ${ }^{43)}$ As has been mentioned before, this $M 1$ transition is forbidden in the $\left(0 g_{9 / 2}, 1 p_{1 / 2}\right)^{4}$ configuration space. By including the $1 p_{3 / 2}$ core excitations, non-zero value is given for this transition rate, but the experimental value cannot be explained sufficiently.
The calculated $B(M 1)$ for the $4^{-} \rightarrow 5^{-}$transition has non-zero value in the calculations A) and B, but vanishes in the χ^{2}-fitting result. This is caused by

 are caused from the property of the $M 1$ operator mentioned before.

σL	$J_{i} \rightarrow J_{f}$	$B(\sigma L)_{\text {exp }}$	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) \times{ }^{\text {a }}{ }^{\text {b }}$
M1	$4_{2}{ }^{+} \rightarrow 4_{1}{ }^{+}$	$\left.(9.4 \pm 0.6) \times 10^{-2} \mathrm{c}\right)$	0.	3.62×10^{-5}	0.
	$4^{-} \rightarrow 5^{-}$		5. 45×10^{-1}	4.01×10^{-1}	0.
E2	$8^{+} \rightarrow 6^{+}$		1.34	0.95	1.04
	$6^{+} \rightarrow 4_{2}{ }^{+}$		34.47	34.24	33.81
	$\rightarrow 4_{1}{ }^{+}$	$2.56 \pm 0.24^{\text {c }}$	3.98	2.85	1.99
	$4_{2}{ }^{+} \rightarrow 4_{1}{ }^{+}$		32.68	33.07	33.66
	$\rightarrow 2^{+}$		93.53	93.28	92.98
	$4_{1}{ }^{+} \rightarrow 2^{+}$		6.44	4.80	2.35
	$2^{+} \rightarrow 0^{+}$		77.14	79.89	78.01
	$11^{-} \rightarrow 9^{-}$		0.	111.71	79.07
	$9^{-} \rightarrow 7^{-}$		0.	126.47	95.94
	$7^{-} \rightarrow 5^{-}$		77.48	100.87	81.06
	$4^{-} \rightarrow 5^{-}$		0.	0.66	128.40
E3	$8^{+} \rightarrow 5^{-}$		-	1. 68×10^{-1}	-
	$3^{-} \rightarrow 0^{+}$		-	5.00×10^{2}	-
	$5^{-} \rightarrow 2^{+}$		-	3. 86×10^{1}	-
$E 5$	$5^{-} \rightarrow 0^{+}$		4.89×10^{5}	2.86×10^{5}	8.86×10^{4}

a) $B(E L)$ values are given in units of $e^{2} \cdot \mathrm{fm}^{2 L}$ and $B(M L)$ values in units of $\mu_{0}{ }^{2} \cdot \mathrm{fm}^{2(L-1)}$.
b) These values are calculated with the wave functions for the χ^{2}-fitting two-body matrix elements
'Level' in Ref. 8).
c) Ref. 20).

 properties of the matrix element of single particle even tensor operator in the

The Effects of the $1 p_{3 / 2}$ Core Excitations 191

Table VI. Reduced transition probabilities $B(\sigma L)^{\text {a) }}$ in ${ }^{89} \mathrm{Y}$.							
σL	$J_{i} \rightarrow J_{j}$	$B(\sigma L)$ exp.	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) x^{2}$		
M1	$3 / 2_{2}{ }^{-} \rightarrow 1 / 2^{-}$		-	0.24	-		
	$5 / 2^{-} \rightarrow 3 / 2_{1}{ }^{-}$		-	0.04	-		
	$3 / 2{ }_{1}{ }^{-} \rightarrow 1 / 2^{-}$		--	1. 36	-		
	$9 / 2_{2}{ }^{+} \rightarrow 9 / 2_{1}{ }^{+}$		-	0.02	-		
	$11 / 2^{+} \rightarrow 9 / 2_{1}{ }^{+}$		-	0.13	-		
	$7 / 2_{1}{ }^{+} \rightarrow 5 / 2^{+}$		-	3.41×10^{-3}	-		
	$\rightarrow 9 / 2{ }_{1}{ }^{+}$		-	0.06	-		
E2	$3 / 2_{1}{ }^{-} \rightarrow 1 / 2^{-}$	$65.59{ }^{\text {b }}$	-	19.16	-		
	13/2+ ${ }^{+} 9 / 2_{2}{ }^{+}$		-	2.84	-		
	$\rightarrow 9 / 2_{1}{ }^{+}$		-	32.66	-		
	$9 / 2{ }^{+} \rightarrow 9 / 2_{1}{ }^{+}$		--	17.22	--		
	$5 / 2^{+} \rightarrow 9 / 2{ }^{+}$		-	31.58	-		
E3	$5 / 2^{-} \rightarrow 9 / 2{ }^{+}$		-	589.73	-		
	$3 / 2_{1}{ }^{-} \rightarrow 9 / 2_{1}{ }^{+}$		-	38.80	-		
	$7 / 2_{2}{ }^{+} \rightarrow 1 / 2^{-}$	$\left.\left.5.15 \times 10^{4} \mathrm{~b}\right), \mathrm{c}\right)$	-	6.60×10^{2}	-		
	$7 / 21^{+} \rightarrow 1 / 2^{-}$	$\left.3.66 \times 10^{4} \mathrm{bl}, \mathrm{c}\right)$	-	1.29×10^{3}	-		
	$5 / 2^{+} \rightarrow 1 / 2^{-}$	$\left.2.58 \times 10^{4} \mathrm{~b}, \mathrm{c}\right)$	-	1.97×10^{3}	-		
M4	$9 / 2_{1}{ }^{+} \rightarrow 1 / 2^{-}$	5.32×10^{4} b)	5.09×10^{5} d	5.72×10^{5}	5.09×10^{5} d)		
a) $B(E L)$ values are given in units of $e^{2} \cdot \mathrm{fm}^{2 L}$ and $B(M L)$ values in units of $\mu_{0}^{2} \cdot \mathrm{fm}^{2(L-1)}$.							
b) Ref. 26).							
c) Ref. 51).							
d) Single particle value $\left\|\left(0 g_{8 / 2}\\|M 4\\| 1 p_{1 / 2}\right)\right\|^{2} / 10$.							

in the calculation A$)$, but $\left\langle g_{9 / 2}^{5}(v=5,17 / 2) 1 p_{1 / 2} ; 9^{-}\right\rangle$in the calculations B$)$ and x^{2}-fitting. Since the main component in the 11^{-}and 7^{-}states has the form $10 g_{9 / 2}^{5}$ $\left.\left(v=3, J^{\prime}\right) 1 p_{1 / 2} ; J^{-}\right\rangle$, where $J^{\prime}=21 / 2$ for $J=11$ and $J^{\prime}=13 / 2$ for $J=7$, the differences of the $B(E 2)$ values for the $11^{-} \rightarrow 9^{-}$and $9^{-} \rightarrow 7^{-}$transitions among three cases reduce also to the properties of the $E 2$ matrix element mentioned above. first $3 / 2^{-}$state, which is regarded as $2 p-1 h$ state, ${ }^{23), 29)}$ to the ground state. For this transition, the $B(E 2)$ value calculated from the matrix element between the respective main components $\left|1 p_{1 / 2} ; 1 / 2^{-}\right\rangle$and $\left|1 p_{1 / 2}^{2}(0) 1 p_{3 / 2}^{-1} ; 3 / 2^{-}\right\rangle$, is $35.85 e^{2} \cdot \mathrm{fm}^{4}$. The mixing of the $10 g_{9 / 2}^{2}(0) 1 p_{3 / 2}^{-1} ; 3 / 2^{-}>$configuration in the first $3 / 2^{-}$state reduces the calculated $B(E 2)$ from the above value.
All of three measured $E 3$ transitions in this nucleus are very strong. It can
 ured ones are large compared with those for other possible transitions. Especially, In this sense, the large $B(E B)$ values for the $5 / 2^{+\dagger} \rightarrow 1 / 2^{-}$and $7 / 2_{1}^{\dagger} \rightarrow 1 / 2^{-}$transi-

the first $5 / 2^{+}$and the first $7 / 2^{+}$states are interpreted as the members of states constructed from the coupling of the first 2^{+}state in the ${ }^{88} \mathrm{Sr}$ core and one proton in the $0 g_{9 / 2}$ orbit, i.e., $\left|2^{+} \otimes 0 g_{9 / 2} ; J^{+}\right\rangle$. Since the ground $1 / 2^{-}$state is the state constructed from the coupling of the ${ }^{88} \mathrm{Sr}$ ground state and the $1 p_{1 / 2}$ proton, i.e., $\left.10^{+} \otimes 1 p_{1 / 2} ; 1 / 2^{-}\right\rangle$, the E3 transition from two states considered above to the ground state is forbidden in this model.
The $B(M 4)$ value between the first $9 / 2^{+}$and the ground $1 / 2^{-}$states in this nucleus is also calculated and compared with the experimental one. ${ }^{26)}$ The inclusion of the $1 p_{3 / 2}$ core excitations gives the slight enlargement of $B(M 4)$ value from the single-particle value $\left[B(M 4)_{A}\right.$ in column 5].
The inclusion of the $1 p_{3 / 2}$ core excitations gives a remarkable effect on the

 $B(M 1)_{B}$ that the effect of the $1 p_{3 / 2}$ core excitations is not uniform in each transition, i.e., some transitions are enhanced and the others are hindered. Especially, the Table VII. Reduced transition probabilities $\left.B(\sigma L)^{a}\right)$ in ${ }^{9} \mathrm{Nb}$.

σL	$J_{i} \rightarrow J_{f}$	$B(\sigma L))_{\text {exp }}$	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) \times 2{ }^{\text {b }}$)
M1	$11 / 2^{+} \rightarrow 13 / 2^{+}$		0.	6.63×10^{-3}	0.
	9/22 ${ }^{+} \rightarrow 9 / 2_{1}{ }^{+}$		0.	4.31×10^{-5}	0.
	$\rightarrow 7 / 2^{+}$		0.	3.08×10^{-3}	0.
	$7 / 2^{+} \rightarrow 9 / 2_{1}{ }^{+}$		0.	5.24×10^{-4}	0.
	$15 / 2^{-} \rightarrow 17 / 2^{-}$		5.25×10^{-1}	1. 26	5.25×10^{-1}
	$11 / 2^{-} \rightarrow 13 / 2^{-}$		5.34×10^{-1}	5.22×10^{-1}	5.34×10^{-1}
	$\rightarrow 9 / 2^{-}$		0.	4.22×10^{-1}	0.
	$3 / 2^{-} \rightarrow 5 / 2^{-}$		5.95×10^{-1}	7.61×10^{-2}	5.95×10^{-1}
	$\rightarrow 1 / 2^{-}$		0.	1.04	0.
E2	21/2+ h $^{+17 / 2^{+}}$	$106 \pm 11^{\text {c }}$	33.05	50.72	33.05
	$17 / 2^{+} \rightarrow 13 / 2^{+}$		57.38	105.64	57.38
	$13 / 2^{+} \rightarrow 9 / 2_{2}{ }^{+}$		57.25	101.77	40.93
	$\rightarrow 9 / 2_{1}{ }^{+}$		2.02	10.52	17.40
	$9 / 22^{+} \rightarrow 7 / 2^{+}$		78.09	150.20	59.45
	$17 / 2^{-} \rightarrow 13 / 2^{-}$	$32.0 \pm 1.9^{\text {a }}$	16.53	21.38	16.53
	$13 / 2^{-} \rightarrow 9 / 2^{-}$	$71.1 \pm 3.2^{\text {e }}$	41.27	55.31	41.27
	$9 / 2^{-} \rightarrow 5 / 2^{-}$	$\leq 178^{\text {f }}$	59.68	77.12	59.68
	$5 / 2^{-} \rightarrow 1 / 2^{-}$		51.94	66.38	51.94
M4	$1 / 2^{-} \rightarrow 9 / 2_{1}{ }^{+}$	2.60×10^{5} f)	1.92×10^{5}	2.34×10^{5}	3.18×10^{4}

[^3]$B(M 1)$ for the $3 / 2^{-} \rightarrow 1 / 2^{-}$transition calculated with the $1 p_{3 / 2}$ core excitations x^{2}-fitting]
 configuration space vanishes [calculations A) and χ^{2}-fiting] The stretched $E 2$ cascade $21 / 2^{+} \rightarrow 17 / 2^{+} \rightarrow 13 / 2^{+} \rightarrow 9 / 2_{1}{ }^{+1}$ is observed in
${ }^{91} \mathrm{Nb}^{30,40)}$ The $E 2$ transitions between these positive parity states are considerably enhanced by the $1 p_{3 / 2}$ core excitations (Table VII). In the $\left(0 g_{9 / 2}, 1 p_{1 / 2}\right)^{3}$ configuration space, the strengths of the transitions in the $E 2$ cascade $17 / 2^{-} \rightarrow 13 / 2^{-} \rightarrow 9 / 2^{-}$ $\rightarrow 5 / 2^{-} \rightarrow 1 / 2^{-}$in ${ }^{91} \mathrm{Nb}$ are theoretically almost equivalent to the corresponding strengths of the transitions in the $E 2$ cascade $8^{+} \rightarrow 6^{+} \rightarrow 4^{+} \rightarrow 2^{+} \rightarrow 0^{+}$in ${ }^{90} \mathrm{Zr}$ or ${ }^{2}$ Mo. Note that the experimental $B(E 2)$ values for the $17 / 2^{-} \rightarrow 13 / 2^{-}$and $13 / 2^{-}$ $\rightarrow 9 / 2^{-}$transitions in ${ }^{91} \mathrm{Nb}$ have very similar values to the experimental ones for he $8^{+} \rightarrow 6^{+}$and $6^{+} \rightarrow 4^{+}$transitions in ${ }^{92}$ Mo (Table III).
We calculate also the $M 4$ transition rate between the isomeric first $1 / 2^{-}$ and the ground $9 / 2^{+}$states in ${ }^{91} \mathrm{Nb}$. The agreement with the experimental value is good in the calculation B).

σL	$J_{i} \rightarrow J_{J}$	$B(\sigma L)_{\text {exp }}$	$B(\sigma L)_{A}$	$B(\sigma L)_{B}$	$B(\sigma L) \times 2^{\text {b }}$)
M1	9/22 ${ }^{+} \rightarrow 9 / 2_{1}{ }^{+}$	$65.9 \pm 4.0^{\text {c }}$	0.	2.53×10^{-8}	0.
	$11 / 2^{+} \rightarrow 13 / 2^{+}$		0.	7.19×10^{-7}	0.
	$\rightarrow 9 / 2{ }^{+}$		0.	3.17×10^{-8}	0.
	$7 / 2^{+} \rightarrow 9 / 22^{+}$		0.	2.09×10^{-5}	0.
	$3 / 2^{-} \rightarrow 5 / 2^{-}$		5.95×10^{-1}	9.03×10^{-2}	5.95×10^{-1}
	$\rightarrow 1 / 2^{-}$		0.	1.16	0.
E2			32.35	30.09	23.89
	$17 / 2^{+} \rightarrow 13 / 2^{+}$		56.17	51.65	41.12
	$13 / 2^{+} \rightarrow 9 / 2^{+}$		59.26	62.33	61.89
	$7 / 2^{+} \rightarrow 9 / 2_{1}{ }^{+}$		101.23	106.31	108.50
	25/2- ${ }^{-}$21/2-		44.91	57.55	44.91
	$21 / 2^{-} \rightarrow 17 / 2^{-}$		59.40	76.83	62.15
	$17 / 2^{-} \rightarrow 13 / 2^{-}$	$11.4 \pm 0.9^{\text {d) }}$	1.42	12.49	2.81
	$13 / 2^{-} \rightarrow 9 / 2^{-}$		4.25	80.10	34.82
	$9 / 2^{-} \rightarrow 5 / 2^{-}$		6.89	126.71	96.14
	$5 / 2^{-} \rightarrow 1 / 2^{-}$		77.40	96.83	78.79
M4	$1 / 2^{-} \rightarrow 9 / 2_{1}{ }^{+}$	$\left.4.21 \times 10^{5} \mathrm{e}\right)$	6.10×10^{5}	6.83×10^{5}	5.75×10^{4}

[^4]more complicated than the case of ${ }^{91} \mathrm{Nb}$. These complicated features are reflected
 From the comparison of the theoretical $B(E 2)$ values of the negative parity states in the calculations A) and B), it is seen that the values for the $17 / 2^{-}$ $\rightarrow 13 / 2^{-}, 13 / 2^{-} \rightarrow 9 / 2^{-}$and $9 / 2^{-} \rightarrow 5 / 2^{-}$transitions are much enhanced by the $12_{3 / 2}$ ore excitations. Especially, the $17 / 2^{-} \rightarrow 13 / 2^{-}$transition rate is well explained. In the $17 / 2^{-}$and $13 / 2^{-}$states, various core excited states which have the seniority four for the $\left(0 g_{9 / 2}\right)^{4}$ term, i.e., $\left.\log _{9 / 2}^{4}\left(v=4, J^{\prime}\right) 1 p_{1 / 2}^{2}(0) 1 p_{3 / 2}^{-1} ; J^{-}\right\rangle$, are mixed sizably and the $E 2$ matrix elements between these configurations give the constructive effect on the $B(E 2)$ value altogether. On the other hand, the en-

 \cdot (\forall иой

иognjouog © §

 from the $1 p_{3 / 2}$ orbit in addition to the $\left(0 g_{9 / 2}, 1 p_{1 / 2}\right)^{n}$ configuration.

 on the energy levels is diminished with the growth of proton number.

 әч孔 ふu!p

 $0_{9 / 2}-1 p_{1 / 2}$ configuration space.

The Effects of the $1 p_{3 / 2}$ Core Excitations 195
state becomes dominant in the wave function of these states by the influence of

 evels mentioned above is consistent with the result of the χ^{2}-fitting method in the $0 g_{9 / 2}-1 p_{1 / 2}$ configuration space. ${ }^{8)}$
In our calculations, the single-particle energy difference between the $I p_{1 / 2}$ and $p_{3 / 2}$ orbits was taken to be 0.60 MeV . This value is smaller (about one-half) han the usual one. ${ }^{11,53,54)}$ Since, as mentioned in $\S 3$, the attractive part of the wo-body matrix elements of the $K-K$ interaction is rather large, it was necessary to ake the small value for the single-particle energy difference $\varepsilon\left(1 p_{1 / 2}\right)-\varepsilon\left(1 p_{3 / 2}\right)$ in order that the $1 p_{3 / 2}$ core excitations may be effective.
The authors wish to thank Professor T. Sebe of Hosei University for reading the manuscript and making several suggestions. They gratefully acknowledge many useful discussions with Dr. K. Arita.

[^5]K. Fujita and T. Komoda

30) M. Grecescu, A. Nilsson and L. Harms-Ringdahl, Nucl. Phys. A212 (1973), 429.	
1)	H. Verheul and W. B. Ewbank, Nuclear Data Sheets B8 (1972), 477.
32)	J. L. Horton, C. L. Hollas, P. J. Riley, S. A. A. Zaidi, C. M. Jones and J. L. C. Ford, Jr., Nucl. Phys. A190 (1972), 362.
33)	R. Chapman, J. E. Kitching and W. Mclatchie, Nucl. Phys. A196 (1972), 347.
34)	D. C. Kocher, Nuclear Data Sheets B8 (1972), 527.
35)	R. L. Kozub and D. H. Youngblood, Phys. Rev. C4 (1971), 535.
36)	Y. Shamai, D. Ashery, A. I. Yavin, G. Bruge and A. Chaumeaux, Nucl. Phys. A197 (1972), 211.
37)	J. Bommer, H. Fuchs, K. Grabish, H. Kluge and G. Roschert, Nucl. Phys. A173 (1971), 383.
38)	P. J. Riley, J. L. Horton, C. L. Hollas, S. A. A. Zaidi, C. M. Jones and J. L. C. Ford, Jr., Phys. Rev. C4 (1971), 1864.
39)	B. A. Brown, D. B. Fossan, P. M. S. Lesser and A. R. Poletti, Phys. Rev. C13 (1976), 1194.
40)	B. A. Brown, P. M. S. Lesser and D. B. Fossan, Phys. Rev. C13 (1976), 1900.
41)	W. D. Schneider, K. H. Gonsior and C. Günther, Nucl. Phys. A249 (1975), 103.
42)	J. Bellicard, P. Leconte, T. H. Curtis, R. A. Eisenstein, D. Madsen and C. Bockelman, Nucl. Phys. A143 (1970), 213.
43)	C. T. Papadopoulos, A. G. Hartas, P. A. Assimakopoulos, G. Andritsopoulos and N. H. Gaugas, Nucl. Phys. A254 (1975), 93.
44	A. B. Tucker and S. O. Simmons, Nucl. Phys. A156 (1970), 83.
45)	R. P. Singhal, S. W. Brain, W. A. Gillespie, A. Johnston, E. W. Lees and A. G. Slight, Nucl. Phys. A218 (1974), 189.
46)	K. G. Löbner, Nucl. Phys. 58 (1964), 49.
47)	Phan-Xuan-Ho, J. Bellicard, P. Leconte and I. Sick, Nucl. Phys. A210 (1973), 189.
48)	R. Bauer, P. Ring and J. Speth, Contributions to International Conference on Nuclear Physics, Munich, 1973, p. 106.
49)	S. Cochavi, J. M. McDonald and D. B. Fossan, Phys. Rev. C3 (1971), 1352.
50)	P. H. Stelson and L. Grodzins, Nuclear Data A1 (1965), 21.
51)	S. P. Fivozinsky, S. Penner, J. W. Lightbody, Jr. and D. Blum, Phys. Rev. C9 (1974), 1533.
52)	C. V. K. Baba, D. B. Fossan, T. Faestermann, F. Feilitzsch, M. R. Maier, P. Raghavan, R. S. Raghavan and C. Signorini, Nucl. Phys. A257 (1976), 135.
53)	B. Sorensen, Nucl. Phys. A177 (1971), 465.
54)	R. J. Lombard, Nucl. Phys. A117 (1968), 365.

[^0]: a) These values are calculated with the wave functions for the χ^{2}-fitting two-body matrix elements
 b) $\mu^{2} \cdot \mathrm{fm}^{2}(L-1)$

 c) Ref. 18)

[^1]: transition was

[^2]: a) $B(E L)$ values are given in units of $e^{2} \cdot \mathrm{fm}^{2 L}$ and $B(M L)$ values in units of $\mu_{0}{ }^{2} \cdot \mathrm{fm}^{2(L-1)}$.
 b) These values are calculated with the wave functions for the χ^{2}-fitting two-body matrix elements
 'Level' in 'Level' in Ref. 8).

[^3]: b) These values are calculated with the wave functions for the χ^{2}-fitting two-body matrix elements 'Level' in Ref. 8).
 c) Ref. 41)
 d) Ref. 40)
 e) Ref. 52)
 f) Ref. 31)

[^4]: b) These values are calculated with the wave functions for the χ^{2}-fitting two-body matrix element These values are
 'Level' in Ref. 8).
 c) Ref. 41)

[^5]: References

