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Summary. The theory of wobble excitation for a nonrigid earth is extended 
to include the effects of the earth’s fluid core and of the rotationally induced 
pole tide in the ocean. The response of the solid earth and oceans to 
atmospheric loading is also considered. The oceans are shown to be affected 
by changes in the gravitational potential which accompany atmospheric 
pressure disturbances and by the load-induced deformation of the solid earth. 
These various improvements affect the excitation equations by about 10 per 
cent. Atmospheric and oceanic excitation can be computed using either an 
angular momentum or a torque approach. We use the dynamical equations 
for a thin fluid to relate these two methods and to develop a more general, 
combined approach. Finally, geostrophic winds and currents are shown to 
be potentially important sources of wobble excitation, in contrast to what 
is generally believed. 

1 Introduction 

The Earth’s instantaneous pole of rotation follows a roughly circular path in its motion about 
the Earth’s mean figure axis. Practically all of the power in this polar motion is concentrated 
at periods of 12 month (the ‘annual wobble’ with an amplitude of 0.1 arcsec) and 435 
sidereal day (the ‘Chandler wobble’, also with a typical amplitude of 0.1 arcsec). The annual 
wobble is apparently due to seasonal effects in the atmosphere and oceans. Most important 
is the large seasonal pressure variation over Asia associated with the monsoon (see, e.g. 
Kikuchi 1971; Siderenkov 1973; Wilson & Haubrich 1976a; Jochmann 1976; Daillet 1981). 
Also demonstrably important are the oceanic response to this pressure variation, the seasonal 
variation in ground water storage (Van Hylckama 1970), and, to a lesser extent, the seasonal 
change in sea-level height accompanying the wind-driven circulation of the ocean (0’ Connor 
1980). The effects of winds and ocean currents are unknown, but are generally assumed to 
be small, since it is erroneously believed (see below) that geostrophic winds and currents 
cannot excite wobble. 

The Chandler wobble is an apparently randomly exicited free mode of the Earth. 
Although the motion was discovered nearly a century ago by S. C. Chandler, no single 
geophysical mechanism, meteorological or otherwise, has been shown capable of maintaining 
the wobble at its observed amplitude (see, e.g. Lambeck 1980). From an analysis of global 
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atmospheric pressure data (and by including a model for the oceanic response to this 
pressure) Munk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hassan (1 961) concluded that perturbations in the global pressure distribu- 
tion, which are so important in exciting the annual wobble, seem to play only a minor role 
in driving the Chandler wobble. In contrast, Wilson & Haubrich (1976a) recently repeated 
the analysis using a longer data set and including the additional effects of mountain torques, 
and found that atmospheric excitation may, in fact, be important. However, the effective- 
ness of Wilson & Haubrich’s excitation depended to a large extent on an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad hoc adjustment 
of the data meant to correct for an apparently inadequate analysis over Asia, and the 
strength of their conclusions suffers as a result. No other sources of meteorological or 
oceanographic excitation of the Chandler wobble have been considered, to my knowledge. 

This paper is the first step in a re-evaluation of the meteorological and oceanographic 
excitation of the Earth‘s wobble. The initial goal was to strengthen (or reject) Wilson & 
Haubrich’s conclusions by essentially repeating their analysis using a more reliable interpo- 
lation of the meteorological data over Asia. However, a preliminary theoretical study 
showed that the theory of wobble excitation for a non-rigid earth (see, e.g. Munk & 
MacDonald 1960; Lambeck 1980) needed to be extended in a number of ways. In this paper, 
which is a description of these preliminary results, we extend the theory to account more 
completely for the Earth’s fluid core and the rotationally induced pole tide in the ocean 
(Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2), for the load-induced deformation of the solid earth (Section 3), and for the 
response of the ocean to the gravitational perturbations which accompany atmospheric 
pressure fluctuations (Section 4). These extensions affect the equations for wobble 
excitation by about 10 per cent. 

The effects of winds and currents on wobble can be computed using either an angular 
momentum approach or a torque approach. In Section 5 we use the first-order Eulerian 
equations of motion for a fluid to relate these two methods to one another. In Section 6 we 
develop a hybrid technique which uses both methods. Finally, by considering the effects of a 
variable thickness atmosphere and ocean, we conclude (Section 7), that geostrophic winds 
and ocean currents are potentially important sources of wobble excitation, in contrast to 
what is generally believed. I am at present applying the theoretical results described in this 
paper in an analysis of atmospheric and synthetic oceanographic data. Results will be 
reported in a future paper. 

2 The excitation function 

The equations for wobble excitation for a non-rigid earth separate into terms proportional 
to the wobble amplitude and terms dependent on relative particle displacements within the 
Earth. The displacement terms are usefully combined into a single ‘excitation function’. In 
this section we derive the excitation equations and the excitation function which describe 
the wobble of the earth (or, what is observationally more pertinent, of the mantle) at 
periods of a few hundred days or longer. Our derivation will extend earlier results by 
including more completely the effects of the pole tide in the ocean and motion in the fluid 
core. Although we will refer specifically to excitation by the atmosphere and oceans, our 
results are sufficiently general to accommodate any long- period geophysical excitation 
process. 

The effects of the atmosphere and oceans on the rotation of the mantle can be easily 
understood qualitatively. Suppose there are no astronomical torques on the oceans, the 
atmosphere or the solid earth (‘solid earth‘ is used here and below to denote the mantle 
and core). Then, any change in the angular momentum of the atmosphere and oceans is 
accompanied by an opposite change of equal magnitude in the angular momentum of the 
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solid earth. Physically, this angular momentum exchange is the result of atmospheric and 
oceanic torques on the solid earth. If the solid earth were rigid, this change in its angular 
momentum would appear entirely as a perturbation in the angular velocity of rotation, and 
the wobble could be easily determined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor a non-rigid earth some of the angular momentum 
is also absorbed into a perturbation of the Earth’s inertia tensor and into an incremental 
rotation of the fluid core relative to the mantle. Clearly, to determine the wobble in this case 
we must first model these deformational contributions to the angular momentum. The 
deformation is induced both by the incremental centrifugal force which accompanies the 
change in the Earth‘s rotation, and by the surface stresses and gravitational effects caused by 
displacements in the atmosphere and oceans. The response of the Earth to centrifugal 
effects is considered in this section. The deformation caused by the direct forcing from the 
atmosphere and oceans is considered in Section 3. 

We begin by defining an equilibrium reference state for the solid earth t atmosphere t 
oceans where, for simplicity, the system is assumed to be rigidly rotating with angular 
velocity R= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&!i and to have an inertia tensor 

The angular momentum of our equilibrium earth (‘earth’ refers to the solid earth + 
atmosphere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt oceans) is 

Ho = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&!Cẑ . (2.2) 

Note that our equilibrium state ignores all mean flow. This omission is not likely to be 
important here since mean particle velocities in the atmosphere and oceans are much smaller 
than the velocity due to the earth’s rotation. 

We now slightly perturb the system in some arbitrary, time-dependent manner. We 
assume only that the period of the perturbation is much longer than one day. To describe 
the resulting motion we attach a coordinate system to the earth in an as yet unspecified 
way (we will uniquely define this system later on). Suppose that this coordinate system 
rotates with respect to inertial space with angular velocity 

w = Q ( m l , m 2 ,  1 + m 3 )  (2.3) 

where each mi<  1 (i.e. the incremental rotation is small). The new inertia tensor in this 
system is 

I = I o + c  (2.4) 

where each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcij < C. The perturbation of the angular momentum of the Earth relative to the 
equilibrium state is, to first order in small quantities 

8H = I 0  * ( w  -R) tCDS2 + h. (2.5) 

Here, 

h =  p r x v  (2.6) 1 
is the angular momentum due to motion relative to our perturbed coordinate system and 
p is the material density. 

We now explicitly define our coordinate system so that there is no contribution to h from 
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relative motion in the mantle. This is the ‘Tisserand mean mantle’ coordinate system (see, 
e.g. Munk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& MacDonald 1960) and is equivalent to orienting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw along the mean rotation axis 
of the mantle. In this way h is easier to compute and, since astronomical observatories rotate 
with the mantle, the resulting w can be usefully compared with observations. Specifically, 
m, and m2 represent wobble of the mantle (i.e. a reorientation of the mantle’s rotation axis 
relative to fixed points in the mantle) and m3 represents a change in the rate of rotation of 
the mantle. Lioudle’s equation for the conservation of angular momentum in our rotating 
coordinate system is (Munk & MacDonald 1960; Lambeck 1980) 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 -Q) x Ho +Q x S H = O  (2.7) 

where we have assumed there to be no external torque on the earth. Using (2.3) for w and 
(2.5) for SH and keeping only those terms first order in small quantities, (2.7) reduces to 

A 
atm, +m2 = $1 

atm2 - m1= $ 2  

S2[C-A] 

A 

Q[C- A] 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S2 
-a,m3 = $3 

where 

$1 = C-at(hi + n C 1 3 ) t  n(h2 + Q C Z ~ ) ] / S ~ ~ [ C - A I  

q2 = [-at(h2 + Q C ~ ~ ) - W  + S ~ C ~ ~ ) I I R ~ [ C - A I  

$3 = -at [h3 + S ~ C ~ ~ ] / C ~ ~ .  

(2.9) 

The apparent separation in (2.8) between geophysically measurable quantities (the $J 
and astronomically measurable quantities (the mi) is deceptive. The perturbed rotation of the 
mantle produces an incremental centrifugal force which causes displacements in the solid 
earth and ocean (there is probably very little response in the atmosphere because of its low 
density). Consequently, the $i will include terms which depend on the mi. Assuming the 
solid earth and oceans respond linearly to this centrifugal force, then to first order in the 
mi 

J/i(t) =Pijmj(t) + $Xt) (2.10) 

where the Pii are linear differential or integral operators in the time domain which depend 
on the dynamics of the solid earth and oceans, and the $; represent all contributions to qi 
not induced by centrifugal forces. For an elliptical earth without oceans Pi3 = P23 = P31 = 
PS2 = 0 and there is no spin-wobble coupling (that is, a change in m3 does not induce a 
change in ml or m2 or vice versa). For an earth with an equilibrium ocean these spin-wobble 
coefficients are non-zero but each is smaller than Pl l ,  PZ2 or P33 by a factor of at least 2000 
(Dahlen 1976). The theoretical results of Carton (1982) and Carton & Wahr (1982) indicate 
that at periods of a few hundred days or longer the contributions to the Pii from the deep 
ocean differ from the equilibrium contributions by at most a few per cent. Consequently, 
using (2.10) we find that in this long-period limit 

(2.11) 
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(2.12) 
1 
- atm3-P3,m3 =$ti. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsz 

P33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis almost entirely due to the induced angular momentum of the fluid core. For an 
elliptical core-mantle boundary and no frictional coupling, the core does not participate in 
the incremental rotation (see Merriam 1980; Yoder, Williams & Parke 
Smith 1981)and 

where C, is a principal moment of inertia of the core. Consequently, (2. 

c-c, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c s z  atm3 = $I?. ____  

981; Wahr, Sasao & 

(2.13) 

2) becomes 

(2.14) 

Equation (2.14) describes the geophysical effects on the length of day and will not be 
considered further here. 

Excitation of wobble is described by (2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). Using equations (4.9), (4.1 l ) ,  (4.16) and 
(5.1) of Smith & Dahlen (1981) we find that at long periods and for an earth with an elastic 
mantle, a homogeneous incompressible fluid core and an equilibrium ocean, the Pij for 
i, j = 1 , 2  reduce approximately to 

A 1  
at 

p,, = p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-c - 
22 - 

C-A 

PI, = (a5S12/3G[C-A])0.34051 (2.15) 

P,, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a5 S12/3G[C- A]) 0.35092 

where A, is a principal moment of inertia of the core, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the Earth’s radius, and G is the 
gravitational constant. The relative errors in the approximation (2.15) are of order 1/300 
and 1/T where T is the period of the perturbation in days. So, for periods of a few hundred 
days or longer, (2.15) is accurate to better than 1 per cent. 

It is useful to define complex variables 

m = m, + im2 

= $; +i$:. 

Then, using (2.15) in (2.1 1 )  gives [z + l ] m = i X  C-A 52 $ 1  

where 

C - A  - [a5Q2/3G] 0.3464 

Am 
u,, = sz 

(2.16) 

(2.17) 

(2.18) 

is the Chandler wobble frequency for our model earth and A ,  is a principal moment of 
inertia for the mantle. To derive (2.17) we ignored terms of order 

PI, + PZl C-A 

20, Am 
sz- f;r 0.0085 (2.19) 
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which is equivalent to ignoring the ocean-induced ellipticity of the Chandler wobble. These 
terms slightly couple m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ/' to J/i - iJ/L and ml-im2, respectively. 

The close agreement between (2.18) and the observed Chandler wobble frequency (see 
Smith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dahlen 1981) indicates that at frequencies near ucw the results (2.15) for the Pii 
are probably close to the correct values. In this case, (2.17) can be tentatively extended to 
the real Earth by replacing ucw with the observed (complex) frequency 

2n  

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo = - [I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i/2Q] (2.20) 

(Wilson & Haubrich 1976a) where T is the observed period of the Chandler wobble and Q 
is the observed quality factor. (The replacement of u, with uo in (2.17) can be justified 
if the difference between ucw and uo is due to mantle anelasticity or to a non-equilibrium 
ocean response, and if neither the anelastic properties nor the oceanic response are notably 
different at the frequencies u and uo.) Then, using (C-  A ) / A  = 1/304.4, A / A ,  = 1.1 29, 
n/Re (uo) = 435 (see, e.g. Smith & Dahlen 1981) we define the excitation function 

C - A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52 , 1.61 
@ = i  - ____ (- i a, + n)(h'  t a c ' )  

A ,  Re(u0)' =n2 [C-A ]  

where 

(2.21) 

(2.22) 

and the primes imply that the motion induced by the incremental centrifugal force is not 
included, Then (2.1 7) becomes 

[ i t 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 9 (2.23) 

(replacing uo with Re (uo) in the denominator of @ in (2.21) introduces errors in Q and so in 
m of less than 1 per cent). 

This result (2.23) is the equation for wobble excitation which we are seeking. Given Q as a 
function of time, we may invert (2.23) to find the wobble parameter, m. Note that m is 
resonant at the Chandler wobble frequency, uo. In fact, (2.23) demonstrates that it is easiest 
to excite wobble at periods close to 2n/Re (uo) = 435 day. To examine geophysical 
excitation mechanisms it is more useful to work with @ than with m. In this case we use 
(2.23) together with observations of m to find an astronomically 'observed' time series for 
the excitation function, Q (see, e.g. Wilson & Haubrich 1976b). The results may then be 
compared with known geophysical contributions to Q computed using (2.2 1). 

This derivation of the equations for wobble excitation (2.21) and (2.23) extends earlier 
results by including the effects of the core and equilibrium ocean on the effective 
excitation function, Q. The most important new result is the factor of A ,  instead of A in the 
denominator of (2.21), which increases Q by about 10 per cent. The reason for this factor is 
that the core does not participate in the wobble, and so there is less inertia to resist the 
excitation than there would be if the Earth were everywhere solid. We have also tenatively 
corrected for unmodelled effects in the Earth's dynamical behaviour (i.e. mantle anelasticity 
and a non-equilibrium pole tide) by increasing Q by a factor of [ucw/Re(uo)] -1 or by 
about 2 per cent. 

There are contributions to h' and c' in (2.21) from the atmosphere and oceans and from 
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the load-induced deformation of the solid earth. To emphasize the distinction between these 
contributions, we separate h‘ and c’ into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h’= hL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt hE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c’ =cL t CE 

(2.24) 

where the superscripts L and E refer to the contributions from the atmosphere and oceans 
and from the solid earth, respectively (we will argue in Section 3 that hE = 0). Then, (2.21) 
is equivalent to 

1.61 
( - i  a, t i2)(hL + i2cL + hE t GcE).  

@ =  !22[C-A] 
(2.25) 

The (non-rotationally induced) perturbation in the angular momentum of the atmosphere 
and oceans is 

H L =  hL t cL*Q. (2.26) 

Conservation of angular momentum for the atmosphere and oceans gives 

a t H L t s 2 x ~ L = - ~  (2.27) 

where L is the torque on the Earth from the atmosphere and oceans. It is easy to show from 
(2.26) and (2.27) that 

L = L 1  t iL2 = -(a, t ii2)(hL t i2cL). 

Consequently, (2.25) is equivalent to 

(2.28) 

1.61 
[ i t  t (- i a, + G)(hE + i2cE)]. 

@ =  i22[C-/lA] 
(2.29) 

(The torque result (2.29) could have been derived, as is more usual, by assuming the 
atmosphere and oceans were external to ‘the earth’ and by including L on the right-hand 
side of (2.7). However, in that case the derivation would have been complicated by the fact 
that the equilibrium inertia tensor, represented in our derivation by (2.1), would not include 
contributions from the ocean. There would also have been an offsetting atmospheric and 
oceanic torque on ‘the earth’ due to wobble-induced pressure forces at the surface.) 

More generally, suppose we separate the atmosphere and oceans into two arbitrary 
disjoint volumes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY and W, which are fixed with respect to the solid earth. We then 
generalize (2.25) and (2.29) to 

l h l  
[iLw t (-i a, + i2)(hb t i2cb  t hE + s2cE)] 

@ = G 2 [ C - A ]  
(2.30) 

where h t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2ck is the angular momentum of the fluid in V ,  and L w  represents the torque 
on the solid earth and on V from the fluid in Wplus the rate of flow of angular momentum 
carried out of W by winds and currents. If W = 0 or V =  0, then this hybrid result (2.30) 
reduces to (2.25) or (2.29) respectively. 

The decision of whether to use (2.25), (2.29) or (2.30) to compute 9 must depend on the 
data available. In principle, the angular momentum result (2.25) is most useful, since it uses 
only directly measurable properties (hL and cL) of the atmosphere and oceans. The torque, 
L ,  in (2.29) (and Lw in (2.30)) requires not only observations but also knowledge of how 
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the atmosphere and oceans are coupled to the solid earth. In practice, however, the torque 
approach (2.29) and the hybrid approach (2.30) are potentially useful, since they may be 
less sensitive to inadequate atmospheric data coverage over the oceans than the angular 
momentum approach (see below). We will discuss the angular momentum approach in the 
next section, the torque approach in Section 5 ,  and the hybrid approach in Section 6. 

3 Angular momentum approach 

In this section we discuss the angular momentum representation (2.25) of the excitation 
function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. We first model the load-induced deformation of the solid earth (cE and hE) and 
then express 6 as a function of pressure at the surface of the solid earth and of particle 
velocities within the atmosphere and oceans. 

The solid earth response is induced by pressure and frictional stresses at the earth’s 
surface and by the incremental gravitational forces which accompany surface mass loading. 
Since cE and hE cannot be directly measured, they must be modelled. It is usually tacitly 
assumed that the induced hE for the fluid core is negligible compared with the induced 
f2cE for the solid earth. (hE for the mantle vanishes identically due to the definition of our 
coordinate system.) Although this assumption is likely to be valid, and we will adopt it here, 
the dynamical behaviour of the core is not well enough understood at present to allow us to 
be certain. The assumption is supported by results from the extended nutation and body 
tide model of Sasao, Okubo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Saito (1980) (see, particularly, equations (3.2) and (3.16) of 
Sasao & Wahr 1981, setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  = 3 = 0.) In this model, the induced rotation of the core is 
assumed to be rigid, which is equivalent to assuming that the only normal mode in the core 
which includes appreciable rotation and which is likely to be notably excited by the applied 
force is the ‘free core nutation’. This assumption might be violated in certain frequency 
bands for an inhomogeneous or compressible core, although even in this case the only 
excited core modes of interest to us would be those modes where the ‘average’ rotation 
(i.e. hE) did not vanish. Note that the discussion in Section 2 of the rotationally induced 
motion in the solid earth assumed the core to be homogeneous and incompressible and so 
ignored the possibility of exciting other rotational modes. The good agreement with the 
observed Chandler wobble frequency is comforting in this case but of course not conclusive. 

To model the induced cE we need to examine the surface tractions from the atmosphere 
and oceans. These tractions are caused by pressure forces acting along the local surface 
normal and by frictional shearing stresses acting tangentially to the surface. Since frictional 
stresses in the atmosphere and oceans are much smaller than pressure stresses, and since the 
solid earth‘s response to shear is of the same order of magnitude (in fact somewhat less) than 
its response to radial traction (Molodensky 1977; Saito 1978), we conclude that deforma- 
tion induced by frictional stresses can be ignored. Tangential forces can also be produced 
by pressure acting along a local surface normal which is not exactly in the radial direction. 
The non-radial components of the surface normal are due to the Earth’s elfipticity and to 
topography. Both of these effects cause relative perturbations in the normal of less than 1 
per cent when averaged over a few hundred kilometres. Since low-frequency pressure 
variations are unlikely to have spatial wavelengths of less than a few hundred kilometres, 
and since the month-to-month variation of the 1 = 2, m = 1 spherical harmonic component 
of surface pressure (this is the component which induces cE) is invariably relatively large, we 
conclude finally that tangential tractions can be ignored when computing the induced 
deformation of the solid earth. As we will see (Section 5 )  these tangential tractions cannot 
be ignored when computing the torque on the solid earth, since the predominant radial 
pressure traction gives no net torque. 
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We assume then that the only forces acting on the solid earth are radial pressure and the 

incremental gravitational force accompanying the load. To find the induced cE we assume 
the solid earth responds to these forces as though it were spherical and non-rotating (here, 
again, we must assume that the effects of the unknown core modes are negligible). Then, 
an application of McCaullagh’s theorem (see, e.g. Munk & MacDonald 1960, section 5.2) 
shows that 

(3.1) 
C E =  L 

k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk; is the second degree harmonic potential load Love number for the solid earth. 

a sum of four terms: 
With this result, and using ki = -0.3088 from Dahlen (1976), we organize (2.25) into 

1.12 
@ =  [n2cL t 0.44 in atcL + 1.44 C2 (hL- i atcL)-i 1.44 athL]. 

n2[C-A] 

This result (3.2) extends earlier results by including more completely the effects of the fluid 
core and the rotationally induced pole tide in the ocean, resulting in the overall multiplica- 
tive factor of 1 . 1  2 instead of 1 .OO, and by more completely modelling the effects of load- 
induced deformation of the solid earth, resulting in the term proportional to 0.44iS2 &cL. 
The first correction can be easily made to any previous numerical results for wobble 
excitation by simply increasing the computed excitation function by 12 per cent. The 
second correction is less important since for long periods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 and so atcL is negligible 
compared with ncL. 

Since cL is determined by perturbations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp l ,  in the atmospheric and oceanic density field, 
then the hydrostatic approximation (a ,P ,  = -pig) can be used to express the first term on 
the right-hand side of (3.2) in terms of the incremental pressure, PI, at the surface of the 
solid earth ( g  is the gravitational acceleration at the surface of the solid earth). The third 
term on the right-hand side of (3.2) can be expressed entirely in terms of horizontal winds 
and currents. The reason is that atcL is a global integral with integrand proportional to atpl. 
Using the first-order equation of mass conservation for a fluid (atpl + V. (pov) = 0 where 
v and po are the particle velocity and equilibrium density) and ignoring vertical velocities, 
we replace dtp l  with terms dependent on the horizontal components of the fluid velocity 
(Le. the winds and currents). If we ignore the small terms in (3.2) dependent only on atcL 
and athL, we get finally 

9 @matter + @motion (3.3) 

where 

-1.12a4 
CL = I P, sin2 8 cos 8 exp (ih) d8 dX 

1.12 
@matter = ___ 

g[C-Al SE 
(3.4) 

x cos 8 sin 8 d8 dX dr. ( 3 . 5 )  

Here, u and u are, respectively, the eastward and northward components of the winds and 
currents, SE is the surface of the solid earth, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is the volume of the atmosphere and oceans, 
and 8 and h are colatitude and east longitude. To derive (3.5) we used the fact that the 
velocity normal to the boundary of V (i.e. to S,) is zero. This result for @motion will be 
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modified when we consider the hybrid approach in Section 6 ,  where we assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is no 
longer the entire atmosphere or ocean. 

Time-dependent results for @matter could be found, in principle, using (3.4) together with 
global observations of atmospheric and oceanic pressure at the surface of the solid earth. 
Alternatively, for a barotropic (i.e. constant density) ocean, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI at the ocean floor could be 
found from observations of atmospheric pressure at the air-sea interface plus observations 
of non-steric changes in sea-level. Results for @motion could be computed from (3.5) using 
global observations of winds and ocean currents. 

Unfortunately, none of the necessary oceanic data exist. Furthermore, wind data are 
virtually non-existent over the oceans and so may not permit a reliable global calculation 
of @motion. Only the atmospheric pressure data are sufficiently global (@matter turns out to 
be essentially independent of the pressure over the ocean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- see Section 4) and exist for a 
long enough time period to be reliable. This general lack of data makes the angular 
momentum approach less useful and motivates the derivation of the torque approach in 
Section 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 The response of the ocean to variations in atmospheric pressure 

Because of the lack of necessary data, the excitation function cannot be directly computed 
for the oceans. However, practically all non- tidal and non-rotationally induced displace- 
ments in the ocean are caused by atmospheric effects. Consequently, given the appropriate 
atmospheric data it might be possible to model the behaviour of the ocean and to include 
the results in the integrals (3.4) and (3.5). The required atmospheric data would of course 
come from that portion of the atmosphere directly over the ocean where observations are 
extremely sparse. Although this is a difficulty for modelling wind-induced oceanic motion, 
it is less of a problem for computing the effects of atmospheric pressure. The reason is that 
at long periods the ocean probably responds to variations in atmospheric pressure as though 
it were an inverted barometer (or nearly so, as we shall see) and with very little induced 
currents. Since in this limit there is no net variation in the pressure at the ocean floor, the 
contribution to @matter from the oceans will cancel the contribution from that portion of the 
atmosphere above the oceans, and the total @matter will depend only on the atmospheric 
pressure variations over land. 

For an equilibrium ocean, however, the inverted barometer assumption is not strictly 
valid. One previously recognized problem is that a constant must be added to the inverted 
barometer solution in order to conserve mass. Another problem is that perturbations in 
atmospheric density, which cause variations in atmospheric pressure, also produce changes 
in the atmospheric gravitational potential. This potential acts to deform the oceans and its 
effects must be added to the direct forcing from the surface pressure. In addition, the solid 
earth responds to the pressure variations and to the perturbed gravitational potential, as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as to the resulting ocean load. This solid earth response also affects the oceans. Finally, a 
consistent treatment must include the gravitational self-attraction of the oceans. 

Consider an applied atmospheric pressure variation at the Earth's surface 

where the Y;" are spherical harmonics (their normalization is unimportant) and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu;" are 
independent of position. Then (see, e.g. Farrell 1972) the accompanying perturbation in 
the atmospheric gravitational potential at the earth's surface is 
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where pE = 5.517 g ~ m - ~  is the mean density of the solid earth. To derive (4.2) we used 
4sGa = 3g/pE. The total induced change in sea-level height can be expanded as 

Nh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, t )  = C q;n(t) y;n(e, A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1, m 

and so the gravitational potential from the ocean will be 

(4.3) 

where po = 1.030 g cm-j is the mean density of the ocean. Both the atmospheric and the 
oceanic response will load, and so deform, the solid earth. The total gravitational potential, 
VE, and radial surface displacement, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, due to the solid earth deformation are 

where the k;  and hi are load Love numbers (see, e.g. Longman 1962; Farrell 1972). 
We now assume that the ocean responds to the applied pressure and gravitational forces 

as though it were in a continual state of equilibrium adjustment. This is the traditional 
approximation and is probably valid at long periods (see, e.g. Munk & MacDonald 1960; 
Wunsch 1972). Then there are no induced currents and the gravitational potential energy 
at the ocean surface will balance the surface atmospheric pressure to within a spatial 
constant. Since the total perturbation of the sea surface is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq + UE, and since the change in 
potential at the surface due to moving the surface through the unperturbed gravitational 
potential of the earth is - g(q t UE), we find 

where 

0 overland 

1 over the ocean 
(4.7) 

is the ocean function and d is the arbitrary constant necessary to conserve mass in the 
ocean (i.e. d is determined from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). So: 

where y; = 1 t k; - hi. 

deformational effects are small, and the inverted barometer + constant approximation 
Note that for localized pressure disturbances, where 1 is large, the gravitational and 

q=v--+ [ g:o dl (4.9) 
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is valid. However, for global disturbances, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is small, the effects of gravity and 
deformation become surprisingly important. For example, for I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 we find 7; = 1.7 and 
the ratio of gravitational and deformational effects to pressure effects is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3p0  1 .7 /5p~  a l/S. 
For an equilibrium ocean, however, the relative importance of these gravitational and 
deformational effects is reduced due to oceanic self-attraction. It turns out, in fact, that 
for an atmospheric pressure disturbance solely over the ocean, and for no net change in 
atmospheric mass, the ocean will respond exactly as an inverted barometer. To see this, 
suppose Pa =Pa  so that there is no pressure variation over land. Then (4.8) is equivalent 
to 

If there ,is no net change in atmospheric mass then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, [ . + 3 = o  

where the integral in (4.1 1) is over the entire globe, and so (4.10) is 

Substitution shows that the solution to (4.12) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pa q + - = o  

gpo 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

which is simply the usual inverted barometer response. In this case there is no change in 
pressure at the ocean floor and so no net contribution to Gmatter. This is the reason Gmatter 
is nearly (see below) insensitive to variations in atmospheric pressure over the ocean. The 
reason the response is an inverted barometer in this case is because in the inverted barometer 
state every increase in atmospheric mass is balanced by an identical decrease in the under- 
lying oceanic mass. So, the gravitational attraction from the extra atmospheric mass is 
exactly balanced by the negative self-attraction due to the absence of oceanic mass. (Note 
that for a non-equilibrium ocean there is no guarantee that the gravitational and 
deformational effects can be ignored.) 

There are, then, two situations where the gravitational and deformational effects are 
important. First, the ocean responds to pressure variations over land, since these variations 
are associated with perturbations in the gravitational potential. Second, if there is a spatially 
uniform change in atmospheric pressure everywhere over the ocean there will be an induced 
non-uniform response in sea-level. This is in contrast to the inverted barometer + constant 
solution (4.9) where there is no effect on sea-level. The point here is that because of the 
irregular ocean-continent distribution, a uniform incremental pressure over the oceans is 
associated with a non-uniform perturbation in the gravitational potential which in turn 
deforms the ocean. 

We conclude from this discussion that the net contribution to Gmatter from the atmo- 
sphere and oceans is completely determined by the atmospheric pressure over the continents 
and by the net change in atmospheric mass over the oceans. This latter quantity can be 
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found by subtracting the net change in atmospheric mass over the continents from an 
estimate of the total change in atmospheric mass. 

To get an idea of the possible effects of the gravitational and deformational terms in 
(4.8), we numerically solve (4.8) and (4.9) for the case where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pa = 5 sin28 cosh. (4.14) 

In this case Pa is proportional to ( Y :  + Y; ' )  and so the gravitational and deformational 
effects are relatively large. On the other hand, only 1 = 2, m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 1 terms in the surface 
pressure contribute to in (3.4), and so (4.14) is a relevant choice for the problem of 
wobble excitation. Fig. l(a) shows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPa as a function of latitude and longitude. If there were 
no oceanic response to Pa, then using P, =Pa in (3.4) would give 

(4.15) 

We now ignore all gravitational and deformational effects on the ocean and numerically 
compute P1 =Pa + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApogq, using the inverted barometer + constant response (4.9). The ocean 
function, 59, is found by partitioning the Earth's surface into rectangular elements of 
dimensions 5" in longitude x 2.5" in latitude, setting V= 1 for any element with an average 
elevation above sea-level of less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 m, and setting V =  0 otherwise. Numerical results for 
P I  =Pa + pogq are shown in Fig. l(b). Note that PI  is small and constant at the ocean floor, 
as we might expect. Using these results for P, in (3.4) and numerically integrating gives 

= - [$& :] [0.237 + i 0.0171. (4.16) 

We see from (4.15) and (4.16) that the effect of the ocean is to reduce by about 75 
per cent. This is consistent with the fact that about 70 per cent of the Earth's surface is 
ocean. 

Next, we include gravitational and deformational effects and compute the induced sea- 
level using an iterative technique to solve (4.8). At the j t h  iteration, 1) is approximated by 
n j ,  where nj is the solution to 

(4.17) 

and qo is the inverted barometer + constant solution (4.9). Convergence is fast and we find 
that only three iterations are needed for better than 1 per cent accuracy. To speed up the 
calculations we truncate the sum over 1 in (4.17) to 1< 7. This does not seem to notably 
affect our results, probably because Pa has power only at angular degree 1 = 2. In Fig. l(c) 
we show the difference between our results for P, =Pa + pogg computed here and the 
inverted barometer + constant solution (Fig. 1 b). This difference, of course, vanishes 
over land. By comparing Figs l(a), l(b) and l(c) we conclude that the gravitational and 
deformational effects on sea-level are roughly 5-10 per cent of the pressure-induced effects. 
Using the results shown in Fig. l(c) in (3.4) gives 

h a t t e r  = -  [ ~ giClf:) - [0.261 + i 0.0121. (4.18) 
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Atmospheric effects on the Earth’s wobble zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA363 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Comparing (4.18) with (4.16) we see that the wobble excitation function is modified by 
about 10 per cent due to the gravitational and deformational effects on the ocean. Using 
real atmospheric data for Pa, I have found that typically the effect on @matter is nearer 
5 per cent, due probably to the fact that for the pure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 2 Pa considered in this example, 
the induced gravitational potential from the atmosphere is relatively large. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Torque approach 

The angular momentum result for @motion (3.5) for the atmosphere is potentially sensitive 
to inadequate wind data over the oceans. Consequently, it is useful to discuss the torque 
result (2.29) for the excitation function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. To evaluate the torque L ,  on the solid earth 
in terms of directly measurable quantities, we derive an angular momentum balance 
equation for the atmosphere and oceans. Although we specifically refer to the atmosphere 
at first, the results are extended later to the ocean. 

5.1 THE ATMOSPHERE 

Consider some atmospheric volume, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, which is fixed to the solid earth and does not 
follow the fluid. The lower surface, S,, is the outer surface of either the solid earth or 
the ocean, and S, represents the surface dividing W from the rest of the atmosphere. 
S, vanishes when W is the entire atmosphere. The Eulerian equations of motion for 
the fluid in W are (see, e.g. Pedlosky 1979) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

[dt 
p - v t 2 s l x  v + 51 x (sl x r) = p g -  VP + V - T  

where p is the total density of the fluid, v is the instantaneous particle velocity, P is the 
total fluid pressure, g is the gravitational acceleration due to the underlying earth (g is 
directed into the Earth), and T represents all frictional stresses. We take g to be constant 
and ignore all other body forces. We assume that our fluid is perturbed by surface 
tractions on either Sa or S,. 

For simplicity we linearize these equations in terms of small departures from an 
equilibrium state. Let 

P = P O + P l  

P = P ,  tP, 

where the subscripts 0 and 1 denote the equilibrium value and the non-equilibrium 
deviation, respectively. We assume that in the equilibrium state v = T = 0. (The effects of a 
mean flow, vo, on our equation for the angular momentum balance will be to modify the 
angular momentum flux term in (5.6) below. This term has no effect on the Earth’s wobble, 
as we shall see in Section 6.) To first order in these deviations we get 

pO[a ,v+2s lx  v] + p l s l x  ( a x  r )=p lg -VP1  + V-T.  (5.3) 

Figure 1. (a) Shows Pa = 5 sin28 cosh as a function of latitude and longitude. The contour interval is 
1 .O. We apply this pressure field, Pa, to the ocean and compute the oceanic response. (b) Shows the total 
pressure at the surface of the solid earth,computed by ignoring all gavitational and deformational effects 
on the ocean (i.e. by using 4.9). The contour interval is 1.0. (c) Shows the difference in the total seafloor 
pressure between the equilibrium solution (4.8) and the inverted barometer + constant solution (4.9) 
These results reflect the effects of the gravitational and deformational forcing which accompanies the 
applied pressure, Pa. The contour interval is 0.1. 
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The first-order perturbation in the angular momentum of W is 

H W =  j w [ p o r x v + p l r x ( ~ x r ) ] ~ ~ .  

Taking j W r  x (5.3) dVand using (5.4) together with 

= - V.(POV) 

and the divergence theorem, we get 

(5.4) 

(5 .5 )  

~ , H ~ + Q ~ H ~ =  ' p , r x g d ~ +  r x i i P , d S + J  r x i i P , d S  
!W Jsa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASl 

Jsa Is, 
- r x (n.T)dS- r x (n.T)dS + [ n.vpo[Qr2-rr.Q] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'Sl 
( 5 . 6 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn represents the normal to either S, or Sl and is chosen to point into W. The terms 
on the right-hand side of (5.6) represent, in order, a gravitational torque, pressure torques at 
the Earth's surface and from the surrounding atmosphere, frictional torques at the Earth's 
surface and from the surrounding atmosphere, and a flux of angular momentum out of W 

and into the surrounding atmosphere. We can separate the normal to the solid earth and 
oceans into 

i i= i io+6n (5.7) 

where no would be the surface normal if the solid earth were everywhere in hydrostatic 
equilibrium: 

-g + Q x  (Qx r) 

I - g + Q x (Q x r) I 
no = 

and 6n is the correction to li due to topography. Assuming the atmosphere to be thin 
and using a hydrostatic approximation for P, gives 

If we let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW be the entire atmosphere, then Sl + 0, and at H w  + Q x Hw is the total 
external torque on the atmosphere. In this case, the torque L on the solid earth and oceans 
from the atmosphere is 
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The first term on the right-hand side of (5.10) and (5.9) represents a partial cancellation 

between the gravitational and pressure torques. It is present in (5.10) because the surface 
normal for a hydrostatic earth is not exactly parallel to the gravitational acceleration (the 
normal is affected by centrifugal forces but g is not). This term can be loosely described as 
the torque on the Earth due to pressure against the Earth’s elliptical bulge. Since the Earth’s 
ellipticity (or, what is more pertinent, [O x (G? x r)/g I)  is = 1/300, the tangential force per 
unit area which produces this torque has a magnitude of roughly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/300. 

The second term on the right-hand side of (5.10) is the torque due to pressure against 
surface topography. This ‘mountain torque’ is potentially the same order as the first term, 
since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8n due to topography is the order of 1/300 over many portions of the Earth. (Strictly 
speaking, the importance of the mountain torque depends on whether there are important 
pressure variations with the same scale as the topographic gradient.) The last term in 
(5 .lo) represents the frictional torque. Although frictional stresses are probably small in the 
atmosphere and oceans, their contribution to the surface torque is not reduced by 1/300 
as is the case for pressure. In fact, numerical studies indicate that for the atmosphere the 
frictional torque is the same order of magnitude as the mountain torque (see, e.g. Newton 
1971; Manabe & Terpstra 1974; Oort & Bowman 1974). 

The contribution to @ from the first ‘ellipticity torque’ in (5.10) reduces exactly to 
1.44 @matter with Gmatter given by (3.4). Since we know from Section 3 that the response of 
the solid earth to atmospheric forcing gives a contribution to @ of -0.44 @matter we can 
identify @motion in the angular momentum approach (3.5) with contributions from the 
second and third terms on the right-hand side of (5.10). Specifically, using (5.10) in (2.29) 
gives 

@motion = @mtn t @frict (5.1 1) 

where Gmtn and @ffict represent contributions from, respectively, the mountain torque and 
the frictional torque. Using 

Sn = - V H ( 6 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA) 

where H(0 ,  A) is the elevation of the Earth’s surface above sea-level, Gmtn becomes 

(5.12) 

(5.13) 

The frictional torque depends on the poorly known frictional stress, T. Although we will not 
model There, we can easily express #yrict in terms of the frictional surface traction on the 
solid earth and oceans 

F = g - T .  (5.14) 

We find 

(5.15) 

where Fo and FA are local components of F in the southward and eastward directions, 
respectively. 

The difficulty in using the angular momentum result (3.5) to compute Gmotion for the 
atmosphere, is that (3.5) requires global knowledge of the winds at different levels in the 
atmosphere and so is likely to be sensitive to inadequate wind data over the oceans. The 
torque approach allows at least a partial check on the results of (3.5) since the mountain 
torque contribution is readily calculable from the existing pressure observations (there is 
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366 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. M. Wahr 

no mountain torque over the oceans). On the other hand, a complete calculation using the 
torque approach clearly requires some model for the frictional stress at the atmosphere- 
solid earth and atmosphere-ocean surfaces. This stress is not well understood at the solid 
earth interface. 

5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT H E  O C E A N S  

The torque approach is potentially useful for the atmosphere because it offers an alternative 
method of including the meteorological data. For the oceans there are virtually no data, and 
so oceanic displacements must be modelled. In this case there is probably little advantage to 
a torque approach, and the contributions to from the ocean are best computed using 
(3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS), taking V in ( 3  -5) to be the volume of the ocean. 

However, for completeness and for an increased understanding of the interactions 
between the atmosphere, the oceans and the solid earth, we now describe a torque approach 
for the oceans. Here, we must extend the atmospheric results to take into account the 
atmospheric torque on the oceans and the effects of load-induced deformation in the solid 
earth. The non-gravitating atmospheric effects on the ocean can be included by extending 
the surface integrals in (5.9) over the air-sea interface and by noting that the pressure at the 
Earth's surface is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApogq +Pa where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is the sea-level height and Pa is the applied atmospheric 
pressure. 

The gravitational and deformational effects are more difficult. They were not important 
in determining the atmospheric torque on the Earth because of the low atmospheric density. 
To include them for the oceans we add a term pog,  to the right-hand side of (5 .3) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g1 represents the perturbed gravitational acceleration, and we add a perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- V U  to 
the surface normal (5.7) where U is the load-induced radial deformation of the Earth. Then, 
repeating the steps which led to (5.10) for the atmosphere, we find that the total oceanic 
torque on the solid earth plus atmosphere is 

L = -  

(5.16) 

where Sf and S,  are the ocean floor and the air-sea interface, respectively, Ta is the applied 
frictional stress at the air-sea interface, the a;" and q;" are spherical harmonic coefficients 
of the surface pressure (4.1) and sea-level height (4.3), the surface normal, n, is directed into 
the ocean, 6n represents the effects of topography on the normal to the seafloor, and r;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p E  and the Y;" are defined in Section 4. We use this result for L to find oceanic contribu- 
tions to the excitation function which are equivalent to Gmtn and @frict in the atmospheric 
case. The reason we include in (5.16) the torque from the oceans on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAatmosphere is that 
our results fo i  the atmosphere included the atmospheric torque on the oceans. When 
combined, these two contributions will cancel, and we will be left with the net atmospheric 
and oceanic torque on the solid earth. 
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Atmospheric effects on the Earth's wobble zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA367 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = T, = 0 in (5.16) and using the result in (2.29), we find the oceanic equivalent 

of the effects of mountain torques: 

- 3p0 (1 + k ;  - h;)(q?pog t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;") Y;"] dB d h  (5.17) 
(2E + l)& 

where D is the depth of the ocean. It is important to include in D the effects of continental 
boundaries. 

From a physical viewpoint #mtn given by (5.17) is no longer just a mountain torque. The 
terms proportional to hi represent the torque due to the equilibrium oceanic pressure against 
the deformed seafloor. The terms proportional to k; represent the torque due to the equili- 
brium gravitational attraction of the ocean on the deformed density field within the solid 
earth.The interpretation of the terms in (5.17) proportional to the '1' in 1 + k; - hi is more 
difficult. The 1 x qr terms represent the torque due to the gravitational interaction between 
the perturbed sea-level and the non-spherical portion of the solid earth's equilibrium density 
field caused by its hydrostatic adjustment to the equilibrium gravitational attraction of the 
ocean. The 1 x a? terms represent the torque on the perturbed atmospheric mass from the 
equilibrium gravitational field of the ocean. All four of these torques vanish unless the 
ocean is of variable thickness, which is why their contribution to $Jrntn depends on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVD. 
These terms modify Gmtn by at most 20 per cent (see Section 4). 

Using (4.8) in (5.17) together with the fact that 

[sine a, D t i  cost) ahD] exp(ih)dB dh = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 
we see that for an equilibrium response to an applied pressure perturbation there is no 
contribution to #mtn from the ocean. This is what we should expect, since an equilibrium 
ocean has no induced currents. 

The frictional terms in (5.16) can be included in (2.29) to give a frictional contribution to 

#motion of 

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Fe +icost)FA)sin8 exp(ih)dBdh 
W C - A )  Sf 

4riict = 

(5.18) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF = n.T is the frictional traction on the solid earth at the ocean floor, and Fa = 
- n . T* is the applied atmospheric frictional traction on the ocean at the air-sea interface. 
In each case, ii is directed into the ocean. 

The integral over Sa in (5.18) represents the frictional torque from the ocean on the 
atmosphere. This term is offset by a corresponding contribution to #frict from the 
atmosphere (5.15). If we combine (5.15) for the atmosphere with (5.18) for the ocean we 
get a net frictional torque on the solid earth from the atmosphere and oceans of 
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where now F is the frictional traction on the solid earth from the atmosphere over land and 
from the ocean on the seafloor. 

6 A combination of the angular momentum and torque approaches 

It would be potentially useful for computing the effects of the atmosphere on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 if we could 
combine the angular momentum and torque approaches. For example, the angular 
momentum approach is probably more useful over land where wind observations are reliable. 
The torque approach, however, is possibly more useful over the ocean since the atmosphere- 
ocean coupling is reasonably well understood (see, e.g. Hellerman 1967; Bunker 1976). 

We can develop this sort of combined approach by using the hybrid result (2.30) for the 
excitation function, 4, and taking V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW to be any two disjoint and complementary 
subsets of the atmosphere (the boundaries of Vand Ware assumed to be fixed relative to the 
solid earth). We then compute the contributions to 4 from V and W using the angular 
momentum approach and the torque approach, respectively. For simplicity we include the 
oceans in the angular momentum volume, V, the results can easily be extended to the more 
general case. 

is given by (3.4) for both V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. The contri- 
bution from V to reduces to (3.5) plus a term proportional to the surface integral of 
n - v  over the boundary between Vand W. This surface integral is exactly the negative of the 
contribution from the n . v  angular momentum flux term in (5.9). The contribution from W 
is found using (5.9) but ignoring the first term on the right-hand side, since this term 
contributes only to @matter. Consequently, we find by integrating (3.5) over V and 
by using 

The results in Section 5 show that 

for W, where S, is the vertical surface between Wand V ,  n is directed into W ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and 9 are unit 
vectors, and 4brntn and @frict are given by (5.13) and (5.15) integrated over the lower surface 
of W. This result (6.1) for W includes, in order, a mountain torque effect, a skin friction 
effect, and two terms representing the pressure and frictional torques from the neighbouring 
volume, V .  If Sl is vertical with normal n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 no + 6~ nh, then the contribution to (6.1) 
from the pressure torque on Sl reduces to 

4kW - - [no + i cose nL]  sin8 exp (ih) r P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS 

where dS is an element of surface area and is proportional to  r sin 6. Similarly, if F = 13. T 
on Sl, then the contribution from the friction torque on S,  is 

As one conceivable application, suppose W and V are the atmospheric volumes over the 
for V using (3.5) together with wind 

for W using (6.1) and noting that since there is no topo- 
ocean and land, respectively. Then, we compute 
data over land. We compute 
graphy over the oceans, @mtn = 0, and so 

$motion = @hict + @‘,res + 4kict .  (6.4) 
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In this case, #kRs depends on pressure over the world’s coastline where the data coverage 

is relatively good; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#kCt is probably unimportant since the shear stress across an air-air 
interface is small; and #frict depends on the frictional stress between the atmosphere and the 
ocean, As an extreme case, note that ignoring #frict in (6.4) combined with ignoring the 
effects of wind-induced circulation in the ocean is equivalent to assuming that the angular 
momentum imparted to the ocean from the winds is entirely absorbed by the ocean and not 
transmitted to the solid earth. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 Geostrophic winds and currents 

Following an initial discussion in Munk & MacDonald (1960, section 9.4) it has usually been 
assumed that geostrophic winds and ocean currents cannot effectively excite wobble. Since 
the atmosphere and oceans are believed to be nearly in geostrophic balance at long periods, 
the obvious conclusion is that #motion is probably much smaller than @matter for both the 
atmosphere and oceans. We show in this section that the effects of geostrophic motion on 
wobble may be important. 

Suppose the atmosphere (or ocean) is in geostrophic balance. Then, the horizontal 
velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and u are related to the fluid pressure PI  by 

Using these results in the angular momentum result for @motion (3.5) we find 

-1.61a2 

Q2(C- A )  
# . =  / I[;)k[icosO exp(iX)P,] + a e  [sine exp(ih)P,]l d0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdhdr.  (7.2) motmn 

For a constant thickness atmosphere #,,,,,tion = 0. This is the ‘basis for the argument that 
geostrophic winds do not excite wobble. However, for a variable thickness atmosphere 
#motion # 0 since the limits of integration for dr depend on 0 and A, and (7.2) reduces to 

#motion = k t n  (7.3) 

where &,tn is the mountain torque contribution given exactly by (5.13). (For the ocean we 
add load-induced gravitational forces to the right-hand side of (7.1) and then our result for 
Gmotion reduces exactly to #mtn given by (5.1 7).) Consequently, geostrophic motion only 
allows us to ignore the effects of frictional torques. This indicates that the effects of 
geostrophic winds and currents need not be small. In fact, the discussion below equation 
(5.10) indicates that #mtn should be roughly the same order of magnitude as the 
contribution from the elliptical pressure torque, #matter. 

8 Discussion 

The effects of the atmosphere and oceans on the Earth‘s wobble can be assessed by 
computing their contributions to the wobble excitation function @ (2.21), and then 
comparing with the astrometrically observed # found from (2.23). Most important are the 
amplitude and phase of the annual component and the continuous spectrum at periods 

13 
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near 435 day. The results above suggest a number of strategies for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@, each 
requiring a different set of meteorological or oceanographic data. This offers a chance to 
assess the quality of different types of data and, in the absence of data, to test the 
consequences of various assumptions concerning the atmosphere and oceans. 

The excitation function, @,is usefully separated into a term, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGmatter, dependent on density 
perturbations in the atmosphere and oceans, and a term, dependent on winds and 
currents. The more readily computed of these two terms is Gmatter. We can think of this 
term as representing either the incremental rotational angular momentum of the solid 
earth in response to a change in the inertia tensor of the atmosphere and oceans, or the 
torque on the solid earth due to pressure against the Earth's elliptical bulge. In either case, 
@matter is most usefully computed using (3.4) together with observations of atmospheric 
and oceanic pressure at the surface of the solid earth. Although there is ample surface 
pressure data over land, there is no way of directly inferring the pressure at the seafloor from 
existing data. This is partly because there is only limited atmospheric pressure data over the 
ocean, but, more importantly, is due to the fact that there are no long period observations 
of open ocean sea-level. 

Fortunately, we can partially resolve this problem by conceptually separating the effects 
of the ocean on both @matter and into contributions from pressure-driven and wind- 
driven oceanic displacements. We showed in Section 4 that since the ocean probably 
responds to long-period pressure variations as though it were in a continual state of equili- 
brium, the pressure-driven displacements do not contribute to qmotion, and the 
corresponding pressure at the seafloor is completely determined by the atmospheric pressure 
over land and by the change in the total mass of the atmosphere. This means that in practice 
we can confidently compute all contributions to Gmatter except those caused by wind-driven 
changes in sea-level height. These can be included by modelling the effects of winds on the 
ocean, as was done by O'Connor (1980), and as we must do to find qmotion as described 
below. 

The computation of Gmotion is considerably more difficult because of the lack of 
necessary data. We have discussed a number of possible methods for finding The 
most direct method is the angular momentum approach discussed in Section 3. Here, 
Gmotion is computed using (3.5) together with observed winds and currents. Unfortunately, 
wind data are scarce over the ocean and current data are virtually non-existent. And, unlike 
for the case of @matter, there is no a priori reason to expect the effects of the ocean and of 
the atmosphere above the ocean to cancel in @motion. As might be expected, the serious lack 
of any sort of oceanic data will be a problem for estimating the effects of the ocean no 
matter what method is used to compute Probably the best we can hope to do is to 
model the wind-induced oceanic response. Once this response has been modelled, the 
oceanic contribution to @mothn would probably be most conveniently computed using the 
angular momentum result (3.5). 

The reason, then, for introducing the torque and the hybrid methods described in 
Sections 5 and 6 is to handle the atmosphere and, in particular, the paucity of wind data 
over the ocean. Of course, any model of the wind-driven ocean would be affected by 
uncertainties in the winds over the ocean. However, to model the ocean response we would 
need to know only the winds at the surface of the ocean. These are considerably better 
known than the winds at different levels over the ocean, which are what we would need to 
compute @motion using (3.5). 

The torque result (5.1 1) for qmotion contains contributions from the mountain torque 
(5.13) and from the friction torque (5.15). The mountain torque can be readily computed 
from existing pressure data, since it requires pressure data over only the land. The contribu- 
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tion from the mountain torque was included by Wilson & Haubrich (1976a). The friction 
contribution is more difficult since it requires knowledge of frictional stresses which are 
poorly known over land. 

The hybrid approach described in Section 6 offers another strategy for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r$motion. In this case, we use the angular momentum result (3.5) over land where wind data 
are relatively good. Over the ocean we use the modified torque result (6.4) which includes 
contributions from frictional torques on the ocean (5.15) and from pressure torques (6.2) 
and frictional torques (6.3) acting between the atmosphere above land and the atmosphere 
above the ocean. The latter two torques depend on the pressure and frictional stresses 
vertically above the continental boundaries. The atmospheric frictional stress on the ocean 
can probably be estimated reasonably well from surface wind data (see references given in 
Section 6). The vertical pressure integral (6.2) can be determined from pressure data over 
the coastline. The vertical friction integral (6.3) is likely to be less important since there is 
little shear stress across an air-air interface. Note that the hybrid approach is independent 
of the frictional stress over land and of the winds at different levels over the ocean, which 
are the poorest determined contributions to the torque and angular momentum results 
respectively. 

Most studies of the atmospheric and oceanic effects on wobble ignore $motion entirely, 
due in part to the lack of appropriate data and in part to the belief that Gmotion is 
unimportant for geostrophic motion. Probably the most useful exception is Wilson & 
Haubrich (1 976a, b) where the contribution from the mountain torque, Gmtn, was included. 
We showed in Section 7 that for geostrophic motion in either the atmosphere or oceans 
$motion is exactly equal to $Jmtn. And as discussed in Section 5, $mtn is likely to be the same 
order of magnitude as Gmatter. (I have found using real data that for the atmosphere $mtn 

is typically from 10 to 50 per cent of Gmatter.) Furthermore, most meteorological studies 
indicate that for the atmosphere the frictional torques are roughly the same order as the 
mountain torques (see the references given in Section 5). This does not imply that the 
atmosphere is non-geostrophic. Rather it implies that even for a geostrophic atmosphere 
all large-scale tangential tractions at the Earth's surface are small. 
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