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Abstract

This investigation is undertaken to study the hydromagnetic flow of a
viscous incompressible fluid past an oscillating vertical plate embedded
in a porous medium with radiation, viscous dissipation and variable heat
and mass diffusion. Governing equations are solved by unconditionally
stable explicit finite difference method of DuFort – Frankel’s type for
concentration, temperature, vertical velocity field and skin - friction and
they are presented graphically for different values of physical parameters
involved. It is observed that plate oscillation, variable mass diffusion,
radiation, viscous dissipation and porous medium affect the flow pattern
significantly.
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1 Introduction

Free convection flow is a significant factor in several practical applications
that include, for example, cooling of electronic components, in designs re-
lated to thermal insulation, material processing, and geothermal systems etc.
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Transient natural convection is of fundamental interest in many industrial
and environmental situations such as air conditioning systems, atmospheric
flows, motors, thermal regulation process, cooling of electronic devices, and
security of energy systems. Buoyancy is also of importance in an environment
where differences between land and air temperatures can give rise to compli-
cated flow patterns. Magnetohydrodynamic has attracted the attention of a
large number of scholars due to its diverse applications. In astrophysics and
geophysics, it is applied to study the stellar and solar structures, interstellar
matter, radio propagation through the ionosphere etc. In engineering it finds
its application in MHD pumps, MHD bearings etc. Convection in porous
media has applications in geothermal energy recovery, oil extraction, thermal
energy storage and flow through filtering devices. Convective heat transfer in
porous media has received considerable attention in recent years owing to its
importance in various technological applications such as fibre and granular
insulation, electronic system cooling, cool combustors, and porous material
regenerative heat exchangers. Books by Nield and Bejan [1], Bejan and Kraus
[2] and Ingham et al. [3] excellently describe the extent of the research infor-
mation in this area. The phenomena of mass transfer is also very common in
theory of stellar structure and observable effects are detectable, at least on
the solar surface. The study of effects of magnetic field on free convection
flow is important in liquid-metals, electrolytes and ionized gases. The ther-
mal physics of hydromagnetic problems with mass transfer is of interest in
power engineering and metallurgy. Thermal radiation in fluid dynamics has
become a significant branch of the engineering sciences and is an essential as-
pect of various scenarios in mechanical, aerospace, chemical, environmental,
solar power, and hazards engineering. Viscous mechanical dissipation effects
are important in geophysical flows and also in certain industrial operations
and are usually characterized by the Eckert number. In the literature, exten-
sive research work is available to examine the effect of natural convection on
flow past a plate.

Extensive research has been published on free convection flow past a ver-
tical plate. Free convection at a vertical plate with transpiration was inves-
tigated by Kolar and Sastri [4]. Ramanaiah and Malarvizhi [5] considered
natural convection adjacent to a surface with 3 thermal boundary conditions.
A numerical study for natural convective cooling of a vertical plate was pre-
sented by Camargo et al.[6] with different boundary conditions. The more
difficult problem of transient free convection flow past a semi-infinite isother-
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mal vertical plate was first studied by Siegel [7] using an integral method.
The experimental confirmation of these results was presented by Goldstein
and Eckert [8]. Another review of transient natural convection was presented
by Raithby and Hollands [9], wherein a large number of papers on this topic
were referred to. In reference to transient convection, Gebhart et al.[10] in-
troduced the idea of leading edge effect in their book. They explained that
the transition from conduction to Convection begins only when some effects
from the leading edge have propagated up the plate as a wave, to a particular
point in question. Later on, numerous investigators considered transient con-
vective flow past a vertical surface by applying different boundary conditions
and techniques. Transient convective heat transfer was pioneered by Padet
[11] The flow past a vertical plate with sudden change in surface temperature
was examined by Harris et al. [12]. Das et al. [13] analysed transient free
convection flow with periodic temperature variation of the plate by Laplace-
transform technique. In all the studies cited above, the effects of magnetic
field and porous medium on the flow are ignored.

Many studies have been carried out to investigate the magnetohydrody-
namic transient free convective flow. Gupta [14] first discussed the transient
natural convection flow from a plate in the presence of magnetic current.
Chowdhury and Islam [15] investigated magnetohydrodynamic free convec-
tion flow past a vertical surface by Laplace-transform technique. Aldoss and
Al-Nimr [16] analysed transient hydromagnetic free convection flow over a
surface. All the above studies are concerned with the absence of porous
medium in the flow.

Convective heat transfer through porous media has been a subject of great
interest for the last three decades. In recent years, only a few studies have
been performed on transient convective flows in porous media. A detailed
review of the subject, including an exhaustive list of references, can be found
in the papers by Bradean et al. [17] and Pop et al. [18] Magyari et al. [19]
have discussed analytical solutions for unsteady free convection in porous
media. The magnetic current in porous media considered by Geindreau et
al. [20].

Fewer studies have been carried out to investigate the heat transfer by
simultaneous radiation and convection. Hossain et.al. [21] studied the radi-
ation effects on mixed convection along a vertical plate with uniform surface
temperature using the Rosseland flux model. Abd-El-Naby et al. [22] studied
the radiation effects on MHD unsteady free convection flow over a vertical
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plate with variable surface temperature. Pathak et. al. [23] studied the ra-
diation effects on an unsteady free convective flow through a porous medium
bounded by an oscillating plate with a variable wall temperature. Deka et.
al. [24] studied the hydromagnetic flow of a viscous incompressible fluid past
an oscillating vertical plate with radiation and variable mass diffusion.

In all the investigations mentioned above, viscous mechanical dissipation
is neglected. A number of authors have considered viscous heating effects
on Newtonian flows. Mahajan et al. [25] reported the influence of viscous
heating dissipation effects in natural convective flows, showing that the heat
transfer rates are reduced by an increase in the dissipation parameter. Isreal-
Cookey et al. [26] investigated the influence of viscous dissipation and radi-
ation on unsteady MHD free convection flow past an infinite heated vertical
plate in a porous medium with time dependent suction. Zueco [27] used net-
work simulation method (NSM) to study the effects of viscous dissipation
and radiation on unsteady MHD free convection flow past a vertical porous
plate. Suneetha et al. [28] have analyzed the thermal radiation effects on
hydromagnetic free convection flow past an impulsively started vertical plate
with variable surface temperature and concentration by taking into account
of the heat due to viscous dissipation. Recently Suneetha et al. [29] stud-
ied the effects of thermal radiation on the natural conductive heat and mass
transfer of a viscous incompressible gray absorbing-emitting fluid flowing past
an impulsively started moving vertical plate with viscous dissipation. Very
recently Hiteesh [30] studied the boundary layer steady flow and heat trans-
fer of a viscous incompressible fluid due to a stretching plate with viscous
dissipation effect in the presence of a transverse magnetic field.

Flows past a vertical plate oscillating in its own plane has many industrial
applications. The first exact solution of Navier-Stokes equation was given by
Stokes [31] which is concerned with flow of viscous incompressible fluid past
a horizontal plate oscillating in its own plane. Natural convection effects on
Stokes problem was first studied by Soundalgekar [32]. The same problem was
considered by Revankar [33] for an impulsively started or oscillating plate.
Gupta et al. [34] have analyzed flow in the Ekman layer on an oscillating
plate. An exact solution to the flow of a viscous incompressible unsteady
flow past an infinite vertical oscillating plate with variable temperature and
mass diffusion by taking into account of the homogeneous chemical reaction
of first-order was investigated by Muthucumaraswamy et. al. [35] Chaudhary
et.al. [36] have studied the MHD flow past an infinite vertical oscillating plate
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through porous medium, taking account of the presence of free convection and
mass transfer. Free convection flow of a viscous incompressible flow past an
oscillating infinite vertical plate with variable temperature and mass diffusion
has been studied by Muthucumaraswamy et. al. [37]. The free convection
flow of a viscous incompressible fluid past an infinite vertical oscillating plate
with uniform heat flux in the presence of thermal radiation was studied by
Chandrakala [38].

Although different authors studied mass transfer with or without radia-
tion and viscous dissipation effects on the flow past oscillating vertical plate
by considering different surface conditions but the study on the effects of
magnetic field on free convection heat and mass transfer with thermal ra-
diation viscous dissipation and variable surface conditions in flow through
an oscillating plate has not been found in literature and hence the motiva-
tion to undertake this study. It is therefore proposed to study the effects
of thermal radiation and variable surface conditions on hydromagnetic flow
past an oscillating vertical plate embedded in a porous medium with viscous
dissipation

2 Mathematical analysis

We consider a two – dimensional flow of an incompressible and electrically
conducting viscous fluid along an infinite vertical plate that is embedded in
a porous medium. The x′ - axis is taken along the infinite plate and y′ - axis
normal to it. Initially, the plate and the fluid are at same temperature T ′

∞
with concentration level C ′

∞ at all points. At time t′ > 0, the plate starts
oscillating in its own plane with a velocity UR cosw′t′, the plate temperature
is raised to T ′

w and the concentration level at the plate is raised to C ′
w. A

magnetic field of uniform strength is applied perpendicular to the plate and
the magnetic Reynolds number is assumed to be small so that the induced
magnetic field is neglected [39]. There is no applied electric field. Viscos-
ity is taken into account with the constant permeability of porous medium.
The MHD term is derived from an order-of-magnitude analysis of the full
Navier-Stokes equations. We regard the porous medium as an assembly of
small identical spherical particles fixed in space, following Yamamoto et.al.
[40]. Under these conditions and assuming variation of density in the body
force term (Boussinesq’s approximation), the problem can be governed by
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the following set of equations:

∂u′

∂t′
= υ

∂2u′

∂y′2
+

[
gβ(T ′ − T ′

∞) + gβc(C
′ − C ′

∞
]
− σB2

0u
′

ρ
− υu′

k′
(1)

∂T ′

∂t′
=

k

ρcp

∂2T ′

∂y′2
− 1

ρcp

∂qr
∂y′

+
υ

ρcp

(
∂u′

∂y′

)2

(2)

∂C ′

∂t′
= D

∂2C ′

∂y′2
(3)

with the following initial and boundary conditions:

u′ = 0, T ′ = T ′
∞, C ′ = C ′

∞ for all y′, t′ ≤ 0

u′ = UR cosw′t′, T ′ = T ′
∞ + (T ′

w − T ′
∞)At′,

C ′ = C ′
∞ + (C ′

w − C ′
∞)At′ at y′ = 0, t′ > 0

u′ → 0, T ′ → T ′
∞, C ′ → C∞

′ as y′ → ∞, t′ > 0

(4)

Where u′ is the velocity component in x′- axis, t′- the time, B0 is the
magnetic field component along y′- axis, C ′ is concentration at any point in
the flow field, C ′

w is concentration at the plate, C ′
∞ is concentration at the

free stream, D is mass diffusivity, Cp is specific heat at constant pressure, g
is gravitational acceleration, T ′ is temperature of the fluid near the plate, T ′

w

is the plate temperature, T ′
∞ is temperature of the fluid far away from the

plate, β is coefficient of volume of expansion, βc is concentration expansion
coefficient, ρ is density, σ is Electrical conductivity,∈ is amplitude (constant),
k is thermal conductivity of fluid, υ is kinematic viscosity, qr is the radiation
heat flux and k′ is the permeability of the porous medium.

The second term of R.H.S. of the momentum equation (1) denotes buoy-
ancy effects, the third term is the MHD term, the fourth term is bulk matrix
linear resistance, that is Darcy term. The second term of R.H.S. of the en-
ergy equation (2) denotes radiation term, the third term is viscous dissipation
term. The heat due to viscous dissipation is taken into an account. Also,
Darcy dissipation term is neglected for small velocities in equation (2).
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Thermal radiation is assumed to be present in the form of a unidirectional
flux in the y-direction i.e., qr (Transverse to the vertical surface). By using
the Rosseland approximation [41] the radiative heat flux qr is given by:

qr = −4σs
3ke

∂T ′4

∂y
(5)

Where σs is the Stefan – Boltzmann Constant and ke - is the mean absorp-
tion coefficient. It should be noted that by using the Rosseland approxima-
tion, the present analysis is limited to optically thick fluids. If temperature
differences within the flow are sufficiently small, then equation (5) can be
linearized by expanding T ′4 in Taylor series about T ′

∞ which after neglecting
higher order terms takes the form:

T ′4 ∼= 4T∞
′3T ′ − 3T∞

′4 (6)

In view of equations (5) and (6), equation (2) reduces to :

∂T ′

∂t′
=

k

ρcp

∂2T ′

∂y′2
+

16σs
3keρcp

T∞
′3∂

2T ′

∂y′2
+

υ

ρcp

(
∂u′

∂y′

)2

(7)

Skin – friction is given by

τ ′s = −µ

(
∂u′

∂y′

)
y=0

(8)

We introduce the non-dimensional variables:

t =
t′

tR
, y =

y′

LR
, u =

u′

UR
, w = w′tR, K =

U2
Rk

′

υ2
, Pr =

µCp

k
,

M =
σB2

0υ

ρU2
R

, Sc =
υ

D
, θ =

T ′ − T ′
∞

T ′
w − T ′

∞
, C =

C ′ − C ′
∞

C ′
w − C ′

∞
, ∆T = T ′

w − T ′
∞,

(9)

Gc =
υgβc (C

′
w − C ′

∞)

U3
R

, UR = (υgβ∆T )1/3 , LR =

(
gβ∆T

υ2

)−1/3

, A =
1

tR

tR = (gβ∆T )−2/3 υ1/3, N =
kek

4σsT∞′3 , Ec =
U2
R

CP∆T
, Gr =

gβυ(T ′
w − T ′

∞)

U3
R

Where K is permeability parameter, Pr is Prandtl number, Gm is mod-
ified Grashof number, M is magnetic parameter, Sc is Schmidt number, t
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is time in dimensionless coordinate, N is radiation parameter, Ec is Eck-
ertnumber, LR is reference length, tR is reference time, u is dimensionless
velocity component, UR is reference velocity, µ is viscosity of fluid, θ is the
dimensionless temperature, C is dimensionless concentration, w is frequency
of oscillation.

The equations (1), (2) and (7) reduce to following non-dimensional form
:

∂u

∂t
=

∂2u

∂y2
+Grθ +GmC −

(
M +

1

K

)
u (10)

∂θ

∂t
=

1

Pr

[
1 +

4

3N

]
∂2θ

∂y2
+ Ec

(
∂u

∂y

)2

(11)

Sc
∂C

∂t
=

∂2C

∂y2
(12)

with the following initial and boundary conditions:

u = 0, θ = 0, C = 0 for all y, t ≤ 0 (13)

u = cosωt, θ = t, C = t, at y = 0, t > 0

u → 0, θ → 0, C → 0 as y → ∞, t > 0 (14)

where ωt is phase angle.

3 Skin-Friction

In non-dimensional form, the skin-friction is given by

τ = −
(
∂u

∂y

)
y=0

(15)

4 Numerical technique

Equations (10)-(12) are coupled non-linear partial differential equations and
are to be solved under the initial and boundary conditions of equations (13)
and (14). However exact or approximate solutions are not possible for this set
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of equations and hence we solve these equations by the unconditionally stable
explicit finite difference method of DuFort – Frankel’s type as explained by
Jain et. al. [42] The finite difference equations corresponding to equations
(10)-(12) are as follows:

(
ui,j+1 − ui,j−1

2∆t

)
=

(
ui−1,j − ui,j+1 − ui,j−1 + ui+1,j

(∆y)2

)
+

Gr

2
(θi,j+1 + θi,j−1) +

Gm

2
(Ci,j+1 + Ci,j − 1)−

1

2

(
M +

1

K

)
(ui,j+1 + ui,j−1) (16)

θi,j+1 − θi,j−1

2∆t
=

1

Pr

(
1 +

4

3N

)(
θi−1,j − θi,j+1 − θi,j−1 + θi+1,j

(∆y)2

)
+

Ec

(
ui+1,j − ui,j

∆y

)2

(17)

Sc

(
Ci,j+1 − Ci,j−1

2∆t

)
=

(
Ci−1,j − Ci,j+1 − Ci,j−1 + Ci+1,j

(∆y)2

)
(18)

Initial and boundary conditions take the following forms

ui,0 = 0, θi,0 = 0, Ci,0 = 0 for all i

u0,j = coswt, θ0,j = j∆t, C0,j = j∆t (19)

uL,j = 0, θL,j = 0, CL,j = 0

where L corresponds to ∞.
Here the suffix ′i′ corresponds to y and ′j′ corresponds to t.
Also ∆t = tj+1 − tj and ∆y = yi+1 − yi.
Initially, the heat is transferred through the plate by conduction. But a

little later stage, convection currents start flowing near the plate. Hence, it
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is essential to know the position of a point on the plate where conduction
mechanism changes to convection mechanism. The distance of this point of
transition from conduction to convection is given by

Xp =

t∫
0

u(y, t)dt (20)

5 Discussion

Extensive computations were performed. Default values of the thermo phys-
ical parameters are specified as follows:

Radiation parameter N = 3 (strong thermal radiation compared with
thermal conduction), magnetic parameter M = 2, Prandtl number Pr =
0.71(air), Eckert number Ec = 0.5, Schmidt number Sc = 0.22(hydrogen),
phase angle ωt = π

2 , thermal Grashof number Gr = 10, mass Grashof number
Gc = 10, permeability parameter K = 0.5 and time t = 0.4.

All graphs therefore correspond to these values unless otherwise indicated.
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Figure 1: Velocity profile for different values of ωt
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In order to point out the effects of various parameters on flow characteris-
tic, the following discussion is set out. The values of the Prandtl number are
chosen Pr = 7(water) and Pr = 0.71(air). The values of the Schmidt num-
ber are chosen to represent the presence of species by hydrogen (0.22), water
vapour (0.60) and ammonia (0.78). Fig.1 represents the velocity profiles due
to the variations in ωt. It is evident from figure that the velocity near the
plate exceeds at the plate i.e. the velocity overshoot occurs. Furthermore,
the magnitude of the velocity decreases with increasing phase angle (ωt) for
air (Pr = 0.71). Figs.2 and 3 reveal the velocity variations with Gr and Gc
in cases of cooling and heating of the surface respectively. It is observed that
greater cooling of surface (an increase in Gr) and increase in Gc results in
an increase in the velocity for air. It is due to the fact increase in the values
of thermal Grashof number and mass Grashof number has the tendency to
increase the thermal and mass buoyancy effect. This gives rise to an increase
in the induced flow. The reverse effect is observed in case of heating of the
plate (Gr < 0). Figs.4 and 5 illustrate the influences of M , K in cases of
cooling and heating of the plate respectively. In case of cooling of the plate,
the velocity near the plate is greater than at the plate. The maximum ve-
locity attains near the plate and is in the neighbourhood of point y = 0.5.
After y > 0.5 the velocity decreases and tends to zero as y → ∞. Again it
is found that the velocity decreases with increasing magnetic parameter for
Pr = 0.71. It is because that the application of transverse magnetic field
will result a resistive type force (Lorentz force) similar to drag force which
tends to resist the fluid flow and thus reducing its velocity. The presence of
a porous medium increases the resistance to flow resulting in decrease in the
flow velocity. This behaviour is depicted by the decrease in the velocity as K
decreases. In Fig.5, the opposite phenomenon is observed for heating of the
plate. Figs.6 and 7 display the effects of Sc (Schmidt number), and t (time)
on the velocity field for the cases Gr > 0, Gc > 0 and Gr < 0, Gc < 0 respec-
tively. In case of cooling of the plate, the velocity near the plate increases
owing to the presence of foreign gases (such as hydrogen, water vapour and
ammonia) in the flow field. We again noticed that although there is a rise in
the velocity due to presence of water vapour and ammonia, but it is not so
high as in the case of hydrogen. The magnitude of the velocity for hydrogen
increases with time for air. The reverse effect is observed in case of heating of
the plate. Figs.8 and 9 illustrate the influences of N in cases of cooling and
heating of the plate respectively. In case of cooling of the plate, the velocity
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near the plate is greater than at the plate. The maximum velocity attains
near the plate and is in the neighbourhood of point y = 0.5 After y > 0.5
the velocity decreases and tends to zero as y → ∞. Again it is found that
the velocity decreases with increasing radiation parameter for Pr = 0.71. In
Fig.9, the opposite phenomenon is observed for heating of the plate.
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Figure 2: Velocity profile for different values of Gr and Gc

Fig.10 depicts the temperature profiles against y(distance from plate).
The magnitude of temperature is maximum at the plate and then decays to
zero asymptotically. Again it is found that the temperature decreases with
increasing phase angle ωt for Pr = 0.71. The effect of radiation parameter
N on the temperature variations is depicted in Fig.11. The radiation param-
eter N (i.e., Stark number) defines the relative contribution of conduction
heat transfer to thermal radiation transfer. As ‘N ′ increases, considerable re-
duction is observed in temperature profiles from the peak value at the plate
(y = 0) across the boundary layer regime to free stream (y → ∞), at which
the temperature is negligible for any value of N . The effect of Eckert number
‘E′ on the temperature is shown in Fig.12. Eckert number is the ratio of
the kinetic energy of the flow to the boundary layer enthalpy difference. The
effect of viscous dissipation on flow field is to increase the energy, yielding a
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Figure 3: Velocity profile for different values of -Gr and -Gc
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Figure 4: Velocity profile for different values of M and K
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Figure 5: Velocity profile for different values of M and K with Gr=-10 and
Gc=-10

greater fluid temperature and as a consequence greater buoyancy force. The
increase in the buoyancy force due to an increase in the dissipation param-
eter enhances the temperature. Fig.13 illustrates the influence of t on the
temperature. It is noted that the temperature is increasing with increasing
values of t for both air and water. It is also observed that the magnitude of
temperature for air (Pr = 0.71) is greater than that of water (Pr = 7). This
is due to the fact that thermal conductivity of fluid decreases with increasing
Pr, resulting a decrease in thermal boundary layer thickness.

Fig.14 concerns with the effect of Sc on the concentration. Like temper-
ature, the concentration is maximum at the surface and falls exponentially.
The Concentration decreases with an increase in Sc. Physically it is true,
since the increase of Sc means decrease of molecular diffusivity. That re-
sults in decrease of concentration boundary layer. Hence, the concentration
of species is higher for small values of Sc and lower for large values of Sc.
Further, it is noted that concentration falls slowly and steadily for hydrogen
in comparison to other gases.

Effects of variations in ωt and Sc on the penetration distance are presented
in Fig.15. It is clear from the fig that the penetration near the plate increases



The effects of thermal radiation and viscous... 113

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Y

V
E

L
O

C
IT

Y

 

 
Sc=0.22,t=0.4
Sc=0.60,t=0.4
Sc=0.78,t=0.4
Sc=0.22,t=0.6
Sc=0.22,t=1.0

Figure 6: Velocity profile for different values of Sc and t

owing to the presence of the foreign gases such as hydrogen and water vapour.
Further we noticed that it decreases with an increase in the value of ‘Sc′.
The penetration distance decreases on increasing ‘ωt′ when hydrogen gas is
presented in the flow for Pr = 0.71. Fig.16 shows the effects of the variations
in M , K on the penetration. It is noted that the penetration falls owing to an
increase in the magnetic parameter for both air and water. On the contrary,
it increases with an increase in ‘K ′. The reason for them is same as that of
explained for the velocity. Fig.17 concerns with the penetration against y for
the various values of t, Gr and Gc. It is concluded from the figure that it
increases with increase in t, Gr and Gc.
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Figure 7: Velocity profile for different values of Sc and t with Gr=-10 and
Gc=-10
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Figure 8: Velocity profile for different values of N
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Figure 9: Velocity profile for different values of N with Gr=-10 and Gc=-10
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Figure 10: Temperature profile for different values of ωt
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Figure 11: Temperature profile for different values of N
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Figure 12: Temperature profile for different values of Ec
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Figure 13: Temperature profile for different values of Pr and t
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Figure 14: Consentration profile for different values of Sc
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Figure 15: Penetration distance profile for different values of ωt and Sc
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Figure 16: Penetration distance profile for different values of M and K
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Figure 17: Penetration distance profile for different values of Gr, Gc and t

Figs.18 and 19 depicts skin-fiction against time t for different values of
parameters. The Skin-fiction increases with an increase in Sc,N . Further, the
skin-friction increases with M due to enhanced Lorentz force which imports
additional momentum in the boundary layer. On the other hand, the skin-
fiction decreases with increasing K, Gm,Gr,Ec and ωt. The magnitude of
skin-friction for Pr = 0.71 is less than that of Pr = 7.

6 Conclusions

In this paper the effects of thermal radiation and viscous dissipation on MHD
heat and mass diffusion flow past an oscillating vertical plate embedded in
a porous medium with variable surface conditions have been studied numer-
ically. Explicit finite difference method is employed to solve the equations
governing the flow.

The present investigation brings out the following interesting features of
physical interest on the flow velocity, temperature and concentration:

• Velocity decreases with increase in the phase angle (ωt) for air.
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Figure 18: Skin Friction Profile for different values of M, K, Gr, Gc
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• Velocity increases with increase in the thermal Grashof number (Gr¿0)
and mass Grashof number (Gc) for air and the reverse effect is noticed
for heating of the plate (Gr¡0).

• Velocity decreases with increasing magnetic parameter (M), permeabil-
ity of the porous medium (K), for air in the cooling of the plate and
reverse effect is noticed for heating of the plate.

• Velocity decreases with increasing Schmidt number ‘Sc’ and increases
with time‘t’ for air in the cooling of the plate and reversed effect is
noticed for heating of the plate.

• Velocity decreases with increase in radiation parameter ‘N’ for air in
the cooling of the plate and reversed effect is noticed for the heating of
the plate.

• Temperature increases with increase in Eckert number ‘Ec’ and time‘t’
while it decreases with increase in radiation parameter ‘N’.

• Concentration decreases with increase in ‘Sc’.

References

[1] Nield, D.A. and Bejan, A., Convection in Porous Media, 2nd edn. Springer, New
York, 1999.

[2] Bejan, A. and Kraus, A.D., Heat Transfer Handbook, Wiley, New York, 2003.

[3] Ingham, D. B., Bejan, A., Mamut, E. and Pop , I., “Emerging Technologies and
Techniques in Porous Media”, Kluwer, Dordrecht, 2004.

[4] Kolar, A.K. and Sastri, V.M., “Free Convective Transpiration over a Vertical Plate:
a Numerical Study”, Heat and Mass Transfer, 23, 327-336, 1988

[5] Ramanaiah, G. and Malarvizi, G., “Unified Treatment of Free Convection Adjacent to
a Vertical Plate with Three Thermal Boundary Conditions”, Heat and Mass Transfer,
27, 393-396, 1992.

[6] Camargo, R., Luna, E. and Trevino, C., “Numerical Study of the Natural Convective
Cooling of a Vertical Plate”, Heat and Mass Transfer, 32, 89-95, 1996.

[7] Siegel, R., “Transient Free Convection from a Vertical Flat Plate”, Trans. ASME, 80,
347-359, 1958.



122 P.M.Kishore, V.Rajesh, S.Vijayakumar Verma

[8] Goldstein, R.J. and Eckert, E.R.G., “The Steady and Transient Free Convection
Boundary Layers on a Uniformly Heated Vertical Plate”, Int. J. Heat Mass Transfer,
1, 208-218, 1960.

[9] Raithby, G.D. and Hollands, K.G.T., “Natural Convection”, Handbook of Heat Trans-
fer Fundamentals (Rohsenow, W.M., Hartnett, J.D. and Ganic, E.N. (eds.)), McGraw-
Hill, New York, 1985.

[10] Gebhart, B., Jaluria, Y., Mahajan, R.L. and Sammakia, B., Buoyancy Induced Flows
and Transport, Hemisphere Publishing Corporation, New York, 731, 1988.

[11] Padet, J., “Transient Convective Heat Transfer”, J. of the Braz. Soc. of Mech. Sci. &
Eng., XXVII , 74-96, 2005.

[12] Harris, S.D., Elliott, L., Ingham, D.B. and Pop, I., “Transient Free Convection Flow
Past a Vertical Flat Plate Subject to a Sudden Change in Surface Temperature”, Int.
J. Heat Mass Transfer, 41, 357-372, 1998.

[13] Das, U.N., Deka, R.K. and Souldalgekar, V.M., “Transient Free Convection Flow
Past an Infinite Vertical Plate with Periodic Temperature Variation” Journalof Heat
Transfer, Trans. ASME, 121, 1091-1094, 1999.

[14] Gupta, A.S., “Steady and Transient Free Convection of an Electrically Conducting
Fluid from a Vertical Plate in the Presence of Magnetic Field”, Appl. Sci. Res., A9,
319-333, 1960.

[15] Chowdhury, M.K. and Islam, M.N., “MHD Free Convection Flow of Visco-elastic
Fluid Past an Infinite Vertical Porous Plate”, Heat and Mass Transfer, 36, 439-447,
2000.

[16] Aldoss, T.K. and Al-Nimr, M.A., “Effect of Local Acceleration Term on MHD Tran-
sient Free Convection Flow over a Vertical Plate”, International Journal for Numerical
Methods in Heat & Fluid Flow, 15, 296-305, 2005.

[17] Bradean, R., Ingham, D.B., Heggs, P.J. and Pop, I., “Convective Heat Flow from
Suddenly Heated Surfaces Embedded in Porous Media”, Transport Phenomena in
Porous Media (Ingham, D.B. and Pop, I. (eds.)), Pergamon Press, Oxford, 411-438,
1998.

[18] Pop, I., Ingham, D.B. and Merkin, J.H., “Transient Convection Heat Transfer in a
Porous Medium: External Flows”, Transport Phenomena in Porous Media (Ingham,
D.B. and Pop, I. (eds.)), Pergamon Press, Oxford, 205-231, 1998.

[19] Magyari, E., Pop, I., Keller, B., Analytic solutions for unsteady free convection in
porous media, J. Eng. Math., 48, 93–104, 2004.

[20] Geindreau, C., Auriault, J. L., Magnetohydrodynamic flows in porous media, J. Fluid
Mech., 466, 343–363, 2002.



The effects of thermal radiation and viscous... 123

[21] Hossain, M.A., Takhar, H.S., Radiation effects on mixed convection along a vertical
plate with uniform surface temperature, J. Heat and Mass Transfer, 31, 4, pp 243-248,
1996.

[22] Abd-El-Naby, M.A., Elasayed, M.E., Elbarbary, Nader, Y. and Abdelzem., Finite
difference solution of radiation effects on MHD free convection flow over a vertical
plate with variable surface temperature. J.Appl.Math, 2, 65 – 86, 2003.

[23] Pathak, G. and Maheshwari, Ch., Effect of radiation on unsteady free convection
flow bounded by an oscillating platewith variable wall temperature, Int. J. of Applied
Mechanics and Engineering, vol.11, No.2, pp.371-382, 2006.

[24] Deka R.K., and Neog , B.C., Unsteady MHD flow past a vertical oscillating plate
with thermal radiation and variable mass diffusion, Chamchuri, Journal of Mathe-
matics,Volume 1,Number 2, 79 – 92, 2009.

[25] Mahajan, R.L., Gebhart, B.B., Viscous dissipation effects in Buoyancy – Induced
flows, Int. J. Heat Mass Transfer, 32, 7, 1380 – 1382, 1989.

[26] Israel – cookey, C., Ogulu, A., Omubo – Pepple, V.M., The influence of viscous
dissipation and radiation on unsteady MHD free convection flow past an infinite
heated vertical plate in a porous medium with time depedent suction. Int. J. Heat
Mass Transfer, 46, 13, 2305 – 2311, 2003.

[27] Zueco Jordan, J., Network Simulation Method Applied to Radiation and Dissikpation
Effects on MHD Unsteady Free Convection over Vertical Porous Plate. Appl. Math.,
Modelling, 31 , 20, 2019 – 2033, 2007.

[28] Suneetha, S., Bhaskar Reddy, N., Ramachandra Prasad, V., The thermal radiation
effects on MHD free convection flow past an impulsively started vertical plate with
variable surface temperature and concentration. Journal of Naval Architecture and
Marine engineering, 2, 57 – 70, 2008.

[29] Suneetha, S., Bhaskar Reddy, N., Ramachandra Prasad, V., Radiation and mass
transfer effects on MHD free convection flow past an impulsively started isothermal
vertical plate with dissipation. Thermal Science 13 , 2, 71 – 181, 2009.

[30] Hitesh Kumar., Radiative Heat Transfer with Hydro magnetic flow and viscous dissi-
pation over a stretching surface in the presence of variable heat flux. Thermal Science
13, 2, 163 – 169, 2009.

[31] Stokes, G. G., On the effect of the internal friction of fluid on the motion of pendulum,
Transactions Cambridge philosophical Society, IX, 8–106, 1851.

[32] Soundalgekar, V.M., Free convection effects on the flow past a vertical oscillating
plate, Astrophysics and Space Science, 64, 165–172, 1979.

[33] Revankar, S. T., Free convection effect on flow past an impulsively started or oscillat-
ing infinite vertical plate, Mechanics Research Comm., 27, 241–246, 2000.



124 P.M.Kishore, V.Rajesh, S.Vijayakumar Verma

[34] Gupta, A. S., Misra, J. C., Reza, M., Soundalgekar, V. M., Flow in the Ekman layer
on an oscillating porous plate, Acta Mechanica, 165, 1–16, 2003.

[35] Muthucumaraswamy, R., Meenakshisundaram, S., Theoretical study of chemical re-
action effects on vertical oscillating plate with variable temperature, Theoret. Appl.
Mech., Vol.33, No.3, pp. 245 - 257, Belgrade 2006.

[36] Chaudhary, R. C., Arpita Jain, Combined heat and mass transfer effects on MHD free
convection flow past an oscillating plate embedded in porous medium, Rom. Journ.
Phys., Vol. 52, Nos. 5–7, P. 505–524, Bucharest, 2007.

[37] Muthucumaraswamy, R., and Vijayalakshmi, A., Effects of heat and mass transfer
on flow past an oscillating vertical plate with variable temperature, Int. J. of Appl.
Math. and Mech. 4(1): 59-65, 2008.

[38] Chandrakala, P., Radiation effects on flow past an impulsively started vertical os-
cillating plate with uniform heat flux, International Journal of Dynamics of Fluids
Volume 6, Number 2, pp. 209–215, 2010.

[39] Cowling, T.G., Magnetohydrodynamics Interscience Publishers, New York,1957.

[40] Yamamoto, k. and Lwamura,N., Flow with convective acceleration through a porous
medium, J. Eng. Math.,10, 41-54,1976.

[41] Brewster, M.Q., Thermal Radiative Transfer and Properties, John Wiley & Sons,
New York, USA, (1992).

[42] Jain, M.K., Iyengar, S.R.K., Jain, R.K., Computaional Methods for Partial Differen-
tial Equations, Wiley Eastern Limited,1994.

Submitted in January 2011.



The effects of thermal radiation and viscous... 125

Uticaji termičkog zračenja i viskozne disipacije na MHD
toplotno-maseno difuzno tečenje preko oscilirajuće vertikalne
ploče potopljene u poroznu sredinu sa promenljivim uslovima

na površi

Ovo istraživanje je izvedeno radi proučavanja hidromagnetskog tečenja
viskoznog nestǐsljivog fluida preko oscilirajuće vertikalne ploče potopljene
u poroznu sredinu sa zračenjem, viskozne disipacije i promenljive toplotno-
masene difuzije. Vodeće jednačine su rešene bezuslovno stabilnim metodom
DuFort–Frankel tipa za koncentraciju, temperaturu, polje vertikalne brzine
i trenje na zidu i, potom, prikazane grafički za različite vrednosti značajnih
fizičkih parametara. Primećuje se da oscilovanje ploče, promenljivo maseno
difuziono zračenje, viskozna disipacija i porozna sredina značajno utiču na
raspored slike strujanja.
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