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Abstract

Regression testing is an expensive process used to vatitatéied software. Test case prioritization techniques
improve the cost-effectiveness of regression testing dgrimg test cases such that those that are more important are
run earlier in the testing process. Many prioritizatiorhigiques have been proposed and evidence shows that they
can be beneficial. It has been suggested, however, thahikectinstraints that can be imposed on regression testing
by various software development processes can stronggtatie behavior of prioritization techniques. If this is
correct, a better understanding of the effects of time caimgs could lead to improved prioritization techniquesd a
improved maintenance and testing processes. We therefodkicted a series of experiments to assess the effects
of time constraints on the costs and benefits of prioritimatiechniques. Our first experiment manipulates time
constraint levels and shows that time constraints do plagraficant role in determining both the cost-effectiveness
of prioritization and the relative cost-benefit tradeoffsang techniques. Our second experiment replicates the first
experiment, controlling for several threats to validitgluding numbers of faults present, and shows that the gesult
generalize to this wider context. Our third experiment maldites the numbers of faults present in programs to
examine the effects of faultiness levels on prioritizatiand shows that faultiness level affects the relative cost-
effectiveness of prioritization techniques. Taken toggetthese results have several implications for test ergsne
wishing to cost-effectively regression test their softevaystems. These include suggestions about when and when
not to prioritize, what techniques to employ, and how déferes in testing processes may relate to prioritization
cost-effectiveness.
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1 Introduction

Software systems that succeed must evolve. Software eargiméno enhance and maintain systems, however, run
the risk of adversely affecting system functionality. Talwee this risk, engineers rely aagression testingthey
rerun test cases from existing test suites, and create anuew test cases, to build confidence that changes have the
intended effects and no unintended side-effects.

Regression testing is almost universally employed by sofworganizations [39]. It is important for software
quality, but it can also be prohibitively expensive. Forraxde, we are aware of one software development organization
that has, for one of its primary products, a regression tét sontaining over 30,000 functional test cases thatirequ

over 1000 machine hours to execute. Hundreds of hours oheagtime are also needed to oversee this regression



testing process, set up test runs, monitor testing resultsmaintain testing resources such as test cases, o@uies,
automation utilities.

Test case prioritizatiotechniques improve the cost-effectiveness of regressiting by ordering test cases such
that those that are more important are run earlier in thegeprocess. Prioritization can provide earlier feedback t
testers and management, and allow engineers to begin deuggylier. It can also increase the probability that if
testing ends prematurely, important test cases have baen ru

Many researchers have addressed the test case priootipatblem (Section 8 summarizes related work) but most
prior research has focused on the creation of specific fimation techniques. A common approach for empirically
assessing and comparing these techniques (e.g., [12, §8s 34 first obtain several programs, modified versions,
faults, and test suites. Then, the prioritization techagbeing studied are applied to the test suites, the regultin
dered suites are executed, and measurements are takeir effédxtiveness at satisfying testing objectives — tyfyca
in terms of the rates at which they detect faults or coversmaode.

A limitation of this approach to studying prioritization tisat it models the regression testing process as one in
which organizations ruall of their test cases. In practice, however, software devetoy processes often impdsae
constraintson regression testing. For example, under incrementaltaiaband-test processes such as nightly-build-
and-test, the time required to execute all test cases caedxibe time available, and under batch maintain-and-test
processes in which long maintenance phases are followedngydystem testing phases, market pressures can force
organizations to suspend testing before all test casestiemreexecuted.

It has been conjectured [11, 26, 59] that the imposition mEticonstraints on regression testing may affect the
costs and benefits of test case prioritization techniquededd, as time constraints increase, engineers may need to
omit increasingly larger numbers of test cases, and thétimguegression testing efforts may miss increasinglgéar
sets of faults. Larger sets of missed faults in turn resuiéneased costs later in the software lifecycle, through lo
revenue, decreased customer trust, and higher maintecastse We also conjecture that the effects of time condsrain
may manifest themselves differently across differentdase prioritization techniques; that is, the techniquasahe
most cost-effective under one set of time constraints mégrdrom those that are most cost-effective under différen
constraints.

If these conjectures are correct, by studying the effectinté constraints on prioritization, we may be able to
help engineers manage their regression testing activit@e cost-effectively, by pointing them to the techniqune t
are most appropriate given their engineering processesdwer, we may be able to suggest changes in maintenance
and testing processes that will lead to more cost-effecigesssion testing. We therefore designed and implemented
a series of controlled experiments to examine the effedisnaf constraints.

Our first experiment considers the application of severaripization techniques to a set of object programs in
which faults have been seeded, and in which these seedéslare applied uniformly to all object programs. The

results of our experiment show that both of the foregoingextares hold. In fact, for the objects that we examined,



when no time constraints applied, prioritization was ndattesffective. When time constraints applied, prioritiaat
began to yield benefits, and greater constraints resultgebater benefits; moreover, in this case, prioritized 1@&s
significantly outperformed unordered ordered test casggjesting that failing to prioritize is the worst choice 8f a
Finally, time constraints did affect prioritization tedfnes differently: some techniques were much more stable th
others in their response to increased constraints.

Our first experiment allowed us to examine correlations betwtime constraints and prioritization effectiveness
independent of factors related to numbers of faults, byziri fixed humbers of faults randomly seeded across
locations in our object programs. In practice, howeverntm@bers of faults in systems may vary with various factors
related to the system under test. To assess whether thésregolur first experiment generalize, and to investigate
issues related to numbers of faults and other threats tdityailn the first experiment, we designed and performed two
additional experiments.

Our second experiment replicates our first, using numbdeutts chosen to conform with a fault prediction model
created by Bell, Ostrand, and Weyuker [3]. The results of tiperiment substantially confirm those of the first.
Prioritization yields benefits as time constraints inceggsioritized test suites outperform unordered and rantsin
cases, and time constraints affect different prioritmatechniques differently. The different fault numberssidaered
in this experiment, however, did alter results somewhatiation to specific techniques; in particular, heuristiesev
found to be significantly more effective than control tecjug@s more often than in the first experiment.

Our third experiment expressly manipulates the numbersufs present in the systems studied as an independent
variable, using three levels of faultiness. Our resultstiooe to demonstrate that time constraints matter, and that
when constraints do not exist, prioritization cost-effemess is not ensured. However, as the prevalence of faults
increases, even with no time constraints, prioritizatiehileits benefits more often. Further, when time constraiots
exist, the effects of increased faultiness are even stronge

Based on the foregoing results, we are able to suggest $@radical implications for testing practitioners.
Among these, we can say that when time constraints do noamaldvhen numbers of faults are expected to be small,
prioritization may not be worthwhile. When time constrainio hold, however, the worst thing one can do is not
prioritize. Our results also suggest that a certain clageasfniques that employ “feedback” are more beneficial and
stable in producing useful results than techniques thaiodemploy such feedback. Finally, we discuss several ways
in which our results relate to prioritization effectivesexross different testing processes.

The rest of this article is organized as follows. Section @vjates background information on prioritization.
Section 3 presents a cost model that we utilize in our exparimfor use in assessing prioritization techniques.
Sections 4, 5, and 6 present our three experiments, ingjuisign, threats to validity, data and analysis, and inter-
pretations of results. Section 7 discusses the result$ thirab experiments and their practical implications. Bec8

discusses related work. Finally, Section 9 presents ceimig and discusses possible future work.



2 Background: Regression Testing and Test Case Prioritizadn

Let P be a program that has been modified to create a new veFsiand letT be a test suite developed & In the
transition fromP to P’, the program could have regressed, that is, previouslfiegtehavior of? could have turned
faulty in P’. Regression testing attempts to validatein order to investigate whether it has regressed. The agisti
test suite,I’, provides a natural starting point. In practice [39], ergirs often reuse all of the test case'ito test
P’. Depending on the situation, thistest-allapproach can be expensive [55] and since some test ca%esan be
irrelevant to changes made in transformifgnto P’, the cost incurred is not necessarily all worthwhile.

Researchers have proposed various methods for improwngpit-effectiveness of regression testiRggression
test selection techniquésurveyed in [46]) reduce testing costs by selecting a suddsest cases frori’ to execute
on P’. These techniques reduce costs by reducing testing timejnibess they arsafe[47] they can omit test cases
that would otherwise have detected faults. This can raiseadists of software.

Test case prioritization techniquéssg., [48, 60]) offer an alternative approach to improviegression testing cost-
effectiveness. These techniques help engineers revdal éauly in testing, allowing them to begin debugging esrli
than might otherwise be possible. In this case, entire tétgtssmay still be executed, avoiding the potential drawbac
associated with omitting test cases, and cost savings camedchieving greater parallelization of debugging and
testing activities. Alternatively, if testing activitieme cut short and test cases must be omitted, prioritization
improve the chances that important test cases will have éeecuted. In this case, cost savings related to early fault
detection (by those test cases that are executed) stily,aqpdl additional benefits accrue from lowering the number
of faults that might otherwise be missed through less apatgruns of partial test suites.

A wide range of prioritization techniques have been prodas®d empirically studied (e.g., [22, 36, 48, 59, 60,
61, 62]). Most techniques utilize some form of code coveraffgrmation to direct the prioritization effort. Code
coverage information is obtained by instrumenting a progsach that certain code components (e.g, method entries,
statements, branches, conditions, or basic blocks) cabdereed to be exercised by test cases.

Given code coverage information for a test sditeone way to prioritize is to use a “total-coverage” priaatiion
technique, that orders test cases in terms of the total nuofbeode components that they cover. Total-coverage
techniques can be improved by addfiegdbackusing an iterative greedy approach in which each “next’¢ase is
placed in the prioritized order taking into account the effef test cases already placed in the order. For example, an
“additional-block-coverage” technique prioritizes teases in terms of the numbers of new (not-yet-covered) Block
they cover, by iteratively selecting the test case thatise most not-yet-covered blocks until all blocks are cedle
then repeating this process until all test cases have béanitiped.

More recently, techniques have become more sophisticatenims of the sources of information they utilize and

the manner in which this information is incorporated — Set8 provides a comprehensive discussion.



3 Measuring the Cost-Benefits of Test Case Prioritization

Most early work on prioritization utilized simple metricssessing the rate at which faults are detected by test cases
(e.g., APFD [48] and APFDP [34]) to evaluate prioritization technique effectivenéSsction 8 provides a summary).
Such metrics relate to the savings in debugging costs thafifton earlier fault detection. These metrics do not suffice
to assess time-constrained techniques, however, becatis@ssessment requires that costs related to omitted fault
also be measured. Moreover, these savings and costs mugtaseirad in comparable units so that they can both be
considered in technique assessment. A comprehensive ¥igadeoffs also requires consideration of the costs of
applying techniques, and of utilizing them not just on singystem releases but across entire system lifetimes, and
neither of these are considered by prior metrics.

For this reason, in this work, we rely on an economic modelQEMD (EVOIlution-aware economic MOdel for
regression testing), which is currently the only existimgrromic model capable of capturing the foregoing factors

comprehensively. We summarize the model here; for furte&aild we refer the reader to [11, 13].

3.1 A Regression Testing Process Model

Economic models capture costs and benefits of methodolmgjaive to particular processes, so we begin our discus-
sion by providing a model of the regression testing procasstich EVOMO is based. Our model corresponds to the
most commonly used approach for regression testing at gtersytest level [39] — hatchprocess model.

Figure 1 presents a timeline depicting the maintenanceessn testing and fault correction, and post-release
phases for a single release of a software system followiraggehlprocess model. Tinié represents the time at which
maintenance (including all planning, analysis, desigu,iamplementation activities) of the release begins. At tithe
the release is code-complete, and regression testing alidtdarection begin — these activities may be repeated and
may overlap within time intervdk2 : ¢3), as faults are found and corrected. When this phase endseat3t product
release can occur — at this time, revenue associated witteldsse begins to accrue. In an idealized setting, product
release occurs on schedule following testing and faultemtion, and this is the situation depicted in the figure.

This process model relates to the research questions wetavishestigate as follows. Suppose there are no time

constraints limiting testing. In this case, test case firmation techniques attempt to reduce time interf¢al : ¢3)

scheduled
product release
date
time: t1 12 t3 t4
phase: ‘ maintenance ‘ regression testing &‘ post-release
fault correction (revenue)

Figure 1: Maintenance and regression testing lifecycle.



by allowing greater portions of the fault correction adtes that occur in that period to be performed in parallehwit
testing, rather than afterward. If this succeeds, the swéhwan be released early and overall revenue can incréase. |
prioritization is unsuccessful and fault correction aitités cause time intervdk2 : t3) to increase, then the release
is delayed and revenue can decrease. Next, suppose tinteadotsSorce testing to be terminated early. In this case,
revenue may increase but with potential for additional €tester due to omitted faults. Here, test case prioritizatio
can decrease such costs by increasing the likelihood thks fare detected prior to the termination of testing.

This batch process model makes several assumptions. Fopéxaorganizations also create software for reasons
other than to create revenue. Organizations that comg@stimg early could spend additional time performing other
forms of verification until the scheduled release date as;ivand this could lead to increased revenue via reduced
fault cost downstream. Revenue may not always increasenasititerval(t3 : ¢4) increases; earlier release could
conceivably resultin a decrease in revenue. Moreovernieviself is not the sole measure of benefit, because market
value (e.g., the value of a company’s stock) is also impartaitso, there are many other regression testing process
models that could be utilized in practice; for example, somganizations use incremental testing processes, in which
test cases are run each night as maintenance proceeds.

These differences noted, the model does allow us to inagstigur research questions, in a manner that is much
more comprehensive than that used in research on regresstorg to date. We also believe that the EVOMO model

can be adjusted to accommodate different regressionggstotesses, and we discuss this further in Section 9.

3.2 The EVOMO Economic Model

EVOMO (EVOIlution-aware economic MOdel) captures the casid benefits of regression testing methodologies in
terms of the cost of applying the methodologies and how meearnue they help organizations obtain.

EVOMO involves two equations: one that captures costseélad the salaries of the engineers who perform
regression testing (to translate time spent into monetalyes),and one that captures revenue gains or lossedrelate
to changes in system release time (to translate time-&@&selinto monetary values). The model accounts for costs
and benefits across entire system lifetimes rather than apssiots (i.e. single releases) of those systems, through
equations that calculate costs and benefit®ss entire sequences of system relea3és model also accounts for
the use of incremental analysis techniques (e.g., reliangereviously collected data where possible rather than on
complete recomputation of data), an improvement alsoifaist by the consideration of system lifetimes.

The two equations that comprise EVOMO are as follows. Tenwsfficients, and potential measures that can be

used to capture these are summarized in Table 1.

Cost = PS * i(csa) + COi(i) + CO,(3) + b(i) * CVi(i) + (i) * CF(4)) )

=2
n

Benefit = REV x Y (ED(i) — (CS(i) + COi(i) + CO(i) + ain (i — 1) % CAw (i — 1)

tap(i— 1) % CAu(i — 1) + CR(i) + b(3) * (CE(i) + CVi(i) + CVa(i)) + CD(1)) (2)



Table 1: Terms, Coefficients, and Potential Measures

es

Term Description
S Software system
i Index denoting a releasg of S
n The number of releases of the software system
u Unit of time (e.g., hours or days)
i, () Coefficient to capture reductions in costs of instrumeatetor S; due to the use of incremental analysis techniques
atr (4) Coefficient to capture reductions in costs of trace colecfor S; due to the use of incremental analysis techniques
b(7) Coefficient to capture reductions in costs of executing aidating test cases fd#; due to the use of incremental analysis techniq
c(7) Number of faults that are not detected by a test suite appie
Term Description Potential Measure
CS (i) Time to perform setup activities required to tést The costs of setting up the system for testing, compilingvérsion
to be tested, and configuring test drivers and scripts
CO; (i) Time to identify tests that are obsolete f&r The costs of manual inspection of a version and its test cages
determination, given modifications made to the system, efaht
cases that must be modified for the next version
CO(i) | Time to repair obsolete tests 6} The costs of examining and adjusting test cases and teetsirand
the costs of observing the execution of adjusted tests anetrsir
CA;n (i) | Time to instrument all units in The costs of instrumenting programs
CAyr(7) | Time to collect traces for test casesdn. ; The costs of collecting execution traces
CR(%) Time to execute a prioritization technique Sp The time required to execute a prioritization techniquelfts
CE (%) Time to execute test cases Sp The time required to execute tests
CVy4(i) | Time to use tools to check outputs of test cases,on The time required to run a differencing tool on
test outputs as test cases are executed
CV;(3) Human time for inspecting the results of test cases The time required by engineers to inspect comparisons bbteputs
CF (1) Cost of missed faults after delivery 6f To estimate this cost, we rely on data provided in [53];
we used 1.2 hours as the time required to correct faults @éarery
CD(3) Cost of delayed fault detection feedback $n Following [34], we translate the rate of fault detectiorpithe
cumulative cost (in time) of waiting for each fault to be egpd
while executing test cases under the prioritized order
REV Revenue in dollars per unit We estimate this value by utilizing revenue values cited sney of
software products ranging from $116,000 to $596,000 per@rep [8]
PS Average hourly programmer’s salary in dollars per unit We rely on a figure of $100 pererson-hour, obtained by adjusting
an amount cited in [24] by an appropriate cost of living facto
ED(4) Expected time-to-delivery faf; when testing begins Actual values forED cannot be obtained for our object programs.

Thus, rather than calculat8 D, we use the relative cost-benefits to
compare techniques; this causes the valuEbfto be canceled out

In addition to capturing the costs related to the tasks ireain prioritizing and running tests, this model captures

the two primary drivers of costs and benefits that relatente ttonstraints as outlined abov€D (i) captures costs

related to delayed fault detection feedback (and thus,flienelated to reductions in delays); this cost occurs wéreth

time constraints are present or n6tF' (i) captures costs related to faults missed in regressiongg$hiis cost occurs

when time constraints force testing to end prior to execubitthe entire test suite.

4 Experiment 1: The Effects of Time Constraints on Prioritization

Ouir first experiment addresses the following research tunest

RQ1: Given a specific test case prioritization technique, age tionstraints vary, in what ways is the performance of

that technique affected?

RQ2: Given a specific time constraint on regression testing,hatways do the performances of test case prioriti-

zation techniques differ under that constraint?



To address these questions we performed a controlled exgeti The following subsections present our objects

of analysis, variables and measures, setup and desigatgtoevalidity, data and analysis, and discussion of result

4.1 Objects of Analysis

We used five Java programs from the SIR infrastructure [9)gescts of analysisant, xml-security jmeter, nanoxm)
andgalileo. Antis a Java-based build tool, similar bmke but extended using Java classes instead of shell-based
commandsJmeteris a Java desktop application used to load-test functiogt@bior and measure performanienl-
securityimplements security standards for XMNanoxmilis a small XML parser for Jav&alileois a Java bytecode
analyzer. Several sequential versions of each of thesegrgare available. The first three programs are provided
with JUnit test suites, and the last two are provided with T&st Specification Language) test suites [40].

Table 2 lists, for each of our objects of analysis, data ora$sociated “Versions” (the number of versions of
the object program), “Classes” (the number of class fileddnlatest version of that program), “Size (KLOCSs)” (the
number of lines of code in the latest version of the programd, “Test Cases” (the number of test cases available for

the latest version of the program).

Table 2: Experiment Objects and Associated Data

Objects Versions | Classes Size Test | Mutation
(KLOCs) | Cases| Faults
ant 9 627 80.4 877 412
jmeter 6 389 43.4 78 386
xml-security 4 143 16.3 83 246
nanoxml 6 26 7.6 216 204
galileo 16 87 15.2 912 2494

To address our research questions we require faulty versibour object programs, so we utilized mutation
faults created by members of our research group for an eatlidy [12] and now available from the SIR repository
with the programs. Because our focus is regression testidglatection of regression faults (faults created by code
modifications), we considered only mutation faults locatehodified methods. The total numbers of mutation faults
considered for our object programs, summed across alloressif each program, is shown in the rightmost column of
Table 2.

4.2 Variables and Measures
4.2.1 Independent Variables

Given our research questions, our experiments maniputaethdependent variableime constraint@andprioriti-

zation technique



Variable 1: Time Constraints

The time constraints imposed on regression testing by waisoftware development processes directly affect regres-
sion testing cost-effectiveness by limiting the amountesting that can be performed. Thus, to assess the effects of
time constraints, our first independent variable conttodsamount of regression testing.

For the purpose of this study, we utilize faime constraint levelsTCL-0, TCL-25, TCL-50, and TCL-75. TCL-0
represents the situation in which no time constraints aplgl thus, testing can be run to completion. TCL-25, TCL-
50, and TCL-75 represent situations in which time constsaieduce the amount of testing that can be done by 25%,
50%, and 75%, respectively.

To implement time constraint levels, for simplification, agsume that all of the test cases for a given object pro-
gram have equivalent execution times — this assumptiorasoreable for our object programs for which test execution
time varies only slightly. We then manipulate the numberest tases executed to obtain results for different time
constraint levels. For example, in the case of TCL-25, feheaersionS; of object progrant and for each prioritized
test suitel; for .S;, we halt the execution of the test caseqiiron S; as soon as 75% of those test cases have been run

(thus omitting 25% of the test cases).

Variable 2: Prioritization Technique

We consider twaontroltechniques and foureuristicprioritization techniques.

Control techniques are those that are used as experimental conbtred® do not involve any “intelligent” algo-
rithms for ordering test cases. We consider two such teciesid'original” and “random”. Original ordering utilizes
the order in which test cases are executed in the origin@hgescripts provided with the object programs, and thus,
serves as one potential representative of “current pectRandom ordering utilizes random test case orders (in our
experiment, averages of runs of multiple random orders)}lamsl provides a baseline for technique comparison that
abstracts away the possible vagaries of a single contrerord

Heuristic techniques attempt to improve the effectiveness of test oaders. As heuristic techniques, we se-
lected four techniques drawn from two overall prioritipatimethodologies: conventional code-coverage-based pri-
oritization [48] and Bayesian Network-based prioritipati{36]. For each of these methodologies we consider two
techniques: one that incorporates feedback and one thaidde

Conventional code-coverage-based (CC) prioritizatishnéues, as discussed in Section 2, rely solely on code
coverage information obtained when test cases are run qurithrereleaseP, to order test cases for execution Bh
The techniques we use rely on code coverage measured avéhefdasic blocks in control flow graphs built from
the Java bytecode of our object programs.

Bayesian Network-based (BN) prioritization techniquesestimates of the conditional probabilities that (1) clesng
cause faults, (2) code quality renders modules fault-prame (3) faults present in code may be revealed by test cases,

encodes these in a Bayesian Network, and apply Bayesiaty#¢igab obtain prioritized test case orders (see [36] for



details). Note that BN techniques use code coverage infimmat the level of classes to obtain certain estimates, and
this coarser-grained level of instrumentation can potdigtcause their costs to differ from those of CC techniques.
Further, BN techniques must be configured via parametecsyanutilize results obtained from a prior empirical
study [37] to select parameter values.

The CC and BN methodologies that we study represent two afahéest and algorithmically simplest techniques
proposed to date, and two of the most recent and algorithinmimamplex techniques proposed to date, respectively.
They offer a spectrum of technique costs and potential bsreefioss which to conduct our study. (Section 8 provides
further comments on technique selection relative to otbeéztial approaches.)

Table 3 summarizes the six techniques that we consider, sgighes mnemonics to therd, Tr, Tcc Tbn, Tccf,

andTbnf) for use in subsequent discussion.

Table 3: Test Case Prioritization Techniques

Group Label | Technique Description

control To original original order
Tr random random order

non-feedback| Tcc total CC prioritize on coverage of blocks
Tbhn total BN prioritize via Bayesian Network

feedback Tccf | additional CC | prioritize on coverage of blocks with feedback mechanism
Tbnf | additional BN | prioritize via Bayesian Network with feedback mechanism

4.2.2 Dependent Variable and Measures

Our dependent variable isralative cost-benefit valugroduced by applying the economic model presented in Sec-
tion 3, using a further calculation described below. The aad benefit components are measured in dollars. The cost
components include several constituent measures, whidollexted as described in Table 1 in Section 3. To measure

costs that involve human activities we averaged times reduiy two graduate students to perform the activities.
Relative Cost-benefit

We considered two approaches for comparing techniques fifsh@pproach calculates absolute cost-benefit values
for each technique, using Equations 1 and 2 (Section 3). Wiolak of this approach, however, is that it requires data
or estimates pertaining to théD variable, and it is difficult to find such data or reasonabtevestes for our object
programs.

The second approach calculatelsitive cost-benefit values which the cost-benefits of techniques are determined
relative to those of a baseline technique. This approach doerequire values foED; moreover, it normalizes the
cost-benefit values calculated for techniques relativegbaaed baseline, rendering their comparison independent o
particular choices offD. To determine theelative cost-benefibf prioritization techniqud with respect to baseline

techniquebase we use the following equation:
(Benefity — Costr) — (Benefitpase — Costpase) 3)

10



When this equation is applied, positive values indicaté Thas beneficial compared tluse, and negative values
indicate otherwise.

We chose the second approach, selecting the random ordestafdses as a baseline, and utilizing mean values
achieved across 30 different random orders to obtain lmesetilues. This use of mean values across multiple runs
limits the effect of chance on the baseline value. It alsa@poes more reliable comparisons than could be obtained
with a single instance of an alternative baseline such asriggal test case order, which might exhibit a particular

trend that would be propagated to the outcomes of all corepasi

4.3 Experiment Setup
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Figure 2: Experiment setup (across sequences of versioagfeen object program and a given time constraint level).

Figure 2 helps to illustrate our experiment setup, as agpbiesequences of versions per object progianior
a given time constraint level TCL-k. The figure depicts datens in bubbles and major processing elements in
rectangles, and edges represent inputs and outputs of lahown in the figure, to perform prioritization, the CC
and BN techniques require test coverage information. Thediniques also require data related to code changes
and software quality metrics. We obtained coverage inféiondor each object program® by running test cases on
each version of’ instrumented usin@of ya [27]. The resulting information lists which test cases eis&d which
blocks in each version; a previous version’s coverage métion is then used to prioritize a current version’s set of
test cases. In the case of BN techniques, block coveragéesddiatracted to the class level to determine the percentage

of blocks covered in a particular class. We obtained codaghanformation usingandnar k [7] as a byte code

11



differencing tool, and we obtained software quality metiiimcluding data on coupling, cohesion, and complexity)
from the Chidamber-Kemerer metrics suite [6] usingdhk¢ mprogram? Using this information and the original test
suite, prioritization techniques produce reordered teisés for each version aP.

Recall that our economic model (EVOMO) measures the costbanefits of regression testing techniques across
sequences of program version3o obtain the fault data required to investigate our redeguestions using this
model, we required program versions containing multiplédtéa To provide these we constructeditant groupsTo
construct a mutant group for version of P, we first randomly chose a numberbetween one and ten. We then
randomly selected mutation faults from those available with versibn and instantiate them ilv. Applying this
process to each of the versionsPfyields asequence of mutant groufr that sequence of versions. We created 30
such sequences of mutant groups for each of our progkams

To collect required data faP, for each version of” and each selected mutant group for that version, and each
prioritization technique, we recorded the appropriate@alfor cost variables related to applying that techniquéé
case of the random technique, we did this for 30 differentloam orders, and averaged the results. The required data
included data on rate of fault detection and faults misseeedl as other cost variable§', CVy, CV;, CF, ¢, CD).

All machine times were measured on a PC running SuUSE LinuwBi1GB RAM and a 3 GHZ processor.

We used the collected cost variable values to calculatéivelaost-benefit values for each of the prioritization
techniques orP. Each of these calculations required us to calculate tlaivelcost-benefit of the given technique
(using Equation 3) at the given time constraint level TClekdach of the 30 sequences of mutant groups created for

P. These resulting relative cost-benefit numbers serve agataefor our subsequent analysis.

4.4 Threats to Validity

This section describes the threats to the validity of out\stand the approaches we used to limit their effects.

External Validity. The Java programs that we study are relatively small (7K -)8@Kd their test suites’ execution
times are relatively short. Complex industrial programthwiifferent characteristics may be subject to differersteo
benefit tradeoffs. The testing process and the cost of faglissed are not representative of all processes used or fault
costs observed in practice. We examine only four priotiitimaheuristics, and the prioritization and instrumertati
tools that we used in this study are prototypes, and thus rmoayefiect the performance of more robust industrial
tools. Our faults are derived through code mutation, arftbalgh there is some evidence that mutation faults can be
representative of real faults for purposes of experimenaluation of the effectiveness of testing techniquestfg,
numbers of mutation faults used in our study may not matchbmimof faults found in practice. In particular, we
utilize random numbers of faults not exceeding 10 for allabgct programs irrespective of size. Control for these

threats can be achieved only through additional studidswitier populations of programs and faults, different testi

http://www.spinellis.gr/sw/ckjm/
2Complete data sets can be obtained from the first author.
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processes and prioritization techniques, different feeNerities and fault distributions, and improved tools.

Internal Validity. The inferences we have made about the effects of time camtstiaould have been affected by
other factors. One factor involves potential faults in thel$ that we used to collect data. To control for this threvat,
validated our tools on several simple Java programs. A skfamtor involves the actual values we used to calculate
costs, some of which required estimation. We estimateddbis of test setup, finding obsolete tests, repairing otesole
tests, and validating outputs by measuring the time takegraguate students to perform these tasks. The values we
used for revenue and costs of missing and correcting fadtelatained from surveys found in the literature, but such
values can be situation-dependent; for example, Perry &gl [82] present a different set of fault costs. A third tact
involves our implementations of techniques. In the caseMt&hniques, the choice of parameters they utilize can
affect their performance. Although these effects have lskewn to be insignificantin many cases [37], using simpler
and more general configurations can help reduce this thiéaally, our BN and CC prioritization techniques were
implemented by different programmers; however, in ourgiesign we were careful to utilize identical tools for all

common tasks (e.g., instrumentation and test executidateckto the prioritization and measurement processes.

Construct Validity. While our economic model is the most comprehensive modetedeto date for use in assessing
regression testing techniques, and the only existing mnmdtgble for assessing our research questions, the deptende
measures that we have considered to capture costs and beglafit’e to this model are not the only possible measures.
Furthermore, other testing costs not captured by the medeh as the costs of initial test case development, initial
automation, and test suite maintenance, might play importdes and influence overall costs and benefits in particula

testing situations and organizations.

4.5 Data and Analysis

To provide an overview of the collected data, Figure 3 prissbaxplots$ that show cost-benefit results for all tech-
nigues, time constraints, and programs. The figure is coathot20 subfigures. The four columns of subfigures
present results for time constraint levels TCL-0, TCL-2&1¥50, and TCL-75, respectively. The five rows present
results for each of the object programs, respectively. Tdifate visual comparisons across constraint levelst-cos
benefit scales are fixed per program (across rows). Due to difflgences in cost-benefit scales across different
programs, however, we use different scales per program.

Each subfigure contains boxplots for six prioritizationhieiques (Table 3 presents a legend of the techniques)
showing the distribution of cost-benefits in dollars forghdechniques, for the given object program and constraint
level. The horizontal axis corresponds to techniques, ardvertical axis corresponds to cost-benefits in dollars

(recall that these are relative cost-benefits calculatedieasribed in Section 4.2.2). Higher values indicate greate

3A boxplot is a standard statistical device for representiata sets [23]. In these plots, each data set's distribigicepresented by a box and a
pair of “whiskers”. The box’s height spans the central 50%hefdata and its upper and lower ends mark the upper and lavaetilgs. The middle
of the three horizontal lines within the box represents tleglian. The “whiskers” are the vertical lines attached toktbg; they extend to the
smallest and largest data points that are within the owtlieoffs. These outlier cutoffs are defined to lie at 1.5 titteswidth of the inner quartile
range (the span of the box) from the upper and lower pointsahrange. Small circles beyond these cutoffs represemaloos data values.
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Figure 3: Experiment 1: Cost-benefit boxplots, all prograimshniques, and time constraints.
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cost-benefits. The two leftmost boxplo® @ndTo) present data for the control techniques, and the restpresga

for the four heuristics. Because we measured results (fth application of a technique on a given program and
constraint level) across 30 sequences of mutant groupsS@et@n 4.3), the number of data points represented by
each boxplot in each subfigure is 30.

We begin with a descriptive analysis of the data in the basploonsidering the performance of the heuristics in
comparison to the control techniques as time constrairis \EBxamining the boxplots for each object program in
the first column (TCL-0) of Figure 3, we see that none of theristins appear to be cost-beneficial compared to the
original techniqueTo) for the first two object programsfitandjmete). On the other programs, differences between
techniques in the first column are difficult to see, but oulssgjuent statistical analysis provides more details.

As the time constraint level changes, the relationship betwechniques changes. Across all three levels of time
constraints (TCL-25, TCL-50, and TCL-75), in all cases bué dmeteron Tccfat TCL-25), feedback techniques
appear to be more beneficial than control techniques. Goetfli gains appear to increase as time constraints increase
In the case of non-feedback techniques, results vary aproggams. For example, @antandxml-security control
techniques appear to be worse than non-feedback technigju@ss time constraints increase, the cost-benefit gap
between control techniques and non-feedback techniquwi On the other programs, there is no specific common
trend visible between non-feedback and control techniques

Next, to formally address each of our research questionsyisie to compare the effects that occur for given
techniques as time constraints change, and then compag#¢lts that occur between techniques at each given level
of time constraints. The following sections provide, focle®af our research questions in turn, the statistical aealys
and results relevant to that question. (We discuss furthpli¢ations of the data and results in Section 4.6.)

For our statistical analysis, we followed a process welaldgthed in prior studies of test case prioritization
(e.0.,[12, 18, 48])): we used the Kruskal-Wallis non-paetiic one-way analysis of variance followed by Bonferreni’
test for multiple comparisons [45]. We used the Kruskalis/&st because our data did not meet the assumptions for
using ANOVA: our data sets do not have equal variance, an@$@mwe severe outliers. For multiple comparisons, we
used the Bonferroni method for its conservatism and geiterde used the Splus statistics packageperform the

analysis. Because results vary substantially across pmagjrwe analyzed the data for each program separately.
4.5.1 RQZ1: Effects of Time Constraints on Techniques

Our hypothesis associated with RQ1 {$11) given a specific technique, the cost-benefits betwesn ¢bnstraints
differ. To test this hypothesis, we performed the Kruskal-Wadst {df = 3) for each technique per program, at a
significance level of 0.05, over the four time constrainelsy Table 4 shows the results of this analysis for the four
heuristics ando. Results forTr are not meaningful in this context, since it is the baseliseduin our relative cost-
benefit calculation. Considering all techniques and pnogran all cases other tharbnapplied tojmeter(24 of the

25 cases), the hypothesis is supported.

4http://www.insightful.com/products/splus
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Table 4: Kruskal-Wallis Test Results for RQ1

Program To Tce Ton Tecef Tonf
x> p-val. | x? p-val. | x2 p-val. | 2 p-val. | x2 p-val.
ant 50 | <0.0001| 44 | <0.0001| 62 | <0.0001 84 | < 0.0001 74 | <0.0001
jmeter 41 | <0.0001| 10 0.018 | 7.4 0.057 34 | <0.0001 36 | <0.0001

xml-security | 17 0.0005| 66 | <0.0001 | 46 | <0.0001| 104 | <0.0001| 87 | <0.0001
nanoxml 100 | <0.0001| 28 | <0.0001| 59 | <0.0001| 99 | <0.0001| 27| <0.0001
galileo 92 | <0.0001| 97 | <0.0001| 78 | <0.0001| 97 | <0.0001| 111 | < 0.0001

Table 5: Bonferroni Test Results for RQ1: Comparing acrasgeTConstraint Levels per Technique and Program

Technique ant Jmeter xml — security nanoxml galileo

TCL Mean | Grp TCL | Mean | Grp TCL | Mean | Grp TCL Mean | Grp TCL Mean | Grp

To 0 352 | A 25 2243 | A 0 -60 | A 25 1861 | A 0 -3335 | A

25 -1779 | A 0 -56 | AB 25 61 [ A 0 -459 | A 25 -19544 | B

50 -3768 | A 50 -1978 BC 75 -1735 | AB 75 -19064 | B 50 -28598 | C

75 -11201 | B 75 -5126 C 50 -3427 B 50 -20965 | B 75 -38088 | D

Tcc || 50 2977 | A 25 988 | A 75 4456 | A 50 189 | A 0 -3984 | A

25 1578 | A 50 164 | A 50 2845 | B 25 -249 | A 25 -19135 | B

75 1310 | A 0 -516 | A 25 2812 | B 0 -416 | A 50 -19983 | B

0 -1088 | B 75 -1644 | A 0 -163 | C 75 -2850 | B 75 -41699 | C

Tbn || 75 6391 [ A 50 1428 | A 75 3942 | A 0 -304 | A 50 11502 | A

25 3399 | B 25 1193 | A 50 2842 | A 25 -1304 | A 25 5772 | B

50 3248 | B 75 841 | A 25 2806 | A 50 -5357 | B 75 2684 | C

0 -980 | C 0 512 | A 0 -171 | B 75 -5922 | B 0 -1166 | D

Tecf || 75 6743 | A 75 4666 | A 75 6150 | A 75 6178 | A 75 21880 | A

50 5106 | A 50 2855 | AB 50 4224 | B 50 3406 | B 50 21476 | A

25 2667 | B 25 1684 BC 25 2819 | C 25 3157 | B 25 14365 | B

0 -1198 | C 0 -497 C 0 -155 | D 0 -127 | C 0 -985 | C

Tbnf || 75 6983 [ A 25 3801 | A 75 4454 | A 50 1535 | A 75 29886 | A

50 2002 | B 75 3639 | A 50 3434 | B 75 877 | A 50 22379 | B

25 1783 | B 50 3010 | A 25 2616 | B 0 37 | A 25 15458 | C

0 -1030 | C 0 -487 | B 0 -163 | C 25 -143 | A 0 150 | D

We next performed multiple pair-wise comparisons for eaathhique other than the random technique using
Bonferroni tests, which determine the significance in groigan differences in an analysis of variance test. Table 5
presents the results of these tests with a Bonferroni ciioref45]. In the table, data is organized per technique
(rows) and per program (columns), for each technique angrpro listing the four time constraint levels in terms of
their mean cost-benefit values, from higher (better) to tofmerse). We use grouping letters (columns with headers
“Grp”) to partition the time constraints such that resultattare not significantly different share the same grouping
letter. For example, the results ©tcffor jmeter show that TCL-75 and TCL-50 are not statistically signifitan
different (sharing grouping letter A), and TCL-50 and TCh-are not statistically significantly different (sharing
grouping letter B), but TCL-75 and TCL-2&e statistically significantly different (sharing no grougitetters).

As the table shows, the results from multiple pair-wise carigons reveal different trends between time constraints
among techniques and programs. In the case of the origidiahigue [0), the results show that in all cases but two
(imeterandnanoxmlat TCL-25) negative cost-benefit values were observed, winidicates that in most cases the
original technique was worse than the (random) baselinesr&lly cost-benefit values decreased as time constraint
levels increased (from TCL-0 to TCL-75); this was particlyl@vident in the case afalileo, on which there were

statistically significant differences between all but tvairp of time constraints.
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Table 6: Kruskal-Wallis Test Results for RQ2

Program TCL-0 TCL-25 TCL-50 TCL-75
x> p-val. | x2 p-val. | 2 p-val. | x2 p-val.
ant 162 | < 0.0001 92 | < 0.0001 87 | <0.0001| 109 | < 0.0001

jmeter 122 | <0.0001| 34| <0.0001| 24 0.0002 | 45 | < 0.0001
xml-security | 125 | < 0.0001 | 123 | < 0.0001 | 113 | < 0.0001| 80 | < 0.0001
nanoxml 152 | <0.0001 | 123 | < 0.0001| 148 | < 0.0001 | 146 | < 0.0001
galileo 160 | < 0.0001 | 164 | < 0.0001| 165 | < 0.0001 | 163 | < 0.0001

The trends change, however, when we consider heuristi¢eloase of non-feedback techniquésqandTbn),
negative cost-benefit values were observed in all cases ichwio time constraints applied (TCL-0). When time
constraints applied, techniques produced positive cesefit values on the three object programs that have JUnit
test casesant, jmeter, andxml-security in all but one caseTccon jmeterat TCL-75), with values usually trending
upwards as time constraints increase. On the two prograam$ive TSL test casesanoxmlandgalileo, however,
results and trends were mixed.

In the case of feedback techniques, the positive effectsiofifization, together with upward trends as time
constraint levels increase, are more obvious. Cost-beradfies increased as time constraints increased in all cases
but two (meterandnanoxmlfor Tbnf), and in these two cases, differences between time comistesels were not
significant. Further, even in cases in which non-feedbadtigues were not cost-beneficiabhoxmlandgalileo),

feedback techniques produced positive cost-benefit values

4.5.2 RQ2: Effects Among Techniques at Given Levels of Time @hstraints

Our hypothesis associated with RQ2 {#12) given a specific time constraint, the cost-benefits betntest case
prioritization techniques differfTo test this hypothesis, we performed the Kruskal-Wallks {df = 5) for each of the
four time constraint levels per program, at a significanwellef 0.05, over the six techniques. Table 6 shows the
results of this analysis for the four time constraint lev@lse hypothesis is supported in all 20 cases.

We next performed multiple pair-wise comparisons for eatie tconstraint level using the Bonferroni tests. Ta-
ble 7 presents the results of the Bonferroni tests with a &wahi correction. In the table, data is organized per time
constraint level (rows) and program (columns), for eadimlisthe six techniques in terms of their mean cost-benefit
values, from higher (better) to lower (worse). Again, grimggetters indicate statistically significant differesce

As the table shows, the results from multiple pair-wise cargons show different trends between techniques
among time constraint levels and programs. In the case ichwid time constraints applied (TCL-0), all control
techniques were better than heuristics for the three opjegrams ént, jmeter, andxml-security that have JUnit test
cases. Results faranoxmlandgalileo, however, differ, with the random technique significantiyperior to heuristics
in all but one caseTbnfon galileo), and the original technique significantly inferior to alittone heuristicTcg).

In the cases in which time constraints applied (TCL-25, T8Ll,and TCL-75), however, the relationships between

control techniques and heuristics differ. At TCL-25, hsticis often outperformed the control techniques, but the
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Table 7: Bonferroni Test Results for RQ2: Comparing acrashmiques per Time Constraint Level and Program

TCL ant Jjmeter xml — security nanoxml galileo

Tech. Mean | Grp Tech. | Mean | Grp Tech. | Mean | Grp Tech. Mean | Grp Tech. Mean | Grp

0 Tr 00 ] A Tr 00 ] A Tr 00 ] A Tr 00 ] A Thbnf 150 | A

To 352 | B To 56 | B To -60 | B Tccf -127 | B Tr 00| A

Tbn -980 | C Tbnf -487 | C Tecf -155 | C Tbnf -143 | B Tecf -985 | B

Tbnf -1030 | CD Tecf 497 | C Tcc -163 | C Tbn -304 | C Tbn -1166 | B

Tcc -1080 D Tbn 512 | C Tbnf -164 | C Tcc -416 | D To -3335 | C

Tccf -1198 | E Tcc -516 | C Tbn -171 | C To -459 | D Tcc -3984 | D

25 || Tbn 3399 | A Thbnf 3801 [ A Tccf 2819 | A Tccf 3157 | A Tbnf 15358 | A

Tccf 2667 | A To 2243 | AB Tcc 2812 | A To 1861 | B Tcecf 14365 | A

Tbnf 1783 | AB Tecf 1684 | ABC Tbn 2806 | A Tbnf 1535 | B Tbn 5772 | B

Tcc 1578 | AB Tbn 1193 BC Tbnf 2616 | A Tr 00| C Tr 00| C

Tr 0.0 BC Tcc 988 BC Tr 00| B Tcc -249 | CD Tcc -19135 | D

To -1779 C Tr 0.0 C To 61 | B Tbn -1304 D To -19544 | D

50 || Tecf 5106 | A Thbnf 3010 [ A Tccf 4224 | A Tccf 3406 | A Tbnf 22379 | A

Tbn 3248 | AB Tcecf 2855 | A Tbnf 3434 | A Tbnf 877 | AB Tcecf 21476 | A

Tcc 2977 | AB Tbn 1428 | AB Tcc 2845 | A Tcc 189 B Tbn 11502 | B

Tbnf 2002 BC Tcc 164 | AB Tbn 2842 | A Tr 0.0 B Tr 00| C

Tr 0.0 C Tr 0.0 | AB Tr 00| B Tbn -5357 | C Tcc -19983 | D

To -3768 | D To -1978 B To -3427 | C To -20965 | D To -28598 | E

75 || Tbnf 6983 | A Tecf 4666 | A Tccf 6150 | A Tccf 6178 [ A Tbnf 29886 | A

Tccf 6743 | A Tbnf 3639 | A Tcc 4456 | A Tbnf 37 | B Tecf 21880 | B

Tbn 6391 | A Tbn 841 | AB Tbnf 4454 | A Tr 00| B Tbn 26884 | C

Tcc 1310 | B Tr 0.0 | ABC Tbn 3942 | A Tcc -2850 | BC Tr 00| C

Tr 00| B Tcc -1644 BC Tr 00| B Tbn -5922 C To -38088 | D

To -11201 | C To -5126 C To -1735 | B To -19064 | D Tcc -41699 | D

results varied across programs. For example, all hewsistére better than both control techniquesxaml-security
and all were better than the original techniqueaomy, while on the other three programs feedback techniques were
usually but not always better than control techniques, amdfeedback techniques were less consistent.

Further, the relationship between heuristics differednirae constraints applied f@antandjmeter In the case
of ant, Tbn exhibited a higher mean cost-benefit value thdmfat TCL-25 and TCL-50, but this relationship was
reversed at TCL-75. In the casejofeter, there were no statistically significant differences betwkeuristics without
time constraints, but when time constraints applied, Iséios maintained stable rankings in terms of mean costfliene
values, but fell into two or three different strata as timastoaints varied in terms of statistically significant difénces.

As time constraints increased further (TCL-50 and TCL-78),ant and xml-security heuristics continued to
perform better than the control techniques (ranking-wige)particular, differences between all heuristics and the
control techniques forml-securityand differences between all heuristics and the origindirtiepie forant were
statistically significant. The other three programs yidldémilar results, with a few exceptions; heuristics were
always better (ranking-wise) than the original technigoeoth time constraint levels, and often better than the

random technique.

4.6 Discussion

We now draw on the results of our analyses, together withtadail consideration of our data, to derive several
implications of these results. Of course, in assessingetmaglications the reader should keep in mind the threats to
validity for this study.

Figure 4 presents lineplots of the mean cost-benefit valassroed in our study for each prioritization technique,

at each time constraint level, for each program. These limggummarize the major trends in our results visually,
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Figure 4: Experiment 1: Cost-benefit lineplots, all progsaall techniques, all time constraints.

and together with the formal analysis of Section 4.5, feat#i our discussion of results. They also provide a way to

consider the further question: in what ways do the effectswd constraints vary across different techniques?

4.6.1 Time Constraints Matter

Our analysis of results showed that our hypotheses (H1 andaté?both supported in a vast majority of cases: for
each given prioritization technique, the cost-benefitasben time constraints differed; for each given time conmstra
level L, the cost-benefits between techniques differedthiénras we can observe from Figure 4, the effects of time
constraints on differences between technique cost-bsiditeased as time constraint level increased.

In this study we also observed thvahien no time constraints applied, we gained little from eayiplg prioritization
heuristics This result was surprising, as it is quite different frore tiesults of prior empirical studies of prioritiza-
tion (e.g., [18, 26, 31]), which have concluded that heinssire more effective than control techniques. We believe
that this difference is due to the fact that in prior work opitization benefits have been assessed in terms of simple
measures of rate of fault detection. The results of thisystudjgest, in fact, that using simple rate of fault detection
measures to assess prioritization techniques may leactsunate observations, and that more comprehensive eco-
nomic models can lead to quite different conclusions abmeitbst-effectiveness of heuristics. Such results must be
qualified, however, in light of the particular object progrgmand cost factors studied; we return to this issue in our

third experiment.
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4.6.2 The Worst Thing One Can Do is Not Prioritize

We observed that the original test case order was almosyalwarse than the test case order produced by prioritiza-
tion heuristics. Even at TCL-0, the original test case ovdas inferior to those produced by heuristics on two of the
five programsianoxmlandgalileo). Moreover, the original order became increasingly wossérae constraint lev-
els increased: considering the 15 observed points of TOleases (from TCL-0 to TCL-25, TCL-25 to TCL-50, and
TCL-50to TCL-75 on each of the five programs), in 11 of theseddes (five statistically significant) the cost-benefits
of the original order decreased as TCL increased. Figureatlglshows this trend: the original orders’ lineplots glop
downwards, while others more often slope upwards. Furtherresults show that even the use of a randomized test
case order, which can be thought of as the result of usingraimhtion as a simple prioritization strategy, is prefésab
(at least, in terms of average-case behavior) to usingifaigorders.

Thus, these results do show thten time constraints might applgs for example when engineers do not know
how long they will be allowed to keep running test casgle,worst thing that one can do is to not practice some form
of test case prioritizationFurthermore, we expect this implication to hold even mamengly in cases in which fault

costs are greater, and we return to this issue in our thirdraxent.

4.6.3 Time Constraints Affect Techniques Differently

For prioritization heuristics, the cost-benefit values weerved tended to increase as time constraint levels isedea
but this trend varied across techniques. The following ligiservations for each heuristic relative to the 15 observe

points of TCL increases:

e Tccfalways produced greater cost-benefits as TCL increaseaidases, 9 of them statistically significant).
e Thnfoften produced greater cost-benefits as TCL increased ¢t@4dses, 8 of them statistically significant).
e Thnwas less stable in producing cost-benefits as TCL incre@sedreases, 5 of them statistically significant).

e Tccwas least stable (8 increases, 3 statistically significant)

Feedback techniques were more effective than their natbfeek counterparts, not only in terms of producing
greater cost-benefits, but also in terms of being conslgteatter as time constraint levels increased. Non-feeklbac
techniques were also guilty of performing quite poorly; articular, ongalileo the performance ofccwas as bad
as that of the original order. In other wordeedback techniques are more stable than non-feedbaakitpas in the
presence of variations in time constrain®uch differences in stability between feedback and nediack techniques
have been observed previously [18] in relation to non-tooastrained evaluations, and attributed to relationships
between test execution patterns and the locations of fmdtsfeedback techniques vary more widely when test cases
that expose faults execute relatively few functions); alsinpattern appears to hold in this case.

Further inspection of our data and cost factors also suggfesexistence of interaction effects between prioritiza-

tion technigue execution time and rate of fault detectiorgéneral, in the absence of time constraints, technigags th
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had lower execution cost€R) tended to perform better than those with higher executiastsc As time constraints
increased, however, techniques yielding earlier faulection became more cost-effective, irrespective of etiecu
cost. Following up on these observations, we determinedytcsurprise) that BN techniques tended to have lower
costs on average than CC techniques. One plausible exiplaf@atthis is that BN techniques use class-level coverage
information, whereas CC techniques use block-level infdiom. For example, in the case aft, while the number

of instrumentation points for the class-level coveragerimfation is 627, the number of instrumentation points fer th
block-level coverage information is more than 6000. Theafdmer-grained coverage data leads to longer technique
execution times, but on the other hand, gives CC technicared ¢specially Tccf) an edge in terms of early fault

detection.

5 Experiment 2: Reducing Validity Threats Through Replication

The results of Experiment 1 suggest that time constraimsrodeed play a significant role in determining both the
cost-effectiveness of prioritization techniques, andréiative cost-benefit tradeoffs among techniques. Howeser
discussed in Section 4.4, the use of fixed numbers of faufiBegpuniformly to all programs is a threat to external
validity for those results. Furthermore, threats to inésralidity include choices of values and measures for use in
the EVOMO model and choices of parameters for use by BN tectasi.

We wished to address these threats to validity, and deterwi@ther our results generalize to cases in which faults
occur in more realistic numbers, when model and techniqitiegs are simplified. We thus replicated the first study
in a context in which these threats were addressed.

For this experiment, we consider the same research quesst®tihose considered in Experiment 1, and for com-
pleteness we repeat these here, but we designate therhadRQRQ2 in recognition of the different experimental

context being conducted.

RQ1’: Given a specific test case prioritization technique, ag thwnstraints vary, in what ways is the performance

of that technique affected?

RQ2’: Given a specific time constraint on regression testing,hiatways do the performances of test case prioriti-

zation techniques differ under that constraint?

This experiment utilizes the same object programs, vafland measures as those used in Experiment 1. It also
possesses the same threats to validity as Experiment 1ihvithxception of those specifically addressed (the effects
of fault numbers, values and measures required by EVOMOparameters used by BN techniques.) We thus do not
repeat discussion of these here. Instead, we describelmnfifferences between this experiment and the prior one,
namely, the simplified EVOMO model, the improved BN techmiguand the alterations made to experiment setup

and design. We then present data and analysis and discussesults.
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5.1 The Simplified EVOMO Model: S-EVOMO

While our initial EVOMO model presented in Section 3 haswa#id us to assess the cost-benefit tradeoffs for pri-
oritization techniques [10, 11], it does involve severaiiatles that must be estimated, and a simplified model can
reduce threats to validity related to these estimates. Mgidplification can also render the process of collecting or
estimating model data less expensive.

Reference [13] describes our approach to model simplifinatUsing sensitivity analysis, we identified the four
cost component factors that had the smallest influence oautpait of the modela,,, CV, CS andCA;, (Table 1
describes these factors). We then fixed these factors at galees over their range of uncertainty [50]. Through
this process, we obtained a simplified version of our originihmodel, and then we empirically evaluated whether
the simplified model possessed the same ability as the atifprassess cost-benefit relationships between regression
testing techniques. The results showed that our simplifiedehassessed the relationship between techniques in the
same way as the full model.

The simplified EVOMO model (hereafter referred to as S-EVOMIBe the original, involves two equations:
one that captures costs related to the salaries of the esrginad one that captures revenue gains or losses related to
changes in system release time. The simplified model alstine@s to account for costs and benefits across entire
system lifetimes, and for the use of incremental analysisrtigjues.

The two equations that comprise S-EVOMO are as follows; $emmd coefficients retain the meanings presented
originally in Table 1. As just stated, S-EVOMO fixes the foeast significant factor€S CV, C A4;,,, anda;,; in the
equations we represent the value of these fixed factorsctiovhdy as constant&; and K.

Cost = PS x () _(COi(i) + CO(i) + ¢(i) * CF(4)) + K1) 4)
=2

Benefit = REV % (i:(ED(i) —(CO;(i) + COn(4) + a(i — 1) % CAw(i — 1) + CR(i) + b(i) * CE(i) + CD(i))) — K2)  (5)
=2

5.2 Simplified BN Techniques

We use a different implementation of the BN technique thaplegs a simpler set of parameters and information
gathering techniques. BN techniques have parametersdhdbe configured to adjust the technique to a particular
environment. Also, their input data can be gathered usiffgrdint tools and algorithms. In Experiment 1, these
configurations were chosen based on an empirical study [B&hich parameters were carefully selected for each
object and a complex algorithm for gathering change infdimnavas used. Although such complex configurations
can in some cases increase the performance of BN technitjisest clear how well such improvements generalize in
practice. Simpler configurations can reduce the costs dyaqgpthe technique and can therefore potentially increase
its overall cost-effectiveness. Furthermore, recentistuf85, 37] of BN techniques have suggested that the imgact o
certain parameters can be statistically insignificant. lMsimple implementation can produce results as good as a

more complex one, the costs of the complex one can be avoided.
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Thus, in this experiment, we use a simpler configuration fdrtBchniques. The major simplifications are three:
(1) the simple Unix DIFF command is used to gather changenmdtion, (2) a simple rule of thumb (based on the
size of the object) is used to choose a Bayesian inferenoeitidg, and (3) the same “level of feedback” (a parameter
in BN techniques, controlling how often feedback happeras)theen used across all programs. More details can be

found in [35].

5.3 Experiment Setup

This experiment uses the same setup as Experiment 1 (seerS@&), but in addition to the steps detailed for that
experiment, we also needed to provide mutant groups camsig@ore realistic numbers of faults.

To do this, we utilized a fault prediction model developedBsll et al. [3]: the LOC model. The LOC model
uses a negative binomial regression model to predict thebeuof faults in a system based on the number of lines of
code in afile [3]. Because our focus is regression testingdatetction of regression faults, in applying the model we
considered only files that have been changed from the previexsion. Using the LOC model, we obtained various
ranges of numbers of faults across the different versionsinbbject programs; these ranges wenat(3-39),jmeter
(12-26), xml-security(5-10), nanoxml(1-5), andgalileo (1-8). Based on these numbers, for each version of each
program we randomly selected severaltant group®f sizes falling within those ranges from the set of that iers
mutation faults. We then gathered prioritization datatieteto those mutant groups, following the procedure dedhil

in Section 4.3.

5.4 Data and Analysis

Figure 5 presents boxplots that show cost-benefit resultlftechniques, time constraints, and programs. The figure
is structured similar to Figure 3 (see Section 4.5 for detail how to read the figure.)
Examining the boxplots for each object program, we have mwbsestrong similarities with the results from Ex-

periment 1, as follows:

e Under no time constraints, none of the heuristics appeas twbt-beneficial compared to the original technique
(To) for the first two object programgnieter and xml-security. For ant and galileo, overall, the heuristics

appear to perform slightly better than the original techieiq

e As the time constraint level changes, the relationshipsden techniques change. Across all three time con-
straints (TCL-25, TCL-50, and TCL-75), in all cases but tyodteron Tccfat TCL-25 andant on Thnfat

TCL-50), feedback techniques appear to be more cost-baiéfian the control techniques.

e Cost-benefit gains appear to increase as time constraoresaise, in particular for feedback techniques. This
trend seems to be consistent in all but two cases. In the dasenefeedback techniques, results vary across

programs.
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Figure 5: Experiment 2: Cost-benefit boxplots, all prograieshniques, and time constraints.
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Table 8: Kruskal-Wallis Test Results for RQ1

Program To Tce Ton Tecef Tonf
X2 p-val. | x? p-val. | x?Z p-val. | x? p-val. | x? p-val.
ant 102 | < 0.0001 28 | <0.0001| 100 | < 0.0001 93 | < 0.0001 92 | < 0.0001
jmeter 99 | < 0.0001 60 | < 0.0001 45 | < 0.0001 49 | < 0.0001 46 | < 0.0001
xml-security 78 | < 0.0001 98 | <0.0001| 110 | < 0.0001| 102 | < 0.0001 84 | < 0.0001
nanoxml 100 | < 0.0001| 7.8 0.049 98 | <0.0001| 55| <0.0001| 72 | <0.0001
galileo 99 | <0.0001| 98 | <0.0001| 105 | <0.0001| 69 | <0.0001| 111 | < 0.0001

Table 9: Bonferroni Test Results for RQ Comparing across Time Constraint Levels per TechniquePaagram

Technique ant Jmeter xml — security nanoxrml galileo

TCL Mean | Grp TCL Mean | Grp TCL Mean | Grp TCL Mean | Grp TCL Mean | Grp

To 0 -1079 | A 25 1971 | A 0 -106 | A 25 1516 | A 0 -2857 | A

25 -8161 | B 0 213 | A 25 -2449 | B 0 -210 | B 25 -16083 | B

50 -10639 | C 50 -15277 | B 75 -5482 | C 75 -9238 | C 50 -21953 | C

75 -49284 | C 75 -23978 | C 50 -7215 | D 50 -11067 | D 75 -35928 | D

Tcc || 50 1287 | A 25 502 | A 75 6234 | A 50 93 [ A 0 3477 | A

75 1247 | A 0 570 | A 50 4351 | B 25 -178 | A 25 -13887 | B

25 -467 | B 50 -1276 | A 25 3492 | B 0 339 | A 50 -15812 | B

0 -828 | B 75 -11338 | B 0 -134 | C 75 -1294 | A 75 -38135 | C

Tbn || 75 8570 | A 25 234 | A 75 7808 | A 0 271 | A 50 9124 | A
25 2074 | B 0 -546 | A 50 4110 | B 25 -561 | AB 25 7852 | AB
50 647 | BC 50 -1489 | A 25 3134 | C 50 -1880 B 75 6249 B

0 -810 C 75 -7626 | B 0 -141 | D 75 -4287 | C 0 -1328 | C

Tecf || 75 10898 | A 75 6133 [ A 75 9465 | A 75 4379 | A 75 23284 | A

50 9559 | B 50 4951 | A 50 5888 | B 50 2348 | B 50 20074 | B

25 2448 | C 25 604 | B 25 3502 | C 25 2208 | B 25 13819 | C

0 -884 | D 0 -462 | B 0 -119 | D 0 -143 | C 0 -877 | D

Tbnf || 75 4024 | A 75 6053 | A 75 5205 [ A 75 3127 | A 75 26370 | A

25 864 | B 25 3479 | AB 50 4891 | A 50 1841 | B 50 19932 | B

0 -929 | B 50 934 BC 25 3326 | B 25 1750 | B 25 13765 | C

50 -4234 | C 0 -472 C 0 -153 | C 0 -159 | C 0 47 | D

The following sections provide, for each of our researchstjoas in turn, the statistical analyses and results

relevant to that question. (Our analyses employ the sartisti&tal procedures as those used in Experiment 1).

5.4.1 RQZ1: Effects of Time Constraints on Techniques

Our hypothesis associated with RQ4: (H1') given a specific technique, the cost-benefits between timetraints
differ. Similar to the results from Experiment 1, the Kruskal-\igaiést (Table 8, df = 3, a significance level of 0.05)
shows that the cost-benefits between time constraints diff@d here this difference holds in all 25 cases.

For multiple pair-wise comparisons, as Table 9 shows, theltereveal different trends between time constraints

among techniques and object programs, as observed in Exgraril.

e In most cases the original technique was worse than the graptiaseline (all cases but twojmeterand
nanoxmlat TCL-25). Overall, cost-benefit values decreased as tonstraint levels increased (from TCL-0 to
TCL-75).

¢ Inthe case of feedback techniqués¢fandTbni), positive effects of prioritization, together with upwlarends
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Table 10: Kruskal-Wallis Test Results for RQ2

Program TCL-0 TCL-25 TCL-50 TCL-75
X2 p-val. | 2 p-val. | x? p-val. | xZ p-val.
ant 154 | <0.0001 | 127 | <0.0001| 150 | < 0.0001 | 152 | < 0.0001

jmeter 147 | <0.0001| 33 | <0.0001| 98 0.0002 | 150 | < 0.0001
xml-security | 119 | < 0.0001 | 145 | < 0.0001 | 147 | < 0.0001 | 143 | < 0.0001
nanoxml 132 | <0.0001| 97| <0.0001| 135 | < 0.0001 | 148 | < 0.0001
galileo 165 | < 0.0001 | 162 | < 0.0001| 164 | < 0.0001 | 163 | < 0.0001

Table 11: Bonferroni Test Results for RQZomparing across Techniques per Time Constraint LevePaogram

TCL ant Jmeter zml — security nanoxml galileo

Tech Mean | Grp Tech. Mean | Grp Tech. | Mean | Grp Tech. Mean | Grp Tech. Mean | Grp

o Tr 00| A Tr 00| A Tr 00 A Tr 00| A Tr 00| A

Tbn -810 | B To 213 | B To -106 | B Tecf -143 | B Thnf 47 | A

Tce -828 | B Tecf 462 | C Tecf -119 | BC Thnf -159 | BC Tccf -877 | B

Tccf -884 | C Thbnf -472 | C Tcc -134 CD To -210 C Tbn -1328 | C

Thbnf 929 | D Tbn -546 | D Tbn -141 DE Tbn -271 | D To -2857 | D

To -1079 | E Tcc -570 | D Thnf -153 E Tcc -339 | E Tcc -3477 | E

25 Tccf 3399 | A Thbnf 3479 | A Tccf 3502 | A Tccf 2208 | A Tccf 13819 | A

Tbn 2667 | AB To 1971 | AB Tcc 3492 | A Thnf 1750 | A Thnf 13765 | A

Tbnf 1783 BC Tecf 604 B Thnf 3326 | A To 1516 | A Thn 7852 | B

Tr 1578 C Tbn 234 B Tbn 3134 | A Tr 00 | B Tr 00| C

Tcc 0.0 C Tr 0.0 B Tr 00 | B Tcc -178 | B Tcc -13887 | D

To -1779 | D Tcc -502 B To -2449 | C Tbn -561 | B To -16083 | D

50 Tccf 9559 | A Tccf 4951 | A Tccf 5888 | A Tccf 2348 | A Tccf 20074 | A

Tce 1287 | B Tbnf 934 | B Thnf 4891 | AB Thnf 1841 | A Thnf 19932 | A

Tbn 647 | B Tr 00| B Tce 4351 B Tr 00| B Thn 9124 | B

Tr 00| B Tce -1276 | B Thn 4110 B Tcc 93 | B Tr 00| C

Thbnf -4234 | C Tbn -1489 | B Tr 00| C Tbn -1880 | C Tcc -15812 | D

To -10639 | D To -15277 | C To -7215 | D To -11067 | D To -21953 | E

75 Tccf 10898 | A Tccf 6133 | A Tccf 9465 | A Tccf 4379 | A Tbnf 26370 | A

Tbn 8570 | A Thbnf 6053 | A Tbn 7808 | AB Tbnf 3127 | A Tccf 23284 | A

Tbnf 4024 | B Tr 00| B Tcc 6234 BC Tr 00| B Thn 6249 | B

Tce 1247 | C Tbn -7626 | C Thnf 5205 C Tcc -1294 | B Tr 00| C

Tr 00| C Tcc -11338 | C Tr 00 | D Tbn -4287 | C To -35928 | D

To -49284 | D To -23978 | D To -5482 | E To -9238 | D Tcc -38135 | D

as time constraint levels increase, are observed. All dasesvo @ntandjmeterfor Tbhnf) showed that cost-

benefit values increased as time constraints increased.

¢ In the case of non-feedback techniqu&sqandThn), the trend was mixed. When no time constraints applied,
negative cost-benefit values were observed in all cases.n\Wme constraints applied, techniques produced

positive cost-benefit values on four casast(xml-security andgalileo on Tbn, andxml-securityon Tcc).
5.4.2 RQ2Z: Effects Among Techniques at Given Levels of Time Constraits

Our hypothesis associated with RQg: (H2') given a specific time constraint, the cost-benefits betwestincase

prioritization techniques diffeiSimilar to the results from Experiment 1, the Kruskal-Watbst (Table 10, df = 5, for

significance level of 0.05) shows that the cost-benefits betwtest case prioritization techniques differ in all 2Gesas
For multiple pair-wise comparisons, as Table 11 shows, ésalts reveal different trends between techniques

among time constraint levels and object programs, as wanadbén Experiment 1.
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e When no time constraints applied (TCL-0), the random temiaivas better than heuristics in all cases. In the
case of the original technique, the results varied acrosgrams: forjmeterandxml-security all heuristics

were inferior to the original technique; for other prograthe results were mixed.

e When time constraints applied (TCL-25, TCL-50, and TCL; B¢ overall trends were mixed. In the case of
xml-security across all time constraint levels, all heuristics areifigamtly better than both control techniques.
In the case ofjalileo, across all time constraint levels, all heuristics Bat are significantly better than both
control techniques. In the caseanft, the heuristics were not always better than the controlriggtes. In the
case ohanoxm| feedback techniques were better than the random techaiglieon-feedback techniques were

worse than the random techniques.

5.5 Discussion

As just outlined, Experiments 1 and 2 yield primarily cotesid results, through which we are able to reduce threats
to validity related to Experiment 1. Thus, we discuss thalte®f our analyses in light of our earlier discussion of the

results of Experiment 1.

5.5.1 Time Constraints Matter

We confirm the findings of Experiment 1 that time constrairfisch the cost-benefits between techniques, and that
when no time constraints applied, heuristics providettlitenefit. Whether we consider fixed numbers of faults or
fault numbers obtained through the LOC model, we reach thesanclusion, and the use of the simplified model

and BN techniques did not affect this.

5.5.2 The Worst Thing One Can Do is Not Prioritize

This conclusion from Experiment 1 also holds: the origieaticase order was almost always worse than the test case

order produced by prioritization heuristics, and as timestaint levels increased, the original order became worse
5.5.3 Time Constraints Affect Techniques Differently

The following lists observations for each heuristic refatio the 15 observed points of TCL increases:

e Tccfalways produced greater cost-benefits as TCL increased¢idases, 14 statistically significant).
e Thnfoften produced greater cost-benefits as TCL increased ¢t&4dses, 10 statistically significant).
e Thnwas less stable in producing cost-benefits as TCL incre&siediieases, 8 statistically significant).

e Tccwas least stable (8 increases, 4 statistically significant)

While the trends in this result compared to those observé&kperiment 1 remained the same, we observed that

in this case, results are stronger. There are more casesnhetdch the cost-benefits of prioritization heuristics
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increased as TCL increased, and more cases in which costibigicreases yielded by heuristics are statistically
significant, than in the first experiment. In particultccfachieved statistically significant gains with respect treot
heuristics in almost all cases (14 out 15), while there weitg nine such cases in Experiment 1. The more realistic
numbers of faults, and the simplified cost model and BN teqples, appear to augment the ability of heuristics to
provide benefit as time constraints increase.

Through this experiment, then, we have gained several shivith respect to prior findings. By considering
different and more realistic numbers of faults, we are ableddress an external threat to validity for Experiment 1.
By using S-EVOMO and simplified BN, we were able to reducerimaéthreats to validity found in Experiment 1.
Overall, by confirming the consistency of our results actbsstwo experiments, we increase our confidence in the

accuracy of those results.

6 Experiment 3

One interesting finding of our first experiment was that inghsence of time-constraints, heuristics were usually not
beneficial; that is, they produced negative benefits contplareandom orderings of test cases. We noted that this
finding should be interpreted with the threats to validitytiod experiment in mind. One important threat to validity
concerned the numbers of faults present in the system ueder Experiment 2 showed, however, that when we
utilized a more realistic “expected” number of faults thigding still held.

These results run counter to the fact that prior studiesiofiization have found heuristics effective in the absenc
of time constraints. We speculate that the use of a more aamepisive cost model, and the consequent factoring in of
costs related to technique execution, is responsible ferdifference. If this is true, then differences in the numsbe
of faults present in programs (and consequently, in codsaeito early detection and omission of faults), may cause
these results to vary, by counterbalancing the costs tetateechnique execution.

To examine this issue and its implications further, we desitand performed a controlled experiment considering

the following research question:

RQ3: Given a specific faultiness level, in what ways do the penfamces of test case prioritization techniques differ

under that level?

In this experiment, we again use the five Java systems deddritsection 4 (Table 2), together with their versions,
tests, and faults, as objects of analysis. We also use the dapendent variable as Experiment 2 which is based on
the S-EVOMO model described in 5.1. Our threats to validiétyain the same as those for Experiment 2. We thus do
not repeat discussion of these here. Instead, we descrip¢hendifferences in this experiment, which are restricted

to independent variables and experiment setup.
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6.1 Independent Variables

Our experiment manipulated two independent variablesritidation technique and faultiness level.

Variable 1: Prioritization Technique

We again use the prioritization techniques described irti@ed.2.1, with the adjustments to the BN techniques

described in Section 5.2.

Variable 2: Faultiness Level

To investigate the impact of the numbers of faults preseatsgstem on the cost-effectiveness of prioritization tech-
nigues, we utilize a variable, “faultiness level”, that npadates numbers of faults placed in systems. We consider
three different faultiness levels yielding different nuenb of faults (mutants) randomly chosen for inclusion inheac

version of each object program under test. The first level, livolves cases in which mutant groups contain between
1 and 5 faults, the second level, FL2, involves cases in winigtant groups contain between 6 and 10 faults, and the
third level, FL3, involves cases in which mutant groups aombetween 11 and 15 faults. As in Experiment 1, mutants

are randomly selected from each version’s pool of mutatiots.

6.2 Experiment Setup

This experiment used the same setup as Experiment 1 (seer54a), but in addition, we repeated the mutant

grouping procedure used there for each of the three difféaeitiness levels considered.

6.3 Data and Analysis

To provide an overview of the collected data, we present lmgjn Figure 6, showing the relative cost-benefit results
for different faultiness levels. The three columns of thapdr present results for faultiness level 1 (FL1), faultines
level 2 (FL2), and faultiness level 3 (FL3), respectively.

We begin with descriptive analysis of the data in the boxglobnsidering the performance of the heuristics in
comparison to the control technique at each faultinesd.|&amining the boxplots for each object program in the
first column (FL1) of Figure 6, we see that none of the heussdippear to outperform the control techniquisand
Tr) for the first three object programs, which have JUnit tegesu On the last two programs, which have TSL test
suites, the techniques using feedback appear to be slighitlgr than the original techniqudj but no better than the
random techniquert).

As faultiness level changes, however, this trend changesjnteter, the control techniques still appear to out-
perform the heuristics as faultiness level increases,Hmighp between control techniques and heuristics becomes
smaller. Forantandxml-securitya similar pattern can be observed but at FL3, heuristicaltegiutperform some of

the control techniques (original in the caseaot and random in the case »fl-security. On the last two programs,
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Figure 6:Experiment 3: Relative cost-benefit boxplots, all prograatitechniques, different faultiness levels.




Table 12: Kruskal-Wallis Test Results for RQ3

Program FL1 FL2 FL3
X2 p-val. | 2 p-val. | x2 p-val.
ant 168 | < 0.0001| 164 | <0.0001| 99 | < 0.0001
jmeter 122 | <0.0001| 127 | <0.0001 | 136 | < 0.0001
xml 132 | <0.0001| 101 | <0.0001| 96 | < 0.0001
nanoxml | 127 | < 0.0001 | 144 | < 0.0001 | 106 | < 0.0001
galileo 157 | <0.0001| 164 | < 0.0001 | 166 | < 0.0001

Table 13: Bonferroni Test Results for RQ3, Comparing Acfeegltiness Levels per Program

FL ant jmeter zml — security nanoxml galileo

Tech. | Mean | Grp Tech. | Mean | Grp | Tech. | Mean | Grp | Tech. | Mean | Grp Tech. | Mean | Grp
Tr 00| A Tr 00| A Tr 00| A Tr 00| A Tr 00| A
To -139 | B To 31 | B To 32| B Tecf -179 | B Tbnf -481 | B

FL1 | Thn -861 | C Tccf -488 | C Tccf -176 | C Tbnf -208 | C Tbn -1129 | C
Tcc -864 | C Thbnf -489 | C Tcc -178 | C To -267 | CD Tccf -1335 | D
Tbnf -956 | D Tce 492 | C Thn -181 | C Tcc -288 DE | To -1385 | D
Teef | -1069 | E Thn -498 | C Thnf -185 | C Thn -342 E | Tcc -2287 | E
Tr 00| A Tr 00| A Tr 00| A Tr 00| A Tbnf 315 [ A
To -528 | B To -101 | B To -110 | B Tecf -173 | B Tr 00| A

FL2 | Thn -826 | C Tccf -488 | C Tccf -113 | B Tbnf -195 | B Tccf -379 | B
Tcc 904 | D Thbnf -498 | C Tcc -124 | BC To -201 | B Tbn -1303 | C
Tbnf -935 | D Tce -520 | C Thn -132 C | Tcc -284 | C To -4925 | D
Teef | -1155 | E Thn -523 | C Thnf -145 C | Thn -374 | D Tcc -5354 | E
Tbn 98 [ A Tr 00| A To 105 [ A Tccf 56 | A Tbnf 8852 | A
Tecf 53 | AB To -260 | B Tecf 68 | B Thnf 30 | AB Tecf 8431 | B

FL3 | Tr 0.0 BC Thbnf -300 | BC Tcc 51 | BC Tr 00 | AB To 7630 | C
Tcc -30 C | Tccf -323 C | Tbn 40 C | To -24 BC Tbn 6335 | D
Thbnf -49 C | Tbn -371 | D Tbnf 30 C | Tcc -71 C | Tr 00 | E
To -128 | D Tcc -403 | D Tr 00| D Thn -151 | D Tcc 7| E

which have TSL test suites, the gap between control teclesignd heuristics becomes even narrower, and at FL3,
feedback techniques appear to outperform both controhtiqaks.

The following sections provide the statistical analyses @sults relevant to our research question. For statistica
analysis, for reasons similar to those used in Experimeatsdl?, we used a Kruskal-Wallis non-parametric one-way
analysis of variance followed by Bonferroni’s test for niplk comparisons.

Our hypothesis associated with RQ3 (6t3) given a specific faultiness level, the cost-benefitaden test case
prioritization techniques differTable 12 presents the results of the Kruskal-Wallis tests= (8, significance level
0.05), and shows that faultiness levels have significartedfin all cases.

Table 13 presents the results of the Bonferroni tests usBwyderroni correction. As the table shows, the results

reveal different trends between techniques among fasHitevels and object programs.

e At faultiness levels FL1 and FL2, in all cases but one, héusdailed to outperform random orderings (the

single exception occurring farbnfon galileo at FL2).

e At faultiness level FL3, however, several techniques atdigpmed random orderings. Moreover, the ranking
between techniques changes as faultiness level moves fr@rtoH-L 3 in more than half of the cases, with the
performance of heuristics improving. In particular, teicjues using feedback performed better than the control

techniques in several cas@xcfon ant, nanoxm) andgalileo, andTbnfon nanoxmlandgalileo.
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Figure 7: Cost-benefit line-plots, all programs, all tecjugs, all faultiness level, no time-constraints
6.4 Discussion

Figure 7 presents line-plots of the mean benefit values foin paioritization technique, at each faultiness level, for

each program. These line-plots, together with the formalyasis of Section 6.3, facilitate our discussion of results
6.4.1 Understanding the Effects of Faultiness Levels

As the graphs illustrate, considering all four heuristicsoas all five programs, as faultiness levels move from FL1 to
FL2, technique benefits improve in 12 of 20 cases. As faudtdevels move from FL2 to FL3, however, technique
benefits improve in all 20 cases. While at the lower levelanéues do not produce positive benefits, the trend is
generally upward as faultiness level increases, and befefiin to accrue at the higher faultiness level (in 12 of 20
cases at FL3). The most consistent patterns are exhibitéetlipack techniques, withccfincreasing in eight of ten
cases and@bnfincreasing in nine of ten cases (across both faultinessiles@ments).

These upward trends can be explained relative to our coseind¢hen no time constraints exist, heuristics have
negative benefits not because the test order they produa &srgood as that of random ordering but because the
benefits they produce througlarly fault detectiordo not compensate for the cost of running the techniques.nwhe
fewer faults are present, heuristics have fewer opporagitid make a difference in rate of fault detection, even when
they do an effective job of ordering. When greater numbefawls are present, if techniques indeed order test cases

better than random orderings, they have more opporturiigsoduce benefits by detecting faults faster. In other
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Figure 8: Cost-benefit lineplots, all programs, all teclueis; all faultiness-levels, 50% time constraints.

words, if enough faults exist, the benefit dueetarly fault detectioralone can indeed justify the costs imposed by
heuristic techniques, and this is important because inliBergce of time constraints, early fault detection is the onl
source of benefit for these techniques. Clearly, this reglllhave implications for practice, and we discuss these in
Section 7.

These results also underscore two important points retégahe further study of prioritization techniques. First,
the cost-effectiveness of heuristics depends to a largmesh the characteristics of the object (in this case, chara
teristics related to the prevalence of faults), and thusciéying these characteristics in studies is importantose,
the results of earlier studies using simple rate of fauleci&n metrics, while likely over-optimistic about techoe
cost-effectiveness in practice when levels of faultingseda@w, are likely to be more accurate at higher faultiness le
els. Thus the simpler metrics can plausibly be used to peowiiial data on trends between techniques. However,

ultimately, more comprehensive models will provide a aegicture of tradeoffs.

6.4.2 Faultiness Levels Under Time Constraints

While we did not include time constraints as an independariable in this experiment, for the sake of comparison
we did gather data on technique performance, under thefdm#mess levels, at TCL-50 (where 50% of the test cases

in the prioritized order are executed). Figure 8 depictditieeplots for this case.
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In this case, considering all four heuristics across all fix@grams, as faultiness levels move from FL1 to FL2,
technique benefits improve in 11 of 20 cases, and as faultileeels move from FL2 to FL3 technique benefits
improve in just 13 of 20 cases. The most consistent patternsnue to be exhibited by feedback techniques, with
Tccfincreasing in all 10 cases affdnfincreasing in 7 of 10 cases across both faultiness levetinents.Tcg in
contrast, exhibits aductionin benefit in 8 of 10 cases. Overall, then, the upward trendemed when no time
constraints are present are somewhat lessened in the peasfdime constraints.

Despite these trends, as observed in prior studies, mdshitpees provide benefit in most cases, at all three
faultiness levels. The addition of fault omission coststte benefits gained by increasing rate-of-fault-detection

produces this result, and is also likely responsible fodifferences in performance trends across faultinessdevel

7 Practical Implications

So far we have discussed our major findings and some surpeaessin the results of our experiments, and some of
the implications of these results. The results do lead toynaaditional observations including practical implicaiso

for test case prioritization and testing processes, andiseaisk these now.

7.1 Prioritization and Context Factors

We have already noted that when time constraints may agpbgsing to not prioritize may be problematic. When no
time constraints apply, the benefits of prioritization teddo become evident only with increases in faultiness ¢evel
One might wonder, then, whether consideration of just thesecontext factors — time constraints and faultiness
levels — would be sufficient to help practitioners determivigether or not to use prioritization. Historical data
on fault prevalence could help organizations estimate givtebfault levels, and time constraints can conceivably be
estimated as well; thus, it may be possible to provide ptedi®f cost-benefits relative to these factors.

Further qualitative analysis of our results suggests, lrewehat there may be additional context factors to con-
sider, namely: (1) the cost of delayed fault detection, &)d(ioritization technique execution cost. In the case of
factor (1), greater costs associated with delayed fautiddiein increase the potential for techniques to be benkficia
even in the absence of time constraints. This could occugXample, in cases where test suites require particularly
long times to execute to completion (such as when manuahgeistinvolved) or on safety-critical systems requiring
reuse of entire comprehensive test suites. In the case @i f&R), if technique execution costs are low relative to
the costs of other activities in the testing process, theofibeuristics has less potential to negatively impact diera
cost-benefits. On our object programs, test execution smelatively short compared to technique execution time, so
the two factors together render heuristics often non-beia&fBut this is not the case on all programs.

Another potential context factor when time constraintsexivolves the characteristics of those constraints.ifn th
work, we have focused on the case in which time constraietsiaknown or not easily predicted in advance. When

time constraints are known or can be predicted, differensimterations can apply to assessing cost-effectiveness. F
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example, prioritization techniques need not considenetest case, they need only prioritize test cases until emoug
have been chosen to fill the available time. Note that in swdes, techniques that consider the times taken by
individual test cases (e.g., [17, 41, 59]) may also be regijiand these generally rely on predictions of test runtime

based on prior runs, which can prove incorrect followingeatbdifications, so this could be a source of imprecision.

7.2 Regression Testing Processes

Our results also have implications for regression testimggsses. For one thing, an organization’s choice of prior-
itization technique could reasonably be influenced by tlsérig processes they use. For example, for incremental
testing processes in which tests are run more often, thiéhidal of being forced to constrain testing activities doe t
time restrictions may be higher than for batch maintain-testl processes, given sufficiently long-running regoessi
test suites. Process implications may also extend to trestgptesting being performed: if execution of test cases (or
checking of results) is largely manual, this increasesikt@ihood that an organization will face time constraints.
both of these cases, process considerations favor pzeidn.

On the other hand, under some incremental testing procéssesnightly-build-and-test) prioritization becomes
unnecessary from a rate-of-fault-detection standpoifiis ©ccurs because in such cases, fault correction does not
commence until the testing phase has ended. Here, pradritiz might still be beneficial given its ability to cause
fewer faults to be omitted, but regression test selectichrtejues could conceivably do just as well at filling the
known testing time slot, as test order within the time slahiis case is unimportant. However, this does not preclude
using prioritization on the system testing phase that ofteatedes final product release following many cycles of
incremental development and testing.

The relationship between testing processes and the cobedrtalysis needed to support prioritization is also
important, because in practice, the costs that are prégtsignificant for a prioritization technique in a given demt
can vary with the regression testing process used. For deainga typical batch maintain-and-test process, analysis
costs can be distributed across the maintenance and tpktisgs, while in a more incremental testing process a greate
proportion of analysis costs may be relegated to the tegtiage. In the latter case, analysis costs may actually lead
to increased time constraints, and this in turn may causerfeagt cases to be executed, and larger numbers of faults
to be missed. In such cases, choosing techniques for whallisis costs during the testing phase can be minimized
may be important.

As we observed in Experiments 2 and 3, faultiness levels sanadfect the choice of prioritization techniques.
For instance, when programs contain large numbers of faultsresults showed that heuristics could become cost-
effective even when no time constraints applied. The LOC ehtitht we used in Experiment 2 primarily utilizes
the size of the program and the changes between two congegetisions to calculate the number of faults. Under
this model, as program size increases, and as the numbeangeb between versions increases, the number of faults

the program could contain increases. This suggests thariargl, it is more reasonable to employ heuristics within
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a batch maintain-and-test process, and more particulaidases where larger portions of the system have changed,
than in incremental processes. Possibly, later lifecyeleases where less code churn occurs will benefit less from

prioritization.

8 Related Work

We discuss two areas of related work: work on test case priation, and work on cost models.

8.1 Prior Work on Test Case Prioritization

A wide range of prioritization techniques have been prog@se studied. As mentioned in Section 2, initially, most
techniques depended on code coverage information to drevetioritization [14, 15, 16, 18, 25, 48, 49, 55, 60].
Restricting the foregoing techniques to consider coveadighanged components has also been explored [48, 55].

More recently, several prioritization techniques that g@ydnd the use of code coverage information have also
been proposed. Leon and Podgurski [31] present prionibizaechniques based on distributions of execution profiles
Jeffrey and Gupta [22] present an algorithm that priorgtifest cases based on their coverage of statements in rele-
vant slices. Li et al. [33] present search-based priotitiraalgorithms. Korel et al. [28, 29] propose prioritizati
techniques based on coverage of system models. Yoo et aktidy the use of expert knowledge for prioritization
by pair-wise comparison of test cases and propose clugttesi cases into similar groups to facilitate the process.
Hou et al. [21] study prioritization of test cases when tesiveb services software and Sampath et al. [51] study test
suite prioritization strategies for web applications. Siffeet al. [52] utilize change history to gather change sup
information and prioritize test cases accordingly. Qu ef4] consider prioritization in the context of configurabl
systems, presenting algorithms for prioritization of cgufations. Malishevsky et al. [17] present a prioritizatio
technique that uses coverage information along with dateesinexecution times and estimated fault severities, and
Park et al. [41] propose a technique for estimating thesegiand severities using historical information. Finally,
Mirarab and Tahvildari [36] present the techniques thaBesgesian networks to prioritize test cases, and that aoe als
studied here along with the simplest coverage-based tgoasi

Only a few papers have considered issues related to thengeesétime constraints during prioritization. Kim and
Porter [26] present a technique for “history-based tesritization” which, while not ordering individual test cas
does prioritize the subsets of test cases selected acrassession of releases. Still, the technique is betteritikeds
as a regression test selection technique that utilizesriistformation from prior releases.

More relevant to this article is work by Walcott et al. [59]havpresent a technique that combines information
on test execution times with code coverage information diides a genetic algorithm to obtain test case orderings.
Zhang et al. [62] use similar input data and utilize integeedr programming for ordering test cases. Alspaugh et
al. [1] also study the application of several knapsack sslte prioritization. In each of these cases, the research

considers testing process contexts in which test suiteutiecis foreshortened by time constraints, and attempt

36



to accommodate this through their techniques. Individesi tase times are also considered (as in several papers
described just above). The primary difference betweerethpproaches and those we consider here, however, is that
they assume that the time constraints faced in prioritaratire known beforehandnd they factor these in to their
algorithms. Our goal in this article was to study the case iictvthe time constraints aret known and hence, we
did not choose these techniques for use in our experiments.

Where prior studies of prioritization are concerned, th&t vaajority reported in the literature (in the papers cited
above) have focused on the effects of prioritization onoafault detection or rate of code coverage under the scenari
in which all test cases are executed. In these scenariosp#teffectiveness of prioritization lies in detectinglta
earlier or attaining coverage more quickly, and studies$am measures of these metrics in their assessments. Under
these scenarios, however, the possible costs of missiftg thue to foreshortened testing are not captured.

Two recent studies [13, 58javeutilized time constraints while investigating priorittizan effectiveness, and these
form part of the motivation for this work. In this work, howay we focus specifically on designing experiments
that manipulate time constraints as an independent vatiabt this lets us draw well-founded conclusions about the

effects of constraints overall and on particular technique

8.2 Prior Work on Economic Models

Most early work on prioritization utilized simple rate-tfult-detection metrics (e.g., APFD [48] or its derivatye
to evaluate prioritization effectiveness. Such metrieayéver, do not suffice to assess time-constrained techgique
because assessment of such techniques requires coststifdofaillts to be measured, as well as savings in rate of
fault detection. For this reason, in this work, we rely on emoomprehensive economic models that capture both
costs and benefits of prioritization, including factorsatet to rate of fault detection, omission of faults, and ofst
applying technigues. While subsequent sections of thislarovide details on our cost model, the related work is
discussed in this section.

Initial models of regression testing were relatively simpleung and White [32] present a model that considers
some of the cost factors (e.qg., testing time, techniquewgiattime) that affect the cost of regression testing. bldrr
et al. [20] present a coverage-based predictive model okss@pn test selection effectiveness, but this predictive
model focuses only on reducing numbers of test cases. Mak&ly et al. [34] present cost models for regression test
selection and test case prioritization that incorporateekits related to the omission of faults and to the rate ot faul
detection. Do et al. [15] extend Malishevsky’s model, f@ttease prioritization, to incorporate additional costdas,
including analysis and execution time.

There are some works on economic models for testing (asididtiom regression testing). Muller et al. [38]
present an economic model for the return on investment dfDagen Development (TDD) compared to conventional
development, provide a cost-benefit analysis, and ideatliyeak-even point at which TDD becomes beneficial over

conventional development. Wagner [57] proposes an analytiodel of the economics of defect detection techniques
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that incorporates various cost factors and revenues,damsg uncertainty and sensitivity analysis to identify thost
relevant factors for model simplification. Wagner [58] adgaplies global sensitivity analysis (which investigates/h
output uncertainty can be apportioned to input factorseutainty) to the COCOMO model to investigate which input
factors are most important.

While economic models in the software testing and regrest@sting areas are not well established, in other
software engineering areas models have been considerddmure extensively. These include the models of Ostrand
et al. [56] and Freimut et al. [19] which have been alreadgwulised. Kusumoto et al. [30] also propose a model
for assessing the cost-effectiveness of software ingpegtiocesses. There have also been many models created to
address software process and development costs and beBefitsm et al. [5]'s COCOMO-II model, mentioned
earlier, is probably the most well-known. Recent reseanchalue-based software engineering has also sought to
model various engineering activities. Return On InvestnfB®I) models, which calculate the benefit return of a

given investment [43], provide one such approach, supppslystematic, software business value analysis [4, 38, 54]

9 Conclusions and Future Work

We have presented a series of controlled experiments asgpdiss effects of time constraints and faultiness levels on
the costs and benefits of test case prioritization techsiq@r results show that time constraints can indeed play
a significant role in determining both the cost-effectiv@nef prioritization techniques, and the relative costefien
tradeoffs among techniques. The results also show that wahssrftware product contains a large number of faults,
employing heuristics could be beneficial even when no timestraints apply. This indicates that the benefits gained
from early fault detection are high enough to compensatthfocosts incurred by applying heuristics.

Of course, as with all empirical studies, our results mudhberpreted in light of threats to validity and many of
these can be addressed only through further studies ofaualitirtifacts.

One class of further study involves other types of priaaitian techniques. We chose to study the two techniques
that are the simplest and most complex presented to datkeses presented a range of potential technique costs and
presumably benefits. Techniques that incorporate tesuéreadime into their prioritization [34, 59] might also bé o
interest given their attention to time, for the case in whinte constraints are known beforehand.

Our results also led us to suggest several further pradtigdications. The most interesting of these implications
for further research, on our view, involve differences iftware maintenance and testing processes, and regression
testing techniques.

For example, our results suggest that regression testitihjrvaonstrained software development processes might
be improved by manipulating test prioritization technigosts. If an organization knows that they cannot execute all
of their regression tests, then potentially, they can loavexlysis costs by prioritizing fewer tests, an approactmiea
could call “partial prioritization”. Partial prioritizédn approaches will require data on test execution timed véil

need to estimate expected execution times following matitias with sufficient precision.
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A second example of further work related to processes afhigges involves the use of incremental supporting
analyses. As mentioned in Section 3, our cost model faigbtthe measurement of costs and benefits related to the use
of incremental program analysis techniques (e.g., forumséntation and probe placement) to support prioritizatio
but we did not explore these in this work. The results of thiglg suggest that these approaches might vary in
cost-effectiveness across different development anoh¢egtocesses (e.g., batch versus incremental). Techeique
better leveraging incremental analysis techniques withiious forms of time-constrained processes could be worth
exploring.

Finally, efforts such as those just described can be didemt®ther common testing processes, such as test-first
methodologies, for which time constraints may play an evemenimportant role. To truly consider some of the
guestions that arise regarding differences in testingge®es, however, we need to adapt the economic model used
here, which focuses on batch processes, to those procedsesever, we believe that such an adaptation can be
achieved. For example, one way to adapt the process modetet Figure 1 to depict an incremental model is to
partition the maintenance phase into a sequence of maftestipairs. The regression testing phase then represents
the system testing that typically precedes an ultimateegystlease. The economic model can then be adjusted to
capture costs and benefits relevant to this process.

Ultimately, given further studies, techniques and modeéttsoment, we expect this research to help test engineers
better manage their regression testing efforts by enathieig to select testing processes and prioritization teglas

that are most appropriate for their organizational and gsscontexts.
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