
The Effects of Time Constraints on Test Case Prioritization:
A Series of Controlled Experiments

Hyunsook Do
North Dakota State U.

hyunsook.do@ndsu.edu

Siavash Mirarab, Ladan Tahvildari
U. of Waterloo

{smirarab, ltahvild}@uwaterloo.ca

Gregg Rothermel
U. of Nebraska - Lincoln

grother@cse.unl.edu

December 6, 2009

Abstract

Regression testing is an expensive process used to validatemodified software. Test case prioritization techniques
improve the cost-effectiveness of regression testing by ordering test cases such that those that are more important are
run earlier in the testing process. Many prioritization techniques have been proposed and evidence shows that they
can be beneficial. It has been suggested, however, that the time constraints that can be imposed on regression testing
by various software development processes can strongly affect the behavior of prioritization techniques. If this is
correct, a better understanding of the effects of time constraints could lead to improved prioritization techniques, and
improved maintenance and testing processes. We therefore conducted a series of experiments to assess the effects
of time constraints on the costs and benefits of prioritization techniques. Our first experiment manipulates time
constraint levels and shows that time constraints do play a significant role in determining both the cost-effectiveness
of prioritization and the relative cost-benefit tradeoffs among techniques. Our second experiment replicates the first
experiment, controlling for several threats to validity including numbers of faults present, and shows that the results
generalize to this wider context. Our third experiment manipulates the numbers of faults present in programs to
examine the effects of faultiness levels on prioritization, and shows that faultiness level affects the relative cost-
effectiveness of prioritization techniques. Taken together, these results have several implications for test engineers
wishing to cost-effectively regression test their software systems. These include suggestions about when and when
not to prioritize, what techniques to employ, and how differences in testing processes may relate to prioritization
cost-effectiveness.

Keywords: regression testing, test case prioritization, cost-benefits, bayesian networks, empirical studies.

1 Introduction

Software systems that succeed must evolve. Software engineers who enhance and maintain systems, however, run

the risk of adversely affecting system functionality. To reduce this risk, engineers rely onregression testing: they

rerun test cases from existing test suites, and create and run new test cases, to build confidence that changes have the

intended effects and no unintended side-effects.

Regression testing is almost universally employed by software organizations [39]. It is important for software

quality, but it can also be prohibitively expensive. For example, we are aware of one software development organization

that has, for one of its primary products, a regression test suite containing over 30,000 functional test cases that require

over 1000 machine hours to execute. Hundreds of hours of engineer time are also needed to oversee this regression

testing process, set up test runs, monitor testing results,and maintain testing resources such as test cases, oracles,and

automation utilities.

Test case prioritizationtechniques improve the cost-effectiveness of regression testing by ordering test cases such

that those that are more important are run earlier in the testing process. Prioritization can provide earlier feedback to

testers and management, and allow engineers to begin debugging earlier. It can also increase the probability that if

testing ends prematurely, important test cases have been run.

Many researchers have addressed the test case prioritization problem (Section 8 summarizes related work) but most

prior research has focused on the creation of specific prioritization techniques. A common approach for empirically

assessing and comparing these techniques (e.g., [12, 18, 31]) is to first obtain several programs, modified versions,

faults, and test suites. Then, the prioritization techniques being studied are applied to the test suites, the resulting or-

dered suites are executed, and measurements are taken of their effectiveness at satisfying testing objectives – typically

in terms of the rates at which they detect faults or cover source code.

A limitation of this approach to studying prioritization isthat it models the regression testing process as one in

which organizations runall of their test cases. In practice, however, software development processes often imposetime

constraintson regression testing. For example, under incremental maintain-and-test processes such as nightly-build-

and-test, the time required to execute all test cases can exceed the time available, and under batch maintain-and-test

processes in which long maintenance phases are followed by long system testing phases, market pressures can force

organizations to suspend testing before all test cases havebeen executed.

It has been conjectured [11, 26, 59] that the imposition of time constraints on regression testing may affect the

costs and benefits of test case prioritization techniques. Indeed, as time constraints increase, engineers may need to

omit increasingly larger numbers of test cases, and the resulting regression testing efforts may miss increasingly larger

sets of faults. Larger sets of missed faults in turn result inincreased costs later in the software lifecycle, through lost

revenue, decreased customer trust, and higher maintenancecosts. We also conjecture that the effects of time constraints

may manifest themselves differently across different testcase prioritization techniques; that is, the techniques that are

most cost-effective under one set of time constraints may differ from those that are most cost-effective under different

constraints.

If these conjectures are correct, by studying the effects oftime constraints on prioritization, we may be able to

help engineers manage their regression testing activitiesmore cost-effectively, by pointing them to the techniques that

are most appropriate given their engineering processes. Moreover, we may be able to suggest changes in maintenance

and testing processes that will lead to more cost-effectiveregression testing. We therefore designed and implemented

a series of controlled experiments to examine the effects oftime constraints.

Our first experiment considers the application of several prioritization techniques to a set of object programs in

which faults have been seeded, and in which these seeded faults were applied uniformly to all object programs. The

results of our experiment show that both of the foregoing conjectures hold. In fact, for the objects that we examined,

2

when no time constraints applied, prioritization was not cost-effective. When time constraints applied, prioritization

began to yield benefits, and greater constraints resulted ingreater benefits; moreover, in this case, prioritized test suites

significantly outperformed unordered ordered test cases, suggesting that failing to prioritize is the worst choice of all.

Finally, time constraints did affect prioritization techniques differently: some techniques were much more stable than

others in their response to increased constraints.

Our first experiment allowed us to examine correlations between time constraints and prioritization effectiveness

independent of factors related to numbers of faults, by utilizing fixed numbers of faults randomly seeded across

locations in our object programs. In practice, however, thenumbers of faults in systems may vary with various factors

related to the system under test. To assess whether the results of our first experiment generalize, and to investigate

issues related to numbers of faults and other threats to validity in the first experiment, we designed and performed two

additional experiments.

Our second experiment replicates our first, using numbers offaults chosen to conform with a fault prediction model

created by Bell, Ostrand, and Weyuker [3]. The results of this experiment substantially confirm those of the first.

Prioritization yields benefits as time constraints increase, prioritized test suites outperform unordered and randomtest

cases, and time constraints affect different prioritization techniques differently. The different fault numbers considered

in this experiment, however, did alter results somewhat in relation to specific techniques; in particular, heuristics were

found to be significantly more effective than control techniques more often than in the first experiment.

Our third experiment expressly manipulates the numbers of faults present in the systems studied as an independent

variable, using three levels of faultiness. Our results continue to demonstrate that time constraints matter, and that

when constraints do not exist, prioritization cost-effectiveness is not ensured. However, as the prevalence of faults

increases, even with no time constraints, prioritization exhibits benefits more often. Further, when time constraintsdo

exist, the effects of increased faultiness are even stronger.

Based on the foregoing results, we are able to suggest several practical implications for testing practitioners.

Among these, we can say that when time constraints do not holdand when numbers of faults are expected to be small,

prioritization may not be worthwhile. When time constraints do hold, however, the worst thing one can do is not

prioritize. Our results also suggest that a certain class oftechniques that employ “feedback” are more beneficial and

stable in producing useful results than techniques that do not employ such feedback. Finally, we discuss several ways

in which our results relate to prioritization effectiveness across different testing processes.

The rest of this article is organized as follows. Section 2 provides background information on prioritization.

Section 3 presents a cost model that we utilize in our experiments for use in assessing prioritization techniques.

Sections 4, 5, and 6 present our three experiments, including design, threats to validity, data and analysis, and inter-

pretations of results. Section 7 discusses the results of all three experiments and their practical implications. Section 8

discusses related work. Finally, Section 9 presents conclusions and discusses possible future work.

3

2 Background: Regression Testing and Test Case Prioritization

Let P be a program that has been modified to create a new versionP ′ and letT be a test suite developed forP . In the

transition fromP to P ′, the program could have regressed, that is, previously verified behavior ofP could have turned

faulty in P ′. Regression testing attempts to validateP ′ in order to investigate whether it has regressed. The existing

test suite,T , provides a natural starting point. In practice [39], engineers often reuse all of the test cases inT to test

P ′. Depending on the situation, thisretest-allapproach can be expensive [55] and since some test cases inT can be

irrelevant to changes made in transformingP into P ′, the cost incurred is not necessarily all worthwhile.

Researchers have proposed various methods for improving the cost-effectiveness of regression testing.Regression

test selection techniques(surveyed in [46]) reduce testing costs by selecting a subset of test cases fromT to execute

on P ′. These techniques reduce costs by reducing testing time, but unless they aresafe[47] they can omit test cases

that would otherwise have detected faults. This can raise the costs of software.

Test case prioritization techniques(e.g., [48, 60]) offer an alternative approach to improvingregression testing cost-

effectiveness. These techniques help engineers reveal faults early in testing, allowing them to begin debugging earlier

than might otherwise be possible. In this case, entire test suites may still be executed, avoiding the potential drawbacks

associated with omitting test cases, and cost savings come from achieving greater parallelization of debugging and

testing activities. Alternatively, if testing activitiesare cut short and test cases must be omitted, prioritizationcan

improve the chances that important test cases will have beenexecuted. In this case, cost savings related to early fault

detection (by those test cases that are executed) still apply, and additional benefits accrue from lowering the number

of faults that might otherwise be missed through less appropriate runs of partial test suites.

A wide range of prioritization techniques have been proposed and empirically studied (e.g., [22, 36, 48, 59, 60,

61, 62]). Most techniques utilize some form of code coverageinformation to direct the prioritization effort. Code

coverage information is obtained by instrumenting a program such that certain code components (e.g, method entries,

statements, branches, conditions, or basic blocks) can be observed to be exercised by test cases.

Given code coverage information for a test suiteT , one way to prioritize is to use a “total-coverage” prioritization

technique, that orders test cases in terms of the total number of code components that they cover. Total-coverage

techniques can be improved by addingfeedback, using an iterative greedy approach in which each “next” test case is

placed in the prioritized order taking into account the effect of test cases already placed in the order. For example, an

“additional-block-coverage” technique prioritizes testcases in terms of the numbers of new (not-yet-covered) blocks

they cover, by iteratively selecting the test case that covers the most not-yet-covered blocks until all blocks are covered,

then repeating this process until all test cases have been prioritized.

More recently, techniques have become more sophisticated in terms of the sources of information they utilize and

the manner in which this information is incorporated – Section 8 provides a comprehensive discussion.

4

3 Measuring the Cost-Benefits of Test Case Prioritization

Most early work on prioritization utilized simple metrics assessing the rate at which faults are detected by test cases

(e.g., APFD [48] and APFDC [34]) to evaluate prioritization technique effectiveness(Section 8 provides a summary).

Such metrics relate to the savings in debugging costs that flow from earlier fault detection. These metrics do not suffice

to assess time-constrained techniques, however, because such assessment requires that costs related to omitted faults

also be measured. Moreover, these savings and costs must be measured in comparable units so that they can both be

considered in technique assessment. A comprehensive view of tradeoffs also requires consideration of the costs of

applying techniques, and of utilizing them not just on single system releases but across entire system lifetimes, and

neither of these are considered by prior metrics.

For this reason, in this work, we rely on an economic model, EVOMO (EVOlution-aware economic MOdel for

regression testing), which is currently the only existing economic model capable of capturing the foregoing factors

comprehensively. We summarize the model here; for further details we refer the reader to [11, 13].

3.1 A Regression Testing Process Model

Economic models capture costs and benefits of methodologiesrelative to particular processes, so we begin our discus-

sion by providing a model of the regression testing process on which EVOMO is based. Our model corresponds to the

most commonly used approach for regression testing at the system test level [39] – abatchprocess model.

Figure 1 presents a timeline depicting the maintenance, regression testing and fault correction, and post-release

phases for a single release of a software system following a batch process model. Timet1 represents the time at which

maintenance (including all planning, analysis, design, and implementation activities) of the release begins. At timet2

the release is code-complete, and regression testing and fault correction begin – these activities may be repeated and

may overlap within time interval(t2 : t3), as faults are found and corrected. When this phase ends, at time t3, product

release can occur – at this time, revenue associated with therelease begins to accrue. In an idealized setting, product

release occurs on schedule following testing and fault correction, and this is the situation depicted in the figure.

This process model relates to the research questions we wishto investigate as follows. Suppose there are no time

constraints limiting testing. In this case, test case prioritization techniques attempt to reduce time interval(t2 : t3)

product release
date

scheduled

maintenance

time: t1 t3

phase:

t4

(revenue)
post−release

t2

regression testing &
fault correction

Figure 1: Maintenance and regression testing lifecycle.

5

by allowing greater portions of the fault correction activities that occur in that period to be performed in parallel with

testing, rather than afterward. If this succeeds, the software can be released early and overall revenue can increase. If

prioritization is unsuccessful and fault correction activities cause time interval(t2 : t3) to increase, then the release

is delayed and revenue can decrease. Next, suppose time constraints force testing to be terminated early. In this case,

revenue may increase but with potential for additional costs later due to omitted faults. Here, test case prioritization

can decrease such costs by increasing the likelihood that faults are detected prior to the termination of testing.

This batch process model makes several assumptions. For example, organizations also create software for reasons

other than to create revenue. Organizations that complete testing early could spend additional time performing other

forms of verification until the scheduled release date arrives, and this could lead to increased revenue via reduced

fault cost downstream. Revenue may not always increase as time interval(t3 : t4) increases; earlier release could

conceivably result in a decrease in revenue. Moreover, revenue itself is not the sole measure of benefit, because market

value (e.g., the value of a company’s stock) is also important. Also, there are many other regression testing process

models that could be utilized in practice; for example, someorganizations use incremental testing processes, in which

test cases are run each night as maintenance proceeds.

These differences noted, the model does allow us to investigate our research questions, in a manner that is much

more comprehensive than that used in research on regressiontesting to date. We also believe that the EVOMO model

can be adjusted to accommodate different regression testing processes, and we discuss this further in Section 9.

3.2 The EVOMO Economic Model

EVOMO (EVOlution-aware economic MOdel) captures the costsand benefits of regression testing methodologies in

terms of the cost of applying the methodologies and how much revenue they help organizations obtain.

EVOMO involves two equations: one that captures costs related to the salaries of the engineers who perform

regression testing (to translate time spent into monetary values),and one that captures revenue gains or losses related

to changes in system release time (to translate time-to-release into monetary values). The model accounts for costs

and benefits across entire system lifetimes rather than on snapshots (i.e. single releases) of those systems, through

equations that calculate costs and benefitsacross entire sequences of system releases. The model also accounts for

the use of incremental analysis techniques (e.g., relianceon previously collected data where possible rather than on

complete recomputation of data), an improvement also facilitated by the consideration of system lifetimes.

The two equations that comprise EVOMO are as follows. Terms,coefficients, and potential measures that can be

used to capture these are summarized in Table 1.

Cost = PS ∗

n
X

i=2

(CS(i) + COi(i) + COr (i) + b(i) ∗ CVi(i) + c(i) ∗ CF (i)) (1)

Benefit = REV ∗

n
X

i=2

(ED(i) − (CS(i) + COi(i) + COr (i) + ain (i − 1) ∗ CAin (i − 1)

+ atr (i − 1) ∗ CAtr (i − 1) + CR(i) + b(i) ∗ (CE(i) + CVi(i) + CVd(i)) + CD(i))) (2)

6

Table 1: Terms, Coefficients, and Potential Measures

Term Description
S Software system
i Index denoting a releaseSi of S
n The number of releases of the software system
u Unit of time (e.g., hours or days)

ain (i) Coefficient to capture reductions in costs of instrumentation forSi due to the use of incremental analysis techniques
atr (i) Coefficient to capture reductions in costs of trace collection forSi due to the use of incremental analysis techniques
b(i) Coefficient to capture reductions in costs of executing and validating test cases forSi due to the use of incremental analysis techniques
c(i) Number of faults that are not detected by a test suite appliedto Si

Term Description Potential Measure
CS(i) Time to perform setup activities required to testSi The costs of setting up the system for testing, compiling theversion

to be tested, and configuring test drivers and scripts
COi (i) Time to identify tests that are obsolete forSi The costs of manual inspection of a version and its test cases, and

determination, given modifications made to the system, of the test
cases that must be modified for the next version

COr (i) Time to repair obsolete tests forSi The costs of examining and adjusting test cases and test drivers, and
the costs of observing the execution of adjusted tests and drivers

CAin(i) Time to instrument all units ini The costs of instrumenting programs
CAtr (i) Time to collect traces for test cases inSi−1 The costs of collecting execution traces
CR(i) Time to execute a prioritization technique onSi The time required to execute a prioritization technique itself
CE(i) Time to execute test cases onSi The time required to execute tests
CVd (i) Time to use tools to check outputs of test cases onSi The time required to run a differencing tool on

test outputs as test cases are executed
CVi (i) Human time for inspecting the results of test cases The time required by engineers to inspect comparisons of test outputs
CF (i) Cost of missed faults after delivery ofSi To estimate this cost, we rely on data provided in [53];

we used 1.2 hours as the time required to correct faults afterdelivery
CD(i) Cost of delayed fault detection feedback onSi Following [34], we translate the rate of fault detection into the

cumulative cost (in time) of waiting for each fault to be exposed
while executing test cases under the prioritized order

REV Revenue in dollars per unitu We estimate this value by utilizing revenue values cited in asurvey of
software products ranging from $116,000 to $596,000 per employee [8]

PS Average hourly programmer’s salary in dollars per unitu We rely on a figure of $100 perperson-hour, obtained by adjusting
an amount cited in [24] by an appropriate cost of living factor

ED(i) Expected time-to-delivery forSi when testing begins Actual values forED cannot be obtained for our object programs.
Thus, rather than calculateED, we use the relative cost-benefits to

compare techniques; this causes the value ofED to be canceled out

In addition to capturing the costs related to the tasks involved in prioritizing and running tests, this model captures

the two primary drivers of costs and benefits that relate to time constraints as outlined above.CD(i) captures costs

related to delayed fault detection feedback (and thus, benefits related to reductions in delays); this cost occurs whether

time constraints are present or not.CF (i) captures costs related to faults missed in regression testing, this cost occurs

when time constraints force testing to end prior to execution of the entire test suite.

4 Experiment 1: The Effects of Time Constraints on Prioritization

Our first experiment addresses the following research questions:

RQ1: Given a specific test case prioritization technique, as time constraints vary, in what ways is the performance of

that technique affected?

RQ2: Given a specific time constraint on regression testing, in what ways do the performances of test case prioriti-

zation techniques differ under that constraint?

7

To address these questions we performed a controlled experiment. The following subsections present our objects

of analysis, variables and measures, setup and design, threats to validity, data and analysis, and discussion of results.

4.1 Objects of Analysis

We used five Java programs from the SIR infrastructure [9] as objects of analysis:ant, xml-security, jmeter, nanoxml,

andgalileo. Ant is a Java-based build tool, similar tomake but extended using Java classes instead of shell-based

commands.Jmeteris a Java desktop application used to load-test functional behavior and measure performance.Xml-

securityimplements security standards for XML.Nanoxmlis a small XML parser for Java.Galileo is a Java bytecode

analyzer. Several sequential versions of each of these programs are available. The first three programs are provided

with JUnit test suites, and the last two are provided with TSL(Test Specification Language) test suites [40].

Table 2 lists, for each of our objects of analysis, data on itsassociated “Versions” (the number of versions of

the object program), “Classes” (the number of class files in the latest version of that program), “Size (KLOCs)” (the

number of lines of code in the latest version of the program),and “Test Cases” (the number of test cases available for

the latest version of the program).

Table 2: Experiment Objects and Associated Data

Objects Versions Classes Size Test Mutation
(KLOCs) Cases Faults

ant 9 627 80.4 877 412
jmeter 6 389 43.4 78 386
xml-security 4 143 16.3 83 246
nanoxml 6 26 7.6 216 204
galileo 16 87 15.2 912 2494

To address our research questions we require faulty versions of our object programs, so we utilized mutation

faults created by members of our research group for an earlier study [12] and now available from the SIR repository

with the programs. Because our focus is regression testing and detection of regression faults (faults created by code

modifications), we considered only mutation faults locatedin modified methods. The total numbers of mutation faults

considered for our object programs, summed across all versions of each program, is shown in the rightmost column of

Table 2.

4.2 Variables and Measures

4.2.1 Independent Variables

Given our research questions, our experiments manipulatedtwo independent variables:time constraintsandprioriti-

zation technique.

8

Variable 1: Time Constraints

The time constraints imposed on regression testing by various software development processes directly affect regres-

sion testing cost-effectiveness by limiting the amount of testing that can be performed. Thus, to assess the effects of

time constraints, our first independent variable controls the amount of regression testing.

For the purpose of this study, we utilize fourtime constraint levels: TCL-0, TCL-25, TCL-50, and TCL-75. TCL-0

represents the situation in which no time constraints apply, and thus, testing can be run to completion. TCL-25, TCL-

50, and TCL-75 represent situations in which time constraints reduce the amount of testing that can be done by 25%,

50%, and 75%, respectively.

To implement time constraint levels, for simplification, weassume that all of the test cases for a given object pro-

gram have equivalent execution times – this assumption is reasonable for our object programs for which test execution

time varies only slightly. We then manipulate the number of test cases executed to obtain results for different time

constraint levels. For example, in the case of TCL-25, for each versionSi of object programS and for each prioritized

test suiteTt for Si, we halt the execution of the test cases inTt onSi as soon as 75% of those test cases have been run

(thus omitting 25% of the test cases).

Variable 2: Prioritization Technique

We consider twocontrol techniques and fourheuristicprioritization techniques.

Control techniques are those that are used as experimental controls; these do not involve any “intelligent” algo-

rithms for ordering test cases. We consider two such techniques, “original” and “random”. Original ordering utilizes

the order in which test cases are executed in the original testing scripts provided with the object programs, and thus,

serves as one potential representative of “current practice”. Random ordering utilizes random test case orders (in our

experiment, averages of runs of multiple random orders) andthus, provides a baseline for technique comparison that

abstracts away the possible vagaries of a single control order.

Heuristic techniques attempt to improve the effectiveness of test case orders. As heuristic techniques, we se-

lected four techniques drawn from two overall prioritization methodologies: conventional code-coverage-based pri-

oritization [48] and Bayesian Network-based prioritization [36]. For each of these methodologies we consider two

techniques: one that incorporates feedback and one that does not.

Conventional code-coverage-based (CC) prioritization techniques, as discussed in Section 2, rely solely on code

coverage information obtained when test cases are run on theprior releaseP , to order test cases for execution onP ′.

The techniques we use rely on code coverage measured at the level of basic blocks in control flow graphs built from

the Java bytecode of our object programs.

Bayesian Network-based (BN) prioritization techniques use estimates of the conditional probabilities that (1) changes

cause faults, (2) code quality renders modules fault-prone, and (3) faults present in code may be revealed by test cases,

encodes these in a Bayesian Network, and apply Bayesian Analysis to obtain prioritized test case orders (see [36] for

9

details). Note that BN techniques use code coverage information at the level of classes to obtain certain estimates, and

this coarser-grained level of instrumentation can potentially cause their costs to differ from those of CC techniques.

Further, BN techniques must be configured via parameters, and we utilize results obtained from a prior empirical

study [37] to select parameter values.

The CC and BN methodologies that we study represent two of theearliest and algorithmically simplest techniques

proposed to date, and two of the most recent and algorithmically complex techniques proposed to date, respectively.

They offer a spectrum of technique costs and potential benefits across which to conduct our study. (Section 8 provides

further comments on technique selection relative to other potential approaches.)

Table 3 summarizes the six techniques that we consider, and assigns mnemonics to them (To, Tr, Tcc, Tbn, Tccf,

andTbnf) for use in subsequent discussion.

Table 3: Test Case Prioritization Techniques
Group Label Technique Description
control To original original order

Tr random random order
non-feedback Tcc total CC prioritize on coverage of blocks

Tbn total BN prioritize via Bayesian Network
feedback Tccf additional CC prioritize on coverage of blocks with feedback mechanism

Tbnf additional BN prioritize via Bayesian Network with feedback mechanism

4.2.2 Dependent Variable and Measures

Our dependent variable is arelative cost-benefit valueproduced by applying the economic model presented in Sec-

tion 3, using a further calculation described below. The cost and benefit components are measured in dollars. The cost

components include several constituent measures, which wecollected as described in Table 1 in Section 3. To measure

costs that involve human activities we averaged times required by two graduate students to perform the activities.

Relative Cost-benefit

We considered two approaches for comparing techniques. Thefirst approach calculates absolute cost-benefit values

for each technique, using Equations 1 and 2 (Section 3). A drawback of this approach, however, is that it requires data

or estimates pertaining to theED variable, and it is difficult to find such data or reasonable estimates for our object

programs.

The second approach calculatesrelative cost-benefit values, in which the cost-benefits of techniques are determined

relative to those of a baseline technique. This approach does not require values forED ; moreover, it normalizes the

cost-benefit values calculated for techniques relative to ashared baseline, rendering their comparison independent of

particular choices ofED . To determine therelative cost-benefitof prioritization techniqueT with respect to baseline

techniquebase, we use the following equation:

(BenefitT − CostT) − (Benefitbase − Costbase) (3)

10

When this equation is applied, positive values indicate that T is beneficial compared tobase, and negative values

indicate otherwise.

We chose the second approach, selecting the random order of test cases as a baseline, and utilizing mean values

achieved across 30 different random orders to obtain baseline values. This use of mean values across multiple runs

limits the effect of chance on the baseline value. It also produces more reliable comparisons than could be obtained

with a single instance of an alternative baseline such as theoriginal test case order, which might exhibit a particular

trend that would be propagated to the outcomes of all comparisons.

4.3 Experiment Setup

test
coverage

data

code
change info

quality
metric
data

CC prioritization

BN prioritization

test suites

reordered
test suitereordered
test suitereordered
test suite
reordered
test suite

rate of fault
detection and
missed faults
computation

sequences of
mutant groups

across
program versions

fault
detection

info

EVOMO

Relative
Cost-Benefits($)
of Techniques

(across
program versions)

Control techniques

reordered
test suitereordered
test suites

fault
detection

info

fault
detection

info

fault
detection

infofault
detection

info

fault
detection

info

other
costs

other
costs

other
costs

other
costs

other
costs

other
costs

Figure 2: Experiment setup (across sequences of versions for a given object program and a given time constraint level).

Figure 2 helps to illustrate our experiment setup, as applied to sequences of versions per object programP , for

a given time constraint level TCL-k. The figure depicts data items in bubbles and major processing elements in

rectangles, and edges represent inputs and outputs of data.As shown in the figure, to perform prioritization, the CC

and BN techniques require test coverage information. The BNtechniques also require data related to code changes

and software quality metrics. We obtained coverage information for each object programP by running test cases on

each version ofP instrumented usingSofya [27]. The resulting information lists which test cases exercised which

blocks in each version; a previous version’s coverage information is then used to prioritize a current version’s set of

test cases. In the case of BN techniques, block coverage datais abstracted to the class level to determine the percentage

of blocks covered in a particular class. We obtained code change information usingsandmark [7] as a byte code

11

differencing tool, and we obtained software quality metrics (including data on coupling, cohesion, and complexity)

from the Chidamber-Kemerer metrics suite [6] using theckjm program.1 Using this information and the original test

suite, prioritization techniques produce reordered test suites for each version ofP .

Recall that our economic model (EVOMO) measures the costs and benefits of regression testing techniques across

sequences of program versions. To obtain the fault data required to investigate our research questions using this

model, we required program versions containing multiple faults. To provide these we constructedmutant groups. To

construct a mutant group for versionV of P , we first randomly chose a numbern between one and ten. We then

randomly selectedn mutation faults from those available with versionV , and instantiate them inV . Applying this

process to each of the versions ofP yields asequence of mutant groupsfor that sequence of versions. We created 30

such sequences of mutant groups for each of our programsP .

To collect required data forP , for each version ofP and each selected mutant group for that version, and each

prioritization technique, we recorded the appropriate values for cost variables related to applying that technique. In the

case of the random technique, we did this for 30 different random orders, and averaged the results. The required data

included data on rate of fault detection and faults missed, as well as other cost variables (CE ,CVd ,CVi ,CF , c,CD).

All machine times were measured on a PC running SuSE Linux 9.1with 1GB RAM and a 3 GHZ processor.

We used the collected cost variable values to calculate relative cost-benefit values for each of the prioritization

techniques onP . Each of these calculations required us to calculate the relative cost-benefit of the given technique

(using Equation 3) at the given time constraint level TCL-k for each of the 30 sequences of mutant groups created for

P . These resulting relative cost-benefit numbers serve as thedata for our subsequent analysis.2

4.4 Threats to Validity

This section describes the threats to the validity of our study, and the approaches we used to limit their effects.

External Validity. The Java programs that we study are relatively small (7K - 80K), and their test suites’ execution

times are relatively short. Complex industrial programs with different characteristics may be subject to different cost-

benefit tradeoffs. The testing process and the cost of faultswe used are not representative of all processes used or fault

costs observed in practice. We examine only four prioritization heuristics, and the prioritization and instrumentation

tools that we used in this study are prototypes, and thus may not reflect the performance of more robust industrial

tools. Our faults are derived through code mutation, and although there is some evidence that mutation faults can be

representative of real faults for purposes of experimentalevaluation of the effectiveness of testing techniques [2],the

numbers of mutation faults used in our study may not match numbers of faults found in practice. In particular, we

utilize random numbers of faults not exceeding 10 for all theobject programs irrespective of size. Control for these

threats can be achieved only through additional studies with wider populations of programs and faults, different testing

1http://www.spinellis.gr/sw/ckjm/
2Complete data sets can be obtained from the first author.

12

processes and prioritization techniques, different faultseverities and fault distributions, and improved tools.

Internal Validity. The inferences we have made about the effects of time constraints could have been affected by

other factors. One factor involves potential faults in the tools that we used to collect data. To control for this threat,we

validated our tools on several simple Java programs. A second factor involves the actual values we used to calculate

costs, some of which required estimation. We estimated the costs of test setup, finding obsolete tests, repairing obsolete

tests, and validating outputs by measuring the time taken bygraduate students to perform these tasks. The values we

used for revenue and costs of missing and correcting faults are obtained from surveys found in the literature, but such

values can be situation-dependent; for example, Perry and Stieg [42] present a different set of fault costs. A third factor

involves our implementations of techniques. In the case of BN techniques, the choice of parameters they utilize can

affect their performance. Although these effects have beenshown to be insignificant in many cases [37], using simpler

and more general configurations can help reduce this threat.Finally, our BN and CC prioritization techniques were

implemented by different programmers; however, in our study design we were careful to utilize identical tools for all

common tasks (e.g., instrumentation and test execution) related to the prioritization and measurement processes.

Construct Validity. While our economic model is the most comprehensive model created to date for use in assessing

regression testing techniques, and the only existing modelsuitable for assessing our research questions, the dependent

measures that we have considered to capture costs and benefits relative to this model are not the only possible measures.

Furthermore, other testing costs not captured by the model,such as the costs of initial test case development, initial

automation, and test suite maintenance, might play important roles and influence overall costs and benefits in particular

testing situations and organizations.

4.5 Data and Analysis

To provide an overview of the collected data, Figure 3 presents boxplots3 that show cost-benefit results for all tech-

niques, time constraints, and programs. The figure is composed of 20 subfigures. The four columns of subfigures

present results for time constraint levels TCL-0, TCL-25, TCL-50, and TCL-75, respectively. The five rows present

results for each of the object programs, respectively. To facilitate visual comparisons across constraint levels, cost-

benefit scales are fixed per program (across rows). Due to widedifferences in cost-benefit scales across different

programs, however, we use different scales per program.

Each subfigure contains boxplots for six prioritization techniques (Table 3 presents a legend of the techniques)

showing the distribution of cost-benefits in dollars for those techniques, for the given object program and constraint

level. The horizontal axis corresponds to techniques, and the vertical axis corresponds to cost-benefits in dollars

(recall that these are relative cost-benefits calculated asdescribed in Section 4.2.2). Higher values indicate greater

3A boxplot is a standard statistical device for representingdata sets [23]. In these plots, each data set’s distributionis represented by a box and a
pair of “whiskers”. The box’s height spans the central 50% ofthe data and its upper and lower ends mark the upper and lower quartiles. The middle
of the three horizontal lines within the box represents the median. The “whiskers” are the vertical lines attached to thebox; they extend to the
smallest and largest data points that are within the outliercutoffs. These outlier cutoffs are defined to lie at 1.5 timesthe width of the inner quartile
range (the span of the box) from the upper and lower points in that range. Small circles beyond these cutoffs represent anomalous data values.

13

TCL−0 TCL−25 TCL−50 TCL−75

an
t

−25000

−20000

−15000

−10000

−5000

0

5000

10000

Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf

jm
et

er

−15000

−10000

−5000

0

5000

10000

15000

xm
l−

se
cu

rit
y

−10000

−5000

0

5000

na
no

xm
l

−30000

−20000

−10000

0

ga
lil

eo

−60000

−40000

−20000

0

20000

Figure 3: Experiment 1: Cost-benefit boxplots, all programs, techniques, and time constraints.

14

cost-benefits. The two leftmost boxplots (Tr andTo) present data for the control techniques, and the rest present data

for the four heuristics. Because we measured results (for each application of a technique on a given program and

constraint level) across 30 sequences of mutant groups (seeSection 4.3), the number of data points represented by

each boxplot in each subfigure is 30.

We begin with a descriptive analysis of the data in the boxplots, considering the performance of the heuristics in

comparison to the control techniques as time constraints vary. Examining the boxplots for each object program in

the first column (TCL-0) of Figure 3, we see that none of the heuristics appear to be cost-beneficial compared to the

original technique (To) for the first two object programs (antandjmeter). On the other programs, differences between

techniques in the first column are difficult to see, but our subsequent statistical analysis provides more details.

As the time constraint level changes, the relationship between techniques changes. Across all three levels of time

constraints (TCL-25, TCL-50, and TCL-75), in all cases but one (jmeteron Tccf at TCL-25), feedback techniques

appear to be more beneficial than control techniques. Cost-benefit gains appear to increase as time constraints increase.

In the case of non-feedback techniques, results vary acrossprograms. For example, onant andxml-security, control

techniques appear to be worse than non-feedback techniques, and as time constraints increase, the cost-benefit gap

between control techniques and non-feedback techniques widens. On the other programs, there is no specific common

trend visible between non-feedback and control techniques.

Next, to formally address each of our research questions, wewish to compare the effects that occur for given

techniques as time constraints change, and then compare theeffects that occur between techniques at each given level

of time constraints. The following sections provide, for each of our research questions in turn, the statistical analyses

and results relevant to that question. (We discuss further implications of the data and results in Section 4.6.)

For our statistical analysis, we followed a process well established in prior studies of test case prioritization

(e.g., [12, 18, 48])): we used the Kruskal-Wallis non-parametric one-way analysis of variance followed by Bonferroni’s

test for multiple comparisons [45]. We used the Kruskal-Wallis test because our data did not meet the assumptions for

using ANOVA: our data sets do not have equal variance, and some have severe outliers. For multiple comparisons, we

used the Bonferroni method for its conservatism and generality. We used the Splus statistics package4 to perform the

analysis. Because results vary substantially across programs, we analyzed the data for each program separately.

4.5.1 RQ1: Effects of Time Constraints on Techniques

Our hypothesis associated with RQ1 is:(H1) given a specific technique, the cost-benefits between time constraints

differ. To test this hypothesis, we performed the Kruskal-Wallis test (df = 3) for each technique per program, at a

significance level of 0.05, over the four time constraint levels. Table 4 shows the results of this analysis for the four

heuristics andTo. Results forTr are not meaningful in this context, since it is the baseline used in our relative cost-

benefit calculation. Considering all techniques and programs, in all cases other thanTbnapplied tojmeter(24 of the

25 cases), the hypothesis is supported.

4http://www.insightful.com/products/splus

15

Table 4: Kruskal-Wallis Test Results for RQ1

Program To Tcc Tbn Tccf Tbnf

χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val.
ant 50 < 0.0001 44 < 0.0001 62 < 0.0001 84 < 0.0001 74 < 0.0001

jmeter 41 < 0.0001 10 0.018 7.4 0.057 34 < 0.0001 36 < 0.0001
xml-security 17 0.0005 66 < 0.0001 46 < 0.0001 104 < 0.0001 87 < 0.0001

nanoxml 100 < 0.0001 28 < 0.0001 59 < 0.0001 99 < 0.0001 27 < 0.0001
galileo 92 < 0.0001 97 < 0.0001 78 < 0.0001 97 < 0.0001 111 < 0.0001

Table 5: Bonferroni Test Results for RQ1: Comparing across Time Constraint Levels per Technique and Program

Technique ant jmeter xml − security nanoxml galileo

TCL Mean Grp TCL Mean Grp TCL Mean Grp TCL Mean Grp TCL Mean Grp
To 0 -352 A 25 2243 A 0 -60 A 25 1861 A 0 -3335 A

25 -1779 A 0 -56 A B 25 -61 A 0 -459 A 25 -19544 B
50 -3768 A 50 -1978 B C 75 -1735 A B 75 -19064 B 50 -28598 C
75 -11201 B 75 -5126 C 50 -3427 B 50 -20965 B 75 -38088 D

Tcc 50 2977 A 25 988 A 75 4456 A 50 189 A 0 -3984 A
25 1578 A 50 164 A 50 2845 B 25 -249 A 25 -19135 B
75 1310 A 0 -516 A 25 2812 B 0 -416 A 50 -19983 B
0 -1088 B 75 -1644 A 0 -163 C 75 -2850 B 75 -41699 C

Tbn 75 6391 A 50 1428 A 75 3942 A 0 -304 A 50 11502 A
25 3399 B 25 1193 A 50 2842 A 25 -1304 A 25 5772 B
50 3248 B 75 841 A 25 2806 A 50 -5357 B 75 2684 C
0 -980 C 0 -512 A 0 -171 B 75 -5922 B 0 -1166 D

Tccf 75 6743 A 75 4666 A 75 6150 A 75 6178 A 75 21880 A
50 5106 A 50 2855 A B 50 4224 B 50 3406 B 50 21476 A
25 2667 B 25 1684 B C 25 2819 C 25 3157 B 25 14365 B
0 -1198 C 0 -497 C 0 -155 D 0 -127 C 0 -985 C

Tbnf 75 6983 A 25 3801 A 75 4454 A 50 1535 A 75 29886 A
50 2002 B 75 3639 A 50 3434 B 75 877 A 50 22379 B
25 1783 B 50 3010 A 25 2616 B 0 37 A 25 15458 C
0 -1030 C 0 -487 B 0 -163 C 25 -143 A 0 150 D

We next performed multiple pair-wise comparisons for each technique other than the random technique using

Bonferroni tests, which determine the significance in groupmean differences in an analysis of variance test. Table 5

presents the results of these tests with a Bonferroni correction [45]. In the table, data is organized per technique

(rows) and per program (columns), for each technique and program listing the four time constraint levels in terms of

their mean cost-benefit values, from higher (better) to lower (worse). We use grouping letters (columns with headers

“Grp”) to partition the time constraints such that results that are not significantly different share the same grouping

letter. For example, the results ofTccf for jmetershow that TCL-75 and TCL-50 are not statistically significantly

different (sharing grouping letter A), and TCL-50 and TCL-25 are not statistically significantly different (sharing

grouping letter B), but TCL-75 and TCL-25arestatistically significantly different (sharing no grouping letters).

As the table shows, the results from multiple pair-wise comparisons reveal different trends between time constraints

among techniques and programs. In the case of the original technique (To), the results show that in all cases but two

(jmeterandnanoxmlat TCL-25) negative cost-benefit values were observed, which indicates that in most cases the

original technique was worse than the (random) baseline. Overall, cost-benefit values decreased as time constraint

levels increased (from TCL-0 to TCL-75); this was particularly evident in the case ofgalileo, on which there were

statistically significant differences between all but two pairs of time constraints.

16

Table 6: Kruskal-Wallis Test Results for RQ2

Program TCL-0 TCL-25 TCL-50 TCL-75
χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val.

ant 162 < 0.0001 92 < 0.0001 87 < 0.0001 109 < 0.0001
jmeter 122 < 0.0001 34 < 0.0001 24 0.0002 45 < 0.0001

xml-security 125 < 0.0001 123 < 0.0001 113 < 0.0001 80 < 0.0001
nanoxml 152 < 0.0001 123 < 0.0001 148 < 0.0001 146 < 0.0001
galileo 160 < 0.0001 164 < 0.0001 165 < 0.0001 163 < 0.0001

The trends change, however, when we consider heuristics. Inthe case of non-feedback techniques (TccandTbn),

negative cost-benefit values were observed in all cases in which no time constraints applied (TCL-0). When time

constraints applied, techniques produced positive cost-benefit values on the three object programs that have JUnit

test cases (ant, jmeter, andxml-security) in all but one case (Tccon jmeterat TCL-75), with values usually trending

upwards as time constraints increase. On the two programs that have TSL test cases,nanoxmlandgalileo, however,

results and trends were mixed.

In the case of feedback techniques, the positive effects of prioritization, together with upward trends as time

constraint levels increase, are more obvious. Cost-benefitvalues increased as time constraints increased in all cases

but two (jmeterandnanoxmlfor Tbnf), and in these two cases, differences between time constraint levels were not

significant. Further, even in cases in which non-feedback techniques were not cost-beneficial (nanoxmlandgalileo),

feedback techniques produced positive cost-benefit values.

4.5.2 RQ2: Effects Among Techniques at Given Levels of Time Constraints

Our hypothesis associated with RQ2 is:(H2) given a specific time constraint, the cost-benefits between test case

prioritization techniques differ.To test this hypothesis, we performed the Kruskal-Wallis test (df = 5) for each of the

four time constraint levels per program, at a significance level of 0.05, over the six techniques. Table 6 shows the

results of this analysis for the four time constraint levels. The hypothesis is supported in all 20 cases.

We next performed multiple pair-wise comparisons for each time constraint level using the Bonferroni tests. Ta-

ble 7 presents the results of the Bonferroni tests with a Bonferroni correction. In the table, data is organized per time

constraint level (rows) and program (columns), for each listing the six techniques in terms of their mean cost-benefit

values, from higher (better) to lower (worse). Again, grouping letters indicate statistically significant differences.

As the table shows, the results from multiple pair-wise comparisons show different trends between techniques

among time constraint levels and programs. In the case in which no time constraints applied (TCL-0), all control

techniques were better than heuristics for the three objectprograms (ant, jmeter, andxml-security) that have JUnit test

cases. Results fornanoxmlandgalileo, however, differ, with the random technique significantly superior to heuristics

in all but one case (Tbnfongalileo), and the original technique significantly inferior to all but one heuristic (Tcc).

In the cases in which time constraints applied (TCL-25, TCL-50, and TCL-75), however, the relationships between

control techniques and heuristics differ. At TCL-25, heuristics often outperformed the control techniques, but the

17

Table 7: Bonferroni Test Results for RQ2: Comparing across Techniques per Time Constraint Level and Program

TCL ant jmeter xml − security nanoxml galileo

Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp
0 Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A Tbnf 150 A

To -352 B To -56 B To -60 B Tccf -127 B Tr 0.0 A
Tbn -980 C Tbnf -487 C Tccf -155 C Tbnf -143 B Tccf -985 B
Tbnf -1030 C D Tccf -497 C Tcc -163 C Tbn -304 C Tbn -1166 B
Tcc -1080 D Tbn -512 C Tbnf -164 C Tcc -416 D To -3335 C
Tccf -1198 E Tcc -516 C Tbn -171 C To -459 D Tcc -3984 D

25 Tbn 3399 A Tbnf 3801 A Tccf 2819 A Tccf 3157 A Tbnf 15358 A
Tccf 2667 A To 2243 A B Tcc 2812 A To 1861 B Tccf 14365 A
Tbnf 1783 A B Tccf 1684 A B C Tbn 2806 A Tbnf 1535 B Tbn 5772 B
Tcc 1578 A B Tbn 1193 B C Tbnf 2616 A Tr 0.0 C Tr 0.0 C
Tr 0.0 B C Tcc 988 B C Tr 0.0 B Tcc -249 C D Tcc -19135 D
To -1779 C Tr 0.0 C To -61 B Tbn -1304 D To -19544 D

50 Tccf 5106 A Tbnf 3010 A Tccf 4224 A Tccf 3406 A Tbnf 22379 A
Tbn 3248 A B Tccf 2855 A Tbnf 3434 A Tbnf 877 A B Tccf 21476 A
Tcc 2977 A B Tbn 1428 A B Tcc 2845 A Tcc 189 B Tbn 11502 B
Tbnf 2002 B C Tcc 164 A B Tbn 2842 A Tr 0.0 B Tr 0.0 C
Tr 0.0 C Tr 0.0 A B Tr 0.0 B Tbn -5357 C Tcc -19983 D
To -3768 D To -1978 B To -3427 C To -20965 D To -28598 E

75 Tbnf 6983 A Tccf 4666 A Tccf 6150 A Tccf 6178 A Tbnf 29886 A
Tccf 6743 A Tbnf 3639 A Tcc 4456 A Tbnf 37 B Tccf 21880 B
Tbn 6391 A Tbn 841 A B Tbnf 4454 A Tr 0.0 B Tbn 26884 C
Tcc 1310 B Tr 0.0 A B C Tbn 3942 A Tcc -2850 B C Tr 0.0 C
Tr 0.0 B Tcc -1644 B C Tr 0.0 B Tbn -5922 C To -38088 D
To -11201 C To -5126 C To -1735 B To -19064 D Tcc -41699 D

results varied across programs. For example, all heuristics were better than both control techniques onxml-security,

and all were better than the original technique onant, while on the other three programs feedback techniques were

usually but not always better than control techniques, and non-feedback techniques were less consistent.

Further, the relationship between heuristics differed when time constraints applied forant andjmeter. In the case

of ant, Tbn exhibited a higher mean cost-benefit value thanTbnf at TCL-25 and TCL-50, but this relationship was

reversed at TCL-75. In the case ofjmeter, there were no statistically significant differences between heuristics without

time constraints, but when time constraints applied, heuristics maintained stable rankings in terms of mean cost-benefit

values, but fell into two or three different strata as time constraints varied in terms of statistically significant differences.

As time constraints increased further (TCL-50 and TCL-75),for ant and xml-security, heuristics continued to

perform better than the control techniques (ranking-wise); in particular, differences between all heuristics and the

control techniques forxml-securityand differences between all heuristics and the original technique forant were

statistically significant. The other three programs yielded similar results, with a few exceptions; heuristics were

always better (ranking-wise) than the original technique for both time constraint levels, and often better than the

random technique.

4.6 Discussion

We now draw on the results of our analyses, together with additional consideration of our data, to derive several

implications of these results. Of course, in assessing these implications the reader should keep in mind the threats to

validity for this study.

Figure 4 presents lineplots of the mean cost-benefit values observed in our study for each prioritization technique,

at each time constraint level, for each program. These lineplots summarize the major trends in our results visually,

18

TCL−0 TCL−25 TCL−50 TCL−75

−
10

00
0

−
50

00
0

50
00

ant

TCL−0 TCL−25 TCL−50 TCL−75

−
60

00
−

20
00

0
20

00
40

00

jmeter

TCL−0 TCL−25 TCL−50 TCL−75

−
20

00
0

20
00

40
00

60
00

xml−security

TCL−0 TCL−25 TCL−50 TCL−75

−
20

00
0

−
10

00
0

0
50

00

nanoxml

TCL−0 TCL−25 TCL−50 TCL−75

−
40

00
0

−
20

00
0

0
20

00
0

galileo

Tr
To
Tcc

Tbn
Tccf
Tbnf

Figure 4: Experiment 1: Cost-benefit lineplots, all programs, all techniques, all time constraints.

and together with the formal analysis of Section 4.5, facilitate our discussion of results. They also provide a way to

consider the further question: in what ways do the effects oftime constraints vary across different techniques?

4.6.1 Time Constraints Matter

Our analysis of results showed that our hypotheses (H1 and H2) are both supported in a vast majority of cases: for

each given prioritization technique, the cost-benefits between time constraints differed; for each given time constraint

level L, the cost-benefits between techniques differed. Further, as we can observe from Figure 4, the effects of time

constraints on differences between technique cost-benefits increased as time constraint level increased.

In this study we also observed thatwhen no time constraints applied, we gained little from employing prioritization

heuristics. This result was surprising, as it is quite different from the results of prior empirical studies of prioritiza-

tion (e.g., [18, 26, 31]), which have concluded that heuristics are more effective than control techniques. We believe

that this difference is due to the fact that in prior work, prioritization benefits have been assessed in terms of simple

measures of rate of fault detection. The results of this study suggest, in fact, that using simple rate of fault detection

measures to assess prioritization techniques may lead to inaccurate observations, and that more comprehensive eco-

nomic models can lead to quite different conclusions about the cost-effectiveness of heuristics. Such results must be

qualified, however, in light of the particular object programs and cost factors studied; we return to this issue in our

third experiment.

19

4.6.2 The Worst Thing One Can Do is Not Prioritize

We observed that the original test case order was almost always worse than the test case order produced by prioritiza-

tion heuristics. Even at TCL-0, the original test case orderwas inferior to those produced by heuristics on two of the

five programs (nanoxmlandgalileo). Moreover, the original order became increasingly worse as time constraint lev-

els increased: considering the 15 observed points of TCL increases (from TCL-0 to TCL-25, TCL-25 to TCL-50, and

TCL-50 to TCL-75 on each of the five programs), in 11 of these 15cases (five statistically significant) the cost-benefits

of the original order decreased as TCL increased. Figure 4 clearly shows this trend: the original orders’ lineplots slope

downwards, while others more often slope upwards. Further,our results show that even the use of a randomized test

case order, which can be thought of as the result of using randomization as a simple prioritization strategy, is preferable

(at least, in terms of average-case behavior) to using “original” orders.

Thus, these results do show thatwhen time constraints might apply, as for example when engineers do not know

how long they will be allowed to keep running test cases,the worst thing that one can do is to not practice some form

of test case prioritization. Furthermore, we expect this implication to hold even more strongly in cases in which fault

costs are greater, and we return to this issue in our third experiment.

4.6.3 Time Constraints Affect Techniques Differently

For prioritization heuristics, the cost-benefit values we observed tended to increase as time constraint levels increased,

but this trend varied across techniques. The following lists observations for each heuristic relative to the 15 observed

points of TCL increases:

• Tccfalways produced greater cost-benefits as TCL increased (15 increases, 9 of them statistically significant).

• Tbnfoften produced greater cost-benefits as TCL increased (12 increases, 8 of them statistically significant).

• Tbnwas less stable in producing cost-benefits as TCL increased (9 increases, 5 of them statistically significant).

• Tccwas least stable (8 increases, 3 statistically significant).

Feedback techniques were more effective than their non-feedback counterparts, not only in terms of producing

greater cost-benefits, but also in terms of being consistently better as time constraint levels increased. Non-feedback

techniques were also guilty of performing quite poorly; in particular, ongalileo the performance ofTccwas as bad

as that of the original order. In other words,feedback techniques are more stable than non-feedback techniques in the

presence of variations in time constraints. Such differences in stability between feedback and non-feedback techniques

have been observed previously [18] in relation to non-time-constrained evaluations, and attributed to relationships

between test execution patterns and the locations of faults(non-feedback techniques vary more widely when test cases

that expose faults execute relatively few functions); a similar pattern appears to hold in this case.

Further inspection of our data and cost factors also suggests the existence of interaction effects between prioritiza-

tion technique execution time and rate of fault detection. In general, in the absence of time constraints, techniques that

20

had lower execution costs (CR) tended to perform better than those with higher execution costs. As time constraints

increased, however, techniques yielding earlier fault-detection became more cost-effective, irrespective of execution

cost. Following up on these observations, we determined (toour surprise) that BN techniques tended to have lower

costs on average than CC techniques. One plausible explanation for this is that BN techniques use class-level coverage

information, whereas CC techniques use block-level information. For example, in the case ofant, while the number

of instrumentation points for the class-level coverage information is 627, the number of instrumentation points for the

block-level coverage information is more than 6000. The useof finer-grained coverage data leads to longer technique

execution times, but on the other hand, gives CC techniques (and especially Tccf) an edge in terms of early fault

detection.

5 Experiment 2: Reducing Validity Threats Through Replication

The results of Experiment 1 suggest that time constraints can indeed play a significant role in determining both the

cost-effectiveness of prioritization techniques, and therelative cost-benefit tradeoffs among techniques. However, as

discussed in Section 4.4, the use of fixed numbers of faults applied uniformly to all programs is a threat to external

validity for those results. Furthermore, threats to internal validity include choices of values and measures for use in

the EVOMO model and choices of parameters for use by BN techniques.

We wished to address these threats to validity, and determine whether our results generalize to cases in which faults

occur in more realistic numbers, when model and technique settings are simplified. We thus replicated the first study

in a context in which these threats were addressed.

For this experiment, we consider the same research questions as those considered in Experiment 1, and for com-

pleteness we repeat these here, but we designate them RQ1′ and RQ2′ in recognition of the different experimental

context being conducted.

RQ1′: Given a specific test case prioritization technique, as time constraints vary, in what ways is the performance

of that technique affected?

RQ2′: Given a specific time constraint on regression testing, in what ways do the performances of test case prioriti-

zation techniques differ under that constraint?

This experiment utilizes the same object programs, variables, and measures as those used in Experiment 1. It also

possesses the same threats to validity as Experiment 1, withthe exception of those specifically addressed (the effects

of fault numbers, values and measures required by EVOMO, andparameters used by BN techniques.) We thus do not

repeat discussion of these here. Instead, we describe only the differences between this experiment and the prior one,

namely, the simplified EVOMO model, the improved BN techniques, and the alterations made to experiment setup

and design. We then present data and analysis and discussionof results.

21

5.1 The Simplified EVOMO Model: S-EVOMO

While our initial EVOMO model presented in Section 3 has allowed us to assess the cost-benefit tradeoffs for pri-

oritization techniques [10, 11], it does involve several variables that must be estimated, and a simplified model can

reduce threats to validity related to these estimates. Model simplification can also render the process of collecting or

estimating model data less expensive.

Reference [13] describes our approach to model simplification. Using sensitivity analysis, we identified the four

cost component factors that had the smallest influence on theoutput of the model:ain, CV, CS, andCAin (Table 1

describes these factors). We then fixed these factors at given values over their range of uncertainty [50]. Through

this process, we obtained a simplified version of our original full model, and then we empirically evaluated whether

the simplified model possessed the same ability as the original to assess cost-benefit relationships between regression

testing techniques. The results showed that our simplified model assessed the relationship between techniques in the

same way as the full model.

The simplified EVOMO model (hereafter referred to as S-EVOMO), like the original, involves two equations:

one that captures costs related to the salaries of the engineers and one that captures revenue gains or losses related to

changes in system release time. The simplified model also continues to account for costs and benefits across entire

system lifetimes, and for the use of incremental analysis techniques.

The two equations that comprise S-EVOMO are as follows; terms and coefficients retain the meanings presented

originally in Table 1. As just stated, S-EVOMO fixes the four least significant factors,CS, CV, CAin, andain; in the

equations we represent the value of these fixed factors collectively as constantsK1 andK2.

Cost = PS ∗ (
n

X

i=2

(COi (i) + COr (i) + c(i) ∗ CF (i)) + K1) (4)

Benefit = REV ∗ (
n

X

i=2

(ED(i) − (COi (i) + COr (i) + atr (i − 1) ∗ CAtr (i − 1) + CR(i) + b(i) ∗ CE(i) + CD(i))) − K2) (5)

5.2 Simplified BN Techniques

We use a different implementation of the BN technique that employs a simpler set of parameters and information

gathering techniques. BN techniques have parameters that can be configured to adjust the technique to a particular

environment. Also, their input data can be gathered using different tools and algorithms. In Experiment 1, these

configurations were chosen based on an empirical study [37] in which parameters were carefully selected for each

object and a complex algorithm for gathering change information was used. Although such complex configurations

can in some cases increase the performance of BN techniques,it is not clear how well such improvements generalize in

practice. Simpler configurations can reduce the costs of applying the technique and can therefore potentially increase

its overall cost-effectiveness. Furthermore, recent studies [35, 37] of BN techniques have suggested that the impact of

certain parameters can be statistically insignificant. When a simple implementation can produce results as good as a

more complex one, the costs of the complex one can be avoided.

22

Thus, in this experiment, we use a simpler configuration for BN techniques. The major simplifications are three:

(1) the simple Unix DIFF command is used to gather change information, (2) a simple rule of thumb (based on the

size of the object) is used to choose a Bayesian inference algorithm, and (3) the same “level of feedback” (a parameter

in BN techniques, controlling how often feedback happens) has been used across all programs. More details can be

found in [35].

5.3 Experiment Setup

This experiment uses the same setup as Experiment 1 (see Section 4.3), but in addition to the steps detailed for that

experiment, we also needed to provide mutant groups considering more realistic numbers of faults.

To do this, we utilized a fault prediction model developed byBell et al. [3]: the LOC model. The LOC model

uses a negative binomial regression model to predict the number of faults in a system based on the number of lines of

code in a file [3]. Because our focus is regression testing anddetection of regression faults, in applying the model we

considered only files that have been changed from the previous version. Using the LOC model, we obtained various

ranges of numbers of faults across the different versions ofour object programs; these ranges were:ant (3-39),jmeter

(12-26),xml-security(5-10), nanoxml(1-5), andgalileo (1-8). Based on these numbers, for each version of each

program we randomly selected severalmutant groupsof sizes falling within those ranges from the set of that version’s

mutation faults. We then gathered prioritization data relative to those mutant groups, following the procedure detailed

in Section 4.3.

5.4 Data and Analysis

Figure 5 presents boxplots that show cost-benefit results for all techniques, time constraints, and programs. The figure

is structured similar to Figure 3 (see Section 4.5 for details on how to read the figure.)

Examining the boxplots for each object program, we have observed strong similarities with the results from Ex-

periment 1, as follows:

• Under no time constraints, none of the heuristics appear to be cost-beneficial compared to the original technique

(To) for the first two object programs (jmeterandxml-security). For ant andgalileo, overall, the heuristics

appear to perform slightly better than the original technique.

• As the time constraint level changes, the relationships between techniques change. Across all three time con-

straints (TCL-25, TCL-50, and TCL-75), in all cases but two (jmeteron Tccf at TCL-25 andant on Tbnf at

TCL-50), feedback techniques appear to be more cost-beneficial than the control techniques.

• Cost-benefit gains appear to increase as time constraints increase, in particular for feedback techniques. This

trend seems to be consistent in all but two cases. In the case of non-feedback techniques, results vary across

programs.

23

TCL−0 TCL−25 TCL−50 TCL−75

an
t

−20000

−15000

−10000

−5000

0

5000

10000

15000

Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf

jm
et

er

−30000

−20000

−10000

0

10000

xm
l−

se
cu

rit
y

−10000

−5000

0

5000

10000

na
no

xm
l

−15000

−10000

−5000

0

5000

ga
lil

eo

−40000

−20000

0

20000

Figure 5: Experiment 2: Cost-benefit boxplots, all programs, techniques, and time constraints.

24

Table 8: Kruskal-Wallis Test Results for RQ1′

Program To Tcc Tbn Tccf Tbnf

χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val.
ant 102 < 0.0001 28 < 0.0001 100 < 0.0001 93 < 0.0001 92 < 0.0001

jmeter 99 < 0.0001 60 < 0.0001 45 < 0.0001 49 < 0.0001 46 < 0.0001
xml-security 78 < 0.0001 98 < 0.0001 110 < 0.0001 102 < 0.0001 84 < 0.0001

nanoxml 100 < 0.0001 7.8 0.049 98 < 0.0001 55 < 0.0001 72 < 0.0001
galileo 99 < 0.0001 98 < 0.0001 105 < 0.0001 69 < 0.0001 111 < 0.0001

Table 9: Bonferroni Test Results for RQ1′: Comparing across Time Constraint Levels per Technique andProgram

Technique ant jmeter xml − security nanoxml galileo

TCL Mean Grp TCL Mean Grp TCL Mean Grp TCL Mean Grp TCL Mean Grp
To 0 -1079 A 25 1971 A 0 -106 A 25 1516 A 0 -2857 A

25 -8161 B 0 -213 A 25 -2449 B 0 -210 B 25 -16083 B
50 -10639 C 50 -15277 B 75 -5482 C 75 -9238 C 50 -21953 C
75 -49284 C 75 -23978 C 50 -7215 D 50 -11067 D 75 -35928 D

Tcc 50 1287 A 25 -502 A 75 6234 A 50 -93 A 0 -3477 A
75 1247 A 0 -570 A 50 4351 B 25 -178 A 25 -13887 B
25 -467 B 50 -1276 A 25 3492 B 0 -339 A 50 -15812 B
0 -828 B 75 -11338 B 0 -134 C 75 -1294 A 75 -38135 C

Tbn 75 8570 A 25 234 A 75 7808 A 0 -271 A 50 9124 A
25 2074 B 0 -546 A 50 4110 B 25 -561 A B 25 7852 A B
50 647 B C 50 -1489 A 25 3134 C 50 -1880 B 75 6249 B
0 -810 C 75 -7626 B 0 -141 D 75 -4287 C 0 -1328 C

Tccf 75 10898 A 75 6133 A 75 9465 A 75 4379 A 75 23284 A
50 9559 B 50 4951 A 50 5888 B 50 2348 B 50 20074 B
25 2448 C 25 604 B 25 3502 C 25 2208 B 25 13819 C
0 -884 D 0 -462 B 0 -119 D 0 -143 C 0 -877 D

Tbnf 75 4024 A 75 6053 A 75 5205 A 75 3127 A 75 26370 A
25 864 B 25 3479 A B 50 4891 A 50 1841 B 50 19932 B
0 -929 B 50 934 B C 25 3326 B 25 1750 B 25 13765 C
50 -4234 C 0 -472 C 0 -153 C 0 -159 C 0 -47 D

The following sections provide, for each of our research questions in turn, the statistical analyses and results

relevant to that question. (Our analyses employ the same statistical procedures as those used in Experiment 1).

5.4.1 RQ1′: Effects of Time Constraints on Techniques

Our hypothesis associated with RQ1′ is: (H1′) given a specific technique, the cost-benefits between time constraints

differ. Similar to the results from Experiment 1, the Kruskal-Wallis test (Table 8, df = 3, a significance level of 0.05)

shows that the cost-benefits between time constraints differ – and here this difference holds in all 25 cases.

For multiple pair-wise comparisons, as Table 9 shows, the results reveal different trends between time constraints

among techniques and object programs, as observed in Experiment 1.

• In most cases the original technique was worse than the (random) baseline (all cases but two –jmeter and

nanoxmlat TCL-25). Overall, cost-benefit values decreased as time constraint levels increased (from TCL-0 to

TCL-75).

• In the case of feedback techniques (TccfandTbnf), positive effects of prioritization, together with upward trends

25

Table 10: Kruskal-Wallis Test Results for RQ2′

Program TCL-0 TCL-25 TCL-50 TCL-75
χ2 p-val. χ2 p-val. χ2 p-val. χ2 p-val.

ant 154 < 0.0001 127 < 0.0001 150 < 0.0001 152 < 0.0001
jmeter 147 < 0.0001 33 < 0.0001 98 0.0002 150 < 0.0001

xml-security 119 < 0.0001 145 < 0.0001 147 < 0.0001 143 < 0.0001
nanoxml 132 < 0.0001 97 < 0.0001 135 < 0.0001 148 < 0.0001
galileo 165 < 0.0001 162 < 0.0001 164 < 0.0001 163 < 0.0001

Table 11: Bonferroni Test Results for RQ2′: Comparing across Techniques per Time Constraint Level andProgram

TCL ant jmeter xml − security nanoxml galileo

Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp
0 Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A

Tbn -810 B To -213 B To -106 B Tccf -143 B Tbnf -47 A
Tcc -828 B Tccf -462 C Tccf -119 B C Tbnf -159 B C Tccf -877 B
Tccf -884 C Tbnf -472 C Tcc -134 C D To -210 C Tbn -1328 C
Tbnf -929 D Tbn -546 D Tbn -141 D E Tbn -271 D To -2857 D
To -1079 E Tcc -570 D Tbnf -153 E Tcc -339 E Tcc -3477 E

25 Tccf 3399 A Tbnf 3479 A Tccf 3502 A Tccf 2208 A Tccf 13819 A
Tbn 2667 A B To 1971 A B Tcc 3492 A Tbnf 1750 A Tbnf 13765 A
Tbnf 1783 B C Tccf 604 B Tbnf 3326 A To 1516 A Tbn 7852 B
Tr 1578 C Tbn 234 B Tbn 3134 A Tr 0.0 B Tr 0.0 C
Tcc 0.0 C Tr 0.0 B Tr 0.0 B Tcc -178 B Tcc -13887 D
To -1779 D Tcc -502 B To -2449 C Tbn -561 B To -16083 D

50 Tccf 9559 A Tccf 4951 A Tccf 5888 A Tccf 2348 A Tccf 20074 A
Tcc 1287 B Tbnf 934 B Tbnf 4891 A B Tbnf 1841 A Tbnf 19932 A
Tbn 647 B Tr 0.0 B Tcc 4351 B Tr 0.0 B Tbn 9124 B
Tr 0.0 B Tcc -1276 B Tbn 4110 B Tcc -93 B Tr 0.0 C
Tbnf -4234 C Tbn -1489 B Tr 0.0 C Tbn -1880 C Tcc -15812 D
To -10639 D To -15277 C To -7215 D To -11067 D To -21953 E

75 Tccf 10898 A Tccf 6133 A Tccf 9465 A Tccf 4379 A Tbnf 26370 A
Tbn 8570 A Tbnf 6053 A Tbn 7808 A B Tbnf 3127 A Tccf 23284 A
Tbnf 4024 B Tr 0.0 B Tcc 6234 B C Tr 0.0 B Tbn 6249 B
Tcc 1247 C Tbn -7626 C Tbnf 5205 C Tcc -1294 B Tr 0.0 C
Tr 0.0 C Tcc -11338 C Tr 0.0 D Tbn -4287 C To -35928 D
To -49284 D To -23978 D To -5482 E To -9238 D Tcc -38135 D

as time constraint levels increase, are observed. All casesbut two (ant andjmeterfor Tbnf) showed that cost-

benefit values increased as time constraints increased.

• In the case of non-feedback techniques (TccandTbn), the trend was mixed. When no time constraints applied,

negative cost-benefit values were observed in all cases. When time constraints applied, techniques produced

positive cost-benefit values on four cases (ant, xml-security, andgalileoonTbn, andxml-securityonTcc).

5.4.2 RQ2′: Effects Among Techniques at Given Levels of Time Constraints

Our hypothesis associated with RQ2′ is: (H2′) given a specific time constraint, the cost-benefits betweentest case

prioritization techniques differ.Similar to the results from Experiment 1, the Kruskal-Wallis test (Table 10, df = 5, for

significance level of 0.05) shows that the cost-benefits between test case prioritization techniques differ in all 20 cases.

For multiple pair-wise comparisons, as Table 11 shows, the results reveal different trends between techniques

among time constraint levels and object programs, as we observed in Experiment 1.

26

• When no time constraints applied (TCL-0), the random technique was better than heuristics in all cases. In the

case of the original technique, the results varied across programs: forjmeterandxml-security, all heuristics

were inferior to the original technique; for other programs, the results were mixed.

• When time constraints applied (TCL-25, TCL-50, and TCL-75), the overall trends were mixed. In the case of

xml-security, across all time constraint levels, all heuristics are significantly better than both control techniques.

In the case ofgalileo, across all time constraint levels, all heuristics butTcc are significantly better than both

control techniques. In the case ofant, the heuristics were not always better than the control techniques. In the

case ofnanoxml, feedback techniques were better than the random techniqueand non-feedback techniques were

worse than the random techniques.

5.5 Discussion

As just outlined, Experiments 1 and 2 yield primarily consistent results, through which we are able to reduce threats

to validity related to Experiment 1. Thus, we discuss the results of our analyses in light of our earlier discussion of the

results of Experiment 1.

5.5.1 Time Constraints Matter

We confirm the findings of Experiment 1 that time constraints affect the cost-benefits between techniques, and that

when no time constraints applied, heuristics provided little benefit. Whether we consider fixed numbers of faults or

fault numbers obtained through the LOC model, we reach the same conclusion, and the use of the simplified model

and BN techniques did not affect this.

5.5.2 The Worst Thing One Can Do is Not Prioritize

This conclusion from Experiment 1 also holds: the original test case order was almost always worse than the test case

order produced by prioritization heuristics, and as time constraint levels increased, the original order became worse.

5.5.3 Time Constraints Affect Techniques Differently

The following lists observations for each heuristic relative to the 15 observed points of TCL increases:

• Tccfalways produced greater cost-benefits as TCL increased (15 increases, 14 statistically significant).

• Tbnfoften produced greater cost-benefits as TCL increased (13 increases, 10 statistically significant).

• Tbnwas less stable in producing cost-benefits as TCL increased (8 increases, 8 statistically significant).

• Tccwas least stable (8 increases, 4 statistically significant).

While the trends in this result compared to those observed inExperiment 1 remained the same, we observed that

in this case, results are stronger. There are more cases herein which the cost-benefits of prioritization heuristics

27

increased as TCL increased, and more cases in which cost-benefit increases yielded by heuristics are statistically

significant, than in the first experiment. In particular,Tccfachieved statistically significant gains with respect to other

heuristics in almost all cases (14 out 15), while there were only nine such cases in Experiment 1. The more realistic

numbers of faults, and the simplified cost model and BN techniques, appear to augment the ability of heuristics to

provide benefit as time constraints increase.

Through this experiment, then, we have gained several things with respect to prior findings. By considering

different and more realistic numbers of faults, we are able to address an external threat to validity for Experiment 1.

By using S-EVOMO and simplified BN, we were able to reduce internal threats to validity found in Experiment 1.

Overall, by confirming the consistency of our results acrossthe two experiments, we increase our confidence in the

accuracy of those results.

6 Experiment 3

One interesting finding of our first experiment was that in theabsence of time-constraints, heuristics were usually not

beneficial; that is, they produced negative benefits compared to random orderings of test cases. We noted that this

finding should be interpreted with the threats to validity ofthe experiment in mind. One important threat to validity

concerned the numbers of faults present in the system under test. Experiment 2 showed, however, that when we

utilized a more realistic “expected” number of faults this finding still held.

These results run counter to the fact that prior studies of prioritization have found heuristics effective in the absence

of time constraints. We speculate that the use of a more comprehensive cost model, and the consequent factoring in of

costs related to technique execution, is responsible for this difference. If this is true, then differences in the numbers

of faults present in programs (and consequently, in costs related to early detection and omission of faults), may cause

these results to vary, by counterbalancing the costs related to technique execution.

To examine this issue and its implications further, we designed and performed a controlled experiment considering

the following research question:

RQ3: Given a specific faultiness level, in what ways do the performances of test case prioritization techniques differ

under that level?

In this experiment, we again use the five Java systems described in Section 4 (Table 2), together with their versions,

tests, and faults, as objects of analysis. We also use the same dependent variable as Experiment 2 which is based on

the S-EVOMO model described in 5.1. Our threats to validity remain the same as those for Experiment 2. We thus do

not repeat discussion of these here. Instead, we describe only the differences in this experiment, which are restricted

to independent variables and experiment setup.

28

6.1 Independent Variables

Our experiment manipulated two independent variables: prioritization technique and faultiness level.

Variable 1: Prioritization Technique

We again use the prioritization techniques described in Section 4.2.1, with the adjustments to the BN techniques

described in Section 5.2.

Variable 2: Faultiness Level

To investigate the impact of the numbers of faults present ina system on the cost-effectiveness of prioritization tech-

niques, we utilize a variable, “faultiness level”, that manipulates numbers of faults placed in systems. We consider

three different faultiness levels yielding different numbers of faults (mutants) randomly chosen for inclusion in each

version of each object program under test. The first level, FL1, involves cases in which mutant groups contain between

1 and 5 faults, the second level, FL2, involves cases in whichmutant groups contain between 6 and 10 faults, and the

third level, FL3, involves cases in which mutant groups contain between 11 and 15 faults. As in Experiment 1, mutants

are randomly selected from each version’s pool of mutation faults.

6.2 Experiment Setup

This experiment used the same setup as Experiment 1 (see Section 4.3), but in addition, we repeated the mutant

grouping procedure used there for each of the three different faultiness levels considered.

6.3 Data and Analysis

To provide an overview of the collected data, we present boxplots in Figure 6, showing the relative cost-benefit results

for different faultiness levels. The three columns of the graph present results for faultiness level 1 (FL1), faultiness

level 2 (FL2), and faultiness level 3 (FL3), respectively.

We begin with descriptive analysis of the data in the boxplots, considering the performance of the heuristics in

comparison to the control technique at each faultiness level. Examining the boxplots for each object program in the

first column (FL1) of Figure 6, we see that none of the heuristics appear to outperform the control techniques (To and

Tr) for the first three object programs, which have JUnit test suites. On the last two programs, which have TSL test

suites, the techniques using feedback appear to be slightlybetter than the original technique (To) but no better than the

random technique (Tr).

As faultiness level changes, however, this trend changes. For jmeter, the control techniques still appear to out-

perform the heuristics as faultiness level increases, but the gap between control techniques and heuristics becomes

smaller. Forantandxml-securitya similar pattern can be observed but at FL3, heuristics begin to outperform some of

the control techniques (original in the case ofant and random in the case ofxml-security). On the last two programs,

29

FL1 FL2 FL3

an
t

−1000

−500

0

Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf Tr To Tcc Tbn Tccf Tbnf

jm
et

er

−600

−400

−200

0

200

xm
l−

se
cu

rit
y

−200

−100

0

100

200

na
no

xm
l

−600

−400

−200

0

200

ga
lil

eo

−5000

0

5000

Figure 6:Experiment 3: Relative cost-benefit boxplots, all programs, all techniques, different faultiness levels.

30

Table 12: Kruskal-Wallis Test Results for RQ3

Program FL1 FL2 FL3
χ2 p-val. χ2 p-val. χ2 p-val.

ant 168 < 0.0001 164 < 0.0001 99 < 0.0001
jmeter 122 < 0.0001 127 < 0.0001 136 < 0.0001

xml 132 < 0.0001 101 < 0.0001 96 < 0.0001
nanoxml 127 < 0.0001 144 < 0.0001 106 < 0.0001
galileo 157 < 0.0001 164 < 0.0001 166 < 0.0001

Table 13: Bonferroni Test Results for RQ3, Comparing AcrossFaultiness Levels per Program
FL ant jmeter xml − security nanoxml galileo

Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp Tech. Mean Grp
Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A
To -139 B To -31 B To -32 B Tccf -179 B Tbnf -481 B

FL1 Tbn -861 C Tccf -488 C Tccf -176 C Tbnf -208 C Tbn -1129 C
Tcc -864 C Tbnf -489 C Tcc -178 C To -267 C D Tccf -1335 D
Tbnf -956 D Tcc -492 C Tbn -181 C Tcc -288 D E To -1385 D
Tccf -1069 E Tbn -498 C Tbnf -185 C Tbn -342 E Tcc -2287 E
Tr 0.0 A Tr 0.0 A Tr 0.0 A Tr 0.0 A Tbnf 315 A
To -528 B To -101 B To -110 B Tccf -173 B Tr 0.0 A

FL2 Tbn -826 C Tccf -488 C Tccf -113 B Tbnf -195 B Tccf -379 B
Tcc -904 D Tbnf -498 C Tcc -124 B C To -201 B Tbn -1303 C
Tbnf -935 D Tcc -520 C Tbn -132 C Tcc -284 C To -4925 D
Tccf -1155 E Tbn -523 C Tbnf -145 C Tbn -374 D Tcc -5354 E
Tbn 98 A Tr 0.0 A To 105 A Tccf 56 A Tbnf 8852 A
Tccf 53 A B To -260 B Tccf 68 B Tbnf 30 A B Tccf 8431 B

FL3 Tr 0.0 B C Tbnf -300 B C Tcc 51 B C Tr 0.0 A B To 7630 C
Tcc -30 C Tccf -323 C Tbn 40 C To -24 B C Tbn 6335 D
Tbnf -49 C Tbn -371 D Tbnf 30 C Tcc -71 C Tr 0.0 E
To -128 D Tcc -403 D Tr 0.0 D Tbn -151 D Tcc -7 E

which have TSL test suites, the gap between control techniques and heuristics becomes even narrower, and at FL3,

feedback techniques appear to outperform both control techniques.

The following sections provide the statistical analyses and results relevant to our research question. For statistical

analysis, for reasons similar to those used in Experiments 1and 2, we used a Kruskal-Wallis non-parametric one-way

analysis of variance followed by Bonferroni’s test for multiple comparisons.

Our hypothesis associated with RQ3 is:(H3) given a specific faultiness level, the cost-benefits between test case

prioritization techniques differ.Table 12 presents the results of the Kruskal-Wallis tests (df = 5, significance level

0.05), and shows that faultiness levels have significant effects in all cases.

Table 13 presents the results of the Bonferroni tests using aBonferroni correction. As the table shows, the results

reveal different trends between techniques among faultiness levels and object programs.

• At faultiness levels FL1 and FL2, in all cases but one, heuristics failed to outperform random orderings (the

single exception occurring forTbnfongalileoat FL2).

• At faultiness level FL3, however, several techniques outperformed random orderings. Moreover, the ranking

between techniques changes as faultiness level moves from FL2 to FL3 in more than half of the cases, with the

performance of heuristics improving. In particular, techniques using feedback performed better than the control

techniques in several cases:Tccfonant, nanoxml, andgalileo, andTbnfonnanoxmlandgalileo.

31

F L 1 F L 2 F L 3

−
10

00
−

50
0

0

ant

F L 1 F L 2 F L 3

−
80

0
−

60
0

−
40

0
−

20
0

0

jmeter

F L 1 F L 2 F L 3

−
20

0
−

15
0

−
10

0
−

50
0

50
10

0

xml−security

F L 1 F L 2 F L 3

−
40

0
−

30
0

−
20

0
−

10
0

0
10

0

nanoxml

F L 1 F L 2 F L 3

−
50

00
0

50
00

10
00

0 galileo

Tr
To
Tcc

Tbn
Tccf
Tbnf

Figure 7: Cost-benefit line-plots, all programs, all techniques, all faultiness level, no time-constraints

6.4 Discussion

Figure 7 presents line-plots of the mean benefit values for each prioritization technique, at each faultiness level, for

each program. These line-plots, together with the formal analysis of Section 6.3, facilitate our discussion of results.

6.4.1 Understanding the Effects of Faultiness Levels

As the graphs illustrate, considering all four heuristics across all five programs, as faultiness levels move from FL1 to

FL2, technique benefits improve in 12 of 20 cases. As faultiness levels move from FL2 to FL3, however, technique

benefits improve in all 20 cases. While at the lower levels techniques do not produce positive benefits, the trend is

generally upward as faultiness level increases, and benefits begin to accrue at the higher faultiness level (in 12 of 20

cases at FL3). The most consistent patterns are exhibited byfeedback techniques, withTccf increasing in eight of ten

cases andTbnf increasing in nine of ten cases (across both faultiness level increments).

These upward trends can be explained relative to our cost model. When no time constraints exist, heuristics have

negative benefits not because the test order they produce is not as good as that of random ordering but because the

benefits they produce throughearly fault detectiondo not compensate for the cost of running the techniques. When

fewer faults are present, heuristics have fewer opportunities to make a difference in rate of fault detection, even when

they do an effective job of ordering. When greater numbers offaults are present, if techniques indeed order test cases

better than random orderings, they have more opportunitiesto produce benefits by detecting faults faster. In other

32

F L 1 F L 2 F L 3

−
20

00
0

−
10

00
0

0
50

00

ant

F L 1 F L 2 F L 3

−
10

00
0

−
50

00
0

50
00

jmeter

F L 1 F L 2 F L 3

−
15

00
0

−
50

00
0

50
00

10
00

0 xml−security

F L 1 F L 2 F L 3

−
12

00
0

−
80

00
−

40
00

0
20

00

nanoxml

F L 1 F L 2 F L 3

−
80

00
0

−
40

00
0

0
20

00
0

galileo

Tr
To
Tcc

Tbn
Tccf
Tbnf

Figure 8: Cost-benefit lineplots, all programs, all techniques, all faultiness-levels, 50% time constraints.

words, if enough faults exist, the benefit due toearly fault detectionalone can indeed justify the costs imposed by

heuristic techniques, and this is important because in the absence of time constraints, early fault detection is the only

source of benefit for these techniques. Clearly, this resultwill have implications for practice, and we discuss these in

Section 7.

These results also underscore two important points relevant to the further study of prioritization techniques. First,

the cost-effectiveness of heuristics depends to a large extent on the characteristics of the object (in this case, charac-

teristics related to the prevalence of faults), and thus, specifying these characteristics in studies is important. Second,

the results of earlier studies using simple rate of fault detection metrics, while likely over-optimistic about technique

cost-effectiveness in practice when levels of faultiness are low, are likely to be more accurate at higher faultiness lev-

els. Thus the simpler metrics can plausibly be used to provide initial data on trends between techniques. However,

ultimately, more comprehensive models will provide a clearer picture of tradeoffs.

6.4.2 Faultiness Levels Under Time Constraints

While we did not include time constraints as an independent variable in this experiment, for the sake of comparison

we did gather data on technique performance, under the threefaultiness levels, at TCL-50 (where 50% of the test cases

in the prioritized order are executed). Figure 8 depicts theline-plots for this case.

33

In this case, considering all four heuristics across all fiveprograms, as faultiness levels move from FL1 to FL2,

technique benefits improve in 11 of 20 cases, and as faultiness levels move from FL2 to FL3 technique benefits

improve in just 13 of 20 cases. The most consistent patterns continue to be exhibited by feedback techniques, with

Tccf increasing in all 10 cases andTbnf increasing in 7 of 10 cases across both faultiness level increments.Tcc, in

contrast, exhibits areductionin benefit in 8 of 10 cases. Overall, then, the upward trends observed when no time

constraints are present are somewhat lessened in the presence of time constraints.

Despite these trends, as observed in prior studies, most techniques provide benefit in most cases, at all three

faultiness levels. The addition of fault omission costs to the benefits gained by increasing rate-of-fault-detection

produces this result, and is also likely responsible for thedifferences in performance trends across faultiness levels.

7 Practical Implications

So far we have discussed our major findings and some surprisesseen in the results of our experiments, and some of

the implications of these results. The results do lead to many additional observations including practical implications

for test case prioritization and testing processes, and we discuss these now.

7.1 Prioritization and Context Factors

We have already noted that when time constraints may apply, choosing to not prioritize may be problematic. When no

time constraints apply, the benefits of prioritization tended to become evident only with increases in faultiness levels.

One might wonder, then, whether consideration of just thesetwo context factors — time constraints and faultiness

levels — would be sufficient to help practitioners determinewhether or not to use prioritization. Historical data

on fault prevalence could help organizations estimate probable fault levels, and time constraints can conceivably be

estimated as well; thus, it may be possible to provide predictors of cost-benefits relative to these factors.

Further qualitative analysis of our results suggests, however, that there may be additional context factors to con-

sider, namely: (1) the cost of delayed fault detection, and (2) prioritization technique execution cost. In the case of

factor (1), greater costs associated with delayed fault detection increase the potential for techniques to be beneficial

even in the absence of time constraints. This could occur, for example, in cases where test suites require particularly

long times to execute to completion (such as when manual testing is involved) or on safety-critical systems requiring

reuse of entire comprehensive test suites. In the case of factor (2), if technique execution costs are low relative to

the costs of other activities in the testing process, the useof heuristics has less potential to negatively impact overall

cost-benefits. On our object programs, test execution time is relatively short compared to technique execution time, so

the two factors together render heuristics often non-beneficial. But this is not the case on all programs.

Another potential context factor when time constraints exist involves the characteristics of those constraints. In this

work, we have focused on the case in which time constraints are unknown or not easily predicted in advance. When

time constraints are known or can be predicted, different considerations can apply to assessing cost-effectiveness. For

34

example, prioritization techniques need not consider every test case, they need only prioritize test cases until enough

have been chosen to fill the available time. Note that in such cases, techniques that consider the times taken by

individual test cases (e.g., [17, 41, 59]) may also be required, and these generally rely on predictions of test runtime

based on prior runs, which can prove incorrect following code modifications, so this could be a source of imprecision.

7.2 Regression Testing Processes

Our results also have implications for regression testing processes. For one thing, an organization’s choice of prior-

itization technique could reasonably be influenced by the testing processes they use. For example, for incremental

testing processes in which tests are run more often, the likelihood of being forced to constrain testing activities due to

time restrictions may be higher than for batch maintain-and-test processes, given sufficiently long-running regression

test suites. Process implications may also extend to the types of testing being performed: if execution of test cases (or

checking of results) is largely manual, this increases the likelihood that an organization will face time constraints.In

both of these cases, process considerations favor prioritization.

On the other hand, under some incremental testing processes(e.g., nightly-build-and-test) prioritization becomes

unnecessary from a rate-of-fault-detection standpoint. This occurs because in such cases, fault correction does not

commence until the testing phase has ended. Here, prioritization might still be beneficial given its ability to cause

fewer faults to be omitted, but regression test selection techniques could conceivably do just as well at filling the

known testing time slot, as test order within the time slot inthis case is unimportant. However, this does not preclude

using prioritization on the system testing phase that oftenprecedes final product release following many cycles of

incremental development and testing.

The relationship between testing processes and the cost of the analysis needed to support prioritization is also

important, because in practice, the costs that are practically significant for a prioritization technique in a given context

can vary with the regression testing process used. For example, in a typical batch maintain-and-test process, analysis

costs can be distributed across the maintenance and testingphases, while in a more incremental testing process a greater

proportion of analysis costs may be relegated to the testingphase. In the latter case, analysis costs may actually lead

to increased time constraints, and this in turn may cause fewer test cases to be executed, and larger numbers of faults

to be missed. In such cases, choosing techniques for which analysis costs during the testing phase can be minimized

may be important.

As we observed in Experiments 2 and 3, faultiness levels can also affect the choice of prioritization techniques.

For instance, when programs contain large numbers of faults, our results showed that heuristics could become cost-

effective even when no time constraints applied. The LOC model that we used in Experiment 2 primarily utilizes

the size of the program and the changes between two consecutive versions to calculate the number of faults. Under

this model, as program size increases, and as the number of changes between versions increases, the number of faults

the program could contain increases. This suggests that in general, it is more reasonable to employ heuristics within

35

a batch maintain-and-test process, and more particularly in cases where larger portions of the system have changed,

than in incremental processes. Possibly, later lifecycle releases where less code churn occurs will benefit less from

prioritization.

8 Related Work

We discuss two areas of related work: work on test case prioritization, and work on cost models.

8.1 Prior Work on Test Case Prioritization

A wide range of prioritization techniques have been proposed and studied. As mentioned in Section 2, initially, most

techniques depended on code coverage information to drive the prioritization [14, 15, 16, 18, 25, 48, 49, 55, 60].

Restricting the foregoing techniques to consider coverageof changed components has also been explored [48, 55].

More recently, several prioritization techniques that go beyond the use of code coverage information have also

been proposed. Leon and Podgurski [31] present prioritization techniques based on distributions of execution profiles.

Jeffrey and Gupta [22] present an algorithm that prioritizes test cases based on their coverage of statements in rele-

vant slices. Li et al. [33] present search-based prioritization algorithms. Korel et al. [28, 29] propose prioritization

techniques based on coverage of system models. Yoo et al. [61] study the use of expert knowledge for prioritization

by pair-wise comparison of test cases and propose clustering test cases into similar groups to facilitate the process.

Hou et al. [21] study prioritization of test cases when testing web services software and Sampath et al. [51] study test

suite prioritization strategies for web applications. Sherriff et al. [52] utilize change history to gather change impact

information and prioritize test cases accordingly. Qu et al. [44] consider prioritization in the context of configurable

systems, presenting algorithms for prioritization of configurations. Malishevsky et al. [17] present a prioritization

technique that uses coverage information along with data ontest execution times and estimated fault severities, and

Park et al. [41] propose a technique for estimating these times and severities using historical information. Finally,

Mirarab and Tahvildari [36] present the techniques that useBayesian networks to prioritize test cases, and that are also

studied here along with the simplest coverage-based techniques.

Only a few papers have considered issues related to the presence of time constraints during prioritization. Kim and

Porter [26] present a technique for “history-based test prioritization” which, while not ordering individual test cases,

does prioritize the subsets of test cases selected across a succession of releases. Still, the technique is better classified

as a regression test selection technique that utilizes history information from prior releases.

More relevant to this article is work by Walcott et al. [59], who present a technique that combines information

on test execution times with code coverage information, andutilizes a genetic algorithm to obtain test case orderings.

Zhang et al. [62] use similar input data and utilize integer linear programming for ordering test cases. Alspaugh et

al. [1] also study the application of several knapsack solvers to prioritization. In each of these cases, the research

considers testing process contexts in which test suite execution is foreshortened by time constraints, and attempt

36

to accommodate this through their techniques. Individual test case times are also considered (as in several papers

described just above). The primary difference between these approaches and those we consider here, however, is that

they assume that the time constraints faced in prioritization are known beforehand, and they factor these in to their

algorithms. Our goal in this article was to study the case in which the time constraints arenot known and hence, we

did not choose these techniques for use in our experiments.

Where prior studies of prioritization are concerned, the vast majority reported in the literature (in the papers cited

above) have focused on the effects of prioritization on rateof fault detection or rate of code coverage under the scenario

in which all test cases are executed. In these scenarios, thecost-effectiveness of prioritization lies in detecting faults

earlier or attaining coverage more quickly, and studies focus on measures of these metrics in their assessments. Under

these scenarios, however, the possible costs of missing faults due to foreshortened testing are not captured.

Two recent studies [13, 59]haveutilized time constraints while investigating prioritization effectiveness, and these

form part of the motivation for this work. In this work, however, we focus specifically on designing experiments

that manipulate time constraints as an independent variable, and this lets us draw well-founded conclusions about the

effects of constraints overall and on particular techniques.

8.2 Prior Work on Economic Models

Most early work on prioritization utilized simple rate-of-fault-detection metrics (e.g., APFD [48] or its derivatives)

to evaluate prioritization effectiveness. Such metrics, however, do not suffice to assess time-constrained techniques,

because assessment of such techniques requires costs of omitted faults to be measured, as well as savings in rate of

fault detection. For this reason, in this work, we rely on more comprehensive economic models that capture both

costs and benefits of prioritization, including factors related to rate of fault detection, omission of faults, and costof

applying techniques. While subsequent sections of this article provide details on our cost model, the related work is

discussed in this section.

Initial models of regression testing were relatively simple. Leung and White [32] present a model that considers

some of the cost factors (e.g., testing time, technique execution time) that affect the cost of regression testing. Harrold

et al. [20] present a coverage-based predictive model of regression test selection effectiveness, but this predictive

model focuses only on reducing numbers of test cases. Malishevsky et al. [34] present cost models for regression test

selection and test case prioritization that incorporate benefits related to the omission of faults and to the rate of fault

detection. Do et al. [15] extend Malishevsky’s model, for test case prioritization, to incorporate additional cost factors,

including analysis and execution time.

There are some works on economic models for testing (as distinct from regression testing). Muller et al. [38]

present an economic model for the return on investment of Test-Driven Development (TDD) compared to conventional

development, provide a cost-benefit analysis, and identifya break-even point at which TDD becomes beneficial over

conventional development. Wagner [57] proposes an analytical model of the economics of defect detection techniques

37

that incorporates various cost factors and revenues, considering uncertainty and sensitivity analysis to identify the most

relevant factors for model simplification. Wagner [58] alsoapplies global sensitivity analysis (which investigates how

output uncertainty can be apportioned to input factors’ uncertainty) to the COCOMO model to investigate which input

factors are most important.

While economic models in the software testing and regression testing areas are not well established, in other

software engineering areas models have been considered much more extensively. These include the models of Ostrand

et al. [56] and Freimut et al. [19] which have been already discussed. Kusumoto et al. [30] also propose a model

for assessing the cost-effectiveness of software inspection processes. There have also been many models created to

address software process and development costs and benefits; Boehm et al. [5]’s COCOMO-II model, mentioned

earlier, is probably the most well-known. Recent research in value-based software engineering has also sought to

model various engineering activities. Return On Investment (ROI) models, which calculate the benefit return of a

given investment [43], provide one such approach, supporting systematic, software business value analysis [4, 38, 54].

9 Conclusions and Future Work

We have presented a series of controlled experiments assessing the effects of time constraints and faultiness levels on

the costs and benefits of test case prioritization techniques. Our results show that time constraints can indeed play

a significant role in determining both the cost-effectiveness of prioritization techniques, and the relative cost-benefit

tradeoffs among techniques. The results also show that whena software product contains a large number of faults,

employing heuristics could be beneficial even when no time constraints apply. This indicates that the benefits gained

from early fault detection are high enough to compensate forthe costs incurred by applying heuristics.

Of course, as with all empirical studies, our results must beinterpreted in light of threats to validity and many of

these can be addressed only through further studies of additional artifacts.

One class of further study involves other types of prioritization techniques. We chose to study the two techniques

that are the simplest and most complex presented to date, as these presented a range of potential technique costs and

presumably benefits. Techniques that incorporate test execution time into their prioritization [34, 59] might also be of

interest given their attention to time, for the case in whichtime constraints are known beforehand.

Our results also led us to suggest several further practicalimplications. The most interesting of these implications

for further research, on our view, involve differences in software maintenance and testing processes, and regression

testing techniques.

For example, our results suggest that regression testing within constrained software development processes might

be improved by manipulating test prioritization techniquecosts. If an organization knows that they cannot execute all

of their regression tests, then potentially, they can loweranalysis costs by prioritizing fewer tests, an approach that we

could call “partial prioritization”. Partial prioritization approaches will require data on test execution times, and will

need to estimate expected execution times following modifications with sufficient precision.

38

A second example of further work related to processes and techniques involves the use of incremental supporting

analyses. As mentioned in Section 3, our cost model facilitates the measurement of costs and benefits related to the use

of incremental program analysis techniques (e.g., for instrumentation and probe placement) to support prioritization,

but we did not explore these in this work. The results of this study suggest that these approaches might vary in

cost-effectiveness across different development and testing processes (e.g., batch versus incremental). Techniques for

better leveraging incremental analysis techniques withinvarious forms of time-constrained processes could be worth

exploring.

Finally, efforts such as those just described can be directed at other common testing processes, such as test-first

methodologies, for which time constraints may play an even more important role. To truly consider some of the

questions that arise regarding differences in testing processes, however, we need to adapt the economic model used

here, which focuses on batch processes, to those processes.However, we believe that such an adaptation can be

achieved. For example, one way to adapt the process model depicted in Figure 1 to depict an incremental model is to

partition the maintenance phase into a sequence of maintain/test pairs. The regression testing phase then represents

the system testing that typically precedes an ultimate system release. The economic model can then be adjusted to

capture costs and benefits relevant to this process.

Ultimately, given further studies, techniques and model development, we expect this research to help test engineers

better manage their regression testing efforts by enablingthem to select testing processes and prioritization techniques

that are most appropriate for their organizational and process contexts.

Acknowledgments

This work was supported in part by the National Science Foundation under Awards CNS-0454203, CCR-0080898, and

CCR-0347518 to the University of Nebraska - Lincoln. This work was also funded in part by the Natural Sciences and

Engineering Research Council (NSERC) of Canada-StrategicProject Grants (SPG) and Ontario Ministry of Research

and Innovation (MRI)-Early Researcher Award (ERA) to the University of Waterloo. Bouchaib Falah helped collect

the number of faults based on the LOC model. We thank the anonymous reviewers of the conference version of this

article, and of earlier versions of this article, for providing insightful comments.

References

[1] S. Alspaugh, K.R. Walcott, M. Belanich, G.M. Kapfhammer, and M.L. Soffa. Efficient time-aware prioritization

with knapsack solvers. InProceedings of the ACM International Workshop on EmpiricalAssessment of Software

Engineering Languages and Technologies, pages 17–31, November 2007.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation anappropriate tool for testing experiments? InProceed-

ings of the International Conference on Software Engineering, pages 402–411, May 2005.

39

[3] R. Bell, T. Ostrand, and E. Weyuker. Looking for bugs in all the right places. InProceedings of the International

Symposium on Software Testing and Analysis, pages 61–72, July 2006.

[4] B. Boehm. Value-based software engineering.ACM SIGSOFT Software Engingeering Notes, 28(2):4, 2003.

[5] B. Boehm, C. Abts, A.W. Brown, S. Chulani, E. Horowitz B.K. Clark, R. Madachy, D. Reifer, and B. Steece.

Software Cost Estimation with COCOMO II. Prentice-Hall, 2000.

[6] S.R. Chidamber and C.F. Kemerer. Towards a metrics suitefor object oriented design.ACM SIGPLAN Notes,

26(11):197–211, November 1991.

[7] C. Collberg, G. Myles, and M. Stepp. An empirical study ofJava bytecode programs. Technical Report TR04-11,

Department of Computer Science, University of Arizona, 2004.

[8] Culpepper and Inc. Associates. Culpepper Compensationand Benefit Surveys. http://www.culpepper.com.

[9] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques: An in-

frastructure and its potential impact.Empirical Software Engineering: An International Journal, 10(4):405–435,

2005.

[10] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An empirical study of the effect of time constraints on the

cost-benefits of regression testing. InProceedings of the ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 71–82, November 2008.

[11] H. Do and G. Rothermel. An empirical study of regressiontesting techniques incorporating context and lifetime

factors and improved cost-benefit models. InProceedings of the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 141–151, November 2006.

[12] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case prioritization

techniques.IEEE Transactions on Software Engineering, 32(9):733–752, 2006.

[13] H. Do and G. Rothermel. Using sensitivity analysis to create simplified economic models for regression testing.

In Proceedings of the International Symposium on Software Testing and Analysis, pages 51–61, July 2008.

[14] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in a JUnit testing environment.

In Proceedings of the International Symposium on Software Reliability Engineering, pages 113–124, November

2004.

[15] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnittest cases: An empirical assessment and cost-benefits

analysis.Empirical Software Engineering: An International Journal, 11(1):33–70, 2006.

40

[16] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for regression testing. InProceedings of

the International Symposium on Software Testing and Analysis, pages 102–112, August 2000.

[17] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs and fault severities into test case

prioritization. InProceedings of Internationaol Conference on Software Engineering, pages 329–338, May 2001.

[18] S. Elbaum, A.G. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical studies.IEEE

Transactions on Software Engingeering, 28(2):159–182, 2002.

[19] B. Freimut, L.C. Briand, and F. Vollei. Determining inspection cost-effectiveness by combining project data and

expert opinion.IEEE Transactions on Software Engingeering, 31(12):1074–1092, 2005.

[20] M.J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker. Empirical studies of a prediction model for regres-

sion test selection.IEEE Transactions on Software Engingeering, 27(3):248–263, 2001.

[21] S. Hou, L. Zhang, T. Xie, and J. Sun. Quota-constrained test case prioritization for regression testing of service-

centric systems. InProceedings of the International Conference on Software Maintenance, pages 257–266,

September 2008.

[22] D. Jeffrey and N. Gupta. Test case prioritization usingrelevant slices. InProceedings of the Annual International

Computer Software and Applications Conference, pages 411–420, September 2006.

[23] R. Johnson.Elementary Statistics. Duxbury Press, Belmont, CA, sixth edition, 1992.

[24] C. Jones.Applied Software Measurement: Assuring Productivity and Quality. McGraw-Hill, 1997.

[25] J. Jones and M.J. Harrold. Test suite reduction and prioritization for modified condition/decision coverage.IEEE

Transactions on Software Engingeering, 29(3):193–209, 2003.

[26] J. Kim and A. Porter. A history-based test prioritization technique for regression testing in resource constrained

environments. InProceedings of Internationaol Conference on Software Engineering, pages 119–129, May

2002.

[27] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A Flexible Framework for Development of Dynamic Program

Analysis for Java Software. Technical Report TR-UNL-CSE-2006-0006, University of Nebraska-Lincoln, April

2006.

[28] B. Korel, G. Koutsogiannakis, and L. Tahat. Application of system models in regression test suite prioritization.

In Proceedings of the International Conference on Software Maintenance, pages 247–256, September 2008.

[29] B. Korel, L. Tahat, and M. Harman. Test prioritization using system models. InProceedings of the International

Conference on Software Maintenance, pages 559–568, September 2005.

41

[30] S. Kusumoto, K. Matsumoto, T. Kikuno, and K. Torii. A newmetric for cost-effectiveness of software reviews.

IEICE Transactions on Information Systems, E75-D(5):674–680, 1992.

[31] D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for filtering and

prioritizing test cases. InProceedings of the International Symposium on Software Reliability Engineering,

pages 442–453, November 2003.

[32] H.K.N. Leung and L.J. White. A cost model to compare regression test strategies. InProceedings of the Inter-

national Conference on Software Maintenance, pages 201–208, October 1991.

[33] Z. Li, M. Harman, and R.M. Hierons. Search algorithms for regression test case prioritization.IEEE Transactions

on Software Engingeering, 33(4):225–237, 2007.

[34] A. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits tradeoffs for regression testing tech-

niques. InProceedings of the International Conference on Software Maintenance, pages 204–213, October 2002.

[35] S. Mirarab. A Bayesian Framework for Software Regression Testing. Master’s thesis, Department of Electrical

and Computer Engineering, University of Waterloo, August 2008.

[36] S. Mirarab and L. Tahvildari. A prioritization approach for software test cases on Bayesian Networks. In

Proceedings of the International Conference on Fundamental Approaches to Software Engineering , LNCS 4422-

0276, pages 276–290, March 2007.

[37] S. Mirarab and L. Tahvildari. An empirical study on Bayesian Network-based approach for test case prioriti-

zation. InProceedings of the International Conference on Software Testing, Verification, and Validation, pages

278–287, April 2008.

[38] M.M. Muller and F. Padberg. About the return on investment of test-driven development. InProceedings of the

International Workshop on Economics-Driven Software Engineering Research, pages 2631–2636, May 2003.

[39] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma. Regression testing in an industrial environment.Com-

munications of the ACM, 41(5):81–86, 1988.

[40] T.J. Ostrand and M.J. Balcer. The category-partition method for specifying and generating functional tests.

Communications of the ACM, 31(6):676–688, 1988.

[41] H. Park, J. Ryu, and J. Baik. Historical value-based approach for cost-cognizant test case prioritization to im-

prove the effectiveness of regression testing. InProceedings of the International Conference on Secure System

Integration and Reliability Improvement, pages 39–46, July 2008.

[42] D.E. Perry and C.S. Stieg. Software faults in evolving alarge, real-time system: A case study. InProceedings of

the European Software Engineering Conference, LNCS 717, pages 48–67, September 1993.

42

[43] J.J. Phillips.Return on Investment in Training and Performance Improvement Programs. Gulf Publishing Com-

pany, 1997.

[44] X. Qu, M.B. Cohen, and K.M. Woolf. Combinatorial interaction regression testing: A study of test case genera-

tion and prioritization. InProceedings of the International Conference on Software Maintenance, pages 255–264,

October 2007.

[45] F.L. Ramsey and D.W. Schafer.The Statistical Sleuth. Duxbury Press, 1997.

[46] G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques.IEEE Transactions on Software

Engingeering, 22(8):529–551, 1996.

[47] G. Rothermel and M.J. Harrold. A safe, efficient regression test selection technique.ACM Transactions on

Software Engineering and Methodology, 6(2):173–210, 1997.

[48] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold. Test case prioritization. IEEE Transactions on Software

Engingeering, 27(10):929–948, 2001.

[49] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. Testcase prioritization: An empirical study. InProceedings

of the International Conference on Software Maintenance, pages 179–188, August 1999.

[50] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto.Sensitivity Analysis in Practice. John Wiley, 2004.

[51] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A. Koru. Prioritizing user-session-based test cases for

web applications testing. InProceedings of the International Conference on Software Testing, Verification, and

Validation, pages 141–150, April 2008.

[52] M. Sherriff, M. Lake, and L. Williams. Prioritization of regression tests using singular value decomposition with

empirical change records. InProceedings of the International Symposium on Software Reliability Engineering,

pages 81–90, November 2007.

[53] F. Shull, V. Basili, B. Boehm, A.W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz.

What we have learned about fighting defects. InProceedings of the International Software Metrics Symposium,

pages 249–258, June 2002.

[54] R. Solingen. Measuring the ROI of software process improvement.IEEE Software, 21(3):32–38, 2004.

[55] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development environment.ACM SIGSOFT

Software Engineering Notes, 27(4):97–106, 2002.

[56] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and number of faults in large software systems.

IEEE Transactions on Software Engingeering, 31(4):340–355, 2005.

43

[57] S. Wagner. A model and sensitivity analysis of the quality economic of defect-detection techniques. InProceed-

ings of the International Symposium on Software Testing andAnalysis, pages 73–84, July 2006.

[58] S. Wagner. An approach to global sensitivity analysis:FAST on COCOMO. InInternational Symposium on

Empirical Software Engineering and Measurement, pages 440–442, September 2007.

[59] A. Walcott, M.L. Soffa, G.M. Kapfhammer, and R.S. Roos.Time-aware test suite prioritization. InProceedings

of the International Symposium on Software Testing and Analysis, pages 1–12, July 2006.

[60] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal. A study of effective regression testing in practice. In

Proceedings of the International Symposium on Software Reliability Engineering, pages 264–274, November

1997.

[61] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering test cases to achieve effective and scal-

able prioritisation incorporating expert knowledge. InProceedings of the International Symposium on Software

Testing and Analysis, pages 201–212, July 2009.

[62] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei.Time-aware test-case prioritization using integer

linear programming. InProceedings of the International Symposium on Software Testing and Analysis, pages

213–224, July 2009.

44

