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Transcranial Electrical Stimulation (tES) is a promising non-invasive brain modulation

tool. Over the past years, there have been several attempts to modulate sleep with

tES-based approaches in both the healthy and pathological brains. However, data

about the impact on measurable aspects of sleep remain scattered between studies,

which prevent us from drawing firm conclusions. We conducted a systematic review of

studies that explored the impact of tES on neurophysiological sleep oscillations, sleep

patterns measured objectively with polysomnography, and subjective psychometric

assessments of sleep in both healthy and clinical samples. We searched four main

electronic databases to identify studies until February 2020. Forty studies were selected

including 511 healthy participants and 452 patients. tES can modify endogenous

brain oscillations during sleep. Results concerning changes in sleep patterns are

conflicting, whereas subjective assessments show clear improvements after tES.

Possible stimulation-induced mechanisms within specific cortico-subcortical sleep

structures and networks are discussed. Although these findings cannot be directly

transferred to the clinical practice and sleep-enhancing devices development for healthy

populations, they might help to pave the way for future researches in these areas.

PROSPERO registration number 178910.

Keywords: sleep, transcranial electrical stimulation, sleep oscillations, sleep pattern, subjective sleep, systematic

review

INTRODUCTION

Sleep plays a vital role in well-being and good health throughout life. It is essential for many brain
processes including the consolidation of memories (1, 2), alertness, processing speed, and decision-
making (3). Healthy regulation of these processes by sleep has a significant relationship with scores
of quality of life and global functioning (4). Sleep disorders, as medically defined, have significant
public health implications, with insomnia complaints reported by nearly one third of the general
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population, and excessive daytime sleepiness affecting up to one
fourth (5). In addition, it has been demonstrated that alteration
of sleep is a marker of risk for numerous physical and mental
disorders (6, 7). Abnormal fluctuations in sleep duration and
efficiency (8–10), regularity of sleep cycle (11), subjective sleep
quality (12), attentive wakefulness (13), and timing of sleep
(14) are associated with greater risk of adverse general health
outcomes including death. More specifically, sleep disruptions
are associated with higher risk of diabetes, stroke, coronary heart
disease and heart attack (10, 15), obesity (16), as well as mental
disorders (7). Moreover, sleep complaints are often integral and
important parts of a large range of diagnosed chronic medical
conditions (17, 18).

Several tools have been developed to measure and assess
objective and subjective aspects of sleep. Electroencephalography
(EEG) studies have provided numerous indicators of the sleep
course and quality. For instance, slow-wave oscillations have
been demonstrated as accurate indexes of sleep homeostasis
(19). In parallel, sleep patterns including architecture, timing,
and stages differentiation can be measured with standardized
polysomnography. Finally, several psychometric rating scales and
brief interviews have been validated to assess subjective aspects of
sleep and are widely used in clinical trials as main outcomes (20).

The functioning of brain areas and networks can be modified
by applying electrical currents over the scalp. To modulate brain
activity and eventually restore altered functions, transcranial
Electrical Stimulation (tES) has recently emerged as a non-
invasive painless brain modulation tool that involves the
application of a weak (0.5–2mA) current via two scalp electrodes
(a cathode and an anode) overlying targeted cortical areas
(21, 22). The electrical current flowing between the electrodes
induces changes in neuronal excitability and activity through
specific molecular mechanisms that mediate synaptic plasticity
(23). tES studies have traditionally used direct current modalities
for stimulation (tDCS: transcranial direct stimulation), where
a constant unidirectional low current flows inward under the
anode and outward under the cathode. Besides, other stimulation
modalities have been developed for tES involving random noise
frequencies (tRNS) or alternating (tACS) patterns of the current
(24, 25). In healthy samples, an increasing number of studies
have reported that tES can enhance various cognitive functions
including memory, learning and attention, especially during
learning of the task (26–28). In parallel, tDCS has shown
promising results in treating psychiatric disorders such as major
depressive disorder (29), various clinical symptoms and cognitive
impairments in bipolar disorder (30, 31), auditory hallucinations
(32), and negative symptoms (33) in schizophrenia, as well as
numerous others (34).

Abbreviations: ADHD, Attention Deficit/Hyperactivity Disorder; EEG,

electroencephalography; ESS, Epworth Sleepiness Scale; MeSH, Medical Subject

Heading; MADRS, Montgomery-Asberg Depression Rating Scale; NREM, Non-

Rapid Eye Movement (sleep); PRISMA, Preferred Reporting Items for Systematic

Reviews and Meta-analysis; PROSPERO, International prospective register of

systematic reviews; PSQI, The Pittsburgh Sleep Quality Index; REM, Rapid-Eye

Movement (sleep); QualSyst, Standard Quality Assessment; SWS, Slow Wave

Sleep; tACS, transcranial Alternating Current Stimulation; tDCS, transcranial

Direct Current Stimulation; tES, transcranial Electrical Stimulation; tRNS,

transcranial Random Noise Stimulation.

Arousal and sleep are physiologically modulated by “top-
down” cortico-subcortical loops (35) that are known to be
altered in some sleep disorders such as insomnia (36). The “top-
down” concept raises the idea of modulating sleep with external
stimulation of the neocortex. Given that tES has primarily cortical
direct effects, this approach appears thus as a relevant therapeutic
strategy. Over the past years, there have been several attempts to
modulate sleep with tES-based approaches targeting “top-down”
networks in both the healthy and pathological brains. However,
in addition to heterogeneous and inconsistent results, studies
strongly differ in terms of the number of samples, tES protocols,
and type of measures. Furthermore, despite a growing interest in
sleep modulations with electric current, data about the impact of
tES in sleep remain scattered between studies and have not been
systematically reviewed, which prevent from drawing definitive
conclusions on the effect of tES on measurable aspects of sleep.

To gather knowledge about the specific effects of brain tES
on core measurable aspects of sleep, we conducted a systematic
review of studies that explored the impact of such procedure
on neurophysiological sleep oscillations, sleep patterns measured
objectively with polysomnography and subjective psychometric
assessments of sleep. Here, we focus on the specific impact
of tES on these sleep-related outcomes in both healthy and
clinical populations; for details about the effect of tES during
sleep on wake cognitive processes, we refer the interested
reader to the exhaustive review recently published by Barham
et al. (37). Results presented in our review will contribute to
the understanding of underlying mechanisms of tES on sleep
and improvement of sleep health, sleep complaints, and sleep
disorders with tES. In parallel, this review may lend insight
for further enhancement of sleep induction/stability, as well as
physiological effects of sleep (e.g., memory strengthening) with
innovative techniques of neuromodulation in healthy people.

METHODS

Eligibility
Recommendations of the PRISMA guidelines for systematic
review and meta-analysis were followed (38). The protocol
was prospectively registered at the PROSPERO register (ID:
178910) (39).

The criteria for inclusion were as follows: (i) English language
studies published in peer-review journals, (ii) participants’
age from 10–80 years. (iii) oscillatory data measured with
electroencephalography and/or sleep pattern data reported from
polysomnographic (or actigraphy) recordings and/or subjective
sleep data assessed with validated rating scale, and (iv) measures
collected pre-to-post and/or during the tES procedure. If two
publications reported findings from the same dataset, the authors
were contacted to identify the most appropriate data to review.

Literature Search Strategy
We searched theMEDLINE, Embase, ScienceDirect, and Clinical
Trials databases using the following Medical Subject Heading
(MeSH) terms in reference title, abstract, or keywords with no
limitation of date until February 2020:
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- (i) Sleep: “sleep,” “insomnia,” “hypersomnia,” “sleepiness,”
“sleep apnea,” “somnolence,” “snoring,” “restless legs
syndrome,” “periodic limb movements disorder,” “REM
sleep behavior disorder,” “obstructive sleep apnea,” “sleep-
wake disruption,” “parasomnia,” “bruxism,” “circadian rhythm
sleep disorder.”

- (ii) tES: “Transcranial stimulation,” “tES,” “Transcranial
Electrical Stimulation,” “tDCS,” “Transcranial Direct
Current Stimulation,” “tRNS,” “Transcranial Random
Noise Stimulation,” “tACS,” “Transcranial Alternating
Current Stimulation.”

After excluding duplicate references, two reviewers (CD and
PAG) independently screened the title and abstract of each
study identified by the search and applied the inclusion criteria.
Following this first screen, we applied the same procedure to the
full text of eligible studies. Discrepancies between reviewers were
resolved by discussion with a third member of the authorship.
The “similar articles” findings in MEDLINE and Reference lists
in identified studies were also reviewed for additional studies,
although none were identified in this manner. The literature
search strategy is detailed in the flow chart diagram (Figure 1).

Data Extraction
Two reviewers (CD and PAG) independently extracted the
following data when present: (i) population data (sample size,
gender ratio, disorder, or healthy status), (ii) study design
(parallel or crossover groups, controlled or uncontrolled),

(iii) tES protocol (anode and cathode placement; electrode
size; current density and intensity; number, frequency, and
duration of sessions; period and condition of stimulation),
(iv) neurophysiological outcomes as measured with
electroencephalography and/or sleep pattern outcomes as
measured with polysomnographic (or actigraphy) recordings
and/or subjective sleep outcomes as assessed with validated
rating scale, and (v) adverse effects of the tES procedure.

Quality Assessment
Tomeasure the overall quality of the included references, a global
rating score was calculated for each study using the Standard
Quality Assessment [QualSyst tool (40)].

RESULTS

Literature Search
As shown in Figure 1, the initial search returned 459 references
after duplicate removal. Following preliminary screening of the
titles and/or abstracts, 215 were excluded accordingly. Among
the 59 references that were reviewed in detail, 40 studies were
selected for systematic review including 511 healthy participants
and 452 patients. The age of the participants varied from 12.3
to 73.4 years. Only 8 studies out of 40 reported transient
adverse effects associated to the tES procedure (41–48). Overall,
the quality assessment was satisfactory (mean: 22.1 ± 3.99).
Total scores and details of the assessment are given in the

FIGURE 1 | Flow diagram for the systematic review.
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Supplementary Table 1. Highlights of major significant effects
of tES on sleep are pictured in Figure 2 and detailed in
Supplementary Table 2.

Oscillatory Aspects of Sleep
Study Designs and Characteristics
Twenty-four studies investigated the impact of tES on oscillatory
aspects of sleep in healthy populations (45, 47, 49–64) and clinical
populations (65–70). All used a crossover sham-controlled design
with days-to-week washout periods between conditions, with
the exception of two studies that included parallel arms of
participants (60, 69). Study details are described in Table 1.

Results From Studies in Healthy Populations
Most research groups aimed for “top-down” effects and gave a
single tES session targeting bilateral frontal areas with returning
electrodes overlying the mastoids or the vertex. In these studies,

the stimulation applied cycles of slow alternating current (around
0.75Hz, interspersed by stimulation-free intervals) that were
triggered during early stages NREM sleep (47, 49, 51, 55–57,
59, 61, 64, 67, 68). This specific design was employed after
Marshall et al. original study to test if the prefrontal slow
oscillations enhancement by tES during NREM is associated
with increased hippocampal–neocortical-dependent declarative
memory consolidation. This hypothesis is based on evidence
that slow oscillations are the hallmark of neurophysiological
activity during NREM being associated with neutral declarative
memory (58). A subsequent enhancement of slow oscillations
PSD by direct (58) and slow alternating (50, 56, 59, 64) tES vs.
sham was repeatedly observed during stimulation-free intervals
at the stimulated areas. In addition, increased spindle waves PSD
(56, 59) and decreased delta/theta PSD (51, 53) were reported
during these intervals. Another study from Marshall’s group that
involved higher-frequency alternating current (5Hz) observed

FIGURE 2 | Highlights of major significant effects of frontal tES on sleep. Results regarding non-frontal tES, tES during REM, and fast alternating tES were scarce, and

thus omitted from the figure. Effect on sleep patterns: NREM, non-rapid eye movement sleep; N1–4, NREM sleep stages relative duration; REM, rapid eye movement

sleep; SE, sleep efficiency; SWS, slow wave sleep relative duration; SOL, sleep onset latency; WASO, wake after sleep onset. Effects on sleep oscillations: β, beta

power (15–25Hz); 1, delta power (1–4Hz); γ, gamma power (>25Hz); θ, theta power (4–8Hz); NREM, non-rapid eyes movement sleep; So, slow oscillations power

(0.5–1Hz); Sa, slow activity power (0.5–4Hz); Sp, spindle power (10–15Hz).
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TABLE 1 | Impact of transcranial electrical stimulation on oscillatory aspects of sleep.

References Design tES montage tES sessions Outcomes Significant findings Side effects

Placebo-controlled parallel-arms

Garside et al.

(53)

8 healthy (21.0 ± 0.93)

1 active arm, 1 sham arm

Electrodes: 5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.55mA

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: daytime nap

N2 or N3

Waves: slow
oscillations

(0.7–0.8Hz), delta

(1–4Hz), theta (4–8Hz),

alpha (9–12Hz), fast

spindle (12–14Hz)

Parameters: PSD

Stimulation-free intervals:
decreased (reduced normal

increase) delta power at Fz, C3,

C4 by active vs. sham

1-min post-stimulation interval:
no significant changes

NA

Roizenblatt

et al. (69)

Frontal-active arm: 11
fibromyalgia (47.3 ± 11.0

age, 11F)

Motor-active arm: 11
fibromyalgia (54.8 ± 9.3

age, 11F)

Sham arm: 10

fibromyalgia (50.8 ± 10.2

age, 10F)

Electrodes: 25 cm2

Active frontal arm: Anode: right
primary motor area (C3), Cathode: left
supraorbital area (Fp2)

Active motor arm: Anode: left DLPFC
(C3), Cathode: right supraorbital area
(Fp1)

Intensity: 2mA

Type: direct

Number: 5
Frequency: daily
Duration: 20min

Period: daytime before

night sleep

Waves: delta (1–4Hz),

alpha (8–12Hz)

Parameters: PSD

N1–N4 night sleep after
stimulation procedure: increased
alpha and decreased delta at all

electrodes by frontal-active vs.

sham; increased delta by

motor-active vs. sham.

None reported

Antonenko

et al. (49)

15 healthy (23.4 ± 1.9

age, 7F)

1 active arm, 1 sham arm

4-week washout

Electrodes: 0.8 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.32 mA/cm2

Current: alternating (0.75Hz squared)

Number: 1
Duration: 30min (4-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 or N3 onset

Waves: slow activity

(0.5–4Hz), slow spindle

(9–12Hz), fast spindle

(12–15Hz), beta

(15–25Hz)

Parameters: PSD, PAC

Stimulation-free intervals: no
significant results

Stimulation intervals: coupling of

slow activity up-phases with

spindle waves at Pz by active vs.

sham.

NA

Cellini et al.

(50)

17 healthy (32.2 ± 8.1

age, 6F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 40 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 2mA

Current: alternating (0.75Hz)

Number: 1
Duration: 4-s cycles 5 s

after endogenous

slow-oscillations

Period: daytime nap N2

or N3

Waves: slow
oscillations (0.75Hz),

fast spindle (12–15Hz),

slow spindle (9–12Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow oscillations at Fz,

Fp1, FP2, F7, FC1 by active vs.

sham.

NA

Del Felice et al.

(65)

12 with temporal lobe

epilepsia (34.2 ± 15.4

age, 8F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.8 cm2

Anodes: affected temporal lobe

(F7-T3 or F8-T8)

Cathode: ipsilateral mastoid

Intensity: 0.25mA

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: daytime before

nap

Waves: slow spindle

(10–12Hz), fast spindle

(12–14Hz)

Parameters: PSD

Entire post-stimulation sleep
period: increased slow spindle

power at all electrodes by active

vs. sham.

NA

Eggert et al.

(51)

23 healthy

(69.3 ± 8.0 years; 14F)

1 active arm, 1 sham arm

1-week washout

Electrodes: NA
Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.33 mA/cm2

Current: alternating (0.75Hz)

Number: 1
Duration: five 5/16-min

cycles with 1-min free

intervals

Period: after night N3
onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4Hz), theta (4–8Hz),

alpha (8–11Hz), slow

spindle (11–13Hz), fast

spindle (13–15Hz),

beta (15–25Hz)

Parameters: PSD

Stimulation-free intervals:
decreased delta power at F7 and

T3 electrodes by active vs. sham

60-min post-stimulation interval:
no significant results

Entire night: no significant results

NA

(Continued)
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TABLE 1 | Continued

References Design tES montage tES sessions Outcomes Significant findings Side effects

Frase et al. (52) 19 healthy (53.7 ± 6.9

age, 13F)

1 anodal-active arm; 1

cathodal-active arm; 1

sham arm

1-week washout

Electrodes: 35 cm2 (anode), 100 cm2

(cathode)

Anodal-active arm:
Anode: 2 supraorbital areas (Fp1,

Fp2)

Cathode: 2 parietal (P3, P4)

Cathodal-active arm:
Cathode: 2 supraorbital areas (Fp1,

Fp2)

Anode: 2 parietal (P3, P4)

Intensity: 2mA

Current: direct

Number: 2 with 20-min

inter-stimulation interval

Duration: 13min

(anodal), 9min

(cathodal)

Period: daytime before

night sleep

Waves: delta
(0.1–3.5Hz), theta

(3.5–8Hz), alpha

(8–12Hz), sigma

(12–16Hz), beta

(16–24Hz), gamma

(24–50Hz)

Parameters: PSD

NREM night sleep: increased
beta power at C3-A2 electrodes

by active cathodal (vs. anodal

and sham) during first quarter of

the night.

5-min interval after stimulation
night: increased gamma power

at C3-A2 electrodes by anodal

(vs. cathodal), decrease gamma

power at C3-A2 electrodes after

cathodal (vs. sham and anodal)

5-min interval 24 h after
stimulation night: increased
gamma power C3-A2 electrodes

by anodal (vs. cathodal).

NA

Frase et al. (66) 19 insomnia disorder

(43.8 ± 15.1 age, 13F)

1 anodal-active arm; 1

cathodal-active arm; 1

sham arm

1-week washout

N1-N4 night sleep: decreased
delta power at Fz electrodes by

anodal vs. sham and cathodal

vs. sham.

5-min interval after stimulation
night: no significant changes

5-min interval 24 h after
stimulation night: no significant

changes

NA

Johnson and

Durrant (45)

15 healthy (20.7 ± 0.3

age, 10F)

1 5Hz active arm; 1

0.75Hz active arm; 1

sham arm

2-day washout

Electrodes: 2.5 cm2 (cathode), 24

cm2 (anode)

Cathode: right DLPFC F4

Anode: extra-cranial
Intensity: 0.4-mA

Current: alternating (5Hz or 0.75Hz)

Number: 1
Duration: 25min

Period: 4min after night

REM sleep onset

Waves: slow activity

(0.5–2Hz), theta

(4–8Hz)

Parameters: PSD

Slow wave and REM night sleep:
no significant changes.

NA

Ketz et al. (54) 16 healthy (22.3 ± 5.0

age, 3F)

1 active arm, 1 sham arm

1-week washout

Electrodes: NA
Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 1.5mA

Current: alternating (0.5–1.2Hz)

Number: 1
Duration: periods of 5

slow-wave cycles

throughout the night

Period: 4min after N2

sleep onset, during

slow oscillations

Waves: slow
oscillations (0.5–1.2Hz)

Parameters: PSD, PAC

10-s post-stimulation interval:
increased (+3–4 s) then

decreased (+4–10 s) slow

oscillation power, and increased

coupling with spindle amplitude

of slow oscillations at all

electrodes by active vs. sham

NA

Koo et al. (55) 25 healthy (22.4 ± 2.1

15F)

1 active arm, 1 sham arm,

1-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Type: alternating 0.84Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: during N2

Waves: slow oscillation

(0.5–1.5Hz), delta

(1.5–4Hz), theta

(4–8Hz), slow spindle

(9–12Hz), fast spindle

(12–15Hz).

Parameters: PSD,
length

Stimulation-free intervals: no
significant differences

150-min post-stimulation
interval: increased fast spindle

PSD and length at C and P

electrodes by active vs. sham

NA

(Continued)
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TABLE 1 | Continued

References Design tES montage tES sessions Outcomes Significant findings Side effects

Ladenbauer

et al. (67)

16 mild cognitive

impairment (70.6 ± 8.9

age, 7F)

1 active arm, 1 sham arm,

2-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 84Hz

Number: 1
Duration: 30min (5-min

cycles with 100-s free

intervals)

Period: during N2

Waves: slow oscillation

(0.5–1.5Hz), slow

spindle (8–12Hz), fast

spindle (12–15Hz).

Parameters: PSD

Stimulation-free intervals:
increased slow oscillation and

fast spindle at C and P electrode

by active vs. sham.

Stimulation intervals: coupling of

slow oscillation up-phases with

fast spindle at F, C, and P

electrodes by active vs. sham.

NA

Lustenberger

et al. (47)

15 healthy males

1 active arm, 1 sham arm

Electrodes: 35 cm2

Anode: 1 left DLPFC (F3)

Cathode: 1 right DLPFC (F4)

Intensity: 0.16 mA/cm2

Current: alternating 12Hz

Number: 1
Duration: cycles of a

few seconds only when

spindle activity

(11–16Hz) is prevailing

Period: night N2/N3

Waves: delta (1–4Hz),

theta (4–8Hz), fast

spindle (11–16Hz)

Parameters: PSD

Stimulation-free intervals:
increased spindle power,

decreased delta and theta power

at all electrodes by active vs.

sham

1 in the active

group

(first-degree

burn)

Marshall et al.

(58)

18 healthy (19–28 age)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.26 mA/cm2

Current: direct

Number: 1
Duration: 30min (sixty

15-s stimulation

alternating with sixty

15-s free intervals)

Period: 30 s after night

N3 or N4 onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4Hz), theta (4–8Hz),

alpha (8–12Hz), fast

spindle (12–15Hz),

beta (20–25Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow-oscillations at P

electrode and delta at F and P

electrodes by active vs. sham

N2: no significant changes

N3-N4: decreased theta, alpha,

and beta at C, F, and P by active

vs. sham

NA

Marshall et al.

(56)

13 healthy

1 active arm, 1 sham arm

10 week washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.52 mA/cm2

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4Hz), slow spindle

(8–12Hz), fast spindle

(12–15Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow oscillations

(power) and slow spindle PSD at

Fz by active vs. sham

NA

Marshall et al.

(57)

25 healthy (18–35 age)

1 N2-active arm, 1

REM-active arm, 1 sham

arm

10-day washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.52 mA/cm2

Current: alternating (5Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 or REM onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4Hz), theta (4–8Hz),

slow spindle (8–12Hz),

fast spindle (12–15Hz),

beta (12–25Hz),

gamma (25–45Hz)

Parameters: PSD

Stimulation-free intervals:
decreased slow oscillations and

delta power at C, F, and P

electrodes, and decreased slow

spindles power at Fz by

N2-active vs. sham; increased

gamma power at C, F, and P

during REM-active vs. sham

First 30-min post-stimulation
interval: increased slow

oscillations power at C, F, and P

and increased slow spindles

power at Fz electrode during by

N2 active vs. sham;

Second 30-min post-stimulation
interval: no significant results

NA

(Continued)
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TABLE 1 | Continued

References Design tES montage tES sessions Outcomes Significant findings Side effects

Munz et al. (68) 14 ADHD (12.3 ± 1.4 age)

1 active arm, 1 sham arm,

1-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Waves: slow
oscillations

Parameters: PSD

Stimulation-free intervals:
increased slow oscillations

power at all electrodes by active

vs. sham.

60-min post-stimulation interval:
no significant results

NA

Passman et al.

(59)

21 healthy (65.0 ± 1.0

age, 10F)

1 active arm, 1 sham arm,

2/3-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Waves: slow oscillation

(0.5–1Hz), slow spindle

(8–12Hz), fast spindle

(12–15Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow oscillations and

slow spindle power at F

electrodes; increased fast

spindle power at C and P

electrodes by active vs. sham.

1min after 60-min
post-stimulation interval:
increased slow oscillations

power at F electrodes,

NA

Reato et al.

(60)

Active arm: 13 healthy,

Sham arm: 10 healthy

Electrodes: NA
Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.26mA

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: night N2 or N3

Waves: slow
oscillations (0.5–1Hz),

slow activity (0.5–4Hz)

Parameters: PSD,
spatial coherence

Entire post-stimulation sleep
period: increased (reduced

normal decrease) slow

oscillations and slow activity

(PSD and spatial coherence) at

all electrodes by active vs. sham

NA

Saebipour

et al. (70)

6 insomnia (34 ± 7 age,

2F)

1 active arm, 1 sham arm,

1-day washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Type: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Waves: slow oscillation

(0.1–1Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow oscillation at C3

by active vs. sham

Post-stimulation interval:

increased probability of transition

from N2 to N3, decreased

probability of transition from N3

to wakefulness

NA

Sahlem et al.

(61)

12 healthy (25.0 age, 9F)

1 active arm, 1 sham arm

1-day washout

Electrodes: 1.13 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.6mA

Current: alternating (0.75Hz squared)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 or N3 onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4Hz), theta (4–8Hz)

slow spindle (8–12Hz),

fast spindle (12–15Hz),

beta (15–25Hz)

Parameters: PSD

Stimulation-free intervals: no
significant results

60-min post-stimulation interval:
no significant results

NA

(Continued)
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TABLE 1 | Continued

References Design tES montage tES sessions Outcomes Significant findings Side effects

Venugopal

et al. (62)

12 healthy (29.8 ± 6.2

age, 12M),

1 active-N2 arm, 1

active-REM arm

1-day washout

Electrodes: 4 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.2mA

Current: alternating (0.75Hz for

active-N2, 40Hz for active-REM

protocol)

Number: 1
Duration: 15min (four

30-s cycles with 3-min

free intervals)

Period: 1min after night

N2 or REM onset

EEG power before/after

stimulation

Waves: slow activity

(0.5–4Hz), theta

(4–8Hz), alpha

(8–12Hz), beta

(12–30Hz)

Parameters: PSD

30-s post-stimulation interval: no
significant changes

NA

Voss et al. (63) 27 healthy (18–26 age,

15F)

7 active and 7

corresponding sham

conditions

counter-balanced across

4 consecutive nights

Electrodes: 14 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.25mA

Current: alternating (2, 6, 12, 25, 40,

70, or 100Hz)

Number: 1
Duration: 30 s
Period: 2min after

REM sleep onset

Waves: from 0 to

100Hz

Parameters: PSD

Stimulation intervals: no
significant changes

NA

Westerberg

et al. (64)

19 healthy (73.4 age, 16F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.50-cm2

Anodes: 2, DLPFC (F7, F8)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after

daytime nap N2 or N3

onset

Waves: slow oscillation

(0.5–1Hz), delta

(1–4.5Hz), slow spindle

(8.5–13.5Hz), fast

spindle (13.5–15.5Hz)

Parameters: PSD

Stimulation-free intervals:
increased slow oscillations PSD

at F electrodes; decreased fast

spindle PSD at F electrodes by

active vs. sham

60-min post-stimulation interval:
no significant results

NA

DLPFC, dorsolateral prefrontal cortex; NA, not available; NREM 1–4, Non-Rapid Eye Movement Sleep (four stages of non-rapid eye movement sleep, each progressively going into deeper sleep); REM, Rapid Eye Movement Sleep
(unique stage of sleep characterized by random rapid movement of the eyes, low muscle tone throughout the body and propensity of the sleeper to dream vividly).
Sleep oscillations parameters: PAC (PAC), measure of the coupling between the phase of low-frequency rhythms and the amplitude of higher-frequency oscillations; Power Spectral Density (PSD), measure of frequency content (energy
per unit time) vs. frequency; Length, reflects the full extension (ms) of the time-frequency bin on the time axis; Spatial coherence, correlation (or predictable relationship) between waves at different points in space.
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Dondé et al. tES and Sleep Review

opposite patterns of changes, i.e., decreased slow oscillations,
delta, and slow spindle power by tES (57). In contrast, one
experiment using a slow spindle-like alternating current (12Hz)
observed an increase of power after tES in this specific frequency
range (47).

An increase in slow oscillations and spindle waves power
by active tES against sham was mainly demonstrated by
several studies during long intervals after both slow-wave
(0.75Hz) and theta (5Hz) alternating NREM stimulation
(46, 57, 59, 60). However, recordings during post-stimulation
periods were highly heterogeneous in terms of intervals where
oscillations were measured and averaged. Regarding per-
stimulation recordings, a single study using specific filtering
procedures demonstrated a significant coupling between NREM
slow oscillations up-phases and spindle waves at parietal
electrodes concomitant to active tES vs. sham (49). No
significant changes in sleep oscillations were observed when
taking into consideration the entire stimulation night (51). In
parallel, some research groups stimulated the brain with slow
alternating current during REM (rapid-eye movement sleep).
An increase in gamma power during stimulation-free intervals
was demonstrated (57), but no significant changes were reported
during stimulation intervals and entire sleep periods (45, 63).

Two studies used a bifrontal tES montage involving direct
stimulating current (52, 58). It was observed that direct cathodal
stimulation during daytime before sleep increased beta power at
central sites during the first NREM night sleep cycle vs. both
anodal and sham stimulation. By contrast, anodal stimulation
induced an increase in gamma band power after the stimulation
night compared with the other stimulation conditions (52). In
parallel, Marshall and colleagues demonstrated that direct tES
concomitant to NREM increases delta power in stimulation-
free intervals and decreases higher-frequency band power during
post-stimulation periods of slow wave sleep (58). No long-term
effects were investigated across studies.

Results From Studies in Clinical Populations
Six studies investigated the effect of a single brain tES session
on oscillatory aspects of sleep in clinical populations. All were
sham-controlled crossover trials. Two studies involved patients
with insomnia disorder. Decreased NREM delta power after a
single frontal anodal direct stimulation during daytime (66) and
increased slow oscillation power during NREM stimulation-free
intervals by alternating slow current vs. sham were observed in
this population (70). In parallel, an increase of slow oscillation
power during NREM stimulation-free intervals by alternating
slow current vs. sham was reported in a group of patients
with ADHD (Attention Deficit/Hyperactivity Disorder) (68). A
similar tES montage also increased slow oscillations in patients
with mild cognitive impairment, along with increased spindle
power during NREM stimulation-free intervals (67). A three-arm
study involving patients with fibromyalgia reported an increased
alpha and decreased delta power after five sessions of frontal
stimulation vs. sham and an increased delta power after five
sessions of motor stimulation vs. sham (69). Finally, stimulation
of the affected temporal lobe of patients with temporal lobe

epilepsy before a nap induced an increase of slow spindle wave
power (65).

Sleep Patterns
Study Designs and Characteristics
Twenty studies investigated the impact of tES on sleep patterns
in healthy (45, 47, 49–52, 55–61, 63, 64) and clinical (65–70)
populations. Studies explored tES-induced changes in patterns of
sleep including continuity (e.g., total sleep time, sleep efficiency,
wake after sleep onset, and sleep onset latency) and architecture
(i.e., sleep stages relative duration—expressed as percentage of
total sleep time—and latency). Study details are described in
Table 2.

Results From Studies in Healthy Populations
Fourteen studies investigated the effect of a single brain tES
session on sleep patterns in healthy samples (45, 47, 49–52, 55–
61, 63, 64). All used a crossover sham-controlled design with
days-to-week washout periods between conditions.

Most studies used the Marshall’s bifrontal montage (58) with
alternating current (49–51, 56–58, 64). Only a minority of studies
reported significant results, and these were highly heterogeneous.
Over the entire stimulation night, two reports demonstrated
an increase in the relative duration of late NREM stages (N3,
N4) by active stimulation vs. sham (50, 56). However, a study
Passmann et al. found the opposite (59). One study observed a
decreased relative duration of stage N1 (50). During stimulation-
free intervals, an increased relative duration of stage N2 and
wake after sleep onset was found, while later NREM stages were
decreased (51, 57). During post-stimulation periods, two studies
reported a decrease of N2 and N3 relative duration by active vs.
sham (57, 61). A research group that explored the effect of the
same montage during REM sleep—in order to trigger conscious
awareness in dreams—reported no effect on sleep architecture
(63). In parallel, a protocol using bifrontal tES reported a
significant decrease of sleep efficiency over the entire stimulation
night by alternating stimulation (0.75Hz) as compared to sham
and faster stimulation (5.0Hz) during REM (45).

Regarding non-bifrontal montages, a single study studied the
effect of direct current tES before sleep using fronto-parietal
electrode placements (52). These authors reported decreased
total sleep time and sleep efficiency when anodes were placed
over the frontal cortex and cathodes over the parietal areas, in
comparison to the reverse and shammontages. By contrast, REM
relative duration was increased by frontal cathodal stimulation in
comparison to anodal (52). Finally, a single session of tES during
early NREM with the anode overlying the left prefrontal cortex
and a contralateral cathode induced no significant changes in
sleep architecture parameters of a healthy sample (47).

Results From Studies in Clinical Populations
Six studies investigated the effect of a single brain tES session
on sleep patterns in clinical samples (65–70). Two crossover
sham-controlled studies involved individuals with insomnia
disorder. The first demonstrated that a single session of active
bifrontal alternating current during early NREM decreases N1
and increases N3 relative duration in the post-stimulation
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TABLE 2 | Impact of transcranial electrical stimulation on pattern aspects of sleep.

References Sample and design tES montage tES sessions Outcomes Significant findings Adverse

effects

Placebo-controlled parallel-arms

Roizenblatt

et al. (69)

Active frontal arm: 11
fibromyalgia (47.3 ± 11.0

age, 11F)

Active motor arm: 11
fibromyalgia (54.8 ± 9.3

age, 11F)

Sham arm: 10

fibromyalgia (50.8 ± 10.2

age, 10F)

Electrodes: 25 cm2

Active frontal arm: Anode: right
primary motor area (C3), Cathode: left
supraorbital area (Fp2)

Active motor arm: Anode: left DLPFC
(C3), Cathode: right supraorbital area
(Fp1)

Intensity: 2mA

Type: direct

Number: 5
Frequency: daily
Duration: 20min

Period: 1 week

Sleep continuity: AI,
SE, SOL, and TST

Sleep architecture: N1,
N2, N3, N4, REM

relative duration

Entire night after stimulation
procedure: decreased SE,

increased SOL and increased

REM relative duration by

frontal-active vs. sham;

increased SE, decreases

arousals by motor-active vs.

sham.

None reported

Lustenberger

et al. (47)

16 healthy males

1 active arm, 1 sham arm

Electrodes: 35 cm2

Anode: 1 left DLPFC (F3)

Cathode: 1 right DLPFC (F4)

Intensity: 4mA

Current: alternating 12Hz

Number: 1
Period: during night N2

(spindle activity

11–16Hz)

Sleep continuity: SE,
SOL, TST, WASO

Sleep architecture: N1,
N2, N3, REM relative

duration

Entire night: no significant

changes.

NA

Placebo-controlled crossover

Cellini et al.

(50)

17 healthy (32.2 ± 8.1

age, 6F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.8 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 2mA

Current: alternating (0.75Hz)

Number: 1
Duration: 4-s cycles 5 s

after endogenous slow

oscillations

Period: night N2 or N3

Sleep continuity: SE,
SOL, TST, WASO

Sleep architecture: N1,
N2, SWS (N3), REM

relative duration

Entire stimulation night:
increased N3 relative duration

and decreased N1 relative

duration by active vs. sham

NA

Del Felice et al.

(65)

12 with temporal lobe

epilepsia (34.2 ± 15.4

age, 8F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.8 cm2

Anodes: affected temporal lobe

(F7-T3 or F8-T8)

Cathode: ipsilateral mastoid

Intensity: 0.25mA

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: daytime before

nap

Sleep continuity: SOL,
TST

Sleep architecture: N1,
N2, N3, REM relative

duration

Entire post-stimulation nap:
increased TST and decreased

SOL by active vs. sham.

NA

Voss et al. (63) 27 healthy (18–26 age,

15F)

7 active and 7

corresponding sham

conditions

counter-balanced across

4 consecutive nights

Electrodes: 14 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.25mA

Current: alternating (2, 6, 12, 25, 40,

70, or 100Hz)

Number: 1
Duration: 30 s
Period: 2min after

REM sleep onset

Sleep continuity: SE,
SOL, TST, WASO

Sleep architecture: N1,
N2, SWS (N3), REM

relative duration

Entire stimulation night: no
significant changes.

NA

Marshall et al.

(58)

18 healthy (19–28 age)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.26 mA/cm2

Current: direct

Number: 1
Duration: 30min (sixty

15-s stimulation

alternating with sixty

15-s free intervals)

Period: 30-s after night

N3 or N4 onset

Sleep continuity: TST,
WASO

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration;

N2 and SWS latency

Entire stimulation night: no
significant changes.

NA

(Continued)
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TABLE 2 | Continued

References Sample and design tES montage tES sessions Outcomes Significant findings Adverse

effects

Marshall et al.

(56)

13 healthy

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.52 mA/cm2

Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4-min after

night N2 onset

Sleep continuity:
WASO

Sleep architecture: N1,
N2, SWS (N3+N4)

relative duration

Entire stimulation night:
increased SWS relative duration

by 0.75-Hz active vs. sham.

NA

Marshall et al.

(57)

25 healthy (18–35 age)

1 N2-active arm, 1

REM-active arm, 1 sham

arm

10-day washout

Electrodes: 0.5 cm2

Anodes: 2 anterior–posterior to the

left DLPFC (C3), 2 contralateral

Cathode: 2 anterior–posterior to the

left mastoid, 2 contralateral

Intensity: 0.52 mA/cm2

Current: alternating (5Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 or REM onset

Sleep continuity: SOL,
TST, WASO

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration;

SWS and REM latency

Entire stimulation night:
increased SWS latency by

N2-active vs. sham

Stimulation free intervals:
increased N2 relative duration,

decreased SWS relative duration

by N2-active vs. sham

30-min post-stimulation:
decreased N2 relative duration

by N2-active vs. sham

NA

Antonenko

et al. (49)

15 healthy (23.4 ± 1.9

age, 7F)

1 active arm, 1 sham arm

4-week washout

Electrodes: 0.8 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.32 mA/cm2

Current: alternating (0.75Hz squared)

Number: 1
Duration: 30min (4-min

cycles with 1-min free

intervals)

Period: 4min after night

N2 or N3 onset

Sleep continuity: AI,
SE, SOL, TST, WASO

Sleep architecture: N1,
N2, N3, N4, REM

relative duration

Entire stimulation night: no
significant changes

NA

Westerberg

et al. (64)

19 healthy (73.4 age, 16F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 0.50 cm2

Anodes: 2, DLPFC (F7, F8)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Current: alternating (0.75Hz)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after nap

N2 or N3 onset

Sleep continuity: SE,
SOL, WASO

Sleep architecture: N1,
N2, REM, SWS

(N3+N4) relative

duration

Entire stimulation night: no
significant changes

NA

Eggert et al.

(51)

23 healthy

(69.3 ± 8.0 years; 14F)

1 active arm, 1 sham arm

1-week washout

Electrodes: NA
Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.33 mA/cm2

Current: alternating (0.75Hz)

Number: 1
Duration: five 5/16-min

cycles with 1-min free

intervals

Period: early night N3

Sleep continuity:
WASO

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration

Entire stimulation night: no
significant changes

Stimulation-free intervals:
increased WASO relative

duration and decreased N3

relative duration by active vs.

sham

60-min post-stimulation: no
significant changes

NA

(Continued)
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TABLE 2 | Continued

References Sample and design tES montage tES sessions Outcomes Significant findings Adverse

effects

Frase et al. (52) 19 healthy (53.7 ± 6.9

age, 13F)

1 anodal-active arm; 1

cathodal-active arm; 1

sham arm

1-week washout

Electrodes: 35 cm2 (anode), 100 cm2

(cathode)

Anodal-active arm: Anode: 2
supraorbital areas (Fp1, Fp2),
Cathode: 2 parietal (P3, P4)

Cathodal-active arm: Cathode: 2
supraorbital areas (Fp1, Fp2), Anode:
2 parietal (P3, P4)

Intensity: 2mA

Current: direct

Number: 2 with 20-min

inter-stimulation interval

Duration: 10min

Period: day before
night sleep

Sleep continuity: AI,
SE, SOL, TST, WASO

Sleep architecture: N2,
SWS (N3), REM relative

duration; REM latency,

REM cycles,

Entire stimulation night:
decreased SE and TST;

increased WASO relative

duration by anodal-active (vs.

cathodal-active and sham);

increased REM relative duration

by cathodal-active (vs. sham)

NA

Johnson and

Durrnt (45)

15 healthy (20.7 ± 0.3

age, 10F)

1.5Hz active arm; 1

0.75Hz active arm; 1

sham arm

2-day washout

Electrodes: 2.5 cm2 (cathode), 24

cm2 (anode)

Cathode: right DLPFC F4

Anode: extra-cranial
Intensity: 0.4mA

Current: alternating (5Hz or 0.75Hz)

Number: 1
Duration: 25min

Period: 4min after night

REM sleep onset

Sleep continuity: SE,
TST

Sleep architecture: N1,
N2, SWS, REM relative

duration

Entire stimulation night:
decreased SE by 0.75Hz active

(vs. 5Hz active and sham)

None reported

Sahlem et al.

(61)

12 healthy (25.0 age, 9F)

1 active arm, 1 sham arm

1-week washout

Electrodes: 1.13 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.6mA

Current: alternating (0.75Hz squared)

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

or N3 onset

Sleep continuity: SE,
TST

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration

Entire stimulation night: no
significant results

60-min post-stimulation:
decreased N2, N3 by active vs.

sham

NA

Passmann

et al. (59)

21 healthy (65.0 ± 1.0

age, 10F)

1 active arm, 1 sham arm,

2/3-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Sleep continuity:
WASO

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration

Entire stimulation night:
decreased N4 by active vs. sham

Stimulation-free intervals: no
significant changes

60-min post-stimulation: no
significant changes

NA

Koo et al. (55) 25 healthy (22.4 ± 2.1

15F)

1 active arm, 1 sham arm,

1-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Type: alternating 84Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: during N2

Sleep continuity: SE,
SOL, TST, TMT, WASO

Sleep architecture: N1,
N2, N3, REM relative

duration; REM latency

Entire stimulation night: no
significant changes

NA

Koo et al. (67) 6 mild cognitive

impairment (71.9 ± 9.0

age, 7F)

1 active arm, 1 sham arm,

2-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 84Hz

Number: 1
Duration: 30min (5-min

cycles with 100-s free

intervals)

Period: during N2

Sleep continuity:
WASO

Sleep architecture: N1,
N2, N3, N4, REM

relative duration

Entire stimulation night: no
significant changes

Stimulation-free intervals:
Increased N2 by active vs. sham

NA

(Continued)
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TABLE 2 | Continued

References Sample and design tES montage tES sessions Outcomes Significant findings Adverse

effects

Saebipour

et al. (70)

6 insomnia (34 ± 7 age,

2F)

1 active arm, 1 sham arm,

1-day washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: NA
Intensity: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Sleep continuity: SOL,
TST, WASO

Sleep architecture: N1,
N2, N3, REM relative

duration

Entire night after stimulation:
increased probability of transition

from N2 to N3, decreased

probability of transition from N3

to wakefulness

90-min post-stimulation:
decreased N1 and increased N3

by active vs. sham

Munz et al. (68) 14 ADHD (12.3 ± 1.4 age)

1 active arm, 1 sham arm,

1-week washout

Electrodes: 0.5 cm2

Anodes: 2, DLPFC (F3, F4)

Cathodes: 2 extra-cerebral (bilateral

mastoids)

Intensity: 0.52 mA/cm2

Type: alternating 0.75Hz

Number: 1
Duration: 30min (5-min

cycles with 1-min free

intervals)

Period: 4min after N2

onset

Sleep continuity: SE,
TST,

Sleep architecture: N1,
N2, SWS (N3+N4),

REM relative duration

Entire night: no significant

changes

NA

Frase et al. (66) 19 insomnia disorder

(43.8 ± 15.1 age, 13F)

1 anodal-active arm; 1

cathodal-active arm; 1

sham arm

1-week washout

Electrodes: 35 cm2 (anode), 100 cm2

(cathode)

Anodal-active arm: Anode: 2
supraorbital areas (Fp1, Fp2),
Cathode: 2 parietal (P3, P4)

Cathodal-active arm: Cathode: 2
supraorbital areas (Fp1, Fp2), Anode:
2 parietal (P3, P4)

Intensity: 2mA

Current: direct

Number: 2 with 20-min

inter-stimulation interval

Duration: 25min

Period: day before
night sleep

Sleep continuity:
Arousal Index, SE,

SOL, TST, WASO

Sleep architecture: N2,
SWS (N3), REM relative

duration; REM latency,

REM cycles,

Entire stimulation night: no
significant changes

NA

DLPFC, dorsolateral prefrontal cortex.
Sleep architecture: NREM 1–4, Non-Rapid Eye Movement Sleep (four stages of non-rapid eye movement sleep, each progressively going into deeper sleep); REM, Rapid Eye Movement Sleep (unique stage of sleep characterized by
random rapid movement of the eyes, low muscle tone throughout the body and propensity of the sleeper to dream vividly).
Sleep architecture (stages) parameters: relative duration, sleep stage proportion during total sleep time (%); latency, time taken for sleep stage onset (minutes); cycles, number of sleep stage occurrence during total sleep time (number
count).
Sleep continuity: AI, Arousal Index (number of arousals and awakenings per hour of sleep, in number count); SE, Sleep Efficiency (total time in bed divided by total sleep time in %); SOL, Sleep Onset Latency (time taken for sleep onset
in minutes); SWS, Slow Wave Sleep (consists of NREM 3 or NREM 3+4); TST, Total Sleep Time (total time spent asleep in minutes); WASO, Wave After Sleep Onset (time spent awake after sleep onset per night in minutes).
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Dondé et al. tES and Sleep Review

periods as compared to sham (70). The second study showed no
significant changes in sleep patterns across the entire night after
two fronto-parietal direct current tES sessions during daytime
(66). In parallel, a crossover sham-controlled study that gave a
single session of bifrontal active alternating current in subjects
with ADHD failed to demonstrate significant changes across the
entire stimulation night (68). By contrast, a research group that
used the same protocol in six elder subjects with mild cognitive
impairment found an increase of N2 relative duration during
stimulation-free intervals (67). A three-arm study involving
participants with fibromyalgia observed a significant sham-
controlled effect of five consecutive direct current tES sessions
that was specific to the stimulation site, such as anodal
stimulation of the left primary motor area increased sleep
efficiency and decreased number of arousals, whereas anodal
stimulation of the left prefrontal cortex was associated with
an increase of sleep latency and REM relative duration, and a
decrease in sleep efficiency (69). Finally, a protocol stimulating
the affected temporal lobe of patients with temporal lobe epilepsy
before a nap demonstrated a significant increase of total sleep
time and decrease of sleep onset latency by active vs. sham
stimulation (65).

Subjective Assessments of Sleep
Study Designs and Characteristics
Fifteen studies investigated the impact of tES on subjective
aspects of sleep in healthy (45, 52, 71–73) and clinical samples
(41–44, 46, 48, 66, 74–81). Most used parallel arms (45, 52, 66, 72)
or crossover-controlled designs (41–43, 46, 71, 73, 74, 78, 80, 81).
The others were uncontrolled series or case reports. Studies
details are described in Table 3.

Results From Studies in Healthy Population
Five studies investigated the impact of a single tES session
during wake periods on the subjective sleep parameters in
healthy groups. One that used high-definition direct current
tES targeting the left prefrontal cortex in elders observed an
increase in subjective sleep duration and sleep efficiency in the
active group vs. a waiting list group (73). Similarly, a crossover
study that tested slow alternating tES during sleep found higher
sleep quality and efficiency after active vs. sham stimulation
(72). A study that specifically investigated frontal stimulation
in athletes observed a global improvement in subjective sleep
after two consecutive active stimulation sessions in comparison
to a group that received sham stimulations (71). Finally, no
significant changes were observed in sleepiness scales neither
after two frontal tES sessions during daytime (52) nor during
REM sleep (45).

Results From Studies in Clinical Populations
All studies used direct current tES (tDCS). Parkinson’s disease
was the most represented neuropsychiatric disorder. A crossover
placebo-controlled trial investigated the effect of 10 consecutive
days of tDCS treatment on non-motor symptoms (80). No
significant differences between groups were seen in the Epworth
Sleepiness Scale (ESS) at week 2 and week 14 following treatment.
Similarly, a sham-controlled study that gave eight bifrontal

tES sessions reported no significant changes in the Epworth
Sleepiness Scale both after the procedure and at long term
(74). An uncontrolled study reported an absence of significant
effects on the PROMISTM sleep assessment after 10 sessions of
bifrontal tDCS (transcranial direct current stimulation) (44). By
contrast, another study observed a significant improvement of
the Pittsburgh Sleep Quality Index (PSQI) sleep latency subscore
and total score after 10 sessions of a tDCS montage involving two
anodes placed between the primarymotor area and the prefrontal
cortex, and two cathodes placed over the supraorbital areas (77).

In parallel, a single placebo-controlled trial in individuals with
post-polio syndrome observed a significant PSQI improvement
after 15 consecutive sessions of tDCS with two anodes targeting
primary motor areas (41). Besides, studies exploring the impact
of tDCS targeting the inferior frontal cortex in HIV patients
(43) and targeting the motor areas in patients with restless legs
syndrome (46) and chronic pain associated with insomnia (78)
yielded negative results.

Regarding mood disorders, a non-controlled tDCS protocol
placing the anode over the prefrontal cortex and the cathode
over the cerebellum significantly improved sleep quality with
46% improvement of the PSQI in a sample of euthymic patients
with bipolar disorder (79). In contrast, no effect of bifrontal
tDCS was observed on the sleep item of theMontgomery–Asberg
Depression Rating Scale (MADRS) in a randomized controlled
trial involving participants with depression (42).

No significant changes were reported for subjective
parameters including tiredness and alertness in a crossover
study involving two bifrontal tES sessions in patients with
insomnia disorder (66). By contrast, a recent randomized
placebo-controlled trial demonstrated that 20 daily consecutive
sessions of frontal tES with alternating current significantly
improved PSQI both after the procedure and at 2 months
follow-up (81).

A case series of idiopathic hypersomnia showed that 4 weeks
of bifrontal tDCS can reduce excessive daytime sleepiness, as
assessed by the ESS (76). Finally, case reports observed daytime
vigilance and sleep quality improvement using specific rating
scales in organic hypersomnia (75) and after-stroke condition
(48), respectively.

DISCUSSION

Through this systematic literature review, we observe that tES
can modify endogenous brain oscillations during sleep and that
subjective assessments show clear improvements after tES, while
relationships with concomitant changes in sleep architecture
warrant validations (see Figure 2 and Supplementary Table 2 for
a summary of main results). Tolerability profile of tES appears
good with few non-severe side effects reported across studies.

tES During Sleep Can Be Effective at
Modulating Endogenous Oscillations
The main neurophysiological finding of our systematic review
is that anodal tES of the frontal areas with a slow alternating or
direct current during NREM sleep can immediately enhance the
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TABLE 3 | Impact of transcranial electrical stimulation on subjective aspects of sleep.

References Design tES montage tES sessions Outcomes Significant findings Adverse

effects

Placebo-controlled crossover

Robinson et al.

(72)

21 healthy (20.1, 7F)

1 active anodal arm; 1 sham arm

1-week washout

Electrodes: 4 cm2

Anode: F10 (wake), F3 or F4 (N2/N3 sleep)

Cathode: extra-cerebral
Intensity: 2mA

Current: alternating

Number: 2 (1 wake, 1

sleep)

Duration: 30min

Period: 1 day

KSD KSD sleep efficiency

and sleep quality

improvement by active

vs. sham at day 1

NA

Johnson and

Durrant (45)

15 healthy (20.7 ± 0.3 age, 10F)

Active 5-Hz arm

Active 0.75-Hz arm

Sham arm

Electrodes: 2.5 cm2 (cathode), 24 cm2 (anode)

Cathode: right DLPFC F4

Anode: extra-cranial
Intensity: 0.4mA

Current: alternating (5Hz or 0.75Hz)

Number: 2 with 20-min

inter-stimulation interval

Duration: 25min

Period: during REM

sleep

SSS No significant changes

at day 1

1 in the active

group

(first-degree

burn)

Frase et al.

(52, 66)

19 healthy (53.7 ± 6.9 age, 13F)

1 active anodal arm; 1 active cathodal

arm; 1 sham arm

1-week washout

Electrodes: 35 cm2 (anode), 100 cm2 (cathode)

Active anodal arm:
Anode: 2 supraorbital areas (Fp1, Fp2)

Cathode: 2 parietal (P3, P4)

Active cathodal arm:
Cathode: 2 supraorbital areas (Fp1, Fp2)

Anode: 2 parietal (P3, P4)

Intensity: 2mA

Current: direct

Number: 2 with 20-min

inter-stimulation interval

Duration: 20min

Period: day before
sleep

Subjective sleep

parameters/tiredness

(VIS-M) and

alertness (TAP).

No significant changes

at day 3

NA

19 insomnia disorder (43.8 ± 15.1

age, 13F)

1 active anodal arm; 1 active cathodal

arm; 1 sham arm

1-week washout

Placebo-controlled parallel-arms

Wang et al.

(81)

Active arm: 31 insomnia disorder

(52.5 ± 10.7 age, 24F)

Sham arm: 31 insomnia disorder

(55.3 ± 8.0 age, 23F)

Electrodes: anode (42.4 cm2 ), cathode (12.1

cm2)

Anode: Fpz
Cathode: 2, mastoids

Intensity: 15mA

Current: alternating (77.5Hz)

Number: 20
Frequency: daily
Duration: 40min

Period: 4 weeks

PSQI PSQI improvement by

active vs. sham at both

week 4 and week 8

Daily disturbance

improvement by active

vs. sham at week 8

None reported

Charest et al.

(71)

Active arm: 15 healthy athletes (22.1

± 1.8 age, 7F)

Sham arm: 15 healthy athletes (20.1

± 2.0 age, 8F)

Electrodes: 35 cm2

Anode: (FPz)
Cathode: (Pz)
Intensity: 2mA

Current: direct

Number: 2
Frequency: daily
Duration: 20min

Period: 2 days

PSQI

ESS

ISI

ASSQ

PSQI, ISI, and ASSQ

improvement by active

vs. sham at week 2

NA

Sheng et al.

(73)

Active arm: 16 healthy (67.6 ± 4.7

age, 9F)

Waiting-list: 15 healthy (65.8 ± 5.2

age, 10F)

Electrodes: High definition

Anode: left DLPFC (F3)

Cathode: 4 at 7-cm radius

Intensity: 1.5mA

Current: direct

Number: 10
Frequency: daily
Duration: 25min

Period: 2 weeks

PSQI PSQI sleep duration

and PSQI sleep

efficiency improvement

by active vs. sham at

week 2

NA

(Continued)
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TABLE 3 | Continued

References Design tES montage tES sessions Outcomes Significant findings Adverse

effects

Cody et al. (43) Active arm: 17 HIV (56.0 ± 3.2 age,

6F)

Sham arm: 16 HIV (55.6 ± 5.4 age,

5F)

Electrodes: 4 cm2

Anode: 1 inferior frontal cortex (F10)

Cathode: 1 extra-cranial

Intensity: 2mA

Current: direct

Number: 15
Frequency: every 2–3
days

Duration: 20min

Period: 5 weeks

PSQI No significant changes

at week 5

1 in the active

group

(first-degree

burn)

Acler et al. (41) Active arm: 16 post-polio syndrome

Sham arm: 16 post-polio syndrome

Electrodes: 35 cm2

Anodes: 1 right premotor cortex (C4), 1 left

premotor cortex (C3)

Cathode: 1 extra-cranial

Intensity: 1.5mA

Current: direct

Number: 15
Frequency: daily
Duration: 15min

Period: 3 weeks

PSQI PSQI total

improvement by active

vs. sham at week 3

1 in the active

group (dizziness)

Forogh et al.

(74)

Active arm: 12 Parkinson disease

(61.3 age, 7F)

Sham arm: 11 Parkinson disease

(64.8 age, 7F)

14

Electrodes: 35 cm2

Anode: 1 left DLPFC (F3)

Cathode: 1 right DLPFC (F4)

Intensity: 4mA

Current: direct

Number: 8
Frequency: every 1–2
days

Duration: NA
Period: 2-weeks

ESS No significant changes

at week 5 and month 3

NA

Harvey et al.

(78)

Active arm: 6 insomnia disorder (71.0

± 7.0 age, 11F)

Sham arm: 8 insomnia disorder (71.0

± 8.0 age, 6F)

Electrodes: 35-cm2

Anode: primary motor area contralateral to the

most painful site (C3/C4)

Cathode: supraorbital area contralateral to the

anode

Intensity: 2mA

Current: direct

Number: 5
Frequency: daily
Duration: 20min

Period: 1 week

PSQI No significant changes

at week 1 and week 2

None reported

Koo et al. (46) Active cathodal arm: 10 restless legs

syndrome (47.3 ± 11.0 age)

Active anodal arm: 10 restless legs

syndrome (44.1 ± 13.4 age)

Sham arm: 11 restless legs syndrome

(46.0 ± 10.1 age)

Electrodes: 25 cm2

Active anodal arm: anode: primary motor area

(Cz), cathode: extra-cerebral
Active cathodal arm: anode: extra-cerebral,
cathode: primary motor area (Cz)

Intensity: 2mA

Current: direct

Number: 5
Frequency: daily
Duration: 20min

Period: 1 week

PSQI No significant changes

at week 1 and week 2

13 transient but

no significant

differences

between groups

Shill et al. (80) Active arm: 12 Parkinson disease

Sham arm: 11 Parkinson disease

Electrodes: NA
Anodes: 2 prefrontal areas

Cathodes: 2 mastoids

Intensity: 1.5mA

Current: direct

Number: 10
Frequency: daily
Duration: 45min

Period: 2 weeks

ESS No significant changes

at weeks 2, 6, 10 and

14

None

Brunoni et al.

(42)

Sham-tDCS/placebo-pill arm: 30
depression (46.4 ± 14.0 age, 20F)

Sham-tDCS/sertraline arm: 30
depression (41.0 ± 12.0 age, 17F

Active-tDCS/placebo-pill arm: 30
depression (41.0 ± 12.0 age, 21F)

Sertraline-pill arm: 30 depression

(41.0 ± 13.0 age, 24F)

Electrodes: anode 42 cm2, cathode 12 cm2

Anode: left DLPFC (F3)

Cathode: right DLPFC (F4)

Intensity: 2mA

Current: direct

Number: 10
Frequency: daily + 2

fortnight

Duration: 30min

Period: 6 weeks

MADRS (Sleep

item)

No significant changes

at week 2

Skin redness

rates were

higher in the

active vs. sham

group (25% vs.

8%, p = 0.03),

(Continued)
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TABLE 3 | Continued

References Design tES montage tES sessions Outcomes Significant findings Adverse

effects

Uncontrolled

Dobbs et al.

(44)

12 Parkinson disease (66.9 ± 5.4

age, 4F)

Add-on cognitive training

Electrodes: 25 cm2

Anode: left DLPFC (F3)

Cathode: right DLPFC (F4)

Intensity: 2mA

Current: direct

Number: 10
Frequency: daily
Duration: 20min

Period: 2 weeks

PROMIS sleep No significant changes

at week 2

Around 50% had

mild side effects

that resolved

after sessions

Hadoush et al.

(77)

21 Parkinson disease (62.5 age, 6F) Electrodes: 25 cm2

Anodes: 1 right primary motor area + DLPFC

(FC1) + 1 left (FC2)

Cathode: 1 right orbitofrontal area (Fp2) + 1 left

(Fp1)

Intensity: 1mA

Current: direct

Number: 10
Frequency: daily
Duration: 20min

Period: 2 weeks

PSQI PSQI-total and

PSQI-sleep latency

improvement at week 2

None reported

Minichino et

al., (79)

25 bipolar disorder in euthymic state

(41.9 ± 12.6 age, 17F)

Electrodes: 25 cm2

Anode: left DLPFC (F3)

Cathode: right cerebellar cortex
Intensity: 2mA

Current: direct

Number: 15
Frequency: daily
Duration: 20min

Period: 3 weeks

PSQI PSQI-total and items

(-sleep latency, -sleep

quality, -sleep duration,

-sleep disturbance,

-daytime dysfunction)

improvement at week 2

NA

Galbiati et al.

(76)

8 idiopathic hypersomnia (35.0 ±

15.5 age, 5F)

Electrodes: 25 cm2

Anode: left DLPFC (F3)

Cathode: right supraorbital area (Fp2)

Intensity: 2mA

Number: 12
Frequency: three per

week

Duration: 20min

Period: 4 weeks

ESS ESS improvement at

week 4 and week 6. No

improvement at week 8

NA

Case reports

Frase et al. (75) 1 organic hypersomnia following

reanimation (52.0 age, male)

Electrodes: 35 cm2 (anodes), 100 cm2

(cathodes),

Anodes: 2 Fp1-Fp2

Cathodes: 2 P3-P4

Intensity: 2mA

Current: direct

Number: 6 alternated

(3 active, 3 sham)

Frequency: daily
Duration: 13min

Period: 1 week

PVT

psychomotor

vigilance task

Pre-to-post

improvement in

response speed by

active in comparison to

sham at week 1

None

Number: 6 (2 blocks of

three active with 4

weeks interval)

Frequency: daily
Duration: 1min

Period: 4 weeks

VAS subjective

vigilance

Significant increase in

subjective vigilance and

reduction of daytime

sleep at week 4

Sanchez-Kuhn

et al. (48)

1 chronic after-stroke dysphagia (64.0

age, male)

Electrodes: 35 cm2

Anode: left M1 (TP-T7)

Cathode: extra-cerebral
Intensity: 1mA

Current: direct

Number: 16
Frequency: daily (4
days/w)

Duration: 20min

Period: 4 weeks

SWAL-QoL

sleep item

Enhancement in sleep

at week 4

Mild itching

sensations

during the

stimulation

ASSQ, Athlete Sleep Screening Questionnaire; DLPFC, dorsolateral prefrontal cortex; ESS, Epworth Sleepiness Scale; GSAQ, Global Sleep Assessment Questionnaire; ISI, Insomnia Severity Infex; KSD, Karolinska Drowsiness Scale;
MADRS, Montgomery–Åsberg Depression Rating Scale; NA, not available; PSQI, Pittsburgh Sleep Quality Index; PVT, Psychomotor Vigilance Task; SE, Sleep Efficiency; SOL, Sleep Onset Latency; SSS, Stanford Sleepiness Scale;
SWAL-QoL, Swallowing Quality of Life questionnaire; TAP, Testbatterie zur Aufmerksamkeitsleistung; TST, Total Sleep Time; VAS, Visual Analog Scale.
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power spectral density (PSD) of endogenous slow oscillations at
the stimulated areas (50, 56, 58, 59, 64). Slow oscillatory activity
originates in the centro-frontal neocortex and coordinates
widespread firing synchrony across other brain regions,
including adjacent cortices and subcortical structures such as
the thalamus and brainstem nuclei (82–84). This crosstalk is
essential for the generation of oscillatory cycles that orchestrate
brain activity during sleep (85). Regarding our results, although
tES has primarily cortical direct effects, it is likely that external
stimulation of the neocortex spreads to the entire cortico-
subcortical network through top-down mechanisms to facilitate
slow oscillatory activity. This rationale is supported by preclinical
results demonstrating that the modulatory effects of electrical
stimulation of centro-frontal cortices extend to subcortical
arousal networks (86, 87). Moreover, it has been reported that
stimulating the prefrontal region can reach deeper structures
and lead to subcortical dopamine release in the ventral striatum
(88). In parallel, slow alternating stimulation during NREM sleep
has been shown to facilitate corticocortical network activity,
which can explain the observed enhancement of sleep-dependent
restorative processes of tES with respect to declarative memory in
healthy participants (45, 47, 50), as well as behavioral inhibition
and executive functions in patients with ADHD (68). For
more details about the effect of tES during sleep on memory
processes, we refer the interested reader to this exhaustive review
(37). At the cellular level, it is likely that enhancement of slow
oscillatory activity is related to tES-induced anodal polarization,
which corroborates previous demonstrations that endogenous
negative potentials arising during late stages of NREM sleep and
facilitating specific shifts in extracellular ionic concentration
play a supportive role in the generation of slow oscillations
(84, 89, 90).

In parallel, it was shown that slow oscillation PSD immediately
following tES is negatively correlated with measures of slow
oscillation spectral power and coherence immediately preceding
stimulation, suggesting that tES may be more effective when
applied during less synchronized and more “quiet” periods of
brain activity (50). This put forward the importance of the
baseline cortical activation state on the impact of tES (91). As
observed during magnetic stimulation of the brain (92), these
findings imply that tES effect interacts with the ongoing activity
of the sleeping brain at the time of stimulation.

In addition to modulating corresponding spectral ranges, it
was shown that slow oscillatory frontal tES induces collateral
modulation and enhancement of spindle waves (47, 49, 56,
59). These observations support the conclusion that slow
alternating tES enhances physiologically normal conditions in
which slow alternating activity drives the generation of spindle,
which implies that spindle activity is maximal during late
stages of NREM sleep (i.e., transition to slow wave sleep)
(93–95). These neurophysiological changes were also observed
during post-stimulation intervals (46, 57, 59, 60), suggesting
short-term plasticity effect induced with regard to putative
synaptic mechanism consequences described above. Spike
timing-dependent plasticity has been proposed for the observed
after-effects of tES. According to this form of brain plasticity,
when the frequency of an externally induced driving force (i.e.,

tES) is matched with a neural circuit resonance frequency,
spike timing-dependent plasticity can strengthen synapses in this
circuit (96). However, changes were not replicated when taking
into consideration the entire stimulation night (51), which could
be attributed to the decreasing levels of slow oscillations typically
observed across a sleep period (97). Regarding lower-frequency
ranges, significant delta modulations induced by frontal slow
alternating or direct tES during NREM sleep suggest potential
cross-frequency coupling mechanisms (51, 53, 58).

tES Is Mainly Ineffective on Sleep Patterns
Only a minority of studies reported significant changes in
sleep architecture, namely, increased sleep stage NREM2 and
decreased further slow wave sleep stages relative duration (51,
57, 67), indicating a potential sleep-stabilizing effect of slow
oscillatory tES (single session) during NREM sleep. In parallel, an
absence of tES beneficial effects on polysomnographic measures
of sleep was repeatedly observed across studies conducted in
both clinical and healthy samples. It is likely that potential
improvement of sleep continuity has been missed due to a ceiling
effect in good sleepers. A few studies observed tES-induced
sleep continuity disruption, which may be related to potential
increase of external disturbance or unwanted modulation of
vigilance control circuits (45, 57, 66). Thus, when performing tES
especially in the clinical population, stimulation sessions upon
awakening should be recommended in order to avoid adverse
effects on sleep continuity. Interestingly, a study observed a
relative stronger decrease of sleep continuity in healthy controls
following tES, but not in patients with insomnia disorder. It is
proposed that this differential effect of tES is related to persistent
hyperarousal in this clinical population, preventing the arousal-
inducing effect of anodal active tES in healthy controls (66).

tES Can Significantly Improve Subjective
Aspects of Sleep
A significant number of studies observed significant
improvements of subjective sleep after tES in both healthy
(71–73) and a large range of neuropsychiatric diseases
(41, 48, 75–77, 79, 81). The positive results were observed
across various rating instruments, suggesting large impact of
tES on subjective components of sleep. Notably, all studies
showing significant improvements used tES montages that
stimulated frontal and/or motor areas. This is not surprising
since neuroimaging methods identified that cortical topography
of slow waves during sleep are primarily associated with
activity in a core set of cortical areas that are mainly located
in the prefrontal cortex and motor regions (98, 99). Although
conventional tES current may spread to other regions than the
targeted area (100), studies showing a subjective improvement
of sleep after tES used comprehensive stimulation protocols
assuring activation of the major cortical areas involved in sleep
regulation which, in turn, reflected on subjective sleep measures.
It is reported that complementary biological mechanisms of
subjective sleep improvement by tES can involve stimulation of
the reticular formation (41), which plays a central role in states
of consciousness like sleep. In addition, sleep promotion induced
by decoupling functional connectivity between wakeful-active
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default mode network and subcortical structures (73) and
activation of non-motor function of the cerebellum such as sleep
regulation (101) may underlie subjective sleep improvement
by tES.

These results hold promises for the use of tES to target sleep
symptoms in various clinical populations with neuropsychiatric
disorders. Furthermore, significant correlations were observed
between subjective sleep parameters and non-sleep parameters,
such as depressive symptoms (77) and attention performance
(76). Further investigations are well-warranted to identify if other
clinical dimensions are improved through improvement of sleep.

Negative Results and Limitations
The main limitation of comparisons across reviewed studies
relies on the high heterogeneity of results and the important
rate of negative results. A main shortcoming that may explain
this limitation is the very high heterogeneity of stimulation
protocol parameters that could influence the effect on sleep
and sleep measures, such as the device type, duration of
stimulation on/offsets, electrode impedance, and electrode
placement across studies. Slight methodological variations
regarding the stimulation signal (direct vs. alternating) and
the applied current density may also impact observations. For
instance, current ramping at the beginning and at the end
of each stimulation interval is likely to influence short-lasting
stimulation-dependent entrainments of the specific oscillatory
activity (51, 58). In addition, heterogeneity of samples sizes,
sleep variations according to age and gender (102, 103), and
the considerable interindividual and intraindividual differences
commonly observed in sleep recordings may have accounted
for the conflicting results. Another potential explanation for
inconsistent effects of tES on endogenous oscillations and
sleep patterns, which are derived from physiological recordings,
is the difficulty in collecting high-quality stable long-term
measurements during sleep due to a number of issues such as
movement artifacts (rapid eye movements, tossing, turning, etc.)
and slippage in the placement of electrodes through the night.
As pointed out in a few recent studies (104, 105), the effects of
tES on endogenous oscillations can systematically vary through
the course of the night due to refractory effects—so future studies
need to track stimulation-induced biomarkers for the outcomes
of interest during sleep. Finally, no quantitative meta-analyses
were applicable due to the high heterogeneity of studies included
in this systematic review.

Regarding changes in sleep oscillations, a potential
“endogenous” explanation is that the stimulation was likely
given in different sleep stages across studies, especially
since not all studies controlled stimulation-free intervals of
neurophysiological measurement for ongoing sleep stage.
Given the interindividual variability of sleep architecture and
fragmentation and the fact that oscillatory stimulation effects are
strongly dependent on ongoing brain state and network activity,
this may have accounted for heterogeneity (106).

Some discrepancies were observed between healthy and
clinical samples. It might be that the latter may have different
responses to tES with different response/activation threshold,
as for instance in insomnia vs. healthy subjects, who met

hyperarousal symptoms (66). It is also possible that subjective
sleep alterations are secondary to other symptoms such as pain
(78), whose neurobiological bases are not directly targeted by tES
in sleep-oriented studies. In addition, the strong placebo response
observed in neuropsychiatric disorders might have hampered the
observation of sleep improvement under active stimulation (80).

Finally, it should be noted that the vast majority of studies
included in this systematic review involve frontal stimulation,
which prevents us from concluding on a general effect of tES
on sleep. A review focusing only on studies stimulating frontal
areas could have indeed led to a more homogeneous picture.
Nevertheless, we a priori defined the aim of our study to
conduct an exhaustive systematic review of tES on sleep with the
objective to account for all the existing literature and all possible
stimulation areas.

CONCLUSION

tES-based approaches have a significant impact on oscillatory
neurophysiological parameters of sleep. Furthermore, studies
suggest their enhancement as physiological restorative
processes that could serve as a potential therapeutic target
in neuropsychiatric disorders. While the conflicting effects of
tES on sleep patterns shed some doubt on its potential utility to
improve sleep continuity, the significance of subjective aspects
of sleep in various populations invites further development of
non-invasive stimulation treatments for sleep conditions that
are among the most prevalent health problems worldwide.
Given the important heterogeneity of stimulation protocols
and samples, future studies should examine the impact of these
variables on the effect of tES on sleep measures. Furthermore,
several major questions should be investigated to define optimal
application of tES for sleep improvement, in terms of stimulation
parameters (e.g., current type, duration, sessions), stimulation
location, and type of brain state (e.g., wake/sleep, sleep stage)
during stimulation.
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